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Abstract. The Central Congo Basin is home to the largest peat swamp in the tropics. Two major vegetation types overlay the

peat: hardwood trees, and palms (mostly the trunkless Raphia laurentii variety), with each dominant in different locations.

The cause of the location of these differently composed swamp areas is not understood. We investigated their distribution

using a recent vegetation classification across the 165,600 km2 region. Using a regression model we assessed the impacts of

elevation, seasonal rainfall and temperature on the presence of each peat vegetation type. We used monthly 0.05° resolution5

CHIRPS rainfall climatology (CHPclim) and maximum temperature (CHIRTS) data together with 90 m resolution terrain data

(MERIT Hydro). Our model was successful in predicting the percentage palm swamp composition when tested using data

held back for verification, with R2 ~ 0.79, RMSE = 14.8%, and p < 0.05 for the largely rain-fed hydrological sub-basins.

However, it did not perform well in areas where peatland inundation is controlled by river flooding. We found that palm

swamp composition varies primarily with elevation and dry season climatological variables (rainfall and temperature), with10

additional, significant contributions from the total wet season rainfall and temperature. There are indications of an optimal

range of net water availability (the difference between rainfall and actual evapotranspiration, accounting for run-off) for palm

swamp dominance, above and below which hardwood swamp dominates. In this study we progress our understanding of the

determinants of peat swamp vegetation type in the central Congo Basin. Improved understanding will contribute to assessing

how changes in environmental factors, including land-use and climate change impacts, could impact swamp type distribution15

and carbon fluxes in the future.
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1 Introduction and study area

Peatlands are regions of wetland composed of carbon-rich soil formed from the partial decay of plant materials under water-

logged conditions. They are present in over 180 countries (Parish et al., 2008), with tropical peatlands existing in Southeast

Asia, Africa, Central America, South America and the Caribbean (Page et al., 2011). Xu et al. (2018) conducted a meta-analysis20

of research assessing the spatial extent of peatlands and estimated global peatland area to be 4.23 million km2, covering ~2.84%

of land globally, with 187,061 km2 located in Africa. The total estimated global peatland carbon stock is 600 to 650 Gigatonnes

of carbon (Gt C) (Yu et al., 2010; Loisel et al., 2021; Page et al., 2022), of which tropical peatlands have been estimated to

contribute between 10 and 30% (Yu et al., 2010; Page et al., 2011, 2022; Dargie et al., 2017; Hodgkins et al., 2018). The

characteristics of tropical peatlands in Southeast Asia are comparatively well understood, with their extent (Page et al., 2007),25

depth and biomass attributes quantified (Hooijer et al., 2010; Page et al., 2011). However, peatlands in other tropical regions,

including the Cuvette Centrale, have, until recently, remained largely unexplored. They form major stores of carbon, having

accumulated peat and acted as a carbon store for at least 10,000 years (Page and Baird, 2016; Dargie et al., 2017), and are now

vulnerable to rapid loss of their carbon stocks through land-use change and climate change impacts (Dargie et al., 2019).

The Cuvette Centrale (Figure 1), situated in the central lowland region of the Congo Basin, is the second largest wetland in30

the tropics (Dargie et al., 2017) and contains the largest area of tropical peatland, with an estimated extent of 165,600 km2, and

storing 29.0 Pg C (95% CI, 26.3-32.2 Pg C) (Crezee et al., 2022). It spans the Republic of Congo (RoC) and the Democratic

Republic of Congo (DRC), with the Ubangi river marking the border between these two countries.

Figure 1. Location of the Cuvette Centrale peatland region within the central Congo Basin. Light orange represents regions of palm swamp

(largely Raphia laurentii), and dark orange represents regions of hardwood swamp trees. The map on the right shows the full land type

classification map for the Cuvette Centrale, developed by Crezee et al. (2022).

Dargie et al. (2017) estimated that the Cuvette Centrale’s carbon storage contribution increases the global carbon stock

within tropical peatlands by 36% to 104.7 Pg C (within a 69.6 to 129.8 Pg C range). They identified the two main types of35
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swamp vegetation which overlay the region’s peat as: hardwood trees, including the Uapaca paludosa, Carapa procera and

Xylopia rubescens species; and palms (largely Raphia laurentii). They also calculated mean above ground carbon stocks to be

84% higher for hardwood than for palm swamp plots. However, they found no evidence of differences in carbon concentration,

peat depth or bulk density, and, therefore, below-ground carbon stocks, between the two swamp types. Crezee et al. (2022)

modelled peat depth and carbon density values across the peat swamp and found these values to be slightly higher for palm40

swamp (1.7 (±0.8) m for hardwood, versus 1.9 (±0.9) m for palm swamp). The mean carbon density is 1725 (±617) Mg/ha and

1826 (±674) Mg/ha over hardwood and palm swamps, respectively. An estimated area of 56,300 (±5,600) km2 palm dominated

swamp across the Cuvette Centrale was derived from the Crezee et al. (2022) land classification map, indicating that Raphia

laurentii could be the most common palm in Africa. However, we do not know why it is distributed where it is.

Understanding the determinants of peat swamp vegetation type is important, as changes in environmental factors, including45

climate change impacts, could lead to preferential conditions for one type over another, which, in turn, could impact soil carbon

fluxes (Loisel et al., 2021). Gutenberg et al. (2019) determined that soil carbon flux depends significantly on forest type, as

well as soil moisture and temperature, when investigating a freshwater forested peatland in the USA, and Sjögersten et al.

(2018) showed that greenhouse gas (GHG) emissions from tropical peatlands in Panama vary by vegetation type, with net

emissions of both carbon dioxide (CO2) and methane (CH4) observed to be highest from palm swamp forest under all levels50

of peat moisture investigated. They also identified the greatest increases in CH4 emissions with temperature for palm swamp

forest. It is therefore important to understand how climate change may impact the distribution of peat swamp vegetation type,

as well as to consider the response of different peatland swamp vegetation types to future climate change when predicting GHG

emissions.

Our understanding of the hydrological processes that take place across the peatlands is still developing (Biddulph et al.,55

2021). The Cuvette Centrale is fed by many tributaries, with the inter-fluvial basins differing in soil characteristics and lithol-

ogy, in addition to rainfall distribution (Borges et al., 2019). Peatland swamp areas within the Cuvette Centrale are water-

logged for much, or all, of the year, enabling the gradual accumulation of peat. Some regions are river-influenced, receiving

water input from the river system in addition to rainfall, while the large inter-fluvial basins are believed to be mainly rain-fed

(ombrotrophic), due to being elevated from the river system, and cut-off from surface or sub-surface hydrological input and60

flood waves from the water channels (Dargie et al., 2017). Satellite data based studies by Jung et al. (2010) and Lee et al.

(2011) support that the Congo Basin wetlands are largely independent from the river system. Typically, rain-fed peatlands have

a dome structure (where the peat is thickest at the central point, and thins towards the margins) (Lähteenoja and Page, 2011),

and although pronounced dome structures are not evident in the Cuvette Centrale, recent work (Davenport et al., 2020) has

confirmed shallow dome structure (1.8 m over ~20 km), at a single site in the RoC.65

The peat swamp regions of the Cuvette Centrale typically receive 1700 mm rainfall annually (Samba et al., 2008), signif-

icantly less than other regions where tropical peatland exists, for example, the Pastaza Marañón Foreland Basin, Peru, which

receives around 3000 mm/year (Marengo, 1998). Seasonal variations in rainfall and temperature across the Cuvette Centrale

are driven by the movement of the inter-tropical convergence zone (ITCZ), which is a band of low pressure that moves with the

thermal equator, bringing increased rainfall to the Cuvette Centrale during two wet season periods: March, April, May (MAM),70
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as it moves northwards from the equator, and September, October, November (SON), as it moves back southwards bringing the

heaviest period of seasonal rainfall. Two dry season periods are observed in-between: December, January, February (DJF) and

June, July, August (JJA). As a result, the water table level across most of the peatlands can have a strong seasonality. Hirata

et al. (2015) describe hydrology as a key component of ecosystem models, especially variations in the water table level which

affect rates of both photosynthesis and plant decomposition (Hirano et al., 2007, 2012; Jans et al., 2012). It is not currently75

understood how swamp vegetation type varies under different levels of rainfall and flooding in the Cuvette Centrale, and it is

possible that climate change could result in ecosystem adaptation to a different distribution of peatland vegetation.

Within this study our aim was to improve our understanding of climatic influences on the current distribution of Cuvette

Centrale peatland vegetation. The peatland maps produced by Dargie et al. (2017) and Crezee et al. (2022) show that palm-

dominated swamp forest tends to occur in more interior peatland locations, with hardwood-dominated more towards the edge,80

delineated by the river system. We hypothesise that: 1. additional water input in the form of higher water tables and/or more

extensive periods of water availability benefits palms, and that areas where palm dominates benefit from higher dry and/or wet

season rainfall totals, and 2. palms may dominate at lower elevations to benefit from additional water input from ground water

flow and pooling of water.

Currently, GHG fluxes from peatlands are not incorporated within Earth System Models (ESMs) (Loisel et al., 2021). An85

improved understanding of these relationships would contribute usefully to informed integration of tropical peatland dynamics

into future ESM implementations, such that we can better simulate how future land-use and climatic change will impact

ecosystem dynamics and GHG fluxes. To assess these hypotheses we perform a regression analysis to quantify the impact of

elevation and seasonal climatological variables on sub-basin swamp vegetation type.

