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Abstract. Multiple studies conducted with Earth System Models suggest that anthropogenic climate change will influence

marine phytoplankton over the coming century. Light limited regions are projected to become ,
✿✿✿✿

with
✿✿✿✿✿

light
✿✿✿✿✿✿

limited
✿✿✿✿✿✿✿

regions

✿✿✿✿✿✿✿✿

becoming more productive and nutrient limited regions less productive. Anthropogenic climate change can influence not only

the mean state, but also the variance
✿✿✿✿✿✿

internal
✿✿✿✿✿✿✿✿

variability
✿

around the mean state, yet little is known about how variance
✿✿✿✿✿✿

internal

✿✿✿✿✿✿✿✿

variability
✿

in marine phytoplankton will change with time. Here, we quantify the influence of anthropogenic climate change5

on internal variability in marine phytoplankton biomass from 1920 to 2100 using the Community Earth System Model 1 Large

Ensemble (CESM1-LE). We find a significant decrease in the internal variance
✿✿✿✿✿✿✿✿

variability
✿

of global phytoplankton carbon

biomass under a high emission (RCP8.5) scenario, with heterogeneous regional trends. Decreasing variance
✿✿✿✿✿✿

internal
✿✿✿✿✿✿✿✿✿

variability

in biomass is most apparent in the subpolar North Atlantic and North Pacific. In these high-latitude regions, zooplankton

grazing acts as a top-down control in reducing internal variance in phytoplankton biomass, with bottom-up controls (e.g., light,10

nutrients) having only a small effect on biomass variance. Grazing-driven declines in phytoplankton variance are also apparent

in
✿✿✿✿✿✿

nutrient
✿✿✿✿✿✿✿

supply,
✿✿✿✿✿✿✿✿✿✿✿

temperature)
✿✿✿✿✿✿✿

influence
✿✿✿✿✿✿✿

changes
✿✿✿

in
✿✿✿✿✿✿✿

biomass
✿✿✿✿✿✿✿

internal
✿✿✿✿✿✿✿✿✿

variability.
✿✿

In
✿

the biogeochemically critical regions of

the Southern Ocean and the Equatorial Pacific.
✿

,
✿✿✿✿✿✿✿✿✿

bottom-up
✿✿✿✿✿✿✿

controls
✿✿✿✿

(e.g.,
✿✿✿✿✿

light,
✿✿✿✿✿✿✿✿

nutrients)
✿✿✿

and
✿✿✿✿✿✿✿✿✿

top-down
✿✿✿✿✿✿✿

controls
✿✿✿✿

(e.g.,
✿✿✿✿✿✿

grazer

✿✿✿✿✿✿✿

biomass)
✿✿✿✿✿

affect
✿✿✿✿✿✿✿

changes
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿✿✿

phytoplankton
✿✿✿✿✿✿

carbon
✿✿✿✿✿✿

internal
✿✿✿✿✿✿✿✿✿

variability,
✿✿✿✿✿✿✿✿✿✿✿

respectively. Our results suggest that climate mitigation

and adaptation efforts that account for marine phytoplankton changes (e.g., fisheries
✿

,
✿✿✿✿✿✿

marine
✿✿✿✿✿✿

carbon
✿✿✿✿✿✿✿

cycling) should also15

consider changes in phytoplankton and zooplankton variance
✿✿✿✿✿✿

internal
✿✿✿✿✿✿✿✿

variability
✿

driven by anthropogenic warming, particularly

on regional scales.

1 Introduction

Anthropogenic climate change has significantly impacted
✿✿✿✿✿✿✿✿✿✿

significantly
✿✿✿✿✿✿

impacts
✿

marine ecosystems from phytoplankton (Bopp et al.,

2001, 2013; Laufkötter et al., 2015; Kwiatkowski et al., 2020) to fish (Perry et al., 2005; Cheung et al., 2009, 2010; Mills et al.,20

2013; Wernberg et al., 2016; Flanagan et al., 2018; Staudinger et al., 2019). As the base of the marine food web, phytoplankton
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support diverse marine ecosystems by providing food for higher trophic levels (Falkowski, 2012). Constraining future changes

in phytoplankton with anthropogenic warming is important at regional scales for fisheries adaptation (Pauly and Christensen,

1995; Chassot et al., 2010; Link and Marshak, 2019; Marshak and Link, 2021), particularly as phytoplankton biomass is incor-

porated into offline fisheries models to predict changing catch potential (Christensen and Walters, 2004; Travers-Trolet et al.,25

2009; Lehodey et al., 2010; Maury, 2010; Blanchard et al., 2012; Christensen et al., 2015; Jennings and Collingridge, 2015;

Tittensor et al., 2018; Petrik et al., 2019; Heneghan et al., 2021). In this context, understanding changes in both phytoplankton

biomass and its variance
✿✿✿✿✿✿

internal
✿✿✿✿✿✿✿✿✿

variability is essential in reducing uncertainty in marine ecosystem projections.

The abundance and distribution of phytoplankton, the base of the marine food web
✿✿✿

and
✿✿

an
✿✿✿✿✿✿✿✿✿

important
✿✿✿✿✿✿✿✿✿

component
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

marine

✿✿✿✿✿

carbon
✿✿✿✿✿

cycle, will likely change with anthropogenic warming. Future projections of climate change impacts reveal a global loss30

of marine net primary production (NPP) and phytoplankton biomass, particularly at middle and low latitudes (Steinacher et al.,

2010; Bopp et al., 2013; Lotze et al., 2019; Tittensor et al., 2021). A majority of Earth System Models (ESMs) project an

increase in phytoplankton abundance in the high latitude ocean as light limitation is alleviated by stratification, increasing

temperature stimulates photosynthesis, and sea ice cover declines
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Steinacher et al., 2010; Bopp et al., 2013). In contrast, a

decrease in the low latitude oceans is projected as nutrient limitation from thermal stratification is enhanced (Steinacher et al.,35

2010; Kwiatkowski et al., 2020). While bottom-up controls (e.g., nutrient flux, light availability) have been shown to affect

phytoplankton growth in a changing climate, top-down controls (i.e., zooplankton grazing) also play a role. For example,

analysis across a suite of models forced under climate change scenarios revealed
✿✿✿✿

reveal
✿

grazing pressure as a driver of biomass

decline in low to intermediate latitude regions (Laufkötter et al., 2015). Additionally, top-down controls have been shown to

affect regional changes in NPP and export production (Bopp et al., 2001), as well as the timing of phytoplankton bloom onset40

(Yamaguchi et al., 2022). Regional redistributions of phytoplankton biomass have consequences for fisheries management and

conservation (Blanchard et al., 2017; Stock et al., 2017), and may have implications for economics and policy making decisions

(Moore et al., 2021).

While climate change is known to impact the mean state of phytoplankton biomass or NPP (Bopp et al., 2013; Kwiatkowski et al.,

2020), less is known about how climate change will affect
✿✿✿✿✿✿

internal variability in these quantities. One recent modeling study45

found that the climate change alters the timing of seasonal blooms in many regions of the global ocean, an effect that could

be realized by the end of the century (Yamaguchi et al., 2022).
✿

Several other recent studies have demonstrated how other

aspects of the coupled atmosphere-ocean climate system are projected to experience changes in variance
✿✿✿✿✿✿

internal
✿✿✿✿✿✿✿✿✿

variability

in a changing climate (Resplandy et al., 2015; Landschützer et al., 2018; Kwiatkowski and Orr, 2018; Rodgers et al., 2021).

For example, Resplandy et al. (2015) examined the contribution of internal variability to air-sea pCO2 and pO2 fluxes with50

climate change using a suite of
✿✿✿

six ESMs. Their analyses revealed distinct regional differences in
✿✿✿✿✿✿

internal
✿

variability of air-sea

pCO2 and pO2 fluxes
✿✿✿

gas
✿✿✿✿✿✿

fluxes,
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿✿✿

Southern
✿✿✿✿✿✿

Ocean
✿✿✿

and
✿✿✿✿

the
✿✿✿✿✿✿

tropical
✿✿✿✿✿✿✿

Pacific
✿✿✿✿✿✿

playing
✿✿

a
✿✿✿✿✿✿✿✿✿

significant
✿✿✿✿

role. Other studies

have revealed increases in the frequency of modes of internal variability such as El Niño and La Niña events in response to

greenhouse warming (Timmermann et al., 1999; Cai et al., 2014, 2015, 2022). Clarifying how variance
✿✿✿✿✿✿

internal
✿✿✿✿✿✿✿✿✿

variability in

phytoplankton biomass may be changing over long time scales with climate change is important for fisheries management,55

especially at regional scales
✿

,
✿✿

as
✿✿

it
✿✿✿✿✿

affects
✿✿✿✿

our
✿✿✿✿✿

ability
✿✿

to
✿✿✿✿✿

make
✿✿✿✿✿✿✿

accurate
✿✿✿✿✿✿✿✿✿

near-term
✿✿✿✿✿✿✿✿✿

predictions
✿✿

of
✿✿✿✿✿✿✿

fisheries
✿✿✿✿✿✿✿✿✿✿

production. Near-term
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predictions of phytoplankton biomass may also benefit from knowledge of the projected magnitude of internal variability, as

the chaotic nature of internal variability hampers near-term predictions (Meehl et al., 2009, 2014).

