
Response to reviewer 2

We would like to thank reviewer 2 for taking the time to review our manuscript and to provide
such a detailed response and comments. Two major points have been cited by this reviewer
which we address in detail here, along with responding to their additional comments. We are
grateful for these comments and are confident that the changes we will make in response
will result in an improved manuscript. With specific reference to the second major comment,
we will run a modified model implementation, following the reviewer’s suggestion. This is
straightforward to run, and we do not expect it to change the overall conclusions of the
manuscript. We provide here our responses to each comment the reviewer made and how
we will modify the manuscript as a result. The reviewer’s comments are in bold, and our
response in normal text.

(1) Ground truth data
The manuscript uses as ground truth data the mapping product of Crezee et al.
2022. The supplementary Figure 1 of the paper by Crezee et al. shows the nine
remote-sensing products that were used to map peat-associated vegetation, i.e.
the ground truth data used here in the work of Georgiou et al. Three of the nine
input variables were based on elevation data. The fact that detailed elevation
data was already used in the generation of the ground truth data conceptually
prohibits that in Georgiou et al. elevation data is again used to build a
regression model. In Georgiou et al., it is found that peat swamp vegetation is
mainly a function of elevation. Knowing that the ground truth data was already
created with elevation data makes this a trivial finding. Any discussion in
Georgiou et al. on the influence of elevation-based variables is far-fetched given
this fundamental problem of the ground truth data. To analyze the influence of
elevation, the authors would need to work with ground truth data that is e.g.
solely based on optical and microwave satellite signatures, but not on elevation.

We agree that there is a circular relationship between our use of elevation in the
model, and elevation being used in the original mapping (although a different elevation
product and at a different resolution). Within the manuscript we describe our
implementation of three models, using different sets of input variables: (i) One which
includes rainfall, temperature and elevation variables, and which leads to the most
accurate predictions (p<0.05, R2=0.75 in table 1); (ii) a seasonal-rainfall-only model we
tested which didn't include the elevation but leads to significant correlation between
the dry season rainfall variables and peat swamp type in rainfed regions (p<0.05,
R2=0.5); and (iii) a seasonal temperature only model, which made significant
predictions but less so than the other models (p-value<0.05, R2=0.39). The inclusion of
elevation as a model variable does improve the model’s accuracy, but the significance
of the relationships between seasonal rainfall and temperature variables holds without
inclusion of the elevation. We therefore have confidence that our conclusions would
still stand even if elevation wasn’t included as a model variable.

The elevation's significance is most likely a proxy for additional runoff inputs and
outputs as a result of the slope or proximity to river edges that may flood over.
We include a more detailed interpretation of the elevation’s contribution within sections
5.4 and 5.6.



We used the Crezee et al. (2022) data as the ground truth data as the statistics
showed it to have reasonable accuracy when compared with ground-based
observations of peat swamp types. We currently mention within the text that:

It is important to note that the vegetation type map data that this study was
based on has some inherent inaccuracy due to it being based on modelled
data. Crezee et al. (2022) estimate their peatland distribution model to have a
Matthews correlation coefficient of 80%. Misclassification within the underlying
mapped data between palm and hardwood swamp pixels, or due to the
possibility of mixed vegetation types that do not conform to either of these two
main classes, and are therefore misclassified, may be responsible for the
outlying predictions.

The Crezee et al. (2022) map used elevation as an input product. However, their
mapped product contains five land-type classes, the distinctions between which are
better defined using L-band radar data. As such, their modelled significance of the
elevation in creating the map was low, and the mapping was largely based on satellite
data (ALOS). We believe that our use of elevation is sufficiently independent of their
use of it due to the difference in number of land classes used, and also that we’re
looking at variations over a different spatial scale (the land class pixels at the original
mapped resolution of ~50m were aggregated into 0.05 by 0.1 degree pixels for our
study). Additionally, we use a different elevation product, the MERIT hydrologically
adjusted DEM, available at ~90 m resolution (Figure 2a). It was developed using the
NASA SRTM3 and the JAXA AW3D 30 m DEM as baseline products, with bias, noise
and tree-height corrections applied to approximate the terrain elevation, and with the
Congo Basin being included as one of the focal regions when developing the product
(Yamazaki et al., 2017).

(2) Division into sub-basins and random cross validation
The distribution of hardwood trees and palm shows patterns with clear spatial
autocorrelation structure. The authors ignored this structure in their 'random'
cross-validation approach at sub-basin scale, and thus seriously
underestimated predictive error and likely have built overfitted models with
non-causal predictors. For details I refer to the highly cited methodological
paper of Roberts et al. 2017 on data structure and cross validation (see below).
The derived models at sub-basin scale that use, apart from elevation, many
different types of climatological-based variables are therefore highly
questionable. The authors would need to show that the proposed climatological
variables are reliable in a stratified cross-validation that acknowledges the
spatial auto-correlation of the data. I believe that this would require an
aggregation of sub-basins into larger regions. Perhaps one model for RoC and
one for DRC in which one perhaps e.g. stratify the cross-validation by
sub-basins (= not building a model for each sub-basin but building a model for
four sub-basins and cross-validate against the fifth). Only variables that survive
as reliable predictors in such a stratified cross-validation could be used as
basis for an interpretation of optimal vegetation conditions



We agree that there is spatial autocorrelation within the data to some extent. We can
mitigate this with some further refinements to our model, as the reviewer suggests. We
thank the reviewer for their suggestion. Additionally, this has already been mitigated
for and tested to some extent within our current methods:

(i) The original mapped data was at ~50m resolution. The palm and hardwood swamp
composition within each of these pixels as a percentage of the total palm and
hardwood swamp composition was then calculated over pixels of 0.05 x 0.1 degree
resolution, before being used within our model analysis.. These pixels contain varying
amounts of other land types (terra firme, savannah and water). The use of these
derived pixel groupings, as opposed to the original neighbouring 50m resolution
vegetation classification pixels will have mitigated for some of the spatial correlation
inherent in the original data.