2 Data90

We use the 50 m land-type classification map (figure 1) developed by Crezee et al. (2022), together with terrain and climatolog-

ical data to assess the drivers of differences in regional composition between the two major swamp vegetation types, palm and

hardwood. To summarise, the terrain, climatological and weather data we use includes: the MERIT Hydro 90 m elevation and

Height Above Nearest Drainage (HAND) basin (Yamazaki et al., 2017); Hydrobasins sub-basin delineations (Lehner and Grill,

2013); Climate Hazards center Infrared Precipitation with Stations (CHIRPS) rainfall (Funk et al., 2015a); CHPclim monthly95

rainfall climatology (Funk et al., 2015b); and CHIRTS maximum temperature (Funk et al., 2019). This section provides a more

detailed description of these data.

2.1 Topographical data

Although the peatland swamp area of the Cuvette Centrale is relatively flat with most areas lying between 300 and 340 m

above sea level (a.s.l), there is sufficient variation in the surrounding topography (up to 800 m a.s.l) for surface and sub-surface100

run-off to occur, potentially carrying rain water inputs from higher elevations to the lowland swamp regions. It is necessary

for Digital Elevation Models (DEMs) to be as accurate as possible when assessing hydrological and carbon cycle dynamics
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(Yamazaki et al., 2017), however, wetland regions of the world, including the Congo Basin, are significantly affected by tree

height bias in DEMs. To assess if run-off contributes to net-water input at lower elevations, we use the MERIT hydrologically

adjusted DEM, available at ~90 m resolution (Figure 2a). It was developed using the NASA SRTM3 and the JAXA AW3D105

30 m DEM as baseline products, with bias, noise and tree-height corrections applied to approximate the terrain elevation, and

with the Congo Basin being included as one of the focal regions when developing the product (Yamazaki et al., 2017).

Nobre (2011) introduced the Height Above Nearest Drainage (HAND) basin model which calculates the terrain elevation

relative to the local drainage network. We make use of the MERIT derived HAND data (Yamazaki et al., 2017), averaged over

0.05° latitude x 0.1° longitude sub-regions, which equates to cell areas of ~62 km2 or 6200 hectares (ha).110

Additionally, we use the HydroBASINS sub-basin delineations. This is a global collection of shape files at 15 arc second

resolution (~450 m at the equator), derived from the HydroSHEDS database (Lehner and Grill, 2013), which details basin

boundaries and sub-basin delineations at successive levels of detail (Figure 2b).

Figure 2. (a) MERIT elevation data, and (b) Sub-basin map, derived using Hydro-basins level 4 and 5 sub-basin shapefiles. The major rivers,

towns, and lakes are annotated, and the approximate footprint of the peatland complex is overlaid.

2.2 Climatological and meteorological data

The CHIRPS rainfall dataset is available on a daily basis at 0.05◦ resolution (5.55 km resolution at the equator) between115

approximately 40◦ N and 40◦ S. It has been derived from a combination of remotely sensed rainfall and gauge data (Funk

et al., 2014). Camberlin et al. (2019) performed an inter-comparison study of remotely sensed rainfall products available over

Central Africa, including five data sets incorporating ground-based rain gauge measurements, of which CHIRPS has the highest

spatial resolution. The Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis product was found

to have the smallest bias over Central Africa when compared with other rainfall products, however its spatial resolution is120

0.25° (~28 km at the equator). They found that all products reproduced the spatial variability of the rainfall well, and CHIRPS
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and TRMM performed favourably at the inter-annual scale. Due to the high seasonal variability of rainfall within the Cuvette

Centrale, historical rainfall data of sufficiently high resolution was required for this study, so we decided to use the CHIRPS

data. Within this investigation, we make use of both the CHPclim (1980 to 2009) climatology data (Funk et al., 2015b) and

the monthly CHIRPS data, available on a yearly basis from 1981 to present (Funk et al., 2014, 2015a). Figures 3a and b125

show the annual and seasonal rainfall climatology spatial distribution. Additionally, we use the Climate Hazards Center (CHC)

CHIRTS monthly maximum temperature data (Funk et al., 2019), also available at 0.05° resolution, to calculate mean seasonal

climatologies within the time-frame over which we calculated the CHIRPS rainfall climatology (Figures 3c and d). The spatial

pattern of evapotranspiration does not vary greatly across the Congo Basin (Bultot and Griffiths, 1972; Alsdorf et al., 2016).

We therefore effectively use rainfall totals as a proxy for the pattern of net water availability in rain-fed regions of the Cuvette130

Centrale. CHIRTS temperature data is only available from 1983. We use the 27 year period, 1983 to 2009, to overlap with the

1980 to 2009 CHIRPS rainfall climatology. Although there is a three year difference in the averaging periods, we use them

over a sufficiently long period and concurrent time-frame for their values to be representative with respect to one another.

Figure 3. (a) Multi-year mean (1980 to 2009) annual rainfall accumulation and (b) seasonal rainfall accumulation climatologies for the dry

season periods: Dec, Jan and Feb (DJF) and Jun, Jul, Aug (JJA) and the wet periods: Mar, Apr, May (MAM) and Sept, Oct, Nov (SON).

Derived from CHPClim data (Funk et al., 2015b). (c) Multi-year mean (1983 to 2009) climatology of the monthly maximum temperature

CHIRTS data, and (d) corresponding seasonal means of the monthly maximum temperature climatology. Black lines denote the main river

tributaries, blue lines show lakes, and the white and grey borders in (a) and (c) indicate the approximate footprint of the peatland complex.
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3 Methods

3.1 Sub-basin delineation135

We assess the relationships between the climatological data and vegetation type at the sub-basin scale due to regional meteoro-

logical differences. We use the level four and five HydroBASINS layers to sub-divide the Cuvette Centrale into 13 sub-basins

(Figure 2b). We further categorise the sub-basins into three regions based on their relative location to the Congo river:

i. RoC: sub-basins lie within the RoC (RoC 2 to 5) or between the RoC and DRC, on the right bank of the Congo river,

stretching across the Ubangi river (RoC 1).140

ii. Mixed: sub-basins span across the left and right banks of the Congo river (Mixed 1 to 4).

iii. DRC: sub-basins lie fully, or largely, in the DRC, and on the left-bank of the Congo river (DRC 1 to 4).

3.2 Derivation of seasonal climatological data

We use the CHPclim and CHIRTS data to calculate three-month seasonal climatologies for the Cuvette Centrale across the dry

seasons (December to February (DJF) and June to August (JJA)) and wet seasons (March to May (MAM) and September to145

November (SON)). Additionally, we derive climatological variables from the four three-month seasonal periods, including: dry

and wet season rainfall totals (DJF + JJA, and MAM + SON); dry and wet season differences in rainfall (JJA-DJF and SON-

MAM); and the difference in mean maximum temperature between subsequent seasons. We assess the spatial correlations of

the derived seasonal rainfall and maximum temperature climatologies with the swamp vegetation type at the sub-basin level.

3.3 Implementation of a fine grid method to assess drivers of swamp vegetation type150

Due to the high variability in rainfall totals across the Cuvette Centrale, indicated in Figure 3a, we further divide the region

into 0.05° latitudinal x 0.1° longitudinal pixels (approximately 5.55 x 11.1 km resolution/6200 ha cells). We use different reso-

lutions for each sub-pixel dimension as, although the rainfall pattern varies significantly across the basin, there is less seasonal

variability in the longitudinal direction than the latitudinal due to the north-southwards migration of the ITCZ (Figure 3b).

Our analysis involves calculating first the percentage composition of each swamp vegetation type within each sub-pixel, and155

then the palm and hardwood swamp composition as percentages of the total swamp composition (hardwood + palm swamp

pixels). To limit the regression analysis to understanding the impact of climatological drivers on regions of swamp vegetation,

we include only sub-pixels with greater than 70% total swamp composition (hardwood and palm swamp combined).

3.4 Selection of feature variables to include in the regression model

We calculate the Pearson correlations between all our derived topographical and climatological variables, and the percentage160

palm swamp composition to identify where high collinearity exists. Ideally, only feature variables that are sufficiently indepen-

dent from one another should be included in regression analyses, such that the output parameter coefficients are representative
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of the relative contribution each parameter makes to the prediction of palm swamp composition. The inclusion of too many

multi-collinear variables in the regression method we use also results in non-convergence of the model. We therefore use the

Variation Inflation Factor (VIF) method to calculate multi-collinearity between different combinations of feature variables, and165

to arrive at a final set of suitable feature variables for inclusion in our regression model implementation.

As we average the MERIT 90 m elevation dataset over ~6200 ha areas, the corresponding standard deviations will be large

for pixels with large sub-grid variations in elevation. Where this is the case, there may be additional surface/sub-surface run-off

between sub-pixels to consider, and our linear regression model would be less representative as rainfall input at these locations

would not necessarily correspond with total net water input without further accounting for hydrological mechanisms due to the170

terrain. We therefore include elevation standard deviation as an additional feature variable within the model.

We calculate linear regressions between palm swamp composition and the elevation, elevation standard deviation, rainfall

and temperature variables, for each of the three regions: RoC, DRC and Mixed, and for each sub-basin within these regions.