Here, we quantify changes in the internal variability (ensemble spread) of phytoplankton biomass over the next century using

a large ensemble of an ESM, in which each ensemble member experiences a different phasing of internal climate variability60

but is forced with a common emissions scenario. We illustrate the drivers of these changes in variance
✿✿✿✿✿✿

internal
✿✿✿✿✿✿✿✿✿

variability via

statistical analysis of physical and biogeochemical model output and demonstrate their relative importance in key fisheries

regions. While we recognize that an ESM (and indeed, the real world) is a complex, nonlinear system, we approximate at

first-order the linear relationships between key variables to attribute drivers of change in phytoplankton biomass variance.

2 Methods65

2.1 Community Earth System Model 1 Large Ensemble

2.1.1 Model Description

We evaluate changes in phytoplankton biomass variance
✿✿✿✿✿✿

internal
✿✿✿✿✿✿✿✿✿

variability
✿

using output from the Community Earth System

Model 1 Large Ensemble (CESM1-LE) (Kay et al., 2015). CESM1 is a fully-coupled climate model that simulates Earth’s

climate under historical and Representative Concentration Pathway (RCP) 8.5 external forcing by simulating the evolution of70

coupled atmosphere, ocean, land, and sea ice component models (Hurrell et al., 2013). The ocean physical model is the ocean

component of the Community Climate System Model version 4 (Danabasoglu et al., 2012) and has a nominal 1° resolution and

60 vertical levels. The Parallel Ocean Program version 2 (POP2) ocean model consists of an upper-ocean ecological module

which incorporates multi-nutrient co-limitation of nitrate, ammonium, phosphate, dissolved iron, and silicate on phytoplankton

growth and dynamic iron cycling (Moore et al., 2004; Doney et al., 2006; Moore and Braucher, 2008). The Biogeochemical75

Elemental Cycle (BEC) model simulates three phytoplankton functional types (PFTs): diatoms, diazotrophs, and small phyto-

plankton (i.e., cyanobacteria, nanophytoplankton, picoeukaryotes). Each PFT plays a unique role in the marine ecosystem and

occupies a distinct ecological niche. For example, diatoms grow faster in cool, high-nutrient environments while small phy-

toplankton thrive in warmer, low-nutrient environments. In contrast, diazotrophs are not limited by nitrogen availability due

to their ability to biologically fix nitrogen from the atmosphere. Each PFT has a maximum growth rate, which is dictated by80

temperature (scaled by a temperature function with a Q10 of 2.0), and limited by nutrient and light availability (Moore et al.,

2004, 2013). Anthropogenic warming can alter these environmental variables and, in turn, affect phytoplankton abundance

and productivity. Photoadaptation (variable chlorophyll to carbon ratios) occurs in response to variations in irradiance and

nutrient availability (Geider et al., 1998; Moore et al., 2004). In addition to these bottom-up controls, top-down controls, such

as zooplankton grazing, can also affect phytoplankton biomass. The ecosystem model simulates a single generic zooplankton85

functional type (ZFT) with different grazing rates and half saturation constants prescribed for different PFTs (e.g., slower zoo-

plankton grazing rates for larger phytoplankton i.e., diatoms). Grazing rate is computed using a Holling Type III (sigmoidal)

relationship and is a function of both prey density and temperature (Figure S1,
✿✿✿✿✿✿✿✿

Equation
✿

5). Zooplankton loss is a function of
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a linear mortality term which represents natural mortality and a non-linear predation term which represents losses from preda-

tion. Both of these loss terms scale with temperature. While zooplankton growth and loss terms both scale with temperature,90

a non-linear parameterization of the loss term results in a relatively larger increase in loss than increase in production with

warming.

Large ensembles of ESMs are a recently developed research tool which allow us to disentangle fluctuations due to internal

climate variability from those imposed by externally forced anthropogenic trends. Internal variability refers to variability in

the climate system which occurs in the absence of external forcing, and includes processes related to the coupled ocean-95

atmosphere system (e.g., El Niño Southern Oscillation, Pacific Decadal Oscillation) (Santer et al., 2011; Deser et al., 2010;

Meehl et al., 2013). In contrast, external forcing refers to the signal imposed by processes external to the climate system, such

as solar variability, volcanic eruptions, and rising greenhouse gases from fossil fuel combustion (Deser et al., 2012, 2010;

Schneider and Deser, 2018). The CESM1-LE simulates the evolution of the climate system with multiple ensemble members,

each initiated with slightly different atmospheric temperature fields and branched from a multi-century 1850 control simulation100

with constant pre-industrial forcing (Lamarque et al., 2010; Danabasoglu et al., 2012). Once the control simulation achieved

equilibrium with the 1850 forcing, ensemble members were integrated
✿✿✿

The
✿✿✿✿✿✿✿✿✿✿

CESM1-LE
✿✿✿✿✿✿✿✿

simulates
✿✿✿

the
✿✿✿✿✿✿✿✿

evolution
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

climate

✿✿✿✿✿✿

system from 1920 to 2100 using round-off level differences in the initial air temperature field (Kay et al., 2015), resulting

in each ensemble member experiencing a different evolution
✿✿✿✿

with
✿✿✿✿✿✿✿

multiple
✿✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿✿✿

members,
✿✿✿✿

each
✿✿✿✿✿✿✿✿✿✿

expressing
✿

a
✿✿✿✿✿✿✿✿

different

✿✿✿✿✿✿

phasing
✿

of internal climate variability (e. g., each member has different phasing of climate modes such as El Niño Southern105

Oscillation).
✿✿✿✿✿

while
✿✿✿✿✿✿✿✿✿

responding
✿✿

to
✿✿

a
✿✿✿✿✿

shared
✿✿✿✿✿✿✿

external
✿✿✿✿✿✿✿

forcing
✿✿✿✿✿✿✿✿✿✿

prescription
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Kay et al., 2015)
✿

. Variable phasing of internal climate

variability
✿✿✿✿

(e.g.,
✿✿✿✿✿✿

ENSO) across ensemble members can influence phytoplankton biomass variability through the propagation of

physical climate variability to biologically relevant environmental variables. For example, an ensemble member with a positive

phasing of ENSO may display decreased phytoplankton biomass in the Eastern Equatorial Pacific due to decreased upwelling

nutrient flux. RCP8.5 forcing was applied from 2006 to 2100 (Meinshausen et al., 2011) with well-mixed greenhouse gases and110

short-lived aerosols projected by four different Integrated Assessment Models (Lamarque et al., 2010). A total of 40 ensemble

members were generated for the CESM1-LE experiment. Six CESM1-LE members had corrupted ocean biogeochemistry,

therefore, we use the 34 CESM1-LE members with valid ocean biogeochemistry.

2.1.2 Statistical Analysis of Model Output

Analyses were conducted using annual mean output at 1° resolution from 1920 to 2100. Changes in CESM1 phytoplank-115

ton variance
✿✿✿✿✿✿✿

internal
✿✿✿✿✿✿✿✿

variability
✿

can be assessed via statistical analysis of chlorophyll concentration, net primary productivity

(NPP), or phytoplankton carbon concentration (an indicator of total biomass). In our analysis we focus on biomass (phytoplank-

ton carbon concentration) because it is an important predictor variable in offline fisheries models (Christensen and Walters,

2004; Travers-Trolet et al., 2009; Lehodey et al., 2010; Maury, 2010; Blanchard et al., 2012; Christensen et al., 2015; Jennings and Collingridge

2015; Tittensor et al., 2018). Additionally, under climate change scenarios, phytoplankton biomass may be a more reliable in-120

dicator than NPP of climate change impacts (Bopp et al., 2021). Vertical integrals (top 150m) of biomass carbon concentration

from each PFT were calculated and then summed to create maps of total phytoplankton biomass.
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Figure 1. Comparison between observed and modeled phytoplankton biomass interannual variability. (a) Temporal standard deviation in

annual mean phytoplankton carbon concentration
✿✿✿

(mg
✿✿✿✿

m−3)
✿

reconstructed from remotely sensed chlorophyll concentrations, backscattering

coefficients, and phytoplankton absorption (1998 to 2019) (Bellacicco et al., 2020).
✿

(b) Temporal standard deviation in annual mean phyto-

plankton carbon concentration
✿✿✿

(mg
✿✿✿✿✿

m−3) simulated by ensemble member 1 of the CESM1-LE over the same observational period (1998 to

2019).
✿✿✿✿

Note
✿✿

the
✿✿✿✿✿✿✿

different
✿✿✿✿✿✿✿✿✿

magnitudes
✿✿

on
✿✿

the
✿✿✿✿✿✿✿✿

colorbars.