(ii) We tested the model stability and found it to be good. This involved running 10
different random combinations of train-test split data, within each sub-basin grouping
(see table S.4 in the supplementary information linked and copied below), with each
80% train, 20% test split producing very similar statistics.

Supplementary information link:
https://egusphere.copernicus.org/preprints/2022/egusphere-2022-580/egusphere-202
2-580-supplement.pdf

Some of the other graphs within the supplementary information also show the
significant relationships between the seasonal rainfall variables and the peat swamp
type composition (Figures S1 to S5).

It will not be possible to fully eliminate spatial auto-corrrelation, due to the large
contiguous regions of peatland. To further ensure that we can minimise it, we will test,
and describe within the revised manuscript a model that uses spatial partitioning for
the train-test split, rather than the random split we previously used.

https://egusphere.copernicus.org/preprints/2022/egusphere-2022-580/egusphere-2022-580-supplement.pdf
https://egusphere.copernicus.org/preprints/2022/egusphere-2022-580/egusphere-2022-580-supplement.pdf


Our code is written in Python, and we will test the use of the open source toolbox,
Museo ToolBox, described in the paper linked below to make spatial cross-validation
possible within our use-case. This employs a spatial leave-one-out cross-validation
approach.
https://link.springer.com/article/10.1007/s10994-021-05972-1

We used sub-basins as a means to delineate regions with different hydrological
characteristics (e.g., some are almost fully rainfed, while others receive river inputs,
and some are more affected by run-off). Within the model a constant has been derived
for each individual basin, such that all the sub-basin models share the same
multiplying values for the parameters, but each with a different constant value
(intercept). This makes it more complex to select training and test points from across
the sub-basin divide. The sub-basins can be grouped into larger combined ones, but
by doing so the model's parameter coefficients will change. Given the strong
correlations between the seasonal climatological variables and the swamp type
composition, we expect the relationships to be close to the modelled ones currently
presented in the manuscript. We agree that there will be spatial correlation within each
model, but this may be impossible to avoid completely in any spatial analysis where
the region needs to be divided by hydrological characteristics.

More simply than re-running the models over aggregated sub-basins, we could
remove the word 'independent' when referring to the test data, and explain that there
will be some spatial correlation that is difficult to avoid when working with
hydrologically distinct sub-regions.

Detailed comments:

Line 35:
Harmonize use of Pg C and Gt C in the paper.
Agreed, thanks. We will modify all references to use Pg C.

Line 98:
A useful variable might be the 'topographic wetness index' that combines
subbasin area and local slope to estimate ground- and surface water impacts on
soil wetness (e.g. Kopecky et al. 2021).
Thanks for this suggestion. We originally calculated TPI from the 90m MERIT Hydro
slope data, however we didn’t consider it as a candidate for inclusion in our model as
its standard deviation was too large over the 0.05 x 0.1 degree pixel resolution we ran
our model at.

Line 163-164: Sentence unclear
Agreed that this is not clear. Thanks for bringing this to our attention. The original
sentence read: The inclusion of too many multi-collinear variables in the regression
method we use also results in non-convergence of the model. It will be modified to
say: The beta-regression model is unable to converge on a solution and to provide
meaningful output when there is a high degree of multi-collinearity between input
variables.

https://link.springer.com/article/10.1007/s10994-021-05972-1


Line 210:
It's not 'train-test' since “test” data needs to be independent. With a random
sampling, test data points are spatially auto-correlated with training points, thus
they are not independent.
Agreed. We will test re-running our models using train-test splits in a way that
mitigates spatial correlation. If we determine that spatial correlation cannot be fully
mitigated for, then we will make it clear that our data split cannot be described as
being fully independent. Thanks for your thoughts on this.

Line 261:
Also for RoC sub-basins not all show a positive correlation b/w palm fraction
and annual rainfall (Roc5 show negative correlation)
We found the correlation with annual rainfall to be a weakly significant one and not
consistent between sub-basins, and we do not use this variable in the final model
selections, although we have included the relationships within the results section as
the relationship between swamp type composition and annual rainfall is of higher
significance in the DRC sub-basins to the right of the Congo river, and this is useful in
our discussion of a potential upper limit on water inputs for palm swamp dominance
within a region.

Figure 6:
spatial variation of precipiation in RoC is only 100 mm, ~ 6-7%. In this example,
it's quite likely that this trend will prove unreliable in a stratified cross
validation.

We don’t use annual precipitation within the final model. The percentage variation in
the dry season rainfall variables is much higher for the largely rainfed sub-basins on
the left side of the Congo river.

Line 455:
Is there any physiological indication why palms should be less able to tolerate
wetness than hardwood trees? Based on the methodological problems of the
study, I found the discussion on the optimal water amounts for palms based on
the negative correlation of palms with rainfall far-fetched.

This is an interesting question. We’re currently unsure of the physiological indications
as to why palms should be less able to tolerate higher levels of wetness. This is still a
hypothesis based on the relationships between rainfall input and swamp type
composition in the sub-basins to the right of the Congo river, which were not included
in the model due to the significant differences in hydrological mechanisms between
peatlands located to the the left and right banks of the Congo river. Field observations
of the physiological and morphological characteristics specific to Raphia laurentii
would help to establish the underlying reasons for the differences in optimal
climatological conditions between the palm and hardwood swamp vegetation types
present in the Cuvette Centrale.