These regional and sub-basin distinctions are made to (i) assess overall inter-regional differences resulting from differing

hydrological mechanisms (e.g. river flooding in the Mixed and DRC regions, and higher rainfall totals over the DRC peatland175

regions), and (ii) to assess intra-regional differences. Due to differences in hydrological regimes across the Cuvette Centrale,

and the influence of additional water inputs in the floodplain regions, we limit our regression analysis to the sub-basins believed

to be mostly rain-fed (RoC and Mixed sub-basins), such that the seasonal rainfall patterns can be regarded as being largely

representative of the spatio-temporal patterns of net water input for a particular region, enabling us to delineate the impact of

different levels of rainfall on swamp vegetation type dominance.180

In addition to our final choice of model variables, we trial two other models, one looking at how well the seasonal rainfall

parameters alone can be used to model palm swamp composition, and another using seasonal maximum temperature parameters

as an alternative.

3.5 Regression model implementation

The variables used within regression models should ideally be independent, however, due to the impacts of multi-collinearity,185

our choice of some variables effectively act as interaction terms, influencing the size and significance of the model’s deter-

mined coefficients through their influence on one another’s contribution to predicting the dependent variable, the percentage

palm swamp composition. Multicollinearity only impacts interpreting the modelled significance of variables which are multi-

collinear, and not that of other independent variables. Additionally, although correlation between model features can affect the

coefficients and p-values, it does not mean that a good model fit cannot be found, and useful predictions made (Neter et al.,190

1997).

Douma and Weedon (2019) provide an overview of statistical regression methods for modelling proportional data, dis-

tinguishing between count-based and continuous proportions. Count-based proportions can be modelled well using logistic

regression, while they identify Beta and Dirichlet regression methods as being appropriate for continuous proportions, e.g.

percentage cover, which is what we aim to do within this study when modelling for percentage palm swamp composition.195

Additionally, logistic regression methods are suitable for continuous proportions, where the distribution is Gaussian. How-
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ever, due to the distribution of our dependent variable being left-skewed and non-Gaussian, we use a Beta-regression method

with a logistic link function. We use the R code betareg implementation of the beta regression method, developed by Grün

et al. (2012), and described by Cribari-Neto and Zeileis (2010). It uses maximum likelihood estimation (MLE) to estimate the

parameters of the probability distribution, given the independent data inputs. It is similar to a generalized linear model, and200

can be used to predict non-Gaussian proportional data, which was required in our use-case. In addition to dealing well with

asymmetric and skewed data, an advantage of using a beta regression model over a linear model with logistic input is that

the contribution of each variable to the prediction can be determined from the size of the multiplying (beta) coefficients when

using standardised feature variable inputs.

We standardise the independent variables using the Z-score method (see equation A1 in Appendix A), which expresses205

the variable in terms of the number of standard deviations its value lies from the population mean value. We then use these

standardised values as inputs to the model, such that the derived model linear regression coefficients represent the relative

importance of each feature variable in influencing our dependent variable, the palm swamp composition of a particular 0.05°

x 0.1° pixel. We then divide our data from the selected sub-basins (981 points), where total swamp composition is greater than

70%, into 80% training (785 points) and 20% test (196 points) data sets using the train-test split function available within the210

Scikit-learn python package. It is important to split the data such that, by comparison of the output statistics from the model

predictions for each data set, we can ensure that our model does not over-fit to the training data. We create 10 different train-test

data split combinations, by defining different random-seed numbers within the train-test split function, and run the model for

each dataset to assess the stability of the β coefficients output from the model. The pseudo-R2 value differs from the more

commonly used R2 statistic, and is calculated within the R Betareg package as the squared sample correlation between the215

linear predictor and the logistically transformed response (Ferrari and Cribari-Neto, 2004; Cribari-Neto and Zeileis, 2010).

3.6 Assessing the model anomalies

To assess where outliers exist, we plot the differences between the mapped and predicted values across the full dataset (981

6200 ha cells). We define outliers as being located outwith +/- two times the standard deviation (σ). To understand the reasons

behind the anomalies, we investigate how they vary with both the feature variables included in the regression model, and also220

with those not included due to multi-correlation. We calculate the Pearson correlation between the anomalies and each variable

of interest to assess if there are any relationships not well accounted for within our model.

3.7 Assessing the contribution of inter-annual variability in seasonal climatology

The El Niño-Southern Oscillation (ENSO), describes irregular changes in pressure between the East and West regions of

the Tropical Pacific, and the resulting impacts on sea surface temperature (SST) and the Walker Circulation (an atmospheric225

circulation which is driven by the equatorial SST gradient across the Pacific Ocean) which can culminate in El Niño and La

Niña episodes (Oliver, 2005). Amarasekera et al. (1997) identified a weak negative correlation between annual discharge from

the Congo Basin and the equatorial Pacific SST anomalies associated with ENSO. They estimate that 10% of variance in the

Congo Basin’s annual discharge can be attributed to ENSO.
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So far, the methodology we have described aims to assess the contribution of climatological conditions to determining230

the prevalence of each swamp vegetation type. We are also interested in understanding if the inter-annual variability, which is

driven to some degree by ENSO conditions, can serve to delineate the preferential conditions for each swamp type to dominate,

and explain the presence of any outliers calculated using our beta regression model implementation. To assess this we use the

monthly CHIRPS rainfall and CHIRTS maximum temperature data available since 1981 and 1983 to present, respectively. We

calculate the maximum, minimum and standard deviation of each dataset on a pixel by pixel basis corresponding with each of235

the climatological variables used within our original model implementation. We then identify subsets of years that were drier

and wetter than the mean values over the 1981 to 2010 period on an individual sub-basin basis, and calculate climatologies

over each of these sets of years. We then re-run our model using these dry/wet climatologies to find if inter-annual variations

in rainfall accumulations impact on swamp type composition. Additionally, we compare yearly seasonal rainfall totals with the

corresponding ENSO index for that season, using the ENSO indexes and durations available on the NOAA ENSO monitoring240

website: https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php.

4 Results

Our model implementation successfully predicted palm swamp composition over the 6200 ha sub-regions (Figure 4) included

within the 20% test data set we had held back for verification purposes (R2=0.79, RMSE = 14.8%, p < 0.05), and demonstrates

the strong dependence of swamp vegetation type on elevation and climatological variables, primarily the dry season rainfall245

and temperature (Table 1). We provide here an overview of the results from the correlation and regression analyses, including a

summary of how our model implementation performed over each sub-basin, and taking into consideration outlying predictions.

Figure 4. Maps show the spatial distribution of regions containing greater than 70% total swamp composition (palm + hardwood) within

each 0.05° by 0.1° (6200 ha) sub-pixel, expressed as percentage composition of (a) palm swamp, and (b) hardwood swamp. Only pixels

meeting this criteria were used within the regression analysis. The major lakes (blue) and rivers (black) are shown.
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Table 1. Summary statistics for each of the three sets of feature variables used within the beta regression model. The median residual value

is weighted and standardised.

Model name and variables coefficient P-values Pseudo-R2

value

Log-

likelihood

median resid-

ual

1. Elevation + rain + temp

i. Elevation

ii. Elevation standard dev

iii. JJA-DJF rainfall

iv. DJF total rainfall

v. Total wet season rainfall

vi. mean DJF Tmax

vii. mean SON Tmax

-4.64

-0.30

3.23

0.67

0.73

-1.28

-0.35

all < 0.05

< 2e-16

0.03457

< 2e-16

0.01393

< 2e-16

< 2e-16

0.00153

0.75 939.5 -0.0616

2. Rainfall only

i. JJA-DJF rainfall

ii. DJF total rainfall

iii. Total wet season rainfall

2.59

4.28

-0.18

all < 0.05

< 2e-16

< 2e-16

0.0139

0.50 698 0.0221

3. Temperature only

i. mean SON Tmax

ii. mean DJF Tmax

-0.69

1.07

all < 0.05

< 2e-16

< 2e-16

0.39 606.5 0.0303

4.1 Correlation analyses

4.1.1 The impact of elevation on swamp vegetation type

We observe negative correlations between elevation and palm swamp composition, and that palm swamp dominates at the low-250

est elevations across all three regions (Figures 5a-c). Although the slopes of these linear relationships are similar, the intercepts

vary between sub-basins for the RoC and Mixed regions. This indicates that the dependence of swamp type composition on

elevation is relative to the local terrain within each sub-basin, rather than dependent on larger scale considerations, for example

the change in temperature with elevation.
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Figure 5. Variations in palm swamp composition with: elevation for (a) RoC (b) Mixed and (c) DRC sub-basins, and with the standard

deviation of the elevation for (d) RoC (e) Mixed and (f) DRC sub-basins. 0% palm swamp is equivalent to 100% hardwood swamp and vice

versa. The shaded envelopes represent the standard deviation. Some of the linear regressions over smaller sub-basins included less than 10

pixels, resulting in higher uncertainty.

We observe a slight negative correlation between palm swamp composition and elevation standard deviation across most255

RoC sub-basins (Figure 5d). These linear regressions have significant (p<0.05) relationships for RoC sub-basins 2 to 5, where

groundwater flow may contribute more to total net water availability. The relationship between palm swamp composition and

elevation standard deviation is far more significant in the DRC for sub-basins DRC 2 to 4 (Figure 5f), indicating a higher

likelihood of additional net water contribution from ground water flow in these regions.