We classified the marine environment into 11 ecologically cohesive biomes as in Tagliabue et al. (2021)
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Vichi et al. (2011)

✿✿✿✿✿✿

(Figure
✿✿✿

S2), which are a consolidation of the 38 ecological regions defined in Longhurst (2007)
✿

.
✿✿✿

The
✿✿✿✿✿✿✿✿

provinces
✿✿✿✿✿

were
✿✿✿✿✿✿✿✿✿

aggregated

using multivariate statistical analysis (Vichi et al., 2011).
✿✿

of
✿✿✿✿✿✿✿

physical
✿✿✿✿

(i.e.,
✿✿✿✿✿✿✿

salinity,
✿✿✿✿✿✿✿✿✿✿

temperature,
✿✿✿✿✿

mixed
✿✿✿✿✿

layer
✿✿✿✿✿

depth)
✿✿✿✿

and
✿✿✿✿✿✿✿✿

biological125

✿✿✿✿

(i.e.,
✿✿✿✿✿✿✿✿✿

chlorophyll
✿✿✿✿✿✿✿✿✿✿✿✿

concentration)
✿✿✿✿✿✿

ocean
✿✿✿✿✿✿✿✿✿

parameters
✿✿

to
✿✿✿✿✿

group
✿✿✿✿✿✿

ocean
✿✿✿✿✿✿

regions
✿✿✿✿

with
✿✿✿✿✿✿

similar
✿✿✿✿✿✿✿

physical
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿

environmental
✿✿✿✿✿✿✿✿✿

conditions

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Vichi et al., 2011)
✿

.
✿✿✿

The
✿✿✿✿✿

ocean
✿✿✿✿✿✿✿✿✿

provinces
✿✿✿✿

were
✿✿✿✿✿✿✿

defined
✿✿

by
✿✿✿✿✿✿✿✿

randomly
✿✿✿✿✿✿✿✿

selecting
✿✿✿✿

from
✿✿

a
✿✿✿✿✿✿✿✿✿✿

combination
✿✿

of
✿✿✿✿✿✿

model
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿

observational

✿✿✿✿✿✿

datasets
✿✿✿✿

and
✿✿✿✿✿✿

testing
✿✿

for
✿✿✿✿✿✿✿✿

statistical
✿✿✿✿✿✿✿✿✿✿✿

significance
✿✿✿✿

using
✿✿✿✿✿✿✿

analysis
✿✿✿

of
✿✿✿✿✿✿✿✿✿

similarities
✿✿✿✿✿✿✿✿✿✿

(ANOSIM)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Vichi et al., 2011)
✿

. Although we con-

sider all 11 biomes in our analysis, we analyze drivers in four biomes that are particularly relevant for fisheries production

and/or of high biogeochemical interest: the subpolar Atlantic (ASP), the subarctic Pacific (SAP), the Equatorial Pacific (EQP),130

and the Southern Ocean (SOC)
✿✿✿✿✿✿

(Figure
✿✿✿

S2). ASP is a consolidation of aggregated biogeochemical provinces 4, 11, and 15,

SAP a consolidation of 50 and 51, EQP a consolidation of 61, 62, and 63, and SOC a consolidation of 21, 81, 82, and 83

(Longhurst, 2007; Vichi et al., 2011) .
✿✿✿✿✿✿

(Figure
✿✿✿✿

S2).
✿✿✿✿✿✿✿✿✿

Important
✿✿✿✿✿✿✿✿✿✿✿✿✿

biogeochemical
✿✿✿✿✿✿✿

regions
✿✿✿

are
✿✿✿✿✿

those
✿✿✿✿✿✿✿✿✿✿✿

characterized
✿✿✿

by
✿✿✿✿✿✿✿✿

coherent

✿✿✿✿✿✿✿

physical
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿

environmental
✿✿✿✿✿✿✿✿✿✿

conditions,
✿✿✿✿✿

which
✿✿✿✿✿✿✿

support
✿✿✿✿✿✿

unique
✿✿✿✿✿✿

marine
✿✿✿✿✿✿✿✿✿✿

ecosystems
✿✿✿

and
✿✿✿✿✿

play
✿✿

an
✿✿✿✿✿✿✿

outsized
✿✿✿✿

role
✿✿✿

on
✿✿✿✿✿

global
✿✿✿✿✿✿

ocean

✿✿✿✿✿✿✿✿✿✿✿✿✿✿

biogeochemistry.135

Internal variability at each location (x,y) is approximated as the standard deviation (σ) across ensemble members (EMs) at

a given time (t),

σ(x,y, t) = σ(EM(x,y, t)). (1)

The
✿✿✿✿✿✿✿✿

coefficient
✿✿

of
✿✿✿✿✿✿✿

variation
✿✿✿✿✿✿

(CoV)
✿✿

is
✿✿✿✿✿✿✿✿

calculated
✿✿

as
✿✿✿

the
✿✿✿✿✿✿✿

standard
✿✿✿✿✿✿✿✿

deviation
✿✿✿✿✿✿

across
✿✿

the
✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿✿✿

members
✿✿✿✿✿✿

divided
✿✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿✿

ensemble

✿✿✿✿✿

mean,140

CoV
✿✿✿✿

(x,y, t) =
σ(EM(x,y, t))

LE
EM

.

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(2)

✿✿✿

The
✿

forced response of the large ensemble is calculated as the mean of ensemble members at a given location and time,

LE(x,y, t) =

∑n
1
EM(x,y, t)

n
, (3)

where n is the number of ensemble members.
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✿✿✿

We
✿✿✿✿✿✿✿✿

quantified
✿✿✿

the
✿✿✿✿✿✿

drivers
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿

phytoplankton
✿✿✿✿✿✿

carbon
✿✿✿✿✿✿✿

biomass
✿✿✿✿

CoV
✿✿

in
✿✿✿✿

key
✿✿✿✿✿

ocean
✿✿✿✿✿✿

regions
✿✿✿

by
✿✿✿✿✿✿✿✿✿

generating
✿✿

an
✿✿✿✿✿✿✿✿

ensemble
✿✿

of
✿✿✿✿✿✿✿

boosted145

✿✿✿✿✿✿✿✿

regression
✿✿✿✿✿

trees.
✿✿✿✿✿✿

Unlike
✿✿✿✿✿

linear
✿✿✿✿✿✿✿

models,
✿✿✿✿✿✿✿

boosted
✿✿✿✿

trees
✿✿✿

are
✿✿✿✿

able
✿✿

to
✿✿✿✿✿✿✿

capture
✿✿✿✿✿✿✿✿

non-linear
✿✿✿✿✿✿✿✿✿

interaction
✿✿✿✿✿✿✿✿

between
✿✿✿

the
✿✿✿✿✿✿✿✿

predictors
✿✿✿✿

and
✿✿✿

the

✿✿✿✿✿✿✿

response.
✿✿

A
✿✿✿✿✿✿✿✿✿

regression
✿✿✿✿

tree
✿✿✿✿✿✿✿✿

ensemble
✿✿

is
✿

a
✿✿✿✿✿✿✿✿✿

predictive
✿✿✿✿✿

model
✿✿✿✿✿✿✿✿✿

composed
✿✿

of
✿

a
✿✿✿✿✿✿✿✿

weighted
✿✿✿✿✿✿✿✿✿✿✿

combination
✿✿

of
✿✿✿✿✿✿✿

multiple
✿✿✿✿✿✿✿✿✿

regression
✿✿✿✿✿

trees.

✿✿

At
✿✿✿✿✿

every
✿✿✿✿

step,
✿✿✿

the
✿✿✿✿✿✿✿✿

ensemble
✿✿✿

fits
✿✿

a
✿✿✿✿

new
✿✿✿✿✿✿

learner
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿

difference
✿✿✿✿✿✿✿

between
✿✿✿

the
✿✿✿✿✿✿✿✿

observed
✿✿✿✿✿✿✿

response
✿✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿✿

aggregated
✿✿✿✿✿✿✿✿✿

prediction

✿✿

of
✿✿

all
✿✿✿✿✿✿✿

learners
✿✿✿✿✿

grown
✿✿✿✿✿✿✿✿✿✿

previously,
✿✿✿✿✿✿

aiming
✿✿

to
✿✿✿✿✿✿✿✿

minimize
✿✿✿✿✿✿✿✿✿✿✿

mean-squared
✿✿✿✿✿

error.
✿✿✿

We
✿✿✿✿✿✿✿✿

generate
✿✿

an
✿✿✿✿✿✿✿✿

ensemble
✿✿

of
✿✿✿✿✿✿✿

boosted
✿✿✿✿✿✿✿✿

regression
✿✿✿✿✿

trees

✿✿✿✿✿✿✿✿✿

(maximum
✿✿✿

tree
✿✿✿✿✿

depth
✿✿

=
✿✿✿

10)
✿✿✿✿✿

using
✿✿✿

the
✿✿✿✿✿✿✿

Matlab
✿✿✿✿✿✿✿

function
✿✿✿✿✿✿✿✿✿✿

fitrensemble
✿

.
✿✿✿

Our
✿✿✿✿✿✿✿✿

predictor
✿✿✿✿✿✿✿✿

variables
✿✿✿

are
✿✿✿

the
✿✿✿✿✿✿✿

regional
✿✿✿✿✿✿

mean,
✿✿✿✿✿✿✿✿

ensemble150

✿✿✿✿

mean
✿✿✿✿✿✿✿✿✿✿✿

temperature,
✿✿✿✿✿

mixed
✿✿✿✿✿

layer
✿✿✿✿✿

depth,
✿✿✿✿✿✿✿✿

incoming
✿✿✿✿✿✿✿✿✿

shortwave
✿✿✿✿✿✿✿✿

radiation,
✿✿✿✿✿✿✿✿

physically
✿✿✿✿✿✿✿✿

mediated
✿✿✿✿

iron,
✿✿✿✿✿✿✿✿✿

physically
✿✿✿✿✿✿✿✿

mediated
✿✿✿✿✿✿✿✿✿

phosphate,

✿✿✿✿✿✿✿✿✿✿

zooplankton
✿✿✿✿✿✿

carbon,
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

zooplankton
✿✿✿✿✿✿

grazing
✿✿✿✿✿✿✿✿

(diatom,
✿✿✿✿✿

small
✿✿✿✿✿✿✿✿✿✿✿✿

phytoplankton,
✿✿

or
✿✿✿✿

their
✿✿✿✿✿

sum),
✿✿✿✿✿

while
✿✿✿

our
✿✿✿✿✿✿✿✿

response
✿✿✿✿✿✿✿

variable
✿

is
✿✿✿✿✿

CoV

✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿

phytoplankton
✿✿✿✿✿✿

carbon
✿✿✿✿✿✿✿

(diatom,
✿✿✿✿✿

small
✿✿✿✿✿✿✿✿✿✿✿✿

phytoplankton,
✿✿

or
✿✿✿✿

their
✿✿✿✿✿

sum)
✿✿✿✿✿✿✿

annually
✿✿✿✿✿✿✿✿

resolved
✿✿✿✿

from
✿✿✿✿

2006
✿✿

to
✿✿✿✿✿

2100.
✿✿✿✿

We
✿✿✿

use
✿✿✿

the
✿✿✿✿✿✿

Matlab

✿✿✿✿✿✿✿

function
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

predictorImportance
✿✿

to
✿✿✿✿✿✿✿

estimate
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

importance
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

predictors
✿✿✿

for
✿✿✿✿

each
✿✿✿✿

tree
✿✿✿✿✿✿

learner
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿

ensemble;
✿

it
✿✿✿✿✿✿✿✿✿

computes

✿✿

the
✿✿✿✿✿✿✿✿✿✿

importance
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

predictors
✿✿

in
✿✿

a
✿✿✿

tree
✿✿✿

by
✿✿✿✿✿✿✿

summing
✿✿✿✿✿✿✿

changes
✿✿✿✿

due
✿✿

to
✿✿✿✿

splits
✿✿✿

on
✿✿✿✿✿

every
✿✿✿✿✿✿✿

predictor
✿✿✿✿

and
✿✿✿✿✿✿✿

dividing
✿✿✿

the
✿✿✿

sum
✿✿✿

by
✿✿✿

the
✿✿✿✿

total155

✿✿✿✿✿✿

number
✿✿

of
✿✿✿✿✿✿✿✿

branches.
✿

2.2 Model Evaluation

We used remotely sensed estimates of phytoplankton carbon to evaluate the representation of phytoplankton interannual vari-

ability in the CESM1-LE. In other words, we evaluate the temporal variability in modeled phytoplankton biomass from year to

year. We note that this interannual variability is different than the internal variability (ensemble spread) that we discuss at length160

in this study, but is nevertheless a target for model validation. Although phytoplankton carbon concentrations cannot be mea-

sured directly by satellites, they can be reconstructed using algorithms that incorporate remotely sensed chlorophyll concentra-

tions, detrital backscattering coefficients, and phytoplankton absorption (Kostadinov et al., 2016; Martinez-Vicente et al., 2017;

Roy et al., 2017; Sathyendranath et al., 2020; Brewin et al., 2021). We use the observational phytoplankton carbon dataset of

Bellacicco et al. (2020), annually averaged and interpolated onto a 1° grid, to evaluate temporal
✿✿✿✿✿✿✿✿✿

interannual variability in phy-165

toplankton biomass in a single model ensemble member. Figure 1a shows satellite derived estimates of interannual variability

in phytoplankton carbon with regions of relatively low phytoplankton variability shown in light green
✿✿✿✿✿

yellow
✿

and regions of

relatively high variability in dark blue
✿✿✿✿✿

purple. Remotely sensed observations capture areas of high interannual variability in the

subpolar North Atlantic, North Pacific, and Southern Ocean and areas of low interannual variability in the subtropical gyre

regions. Similar spatial patterns are apparent when compared to the range of phytoplankton interannual variability in ensemble170

member 1 of the CESM1-LE over the observational period (1998 to 2019) (Figure 1b). However, while the model ensemble

captures regional patterns of observed variability, the CESM1-LE overestimates the magnitude of observed interannual vari-

ability. As such, estimates of interannual variability derived from the model ensemble will tend to overestimate that observed

in the real world
✿✿✿✿✿

Some
✿✿✿✿✿✿

regions
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

global
✿✿✿✿✿

ocean
✿✿✿✿✿✿

display
✿✿

a
✿✿✿✿✿✿✿✿✿

substantial
✿✿✿✿✿✿✿✿

mismatch
✿✿

in
✿✿✿✿✿✿✿✿✿

interannual
✿✿✿✿✿✿✿✿✿

variability
✿✿✿✿✿✿✿

between
✿✿✿

the
✿✿✿✿✿✿

model

✿✿✿

and
✿✿✿

that
✿✿✿✿✿✿✿✿✿

estimated
✿✿✿✿

from
✿✿✿✿✿✿✿✿✿✿✿

observations
✿✿✿✿✿✿

(Figure
✿✿

1,
✿✿✿✿✿

Table
✿✿✿✿

S1).
✿✿✿✿✿✿

While
✿✿✿

the
✿✿✿✿✿✿✿✿✿

differences
✿✿✿

can
✿✿✿

be
✿✿✿✿

quite
✿✿✿✿✿

large
✿✿

in
✿✿✿✿✿

some
✿✿✿✿✿✿✿

regions,
✿✿✿

we
✿✿✿✿

note175

✿✿✿

that
✿✿✿

this
✿✿

is
✿✿✿

an
✿✿✿✿✿✿✿✿✿

evaluation
✿✿

of
✿✿✿✿✿✿✿✿✿

interannual
✿✿✿✿✿✿✿✿✿

variability
✿✿✿✿✿✿

(rather
✿✿✿✿

than
✿✿✿✿✿✿✿

internal
✿✿✿✿✿✿✿✿✿

variability,
✿✿✿

the
✿✿✿✿✿

focus
✿✿

of
✿✿✿✿

this
✿✿✿✿✿✿

study),
✿✿✿

and
✿✿✿✿

that
✿✿✿✿✿✿✿✿

estimates

✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿✿

satellite
✿✿✿✿✿✿

product
✿✿✿✿✿✿

derive
✿✿✿✿

from
✿

a
✿✿✿✿✿✿✿✿✿

collection
✿✿

of
✿✿✿✿

data
✿✿✿✿✿✿✿

products
✿✿✿✿✿✿

which
✿✿✿

may
✿✿✿✿

also
✿✿✿✿✿✿

display
✿✿✿✿✿✿

biases
✿✿✿✿✿

(Table
✿✿✿✿

S1).
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Figure 2. (a) Global change in annual mean total phytoplankton carbon concentration simulated by the CESM1-LE in mmol C m−2 from the

historical period through the RCP8.5 forcing scenario (1920 to 2100). The ensemble mean is shown in the black curve and the 34 individual

ensemble members are shown in the gray curves. (b) Global change in the coefficient of variance
✿✿✿✿✿✿

variation
✿

in annual mean total phytoplankton

carbon concentration over the same period, smoothed using a 5 year window. Trend in the coefficient of variance
✿✿✿✿✿✿

variation
✿

over the RCP8.5

forcing scenario is shown in the black dashed line.