4.1.2 Annual rainfall correlations with swamp type dominance260

There are significant positive correlations between palm swamp composition and the annual rainfall accumulation for all RoC

sub-basins (Figure 6a). We observe a similar trend for the Mixed 1 sub-basin which lies wholly in the DRC, but with most of

its peatland area located between the Ubangi and Congo rivers, and also for the Mixed 2 sub-basin which is spread across the

Congo river (Figure 6b). However, comparing the linear regressions for the Mixed 1 sub-basin (north of the Congo river) and

its neighbouring DRC 1 sub-basin (just south of the Congo river) we observe opposing trends (Figure 3a and b), with Mixed265

1 showing more similarity to the RoC sub-basins in terms of both rainfall totals and slope. The Mixed 1 sub-basin region is

extensive, but the peatlands located within it are largely located next to the Congo mainstem, and are therefore susceptible to
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receiving additional water input from river flooding. Contrastingly, palm swamp composition has a negative correlation with

annual rainfall totals for DRC sub-basins 1, 2 and 4.

Figure 6. Linear regressions between palm swamp composition and annual rainfall totals for (a) RoC (b) Mixed and (c) DRC sub-basins.

0% palm swamp is equivalent to 100% hardwood swamp and vice versa.

4.1.3 Seasonal rainfall correlations with palm swamp composition270

By comparison with the annual rainfall correlations in Figure 6 we observe that the spread in annual rainfall for the RoC and

Mixed sub-basins is largely accounted for within the spread of the DJF rainfall totals (Figures 7a and b), indicating that variation

in palm swamp dominance due to rainfall can be mainly attributed to spatial differences in dry season rainfall. Contrastingly,

for most of the DRC sub-basins, the negative correlation between palm swamp composition and annual rainfall accumulations

is weakly attributable to wet season rainfall totals. This supports that the climatological relationships that impact on swamp275

type composition within the RoC and Mixed sub-basins differ substantially from those for the DRC sub-basins.

In addition to the individual dry season rainfall accumulations, the difference between the first and second dry season rainfall

accumulations was found to have a significant relationship with palm swamp composition across the RoC and Mixed sub-basins

(Figures 7d-f). We observe that the relative difference in rainfall between these two seasons is of more significance than the

actual rainfall difference for each sub-basin, with each sub-basin’s linear regression having a different intercept value. There280

is less variation in the second dry season rainfall (JJA) than in the first (DJF), and therefore, the higher the DJF rainfall, the

smaller the dry season difference, and this corresponds with increasing likelihood of palm swamp dominance.

Overall, palm swamp composition was found to have more significant correlations (higher R2 values) with the total wet

season rainfall accumulation (MAM + SON) than with the annual rainfall total (Figures 7g-i). As with the annual rainfall

(Figure 6) we observe significant positive correlations between palm swamp composition and the total wet season rainfall285

for RoC sub-basins, and significant negative correlations for DRC basins, with the exception of DRC 3 for which there is no

significant relationship.
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Figure 7. Variations in palm swamp composition with rainfall variables used in the regression analysis: first row - DJF rainfall accumulations,

second row - dry season rainfall difference (JJA - DJF), and third row - total wet season rainfall accumulation, for the RoC, Mixed and DRC

labelled sub-basins. 0% palm swamp is equivalent to 100% hardwood swamp and vice versa.

We also observe greater spatial variation in the dry season rainfall difference than for that between the wet seasons (com-

paring Figures 8a and b). Additionally, the climatology density plot in Figure 8c shows both higher inter- and intra-basin

differences for the dry season difference, with southern sub-basins experiencing a drier December to February, and Northern290

ones being drier between June and August (Figure 8a) due to the ITCZ position. In contrast, the second wet season (September

to November) is consistently wetter than the first across all sub-basins (Figure 8b).
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Figure 8. The difference in climatological rainfall accumulations between (a) the second (JJA) and first (DJF) dry seasons, and (b) the second

(SON) and first (MAM) wet seasons, and (c) a density plot showing histograms of the difference in rainfall accumulation over swamp pixels

between the two dry (orange) and wet (blue) seasons.

4.1.4 Seasonal temperature correlations with palm swamp composition

The first wet season (MAM) is the warmest (Figure 3d), followed by the first dry season (DJF). For each of the wet seasons, the

increased cloud cover results in increased cloud-radiative forcing at the land surface overall, resulting in higher temperatures,295

when compared with the preceding dry seasons. We observe significant negative correlations in the linear regressions between

the mean seasonal maximum temperature and the palm swamp composition for the first dry season (DJF) and contrastingly,

significant positive correlations for the second wet season (SON) for the RoC and Mixed sub-basins (Figure 9). Although

there is as much variation in dry season temperatures for the DRC sub-basins, as for those in the RoC and Mixed regions,

there are not significant correlations with palm swamp composition for most DRC sub-basins. The exception is for DRC 2,300

where we observe a significant positive correlation with the mean DJF maximum temperature, in contrast to the negative

correlations observed for the RoC and Mixed sub-basins. Higher temperatures result in increased evapotranspiration and less

net water input. This corresponds well with palm swamp presence being negatively correlated with annual rainfall totals for

DRC sub-basins.
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Figure 9. Variations in palm swamp composition with the temperature variables included in the regression analysis: mean seasonal maximum

temperature for the first dry season for the (a) RoC (b) Mixed and (c) DRC labelled sub-basins, and mean seasonal maximum temperature

for the second wet season for (d) RoC (e) Mixed and (f) DRC sub-bsains. 0% palm swamp is equivalent to 100% hardwood swamp and vice

versa.

4.2 Results from the multi-collinearity analysis used to inform the regression model implementation305

Table 2 lists the seven variables and their variation inflation factors (VIF), that we included in the regression model. The el-

evation and wet season rainfall and temperature variables are sufficiently independent from one another. However, there is

structural and data multi-collinearity between the feature variables. For example, structural multi-collinearity exists between

our use of the first dry season (DJF) rainfall accumulation and the derived difference in accumulations between the two dry sea-

sons (JJA-DJF), and data multi-collinearity between the DJF rainfall accumulation and mean maximum temperature (Table 2).310

We decided to include all of them in the final model, despite this multi-collinearity, and refer to the final model significance in

relation to these variables as being due to the combined effect of them.

We also determined that seasonal rainfall variables contribute a significant role to swamp vegetation type composition in the

RoC, northern DRC, and in some locations which span across the Congo river. We therefore only used the RoC 1 to 5 and

the Mixed 1 to 4 labelled sub-basins, which cover these regions, within our final regression analysis. Inclusion of DRC peat315

swamps located over flood plains would lead to dampening of the relationships we observe between seasonal climatological

variables and swamp vegetation type in the inter-fluvial regions. As such, it is preferable to treat the RoC and Mixed sub-basins

as largely having a different hydrological regime from those in the DRC.
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Table 2. Variation Inflation Factors (VIF) and corresponding tolerance calculated between the set of feature variables included in the final beta

regression model implementation over pixels with > 70% total swamp composition. VIF > 10 and tolerance < 0.1 indicate multi-collinearity

between variables. Features in bold show multi-collinearity.

Feature variable VIF - all sub-basins Tolerance VIF - modelled sub-basins Tolerance

Elevation 2.9 0.34 5.3 0.19

Elevation standard dev 1.4 0.73 1.1 0.93

DJF total rainfall 21.3 0.05 42.2 0.02

DJF max temperature 12.2 0.08 9.5 0.11

Dry season rainfall difference 12.0 0.08 34.6 0.03

Total wet season rainfall 4.2 0.24 6.3 0.16

SON max temperature 2.4 0.41 2.1 0.49

4.3 Comparison of different sets of regression model inputs

The variables included within our three regression model implementations and their statistics are presented in Table 1. The320

p-values were small for all variables within each model tested. The log-likelihood describes the combined probability of the

multiple input variables to predict the dependent variable, and the lower the value the more probable the derived relationship.

There is no set optimum range for the log-likelihood statistic as it is specific to each model, however, different parameter

combinations can be tested to find those that give the lowest log-likelihood statistic. Although the log-likelihood value was

higher for our final model choice than for the others, this is due to the incorporation of other variables, with additional inherent325

variability of their own, and we deemed our use of this model to be acceptable due to the significant p-values, higher pseudo-R2

value and low residual values (see Figure 11).

Residual values are calculated by subtracting the predicted value from the observed value. A positive residual indicates that

the model under-estimates for that particular data point, and vice versa. The median weighted standardised residual value for

our final model was -0.06σ (Table 1), indicating that, overall, the model slightly overestimates the palm swamp composition.330

In contrast, the rainfall and temperature only models underestimated the palm composition overall. This value was calculated

by dividing the residual for each data point by its estimated standard deviation, and then finding the median across all data. It

is informative to weight and standardise the residuals as this quantifies them in units of standard deviation, enabling us to more

readily identify outliers.