As an evaluation of the model’s ability to represent internal variability (ensemble spread), we compare the internal variance

✿✿✿✿✿✿✿✿

variability
✿

in chlorophyll simulated in the CESM1-LE to a synthetic ensemble generated from observed
✿✿✿✿✿✿

surface
✿

chlorophyll

concentrations over the MODIS remote sensing record (Elsworth et al., 2020, 2021) (Figure S2
✿✿

S3; chlorophyll was readily180

available in the CESM1-LE and can be directly compared with our synthetic ensemble of observed
✿✿✿✿✿✿

surface chlorophyll). A

synthetic ensemble is a novel technique that allows the observational record to be statistically emulated to create multiple

possible evolutions of the observed record, each with a unique sampling of internal climate variability (McKinnon et al., 2017;

McKinnon and Deser, 2018). Compared to the internal variability over the observational period (2002 to 2020) (purple circle,

(Figure S2
✿✿

S3), the model ensemble slightly overestimates the magnitude of internal variability in chlorophyll observed in the185

real world.

✿✿✿✿✿

Taken
✿✿✿✿✿✿✿

together,
✿✿✿

our
✿✿✿✿✿✿

model
✿✿✿✿✿✿✿✿

validation
✿✿✿✿✿✿✿✿

exercises
✿✿✿✿✿✿✿✿✿✿

demonstrate
✿✿✿

that
✿✿✿

the
✿✿✿✿✿

model
✿✿✿✿✿

tends
✿✿

to
✿✿✿✿✿✿✿✿✿✿

overestimate
✿✿✿✿

both
✿✿✿

the
✿✿✿✿✿✿✿✿

temporal
✿✿✿✿✿✿✿✿✿✿

(interannual)

✿✿✿✿✿✿✿✿

variability
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿

internal
✿✿✿✿✿✿✿✿

variability
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿✿✿

phytoplankton,
✿✿

as
✿✿✿✿✿✿✿✿

compared
✿✿

to
✿✿✿✿✿✿✿

satellite
✿✿✿✿✿✿✿✿✿✿

observations
✿✿✿

on
✿✿✿

both
✿✿✿✿✿✿

global
✿✿✿

and
✿✿✿✿✿✿✿

regional
✿✿✿✿✿✿

scales.

✿✿✿✿✿

Thus,
✿✿

we
✿✿✿✿✿

must
✿✿✿✿✿✿✿

interpret
✿✿✿

our
✿✿✿✿✿✿✿

findings
✿✿✿✿

with
✿✿✿✿

this
✿✿✿✿✿

caveat
✿✿

in
✿✿✿✿✿

mind.
✿

3 Results190

✿✿✿

We
✿✿✿✿✿✿✿

evaluate
✿✿✿

the
✿✿✿✿✿✿✿

change
✿✿

in
✿✿✿✿✿✿

mean
✿✿✿✿✿✿✿✿✿✿✿✿

phytoplankton
✿✿✿✿✿✿✿

biomass
✿✿✿✿

and
✿✿✿

its
✿✿✿✿✿✿✿

internal
✿✿✿✿✿✿✿✿✿

variability
✿✿✿✿✿✿

across
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

CESM1-LE
✿✿✿✿✿✿✿

globally
✿✿✿✿

and

✿✿✿✿✿✿✿✿

regionally.
✿

Annually averaged, global mean, upper-ocean (top 150m) integrated phytoplankton biomass across the model en-

semble decreases from 76.1 mmol C m−2 to 66.2 mmol C m−2 from the historical period through the RCP8.5 forcing scenario

(1920 to 2100), a decline of 13% (black curve; Figure 2a).
✿✿✿

The
✿✿✿✿✿✿✿

change
✿✿

in
✿✿✿

the
✿✿✿✿

mean
✿✿

is
✿✿✿✿✿✿✿✿✿

calculated
✿✿

as
✿✿✿

the
✿✿✿✿✿✿✿✿✿

difference
✿✿✿✿✿✿✿

between
✿✿✿

the

✿✿✿

first
✿✿✿✿✿

(1920
✿✿

to
✿✿✿✿✿

1930)
✿✿✿✿

and
✿✿✿

last
✿✿✿✿✿

(2090
✿✿

to
✿✿✿✿✿

2100)
✿✿✿✿✿✿✿

decades
✿✿✿✿✿✿

across
✿✿✿

the
✿✿✿✿✿✿✿✿

historical
✿✿✿

and
✿✿✿✿✿✿✿

RCP8.5
✿✿✿✿✿✿

forcing
✿✿✿✿✿✿✿✿

scenario. Phytoplankton biomass195

declines globally, except in polar regions (Figure 3a). Regional changes in mean phytoplankton biomass across the RCP8.5

forcing scenario (2006 to 2100) display increasing biomass in portions of the Arctic and the Southern Ocean that gradually

become ice-free over the century (on the order of 20-40% of the mean biomass across the century) and decreasing biomass

across the subtropical gyres (on the order of 15-30% of the mean biomass across the century; Figures 3a, S3
✿✿

S4a). In the North

Atlantic subpolar gyre, the phytoplankton biomass declines by 40-50% of its mean (Figures 3a, S3a), likely due to weakening200

of the Atlantic Meridional Overturning Circulation (AMOC) and the subsequent disruption of nutrient flux (Brander, 2010)

✿✿✿✿

S4a). This result is consistent with previous modelling studies which identified a 50% reduction in North Atlantic primary

production associated with AMOC weakening during the last glacial period (Schmittner, 2005). A weakening of the AMOC is

also projected with anthropogenic warming (Manabe and Ronald, 1993; Stocker and Schmittner, 1997).
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Figure 3. (a) Percentage change in annual total phytoplankton carbon concentration over the RCP8.5 forcing scenario (2006 to 2100)

simulated by the CESM1-LE. (b) Percentage change in annual total phytoplankton
✿✿✿✿✿

internal
✿

variablity over the same period.
✿✿✿

The
✿✿✿✿✿✿

change
✿✿

in

✿✿

the
✿✿✿✿✿

mean
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿

variability
✿✿

are
✿✿✿✿✿✿✿✿

calculated
✿✿✿✿✿

using
✿✿✿✿✿✿✿

averages
✿✿✿✿✿

across
✿✿

the
✿✿✿✿

first
✿✿✿✿✿

(2006
✿✿

to
✿✿✿✿

2016)
✿✿✿✿

and
✿✿✿

last
✿✿✿✿✿

(2090
✿✿

to
✿✿✿✿

2100)
✿✿✿✿✿✿✿

decades
✿✿

of
✿✿

the
✿✿✿✿✿✿✿

RCP8.5

✿✿✿✿✿

forcing
✿✿✿✿✿✿✿

scenario.
✿

Hatched areas indicate regions of trend insignificance determined by a t-test with a p value greater than 0.05.
✿✿✿✿✿✿✿

Summary

✿✿✿✿✿✿

statistics
✿✿✿

for
✿✿

the
✿✿✿✿

t-test
✿✿✿

are
✿✿✿✿✿✿✿

available
✿✿

in
✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

supplemental
✿✿✿✿✿✿✿✿

information
✿✿✿✿✿

(Table
✿✿✿✿

S2).

Regional changes in phytoplankton biomass are dominated by changes in diatom and small phytoplankton (Table 1). We205

aggregate biomass across 11 ecological provinces (Vichi et al., 2011; Tagliabue et al., 2021), and present changes in total

and PFT biomass over the RCP8.5 scenario in Table 1. The CESM1-LE simulates the largest decline in total phytoplankton

carbon concentration in the Atlantic subpolar (ASP) region, where diatom biomass declines by ∼80 mmol C m−2, and small

phytoplankton biomass increases slightly (∼8 mmol C m−2). We observe moderate decreases in the subpolar Pacific (SAP)

region that are again driven by declines in diatom carbon concentration, with minor contributions from changes in small210

phytoplankton carbon concentration (Table 1). The CESM1-LE simulates a smaller decline in total carbon concentration in the

Equatorial Pacific (EQP) region, where diatom biomass declines ∼7 mmol C m−2 and small phytoplankton biomass declines

∼5 mmol C m−2. The smallest decline in total carbon concentration occurs in the South Pacific subtropical gyre (SPS) region,

where diatom biomass declines ∼4.3 mmol C m−2 and small phytoplankton biomass declines ∼4.6 mmol C m−2.