4.4 Final model summary335

Our Beta regression model implementation successfully predicted palm swamp composition across the RoC and Mixed region

sub-basins. Figure 10 shows the standardised coefficients corresponding with the beta regression model outputs. These give

an indication of the contribution of each regressor to the palm swamp composition. The coefficients for all the independent

variables are statistically significant (p-value < 0.05) (see Table 1). The elevation contributes most significantly, followed by

the dry season climatological variables, including the difference between the two dry seasons (JJA-DJF), and the total first dry340
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season rainfall (DJF). The wet season variables (the second wet season rainfall total and the difference in rainfalll between the

two wet seasons) also contribute significantly (p<0.05) but to a lesser extent.

Table B1 details the final coefficients, intercepts and sub-basin constants that can be inserted into equation A4, and used

together with equation A5 (detailed in Appendix A), to predict the palm swamp composition of any given 0.05° latitudinal x

0.1° longitudinal pixel, given the values for each of the contributing elevation and seasonal rainfall and temperature variables.345

The corresponding residuals are shown in Figure 11. These are plotted for the 20% of the data points that we reserved within

our test dataset. As we had observed with our full dataset, the test data is left skewed due to the overall higher percentage

of hardwood swamp composition within our selected set of sub-basins. Overall, the predicted values slightly overestimate the

palm swamp composition. At the extremes, there is overestimation where areas are largely saturated with hardwood swamp,

while there is underestimation where palm swamp tends towards saturation. We can see this more clearly by looking at the350

mapped versus modelled palm swamp composition in Figures 11a and b (over all sub-basins) and 11c (for individual sub-

basins). For an ideal model fit, the residuals would have a normal distribution around a zero mean. There is good agreement

between the model statistics for the test and training datasets (and also across all data), with similar mean absolute error (MAE)

statistics of between 8.6 and 8.9%, root mean square errors (RMSE) of between 14.8 and 15.7% and R2 values of between 0.76

and 0.79 (see Figure 11). As such, we are confident that the model does not over-fit to the combination of feature variables.355

Figure 10. Model coefficients for (a) the relative contribution of each standardised independent variable to the calculation of palm swamp

composition within each 0.05° x 0.1° pixel (Pseudo-R2 = 0.75) and (b) the categorical sub-basin correction value.

The model most optimally fits to Mixed sub-basin 1 (Figure 11c), for which it has a high R2 value of 0.86, followed by

neighbouring Mixed 2 and the more southerly RoC 5 (both with R2 = 0.8 to 0.82). The model also predicts well for RoC

1, RoC 2 and their neighbouring Mixed 3 (R2= 0.76 to 0.78). These are the most northerly sub-basins on the right bank of

the Congo river, and experience similar: seasonal rainfall and temperature profiles (Figure 3); elevation ranges; and seasonal

rainfall difference profiles (Figure 8). The model performs least well for sub-basins RoC 3 and Mixed 4 (R2= 0.60 and 0.57360

respectively). The Sangha river runs through RoC 3, and has extensive flood plains, while the Mixed 4 sub-basin lies on both

sides of the Congo mainstem and likely experiences seasonal river flooding, a component of the net water input that we have

not accounted for within our model. Another contributing factor could be that the Congo mainstem is not entirely a blackwater

river, as is the case for other tributaries, and therefore has a higher nutrient content, with the leaching of its nutrients into the
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floodplains potentially influencing the vegetation composition. Additionally, there are fewer pixels within these sub-basins,365

and greater associated uncertainty (Figure 11c).

Figure 11. (a) Predicted vs. actual palm swamp composition using the test sub-set of points across all sub-basins for which the regression

analysis was run. The points represent the data from the 0.05° x 0.1° sub-pixels which contain at least 70% total swamp (palm + hardwood).

A linear regression line is included. The overall statistics for Mean Absolute Error (MAE), Root Mean Square Error (RMSE) and R2

are included for each of the training, test and full datasets. (b) Corresponding residuals, with a Locally Weighted Scatter plot Smoothing

(LOWESS) line included to describe their trend (the points displayed represent the outputs from applying the regression model to the test

dataset), and (c) Individual sub-basin plots of the predicted vs. mapped palm swamp composition using all data points (test and training

combined). Summary statistics for each sub-basin are included.

4.5 Assessment of outlying predictions

Figure 12a shows the differences between the mapped and predicted values across all the the RoC and Mixed sub-basins. The

RMSE for our model predicted palm swamp composition across the full dataset is 15.7%. The negative anomaly outliers are
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shown in Figure 12b, and the positive ones in Figure 12c.370

Figure 12. The modelled data anomalies from the mapped values for sub-pixels containing greater than 70% total swamp composition for: (a)

across all RoC and Mixed sub-basin regions (b) pixels where model underestimation is greater than 2x the standard deviation, -2σ (31.4%),

from the mapped values, and (c) pixels where model overestimation is greater than +2σ from the mapped values.

We observe a concentration of the highest negative anomalies in the 0.5 to 0.8° N latitude, and 16.2 to 17.2° E longitude

range. This region passes through RoC sub-basins 2, 3 and 4 (see Figure 2), and spans either side of the Likouala-Aux-Herbes

river. There are also negative anomalies observed for the outliers between the Ubangi and Congo rivers, corresponding with

areas located on the right bank of the Ngiri river. Negative anomalies indicate underestimation of the mapped palm swamp375

composition for those locations, and due to the significant positive correlation between palm swamp dominance and seasonal

rainfall accumulations over the sub-basins included in the model, these anomalies may indicate additional water input from

the Ngiri river, or from other ground water inputs including sub-surface and surface run-off. The region between the Ubangi

and Ngiri rivers is characterised by palm and hardwood swamps, interspersed with permanently flooded wetland (Dargie et al.,

2017; Biddulph et al., 2021). It is therefore likely that this region experiences sufficient net water input to meet the minimum380

net water input requirement for palm swamps, and if it does receive additional ground water input, then, as with the DRC 1

to 4 sub-basins, this model would not be successful at modelling for these particular locations, as it does not account for all

water input sources. Additionally, there are some regions with smaller negative anomalies (<2σ) at the edges of the Congo

river, passing through the Mixed sub-basins 1 to 3 (Figure 12a). The highest positive anomalies are concentrated between 0.5°

S to 0.5° N, and 16.8 to 17.7° E, again corresponding with RoC sub-basins 2, 3 and 4.385

We found no significant correlations between the anomalies and the terrain and climatological variables included/considered

for inclusion in the regression model. This indicates that our choice of climatology based model features was suitable, as we

did not leave out variables that can explain the anomalous predictions. Other possible explanations for the anomalies could be
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due to one or some combination of: 1. inter-annual variation in the weather that is not accounted for in our model, e.g. drought

years impacting on the swamp vegetation type composition; 2. additional water inputs from ground water flow or localised river390

flooding (e.g. between the Ubangi and Ngiri rivers); 3. variations in evapotranspiration across the region; 4. the longer term

(e.g. centennial/millennial scale) established habitats for vegetation; 5. soil properties, including peat depth, porosity, organic

matter content; 6. the impacts of localised land-use disturbance; 7. errors inherent in the land-type classification map we use

as our ground truth. It is important to note that the vegetation type map data that this study was based on has some inherent

inaccuracy due to it being based on modelled data. Crezee et al. (2022) estimate their peatland distribution model to have a395

Matthews correlation coefficient of 80%. Misclassification within the underlying mapped data between palm and hardwood

swamp pixels, or due to the possibility of mixed vegetation types that do not confirm to either of these two main classes, and

are therefore misclassified, may be responsible for the outlying predictions.

4.6 Assessing the impact of inter-annual variations in meteorological variables

We were interested in understanding if anomalously dry or wet years contributed to the threshold criteria on rainfall require-400

ments for palm swamp dominance in a region. Figure 13 shows the spatial differences in these values for our dry season

modelled variables, in addition to the the annual rainfall totals, for the period 1981 to 2010. We see large inter-annual and

spatial variation for all the rainfall variables, while the standard deviations for the first dry season maximum temperature are

more homogeneous across the basin.

Figures 14a and 14b show the distributions of total annual and DJF rainfall accumulations for the years 1981 to 2010405

across all the RoC and Mixed sub-basins. We re-ran our model, with the same inputs as described in Table 1, but using the

drier/wetter year climatologies we calculated (see section 3.7) as alternative inputs to the original CHPclim 1980 to 2009

30-year climatology. We found no significant differences in relationships within the model.

We did however identify a relationship between the ENSO index and weather conditions during the DJF dry season. We

looked at the DJF yearly anomalies from the long-term mean for each sub-basin, and defined anomalously dry years as oc-410

curring when the mean yearly rainfall value is less than one standard deviation below the long-term (1981 to 2010) mean

value. There were variations in anomalously dry years between sub-basins, possibly due to the north and southwards migration

extent of the ITCZ. The combined list of years over which at least one of the RoC sub-basins experienced significantly drier

conditions than normal for the DJF season is shown in Table B2 in Appendix B. Here we include the ENSO index from the

DJF period, however if ENSO does impact the severity of dry season rainfall anomalies, then it would likely correspond with415

the ENSO index from a few months earlier due to a lag in the translation time from sea surface temperature anomalies to

anomalous atmospheric circulation over West Central Africa.
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Figure 13. Maps showing the minimum, maximum and standard deviation values for each pixel between 1981 and 2009 for the annual

rainfall and three of the dry season variables included within the regression model - first dry season rainfall accumulation, difference in

rainfall between the two dry seasons, and the mean of the monthly maximum temperatures across the first dry season (DJF).
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Figure 14. Annual and first dry season yearly (1981 to 2009) rainfall distribution density plots, across all RoC and Mixed sub-basins included

in the regression analysis. Over-plotted are the mean values over all years (black line), the standard deviation over all years (black dashed

line) and the mean values for the yearly distributions (red lines).