Internal variability in global phytoplankton biomass, which is indicated by the spread across the individual ensemble mem-215

bers (gray lines; Figure 2a), declines over the RCP8.5 forcing period from 2006 to 2100. To quantify how the range of inter-

nal variability in phytoplankton biomass is changing with anthropogenic warming, we calculated the coefficient of variance

✿✿✿✿✿✿✿

variation
✿

as the standard deviation across the ensemble members for a given year (ensemble spread) divided by the ensemble

mean. Figure 2b illustrates the change in the coefficient of variance
✿✿✿✿✿✿✿

variation from the historical period through the RCP8.5

forcing scenario (1920 to 2100). The coefficient of variance
✿✿✿✿✿✿✿

variation
✿

is relatively constant across the historical period (1920220

to 2005), and then significantly declines by ∼20% from 2006-2100.

A decrease in global phytoplankton internal variability with anthropogenic warming is not unique to the CESM1-LE. We

illustrate this by analyzing
✿✿✿✿✿✿

surface
✿

phytoplankton chlorophyll (rather than biomass;
✿✿✿✿✿✿

surface chlorophyll was readily available in

the CMIP5 archive) from three other CMIP5 ESM large ensembles which include representation of ocean biogeochemistry: the

GFDL-ESM2M from the Geophysical Fluid Dynamics Laboratory (GFDL; Dunne et al., 2012, 2013), the CanESM2 from the225

Canadian Centre for Climate Modelling and Analysis (Christian et al., 2010; Arora et al., 2011), and the MPI-ESM-LR from

the Max Planck Institute (MPI; Giorgetta et al., 2013; Ilyina et al., 2013), consisting of 30, 50, and 100 ensemble members,

respectively. Similarly to the CESM1-LE, historical forcing was applied through 2005, followed by RCP8.5 forcing through

2100. While there is substantial spread in the mean coefficient of variance
✿✿✿✿✿✿✿

variation
✿

across the four models, a similar decline

in the coefficient of variance
✿✿✿✿✿✿✿✿

variation can be observed across each of the four ESM ensembles, (Figure S2
✿✿

S3). From 2006 to230

2100, the coefficient of variance
✿✿✿✿✿✿✿

variation decreases by 3.3 × 10−5 yr−1 in the CESM1-LE, 2.0 × 10−4 yr−1 in the MPI-ESM-

LR1, 5.2 × 10−5 yr−1 in the CanESM2, and 3.9 × 10−4 yr−1 in the GFDL-ESM2M.
✿✿✿

The
✿✿✿✿✿✿

change
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿

coefficient
✿✿

of
✿✿✿✿✿✿✿✿

variation
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✿

is
✿✿✿✿✿✿✿✿✿

calculated
✿✿✿✿✿

using
✿✿✿✿✿✿✿✿

averages
✿✿✿✿✿

across
✿✿✿

the
✿✿✿✿

first
✿✿✿✿✿

(2006
✿✿

to
✿✿✿✿✿✿

2016)
✿✿✿

and
✿✿✿✿

last
✿✿✿✿✿

(2090
✿✿

to
✿✿✿✿✿

2100)
✿✿✿✿✿✿✿

decades
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

RCP8.5
✿✿✿✿✿✿

forcing
✿✿✿✿✿✿✿✿

scenario.

These declines are statistically significant in all model ensembles with the exception of the MPI-ESM-LR1 (Figure S2
✿✿

S3).

In comparison to the mean change in phytoplankton biomass, changes in phytoplankton internal variability with time are235

spatially more heterogeneous across the global ocean (Figure 3b). The largest decreases in variance
✿✿✿✿✿✿

internal
✿✿✿✿✿✿✿✿✿

variability are ap-

parent in the North Atlantic and North Pacific subpolar regions (on the order of 50-70% of the mean biomass variance
✿✿✿✿✿✿

internal

✿✿✿✿✿✿✿✿

variability), with smaller declines in the Equatorial Pacific and Southern Oceans (on the order of 30-50% of the mean biomass

variance
✿✿✿✿✿✿

internal
✿✿✿✿✿✿✿✿✿

variability) (Figure 3b, S3
✿✿

S4b). Changes in variance
✿✿✿✿✿✿

internal
✿✿✿✿✿✿✿✿✿

variability in the subtropical regions are charac-

terized by mixed trends, with areas of both increasing and decreasing variance
✿✿✿✿✿✿

internal
✿✿✿✿✿✿✿✿✿

variability across the RCP8.5 forcing240

scenario (Figure 3b, S3
✿✿

S4b).

Global changes in total phytoplankton biomass variance
✿✿✿✿✿✿✿

standard
✿✿✿✿✿✿✿✿

deviation
✿

are a manifestation of changes in diatom and

small phytoplankton variability (Table 1). We observe the largest magnitude decline in total phytoplankton carbon variance

✿✿✿✿✿✿✿

standard
✿✿✿✿✿✿✿✿

deviation in the subpolar Atlantic (ASP) region, where diatom variance
✿✿✿✿✿✿✿

standard
✿✿✿✿✿✿✿✿

deviation declines by ∼10 mmol C

m−2 and small phytoplankton variance
✿✿✿✿✿✿✿

standard
✿✿✿✿✿✿✿✿

deviation declines by ∼2 mmol C m−2 (Table 1). The CESM1-LE simulates245

a moderate magnitude decline in total phytoplankton variance
✿✿✿✿✿✿✿

standard
✿✿✿✿✿✿✿✿

deviation in the subarctic Pacific (SAP) region, driven

by a decrease in small phytoplankton variance
✿✿✿✿✿✿✿

standard
✿✿✿✿✿✿✿✿

deviation (∼2 mmol C m−2) with minor contributions from declines

in diatom variance
✿✿✿✿✿✿✿

standard
✿✿✿✿✿✿✿✿

deviation
✿

(∼1 mmol C m−2) (Table 1). Moderate declines in variance
✿✿✿✿✿✿✿

standard
✿✿✿✿✿✿✿✿

deviation
✿

are also

simulated in the Arctic (ARC), North Atlantic subtropical gyre (NAS), Southern Ocean (SOC), and Equatorial Pacific (EQP)

regions, driven by declines in diatom carbon variance
✿✿✿✿✿✿

standard
✿✿✿✿✿✿✿✿

deviation
✿

in the SOC region and declines in small phytoplankton250

variance
✿✿✿✿✿✿

internal
✿✿✿✿✿✿✿✿✿

variability
✿

in the EQP region (Table 1).

Table 1. Changes in phytoplankton biomass and its
✿✿✿✿✿✿

internal variability in the CESM1-LE from 2006 to 2100 for the 11 ecological provinces

defined in Vichi et al. (2011) and Tagliabue et al. (2021). Units are mmol C m−2.
✿✿✿

The
✿✿✿✿✿✿

change
✿✿

in
✿✿✿

the
✿✿✿✿

mean
✿✿✿✿

and
✿✿✿✿✿✿

standard
✿✿✿✿✿✿✿✿

deviation
✿✿✿

are

✿✿✿✿✿✿✿

calculated
✿✿✿✿✿

using
✿✿✿✿✿✿

averages
✿✿✿✿✿

across
✿✿✿

the
✿✿✿

first
✿✿✿✿✿

(2006
✿✿

to
✿✿✿✿

2016)
✿✿✿

and
✿✿✿

last
✿✿✿✿✿

(2090
✿✿

to
✿✿✿✿

2100)
✿✿✿✿✿✿✿

decades
✿✿

of
✿✿

the
✿✿✿✿✿✿

RCP8.5
✿✿✿✿✿✿

forcing
✿✿✿✿✿✿✿

scenario.

Region Change in Mean Change in Standard Deviation

Biome Name Total Diatom Small Total Diatom Small

ARC Arctic –21 –58 +37 –1.4 –2.8 –0.3

ASP Atlantic subpolar –71 –79 +8.2 –5.6 –9.9 –2.2

NAS North Atlantic subtropical gyre –18 –15 –2.9 –1.8 –2.8 –0.3

EQA Equatorial Atlantic –12 –6.6 –5.9 –0.1 –0.4 +0.2

SAS South Atlantic subtropical gyre –10 –7.2 –3.1 –0.5 –0.6 –0.1

IND Indian Ocean –11 –6.1 –4.7 +0.1 0 +0.1

SAP subarctic Pacific –21 –15 –5.4 –0.1 –1.4 –2.4

NPS North Pacific subtropical gyre –11 –5.6 –4.9 –0.2 –0.4 +0.1

EQP Equatorial Pacific –12 –6.6 –5.0 –2.0 –2.0 –0.2

SPS South Pacific subtropical gyre –8.9 –4.3 –4.6 –0.1 0 –0.1

SOC Southern Ocean –9.3 –2.8 –6.6 –1.0 0 –1.3
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Figure 4. Distribution of the dominant phytoplankton functional type in biomass carbon averaged over
✿✿✿✿✿

across
✿✿

the
✿✿✿✿✿✿✿

RCP8.5
✿✿✿✿✿

forcing
✿✿✿✿✿✿✿

scenario

✿

(2006 to 2100.
✿✿✿✿

2100).
✿

The CESM1-LE simulates three phytoplankton functional types: diatoms, diazotrophs, and small phytoplankton.

Regions where diatoms dominate are shown in yellow , regions where diazotrophs dominate are shown in pink, and regions where small

phytoplankton dominate are shown in purple.
✿✿✿✿✿✿✿✿✿

Diazotrophs
✿✿

do
✿✿✿

not
✿✿✿✿✿✿✿

dominate
✿✿

in
✿✿✿

any
✿✿✿✿✿

region
✿✿

of
✿✿✿

the
✿✿✿✿✿

global
✿✿✿✿✿

ocean.
✿✿✿

The
✿✿✿

four
✿✿✿✿✿✿✿✿

ecological
✿✿✿✿✿✿✿✿

provinces

✿✿

are
✿✿✿✿✿✿

shown:
✿✿✿✿✿✿

subpolar
✿✿✿✿✿✿

Pacific
✿✿✿✿✿

(SAP),
✿✿✿✿✿✿✿

subpolar
✿✿✿✿✿✿

Atlantic
✿✿✿✿✿

(ASP),
✿✿✿✿✿✿✿✿

Equatorial
✿✿✿✿✿✿

Pacific
✿✿✿✿✿

(EQP),
✿✿✿

and
✿✿✿✿✿✿✿

Southern
✿✿✿✿✿

Ocean
✿✿✿✿✿✿

(SOC).

To guide our attribution analysis of changing phytoplankton biomass and its internal variability, we considered the dominant

ecological assemblage across different regions of the global ocean. The CESM1-LE simulates three phytoplankton functional

types, each of which thrive in distinct regions of the global ocean. Diatoms dominate in the subpolar Atlantic and Pacific,

the Eastern Equatorial upwelling zone, and portions of the Southern Ocean, while small phytoplankton dominate across the255

subtropical gyres and portions of the Southern Ocean (Figure ??
✿

4). In contrast, diazotrophs, a minor contributor to total carbon

biomass, are present at such low concentrations that they do not dominate anywhere in the global ocean (Figure ??
✿

4). Using

the ecologically cohesive regions defined by Tagliabue et al. (2021) and Vichi et al. (2011), we selected areas that align with

the most productive fisheries regions by catch in the Atlantic and Pacific basins (FAO, 2020), as well as regions of global

biogeochemical importance for further analysis. In each ecological region we identified the dominant phytoplankton functional260

type to include in our driver analysis. In regions where multiple phytoplankton functional types dominated, we used total

carbon concentrations to reflect the mixed ecological assemblage.

We quantified the relationship between phytoplankton carbon and the variables which contribute to changing phytoplankton

biomass and its internal variability by performing a multiple linear regression (MLR) analysis. The MLR analysis was performed

on linearly detrended annual anomalies using the ordinary least squares function of the Python package statsmodels.api. We265

then reconstructed the contribution of each driver variable to phytoplankton biomass and its internal variance between the

beginning of the century (2006 to 2016) and the end of the century (2090 to 2100) by multiplying the MLR regression

coefficients by the 10-year averaged mean and standard deviation across the model ensemble (ensemble spread), respectively,

for each variable. We reconstruct mean phytoplankton biomass (Cphyto) and its variance (σCphyto
) as a function of light

(Solar), temperature (SST ), phosphate advection (Nutrient), mixed layer depth (MLD), and zooplankton grazing (Grazing),270

Cphyto =
∂Cphyto

∂Solar
Solar+

∂Cphyto

∂SST
SST +

∂Cphyto

∂Nutrient
Nutrient+

∂Cphyto

∂MLD
MLD+

∂Cphyto

∂Grazing
Grazing,

and,

σCphyto
=

∂Cphyto

∂Solar
σSolar +

∂Cphyto

∂SST
σSST +

∂Cphyto

∂Nutrient
σNutrient +

∂Cphyto

∂MLD
σMLD +

∂Cphyto

∂Grazing
σGrazing,
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where X represents the 10-year ensemble mean for a particular variable over a given period, σX represents the standard275

deviation across all ensemble members for a particular variable and
∂Cphyto

∂X
represents the MLR regression coefficient describing

the relationship between a particular variable and phytoplankton biomass. We approximate at first-order the linear relationships

between variables and do not account for second-order (co-variance among explanatory variables) relationships in our statistical

method; these terms do not contribute much to the total change in mean (Figure ??a) and variance (Figure ??b).

We identify the drivers of
✿✿✿✿✿✿

identify
✿✿✿

the
✿✿✿✿✿✿✿✿✿

importance
✿✿✿

of
✿✿✿✿✿✿✿

different
✿✿✿✿✿✿✿✿

predictors
✿✿

to
✿

changing phytoplankton biomass and its internal280

variance
✿✿✿✿

CoV
✿

in four distinct ecological regions using our statistical
✿

a
✿✿✿✿✿✿✿

machine
✿✿✿✿✿✿✿✿

learning
✿✿✿✿✿✿✿

(boosted
✿✿✿✿✿✿✿✿✿

regression
✿✿✿✿

tree)
✿

approach.

In the subpolar Atlantic (ASP) and subpolar Pacific (SAP) ecological provinces , where diatoms dominate total biomass, the

mean decline in diatom carbon is associated with a decrease in diatom grazing (Figure ??a)and a decrease zooplankton carbon,

respectively (Figure ??b). In the ASP and SAP ecological provinces (Figure ??), diatom variance
✿✿

4),
✿✿✿✿✿✿

diatom
✿✿✿✿✿✿✿

biomass
✿✿✿✿✿

CoV

declines between the beginning and end of the century (Figure 5a, b, Table 1). In both provinces, the largest contributions to285

this decline in diatom variability derive from a decline in diatom grazing variability, while more minor contributions derive

from bottom-up controls such as solar flux
✿✿✿

the
✿✿✿✿✿✿✿

Atlantic
✿✿✿✿✿✿✿

subpolar
✿✿✿✿✿✿

region,
✿✿✿

the
✿✿✿✿✿

most
✿✿✿✿✿✿✿✿

important
✿✿✿✿✿✿✿✿

predictor
✿✿

of
✿✿✿✿✿✿

diatom
✿✿✿✿✿✿✿

biomass
✿✿✿✿✿

CoV

✿

is
✿✿✿✿✿✿✿✿✿

phosphate
✿✿✿✿✿✿✿✿✿

advection,
✿✿✿✿

with
✿✿✿✿✿✿✿

smaller
✿✿✿✿✿✿✿✿✿✿✿

contributions
✿✿✿✿

from
✿✿✿✿✿✿✿✿✿✿✿

zooplankton
✿✿✿✿✿✿

carbon
✿✿✿✿✿✿

(Figure
✿✿✿✿

5a).
✿✿

In
✿✿✿

the
✿✿✿✿✿✿✿✿

subarctic
✿✿✿✿✿✿

Pacific
✿✿✿✿✿✿

region, sea

surface temperature , nutrient advection , and mixed layer depth
✿

is
✿✿✿

the
✿✿✿✿✿

most
✿✿✿✿✿✿✿✿

important
✿✿✿✿✿✿✿✿

predictor
✿✿

of
✿✿✿✿✿✿

diatom
✿✿✿✿✿✿✿

biomass
✿✿✿✿✿

CoV,
✿✿✿✿

with

✿✿✿✿✿✿✿✿

phosphate
✿✿✿✿✿✿✿✿

advection
✿✿✿✿✿✿✿

playing
✿

a
✿✿✿✿✿✿✿✿✿

secondary
✿✿✿

role
✿

(Figure 5a, b).290

As the Southern Ocean (SOC) and Equatorial Pacific (EQP)
✿✿✿✿✿✿✿✿

ecological
✿

provinces are characterized by mixed phytoplankton

assemblages where both diatoms and small phytoplankton dominate
✿✿✿✿✿

(Figure
✿✿✿

4), we identify the drivers of the change in total

phytoplankton mean and variance here. The mean decline in total carbon in the SOC province are dominated by a decrease

zooplankton grazing (Figure ??c). In contrast , drivers of the mean decline in total carbon in the EQP province include a

combination of zooplankton carbon, diatom grazing, and small phytoplankton grazing (Figure ??d).In contrast to the ASP295

and SAP
✿✿✿✿✿✿✿✿

predictors
✿✿

of
✿✿✿✿

total
✿✿✿✿✿✿✿✿✿✿✿✿

phytoplankton
✿✿✿✿✿

CoV
✿✿✿✿

here.
✿✿

In
✿✿✿✿✿✿✿

contrast
✿✿

to
✿✿✿✿

the
✿✿✿✿✿✿✿

subpolar
✿✿✿✿✿✿✿

Atlantic
✿✿✿

and
✿✿✿✿✿✿✿✿

subpolar
✿✿✿✿✿✿

Pacific
✿

provinces, we

observe a relatively smaller decline in internal phytoplankton variance
✿✿✿✿✿✿✿✿✿✿✿✿

phytoplankton
✿✿✿✿

CoV between the beginning and end of

the century in the Southern ocean (Figure 5c). Similarly to ASP and SAP provinces, the largest contributions to the change

in internal variability derive from a decline in grazing variability, with bottom-up controls playing only a small role
✿✿✿✿✿