5 Discussion

Our results show that elevation and climatological rainfall and temperature variables contribute significantly to determining

where palm or hardwood swamp vegetation types dominate within the Cuvette Centrale peatland complex. Here, we discuss420

the possible reasons for these relationships and their implications.

5.1 The significance of annual and wet season rainfall on swamp vegetation type

The significant positive correlations we observed between annual rainfall and palm swamp composition for all RoC, and the

Mixed 1 and 2 sub-basins indicate similar hydrological mechanisms could be playing a role within the inter-fluvial (largely

rain-fed) peat swamps of these sub-basins. In contrast, for Mixed 3 and 4, and DRC 3 sub-basins, we observed no significant425

correlations with total annual rainfall, and low spread in rainfall totals. This indicates that the total annual net-water input

across all sub-pixels within these sub-basins lies within a range conducive to palm swamp dominance, and that other variables,

including topographical and seasonal climatological, may be responsible for delineating where palm or hardwood swamp can

exist as the dominant peatland swamp type. It is important to note that all Mixed sub-basins are situated along the Congo river

mainstem and are also susceptible to receiving additional water from riverbank overflow. Regional palm swamp composition430

has a significant and, contrastingly, negative correlation with annual rainfall totals for DRC sub-basins 1, 2 and 4, likely due to
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a combination of their location in flood-plains, and that they receive higher rainfall input (up to ~200 mm extra per year) than

elsewhere in the Cuvette Centrale.

We also observed significant saturation of hardwood swamp (corresponding with 0% palm swamp in Figures 6a-c) across

all annual rainfall totals for: all RoC, Mixed 1, and DRC 1 and 2 sub-basins. This may be a result of long-term historical435

establishment of hardwood tree varieties in these regions, but could possibly also be due to the localised inter-play of additional

hydrological inputs from the river system or surface/sub-surface run-off, not accounted for within this study. As such, peatland

within these areas may receive net water input outwith an acceptable range for palm swamp growth.

Within our model, the total wet season rainfall accumulation was found to contribute significantly to swamp vegetation

type composition, albeit with a smaller impact than for the combined dry season rainfall variables. For RoC and Mixed sub-440

basins there is a positive correlation between the palm swamp composition and the total wet season rainfall, with the greatest

contribution from the second wet season (SON). In contrast, total wet season rainfall contributes more significantly to palm

swamp composition than dry season rainfall for DRC sub-basins 1, 2 and 4 (Figure 7i). As such, the addition of other feature

variables, e.g. water-table depth, would be required before the same regression model could be used for sub-basins to both the

left and right hand sides of the Congo river.445

5.2 Optimal net water input requirements for palm swamp dominance

Both palm and hardwood swamp vegetation can be found across the extent of the Cuvette Centrale (Figure 4), but the areas in

which they each dominate are observably distinct, with hardwood swamps dominant in the north and around the peripheries of

the peatland complex, while palm swamp dominates in the central, inter-fluvial regions to the right of the Congo river, and also

in the south, to the left-bank of the Congo river. Palm swamps dominate in regions of the RoC and northern DRC (between the450

Ubangi and Congo rivers) which receive higher rainfall totals than for the neighbouring hardwood-dominated swamp regions

(Figure 3). However, the RoC and northern DRC sub-basins receive less rainfall than the DRC sub-basins that lie to the left of

the Congo river, and in contrast to the pattern for RoC and Mixed sub-basins, DRC regions which receive the highest annual

rainfall totals are dominated by hardwood swamp. Interestingly, the linear regressions for sub-basins located on the left (DRC)

and right (largely RoC/Mixed) banks of the Congo river converge towards a similar range of annual rainfall totals as palm455

swamp composition tends towards 100% (comparing Figures 6a, b, and c, with positive correlations for most RoC/Mixed

sub-basins, and negative correlations for most DRC sub-basins). And, given that regions receiving the highest rainfall totals in

the DRC seem to favour hardwood swamp tree varieties, there is support for the existence of an upper limit on the net water

requirement for palm swamp dominance.

If we assume that the RoC inter-fluvial sub-basins are largely rain-fed, then we can approximate a minimum annual rainfall460

requirement for palm swamp dominance from the linear regression for RoC sub-basins 1 to 5 as lying somewhere between

~1640 and 1740 mm (Figure 6a). Annual rainfall totals below this range tend towards corresponding with hardwood swamp

trees dominating. From the linear regressions for DRC sub-basins 1 to 4, we derive that such an upper limit could lie in the

range of 1800 to 1900 mm (taken from the range of points where palm swamp presence reaches 50%). However, there is less
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confidence in this upper limit as there is some uncertainty about the role of additional hydrological mechanisms, including465

river flooding, that may contribute to the net water input for the DRC sub-basins.

Possible reasons for such positive correlations corresponding with rain-fed locations in the RoC and northern DRC (north

of the Congo river), and for the possibility of there being an optimal range of net water input for palm swamp dominance are:

i. There could be a minimum net water input requirement for palm swamp that is greater than that for hardwood swamp.

ii. Palm swamp regions which do not receive sufficient additional water input from run-off or river flooding to contribute to470

the net water requirements for their growth, may require an increased amount of water input directly from rainfall. This

could explain the difference in the sign of the relationship with annual rainfall between the RoC sub-basins (positive,

see Figure 6a), and those that lie south of the Congo river in the DRC (negative, see Figure 6c), where there are higher

rainfall totals.

iii. Dargie et al. (2017) observed that the roots and buttresses of hardwood trees in the Cuvette Centrale are commonly475

adapted to wet conditions, including being stilted and having aerial roots, as well as buttresses which enable them

to stabilise with shallow roots. This may explain why hardwood trees adapt well to regions of the Congo Basin that

experience higher levels of rainfall, outwith the optimal water requirements range for palm swamp dominance.

iv. Such a range of net water input would likely be a proxy for the impacts of water-table level on the ability of Raphia

laurentii palms to become established under different inundation conditions. For example, a minimum or maximum root480

wetness duration. As such, dry season rainfall totals and duration could be of particular importance in relation to the

provision of a minimum root wetness threshold within the inter-fluvial RoC palm swamps, which receive less net water

input than those in the DRC.

v. Conversely, in the floodplain DRC swamps, which receive sufficient water input to always meet the minimum threshold

for palm swamp dominance, there may be some level of maximum inundation, or length of continuous inundation, which485

Raphia laurentii cannot support.

5.3 The impact of dry season rainfall totals on swamp vegetation type

Additionally, the first dry season rainfall totals (DJF) are positively correlated with palm swamp composition for RoC and

Mixed sub-basins (Figures 7a and b), while the second dry season rainfall totals are negatively correlated. As such, the differ-

ence in rainfall totals between the two dry seasons is significant (Figures 7d and e), while the total dry season rainfall is not.490

This provides additional support to there being an optimal range of water input, within which Raphia laurentii palms have a

competitive advantage over hardwood trees. The reasons as to why this is requires some further exploration. We hypothesise

that this advantage may be possible if Raphia laurentii palms have faster growth rates than hardwood trees, such that when the

rainfall conditions are suitable for both swamp vegetation types to be present, the palm swamp can more quickly get estab-

lished to the point of leaf development and photosynthetic activity. It could also be due to specific adaptations common to the495
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Raphia genus of palms, e.g. the presence of pneumatophores allowing increased oxygenation at the roots under flooded con-

ditions, as with Raphia hookeri (Jeník et al., 1967) and Raphia taedigera (Wright et al., 2013; Girkin et al., 2018). Literature

on the physiological characteristics of Raphia laurentii is currently lacking for further conclusions to be drawn on this. Field

observations of the physiological and morphological characteristics specific to Raphia laurentii would help to establish the

underlying reasons for the differences in optimal climatological conditions between the palm and hardwood swamp vegetation500

types present in the Cuvette Centrale.

In our final model implementation, inclusion of elevation as a feature variable solved for some of the lack of predictive ability

with our rainfall-only model, but at the expense of reduced significance of the dry season rainfall variables. There was also a

reversal in the order of importance between the dry season rainfall features due to multi-collinearity. We concluded that some

combination of the dry season rainfall and temperature variables contributes significantly to regional palm swamp composition.505

The regression model results support our hypothesis that areas where palm dominates benefit from higher dry season rainfall

totals. Additionally, there is collinearity between the dry season variables and the elevation. Although our final model more

accurately predicts palm swamp composition, some additional contribution of the dry season rainfall may be masked within

the modelled significance of the elevation variable.

5.4 Why is elevation of significance when modelling swamp type composition?510

As elevation increases, palm swamp composition decreases, giving way to hardwood swamp dominance. There is some un-

certainty as to why the elevation is of such significance. We surmise this could be due to some combination of: 1. surface

and sub-surface run-off, providing additional water input at lower elevations; 2. decreases in temperature with altitude; 3. the

impact of variations in cloud cover with elevation on temperature and humidity; 4. geomorphological reasons.

The elevation ranges within each sub-basin are relatively low, with the highest range (for the subset of sub-basins we included515

in the model) of 155 m for RoC 4, and an average range over the nine sub-basins of ~105 m. If we assume the moist tropical

lapse rate to be ~ -0.6°C 100 m-1 (Grab, 2013; Johnson et al., 2016), then this translates to an average range in temperatures

due to altitude of 0.63°C (min for RoC 5: 0.27°C, max for RoC 4: 0.93°C). However, the seasonal temperature pattern does not

closely follow the topography (comparing Figures 2 and 3d), except in the peripheral regions of the Cuvette Centrale where the

topography is significantly higher than that of the modelled swamp locations. At the lower altitudes where peat swamp exists,520

temperature changes with altitude are likely buffered by the blanketing effect of cloud cover.

Across the RoC and Mixed sub-basins, and below 320 m elevation, neither the elevation, nor the variance in elevation

over the 0.05° x 0.1° sub-pixels, contribute to differences in swamp composition, although, over all elevations, these variables

contribute significantly. This may be attributable to run-off from higher elevations having contributed to the pooling of water

comparably for swamp regions below 320 m, such that the pattern of total net water input is more clearly reflected in the pattern525

of rainfall totals in rain-fed regions.

Although the elevation standard deviation was included in our final regression model, it has the highest p-value of all

feature variables (p = 0.035), and was of only border-line significance (p ~ 0.05) for some of the other random-seed test

implementations of the model. It also contributes minimally to determining the swamp type composition when compared with
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the other variable contributions (coefficient = -0.3, Table 1). We had originally included this variable to account for regions530

of steeper terrain where run-off may occur, however its low modelled significance may indicate that run-off between pixels

cannot be well accounted for at the spatial scale our model has been implemented.

There are levees between the Congo basin rivers and swamps (Campbell, 2005), which control to some extent river flooding

over peatland areas. However, areas that are both situated close to the river system and which have low elevation standard

deviation, may be prone to experiencing more frequent flooding (and sediment deposition) due to their lack of a high enough535

levee when river levels tend towards their maximum. There is low elevation standard deviation observed across the Mixed

sub-basins, which span the Congo river, and this may indicate their susceptibility to flood water inputs. In contrast, the correla-

tion between elevation standard deviation and palm swamp composition was higher for the southern DRC sub-basins 2, 3 and

4, indicating an increased likelihood of surface/sub-surface run-off inputs contributing to total net water input for low-lying

swamp locations, in addition to flooding from tributaries. The significant contribution of both elevation and elevation standard540

deviation in these DRC sub-basins may also imply that swamp regions receive additional water input from run-off, and poten-

tially also as a result of flooding from smaller tributaries with lower levees, rather than from flooding from the lower elevation

major river tributaries.

The differences in significance of the relationship between palm swamp composition and elevation standard deviation,

between sub-basins located on the left and right sides of the Congo river, points towards diversity in hydrology across the545

region. Further investigation of the spatial and temporal evolution of hydrology is required across the peatland complex.

5.5 Impact of temperature on swamp vegetation type

We also observed that palm swamp dominates in regions with higher mean annual maximum temperatures (Figure 3c). Tem-

perature and precipitation are highly correlated due to the influence of cloud cover on downwelling radiation incident on the

land surface. There are significant correlations between seasonal maximum temperature climatology and palm swamp com-550

position, including for the DRC sub-basins which we did not run our model over (Figure 9). Higher temperatures lead to

increased evapotranspiration, and less soil water retention. If all regions within these sub-basins, situated on the left side of the

Congo river, receive sufficient rainfall inputs, and potentially additional water input from river flooding, surface or sub-surface

flow, then distinguishing their suitability for palm or hardwood swamp dominance would not be possible by consideration of

seasonal rainfall inputs alone. And this does seem to be evident in the low correlations between seasonal rainfall and palm555

swamp composition for these DRC sub-basins. However, temperature and evapotranspiration are positively correlated, and the

use of seasonal net water input as a variable in our model would allow for corresponding variations in rainfall and temperature

to be better accounted for. Additionally, the use of a spatio-temporal flood depth map as an additional variable within the

model would enable better attribution of the combined impacts of temperature and rainfall on swamp vegetation type domi-

nance across all regions of the Cuvette Centrale. Improved understanding of these combined impacts would enable improved560

understanding of the regional climate change impacts on swamp vegetation type distribution.
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5.6 Rainfall-runoff mechanisms

A bowl-like topography is present in the Cuvette Centrale (Figure 2), with an oval of steep upland topography giving way to an

extensive lowland region of low-varying slope. By comparison with Figure 1, the correspondence between elevation and palm

swamp dominance can be observed. This is especially the case in the 295 to 315 m elevation range. Within the set of variables565

we investigated, we calculated elevation as having the highest Pearson correlation (ρ) with palm swamp composition (ρ=-0.80),

while the height above nearest drainage basin (HAND), although significant, did not have nearly as high a correlation (ρ=-0.34).

The floodplain peatlands of the DRC sub-basins which are situated to the left-bank of the Congo river receive additional water

inputs from river flooding and potentially ground water flow. The topography that borders the DRC peatlands is steeper than

for the RoC peatlands. Inclines to the south and south-west of the DRC sub-basins give way to the floodplains, and the bowl-570

like topography of the Cuvette Centrale may direct additional hydrological input to the peatlands via less obvious surface,

and potentially sub-surface, water channels, in addition to the main tributaries. Run-off contributions may add significantly to

the peatland’s net water input, in the DRC particularly. A rainfall-runoff model, ideally with field measurement inputs, would

be required to assess the significance of run-off contributions to the lowland DRC peatland regions located in the sub-basins

bounded by the Congo river. Previous rainfall-runoff modelling studies (Tshimanga and Hughes, 2012; Tshimanga et al., 2011)575

have identified surface and sub-surface responses to rainfall, including contributions to the storage of water within the wetlands.

Kabuya et al. (2020) cite a lack of in-situ hydrological information to predict regional rainfall-runoff interactions across the

Congo river basin.

There may also be non-linear dynamics at play, with regions of increased soil moisture (e.g. in the water-logged peatland

regions) having a positive feedback on rainfall patterns, resulting in enhanced evaporation and cloud formation. This could be580

a potential explanation for the large region of enhanced annual rainfall we observe in Figure 3a. Such a feedback could be

explored further by assessing the relationship between the temporal evolution of land water storage and rainfall accumulation.

5.7 Are the derived relationships with seasonal climatological variables unique to the Cuvette Centrale?

Palm swamp is able to dominate in regions of Peru with much higher rainfall totals than experienced anywhere in the Cuvette

Centrale (Marengo, 1998), while there appears to be an upper threshold on net water input requirements for the Raphia laurentii585

palm swamp type to be able to dominate in the Cuvette Centrale. However, this is most likely due to each peatland complex

supporting different species of palm, with different physiological adaptations to the climate. The relationships we have derived

for Raphia laurentii may be unique to the Cuvette Centrale. This would require further investigation in a future study, taking

into account additional swamp vegetation physiological processes and features.

5.8 Climate change impacts on peat swamp vegetation type590

There is currently high uncertainty in future climate change impacts on rainfall over the western Central Africa region (Niang

et al., 2014). Tshimanga and Hughes (2012) determined that the impact of climate change on total run-off from the Congo

Basin is likely to be minimal under the A2 climate change scenario, which is one of the higher end climate change scenarios
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presented by the IPCC within their Special Report on Emissions Scenarios (SRES) (Di et al., 2011). However, their study

also identified a decrease in future run-off for the northern Congo basin. The Coupled Model Intercomparison Project Phase595

6 (CMIP6) projects that extreme rainfall amounts will increase over the Central Congo Basin by between 10 and 35% on

the wettest day of the year, corresponding, respectively, with when global warming levels of between 1.5 and 4°C above the

long-term average will be reached (Ariais et al., 2021). Within the latest IPCC report, Pörtner et al. (2022) projected increases

in average annual rainfall and heavy rainfall events (calculated as maximum accumulations over five-day periods), while there

are projected decreases in drought frequency, intensity and duration for global warming of 1.5 to 3°C above the pre-industrial600

average temperature. The models do not confidently agree that these projections show changes beyond natural variability.

Within our model, the dry season rainfall and temperature contributions were more significant than those from the wet season

due to the much higher spatial variability in dry season rainfall. There is large spatial (inter-basin) variance (Figure 3a) and

large inter-annual variance (Figure 13c) in rainfall accumulations. Our results indicated that anomalously dry periods correlate

with El Niño events and it would be interesting to investigate this relationship further and determine if swamp vegetation type605

is historically influenced by El Niño, or by other events which impact atmospheric circulation (e.g., the Indian Ocean Dipole).

Our limited inter-annual analysis was not sufficient to assess this, and further understanding is required of the larger scale

atmospheric processes which drive inter-annual variability in rainfall over the Congo Basin. A longer term study, e.g. from the

early 1900s, could be done using reanalysis data to better assess inter-annual variations in rainfall, and their relation with swamp

vegetation type dominance, and to assess if anomalously low rainfall seasons provide the delineating conditions that determine610

the areas of the Cuvette Centrale where palm swamp is present. Our investigation suggests that there is an optimal range of

rainfall totals under which palm swamp dominates, and outwith which hardwood swamp tree varieties dominate. Given the

relationships derived within our regression model implementation, future changes in rainfall duration, intensity or seasonality,

as well as the projected temperature increases, could impact on the likelihood of palm or hardwood swamp vegetation types

dominating in a particular region of the Cuvette Centrale. Improved certainty in projections of seasonal rainfall change under615

the different climate change scenarios would enable us to better assess how the distribution of swamp vegetation type could be

affected.

5.9 Other considerations and opportunities for future research

Another contributing factor to the propagation of swamp vegetation could be peat depth, although the mechanisms of cause and

effect remain uncertain, and it is not clear if pre-existing peat depth would impact swamp type, or if swamp type would lead620

to differences in peat accumulation, or if there is a coupled dynamic between the two. An initial investigation by Dargie et al.

(2017) measured peat depth for palm and hardwood swamps, with no significant difference found between the two. Peat depth

has recently been more comprehensively mapped for the Cuvette Centrale region (Crezee et al., 2022), with slightly higher

peat depth and carbon density predicted for palm swamp. This is likely because palm swamps are often located in the deeper

interiors of peatland areas. A future study could use this dataset to investigate if correlation between swamp vegetation type and625

peat depth exists over the extent of the Cuvette Centrale. Vegetation type and its underlying soil properties also play a role in the

spatial and temporal evolution of inundation. Peat organic matter properties have been found to vary by vegetation type (Girkin
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et al., 2020; Upton et al., 2018; Sjögersten et al., 2011) due to variations in plant litter-fall and chemistry. Resulting variability

in peat composition and porosity can affect the rate at which the soil becomes water-logged. Differences in water-logging

impact net water availability to swamp vegetation. It would be interesting to investigate further the relationships between peat630

composition, porosity, and vegetation type, taking into consideration net water input. Additionally, it would be interesting to

consider lagged correlations between net water accumulations and swamp vegetation type composition, and also differences in

the length of the wet and dry seasons to the north and south of the equator. Using fixed three month seasonal averaging periods

has limitations in that it is not fully representative of variations in rainfall seasonality across the whole basin.

6 Conclusions635

We have used a beta regression model to assess the contribution of terrain and seasonal climatological variables to palm swamp

type composition in the Cuvette Centrale peatland complex. We found significant relationships with elevation and dry season

variables (rainfall and temperature) in particular, with additional significant contributions from the total wet season rainfall

and wet season maximum temperature variables. The likelihood of palm-dominated vegetation increased with: decreasing

elevation; increasing difference in rainfall accumulation between the two dry seasons; decreasing first dry season temperature;640

increasing total wet season rainfall accumulation; increasing first dry season rainfall accumulation; and decreasing second wet

season temperature, in that order of importance (all p<0.05). Due to multi-collinearity between the dry season climatological

variables, we can more simply say that palm swamp dominance primarily varies as a function of elevation and a combination of

primarily dry season, and to a lesser extent, wet season climatological variable contributions. Our model successfully predicts

the percentage palm swamp composition (overall R2 ~ 0.77) for sub-basins in the RoC, DRC (north of the Congo river), and645

for those which span across the Congo river. The higher levels of rainfall input, and the possibility of additional ground water

inputs over the rest of the DRC, mean that our model cannot be used to predict swamp vegetation type composition over this

region without the inclusion of additional variables accounting for the total net water input at each pixel. Further field-based

investigation is required to confirm the extent of hydrological input from the river system and ground water flow across the

Cuvette Centrale, but the results we discuss within this study support the contribution of additional water inputs from run-off,650

particularly in the DRC, with cross-regional differences in the sub-basin swamp type composition response to rainfall inputs.

Our results indicate that palm swamp dominates within an optimal range of net water input totals, outwith which hardwood

swamp trees can dominate over a much wider range of annual rainfall accumulations. This implies that palm swamps have an

evolutionary advantage/adaptation that enables them to dominate over hardwood swamps within a certain range of net water

input accumulations.655

Code and data availability. The land type map data that underlies this study is an output from the CongoPeat project, and will be made open-

source following project completion. Additionally, jupyter-notebooks with the Python code for all stages of this investigation are available

at: https://github.com/SelenaGeorgiou.
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Appendix A: Regression model description and setup

We applied Z-score normalisation to each variable using:660

Z =
x−µ
σ

(A1)

where x is the original value, µ is the population mean and σ the standard deviation.

The beta regression model uses a logistic-link function which converts the dependent variable, palm swamp composition, to

a logistic input. We divided our training data variable, percentage palm swamp composition, by 100 to express it as a fraction.665

We also had to convert fractions that were exactly 0 and 1, to 0.000001 and 0.999999 respectively, as otherwise these values

would tend to ±∞ when converted to logistic input using the following equation:

PSL = ln

(
PS

1-PS

)
(A2)

The linear regression was then applied to the data using the logistically converted dependent variable (PSL) and the selected

independent variables: elevation, standard deviation of the elevation, dry season rainfall difference, first dry season rainfall,670

total wet season rainfall, mean maximum temperature for the first dry season, and mean maximum temperature for the second

wet season. Additionally, the sub-basin value (RoC 1 to 5 and Mixed 1 to 4) was entered into the model as a categorical

variable. Two equations are described when using beta regression. The first takes into account the intercept and feature variable

coefficients output from the regression, and is expressed as:

PSL = β0 +β1x1 +β2x2 + ... (A3)675

where β0 is the intercept and β1, β2 etc. are the derived coefficients for the independent variables.

In our specific case, this evaluates to the linear-predictor equation:

PSL = β0 +β1 ∗ elevation+β2 ∗ elevation_stdev+β3 ∗ (JJA−DJF ) +β4 ∗DJF680

+β5 ∗ (MAM +SON) +β6 ∗DJF_Tmax+β7 ∗SON_Tmax (A4)

The mean expected proportion (µ) of palm swamp is then calculated by applying the inverse link function to the linear-

predictor (eq.A4) output :

µ=
1

1 + e−PSL
(A5)

where µ is the fractional palm swamp composition within a given 0.05° x 0.1° pixel. The regression with non-z-score coef-685

ficients returns log-odds of each independent variable’s contribution to the prediction.
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Our implementation of beta regression used a logistic link function for the independent features, and a log-link for the

categorical feature (the sub-basin). The log-link equation is used to account for variation in the predicted proportions resulting

from the sub-basin categorical variable (Cribari-Neto and Zeileis, 2010):690

φ= eγ0+γ1z1+γ2z2+γ3z3+... (A6)

where γn are the φ precision coefficients, and zn are the sub-basin regressors (which each have a binary value of 1 for the

chosen sub-basin and 0 otherwise). The higher the values of φ, the lower the variance for a given mean expected proportional

value of the palm swamp composition, µ.

695

This second equation for the φ precision does not affect the first equation outputs (eq.A5), however it does allow for the

variance due to sub-basin differences to be accounted for:

V arsub−basin =
µ(1−µ)

1 +φ
(A7)
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Appendix B: Additional tables

Table B1. Model beta and sub-basin φ precision coefficients corresponding with equations A4 and A5. The feature variable coefficients

were calculated using a beta regression mean model with logit-link, and the Phi coefficients for the categorical sub-basin variable were

calculated using a precision model with log-link. Either the standardised or non-standardised coefficients can be used to predict the palm

swamp composition given the listed feature variable values for each sub-basin. The statistics for each sub-basin are also detailed, including

the Mean Absolute Error (MAE), the Root Mean Square Error (RMSE) and the R2 value.

Feature variable coefficients Coefficient Z-score value Non-standardised value

Intercept β0 -2.832110 205.3069044

Elevation β1 -4.639456 -0.2475632

Elevation standard deviation β2 -0.298973 -0.0470500

Dry season rainfall difference β3 3.230571 0.0146008

first dry season rainfall (DJF) β4 0.672975 0.0066924

Total wet season β5 0.726320 0.0133626

DJF mean Tmax β6 -1.284508 -3.1527621

SON mean Tmax β7 -0.353391 -1.5315068

Sub-basin statistics

Sub-basin category constants value MAE RMSE (%) R2

RoC 1 (φ precision) φ 1.7010966 8.7 15.9 0.77

RoC 2 c -0.0127231 8.0 13.3 0.78

RoC 3 c -0.1422987 10.5 18.5 0.60

RoC 4 c 0.1388437 10.4 17.1 0.64

RoC 5 c 0.1153412 11.2 14.8 0.82

Mixed 1 c 0.1178069 4.5 11.9 0.86

Mixed 2 c 0.6638891 6.8 11.2 0.80

Mixed 3 c -0.5135390 8.5 18.9 0.76

Mixed 4 c 0.3988342 14.8 18.7 0.57

Table B2. Years in the 1981 to 2010 period where some/all of the RoC and Mixed sub-basins experienced anomalously dry conditions during

the first dry season (DJF), and their association with El Niño/La Niña events.

Year El Niño (EN) or La Niña (LN)? ENSO index during DJF Duration of EN/LN

1983 EN 2.2 Apr 1982 to Jun 1983

1987 EN 1.2 Sept 1986 to Feb 1988

1989 LN -1.7 May 1988 to May 1989

1992 EN 1.7 May 1991 to Jun 1992

1994 - 0.1 -

1998 EN 2.2 May 1997 to May 1998

2007 EN 0.7 Sept 2006 to Jan 2007
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