Ocean

✿✿✿✿✿

(Table
✿✿✿

1).
✿✿✿✿

The
✿✿✿✿

most
✿✿✿✿✿✿✿✿

important
✿✿✿✿✿✿✿✿✿

predictors
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿

phytoplankton
✿✿✿✿✿

CoV
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿

Southern
✿✿✿✿✿✿

Ocean
✿✿✿✿✿

(SOC)
✿✿✿✿✿✿

region
✿✿✿✿✿✿

derive
✿✿✿✿

from
✿✿✿✿✿

solar
✿✿✿✿

flux,300

✿✿✿✿

with
✿✿✿✿

more
✿✿✿✿✿✿

minor
✿✿✿✿✿✿✿✿✿✿✿

contributions
✿✿✿✿

from
✿✿✿✿

iron
✿✿✿

and
✿✿✿✿✿✿✿✿✿

phosphate
✿✿✿✿✿✿✿✿

advection
✿

(Figure 5c). In the Equatorial Pacific , total phytoplankton

variance declines between the beginning and end of the century, with the largest contributions to this decline deriving from

zooplankton carbon and diatom grazing, with increasing variance in small phytoplankton grazing
✿✿✿✿✿

region,
✿✿✿✿✿✿✿✿✿✿✿

zooplankton
✿✿✿✿✿✿

carbon

✿

is
✿✿✿

the
✿✿✿✿✿

most
✿✿✿✿✿✿✿✿

important
✿✿✿✿✿✿✿✿

predictor
✿✿

of
✿✿✿✿

total
✿✿✿✿✿✿✿✿✿✿✿✿

phytoplankton
✿✿✿✿✿

CoV,
✿✿✿✿✿

while
✿✿✿✿

iron
✿✿✿

and
✿✿✿✿✿✿✿✿✿

phosphate
✿✿✿✿✿✿✿✿

advection
✿✿✿✿

play
✿✿✿✿

less
✿✿

of
✿✿

a
✿✿✿✿✿✿✿✿

predictive
✿✿✿✿

role

(Figure 5d).305

We explore the sensitivity of our results in relation to the functional form of grazing in the CESM1-LE (Figure S4). A

caveat to our statistical approach is our assumption that the regression coefficients are constant across the century while the

variance is changing. In our model, the sensitivity of grazing rate to prey concentration can be affected by changes in prey

concentration and changes in temperature (Figure S1), both of which are modified in a changing climate. We test the robustness
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Figure 5. Reconstructed changes in the contribution
✿✿✿✿✿✿

Relative
✿✿✿✿✿✿✿✿✿

importance of each driver variable to
✿✿✿✿✿✿

predictor
✿✿✿✿✿✿✿

variables
✿✿✿

on phytoplankton

biomass variance
✿✿✿✿✿✿✿

coefficient
✿✿

of
✿✿✿✿✿✿✿

variation
✿

across the RCP8.5 forcing scenario (2006 to 2100)with the beginning of the century shown in light

blue and the end of the century shown in dark blue. Marine ecological regions are defined in Tagliabue et al. (2021). Regions were selected

which aligned with the highest fisheries catch in the (a) Atlantic and (b) Pacific basins and the biogeochemically important (c) Southern

Ocean and (d) Equatorial Pacific regions. The dominant phytoplankton functional type is considered in each region. In regions with a mixed

ecological assemblage, total phytoplankton carbon is considered.

of our assumption in the two key fisheries regions by performing another MLR to reconstruct drivers of diatom variance with310

different regression coefficients between the beginning and end of the century (Figure S1, Figure S4).While the contribution of

zooplankton grazing to the change in diatom variance changes slightly with this new approach, the results are similar.

Our analysis reveals that changes in grazer variance dominate the change in phytoplankton variance over the next century,

so we next deconvolve the changes in grazer variance into its two drivers, prey concentration (phytoplankton biomass) and

temperature (Figure S1) using a similar MLR approach as for phytoplankton biomass variance (
✿

In
✿✿✿

all
✿✿✿

four
✿✿✿✿✿✿✿✿✿

ecological
✿✿✿✿✿✿✿✿✿

provinces,315

✿

a
✿✿✿✿✿✿✿✿✿✿✿

combination
✿✿

of
✿✿✿✿✿✿✿✿✿

bottom-up
✿✿✿✿✿✿✿

controls
✿✿✿✿✿

(e.g.,
✿✿✿✿✿✿

nutrient
✿✿✿✿✿✿✿

supply,
✿✿✿✿

light
✿✿✿✿✿✿✿✿✿✿

availability)
✿✿✿✿

and
✿✿✿✿✿✿✿✿

top-down
✿✿✿✿✿✿✿

controls
✿

(e.g., Equation 4) . The

results of this deconvolution (Figure ??) demonstrate that the changing grazing variance is driven primarily by changing

phytoplankton biomass variance, with only small contributions from changing temperature variance. Thus, it is not possible to

cleanly separate cause and effect in this non-linear, coupled system: phytoplankton variance changes because grazer variance

changes, and grazer variance changes because phytoplankton variance changes. Nevertheless, our results suggest that both320

phytoplankton and zooplankton experience declines in variance by the end of the century, and as both are sources of energy for

higher trophic levels, this implies that fishery productivity variance will also decline by the end of the century
✿✿✿✿✿

grazer
✿✿✿✿✿✿✿✿

biomass)

✿✿✿✿✿✿

predict
✿✿

the
✿✿✿✿✿✿✿

decline
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿✿

phytoplankton
✿✿✿✿✿✿✿

biomass
✿✿✿✿

CoV
✿✿✿✿

with
✿✿✿✿✿✿✿✿✿✿✿✿

anthropogenic
✿✿✿✿✿✿✿✿

warming.
✿✿✿✿

Our
✿✿✿✿✿✿✿✿

statistical
✿✿✿✿✿✿✿

analysis
✿✿✿✿✿✿

reveals
✿✿✿

that
✿✿✿✿✿✿✿✿✿

phosphate

✿✿✿✿✿✿✿✿

advection
✿✿

is
✿✿

an
✿✿✿✿✿✿✿✿✿

important
✿✿✿✿✿✿✿✿

predictor
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

high-latitude
✿✿✿✿✿✿✿

regions
✿✿

of
✿✿✿✿

both
✿✿✿✿

the
✿✿✿✿✿✿✿

subpolar
✿✿✿✿✿✿✿

Atlantic
✿✿✿✿

and
✿✿✿✿✿✿✿

Pacific,
✿✿✿✿

with
✿✿✿

sea
✿✿✿✿✿✿✿

surface

✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿✿

playing
✿✿

an
✿✿✿✿✿✿✿✿✿

important
✿✿✿

role
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

subpolar
✿✿✿✿✿✿✿

Pacific.
✿✿✿✿✿✿✿✿

However,
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

Southern
✿✿✿✿✿✿

Ocean
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿✿

Equatorial
✿✿✿✿✿✿

Pacific,
✿✿✿✿✿

solar325

✿✿✿

flux
✿✿✿✿

and
✿✿✿✿✿

grazer
✿✿✿✿✿✿✿

biomass
✿✿✿✿✿✿✿✿

dominate
✿✿✿

the
✿✿✿✿✿✿✿✿

predictive
✿✿✿✿

skill
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿✿

phytoplankton
✿✿✿✿✿✿✿

biomass
✿✿✿✿✿

CoV.

4 Conclusions and Discussion

We quantify both global and regional changes in phytoplankton internal variance
✿✿✿✿✿✿✿✿

variability
✿

across the RCP8.5, or business-

as-usual forcing scenario in the CESM1-LE. We observe a global decline in phytoplankton variance
✿✿✿✿✿✿

internal
✿✿✿✿✿✿✿✿✿

variability in the

model ensemble, which is reflected in similar declines in phytoplankton variance
✿✿✿✿✿✿

internal
✿✿✿✿✿✿✿✿✿

variability across a suite of CMIP5330

models (Figure S2
✿✿

S3). Regional changes in phytoplankton variability with anthropogenic climate change in the model en-

semble are spatially heterogeneous, with highly productive fisheries regions and important global biogeochemical regions

experiencing large changes in variance. Statistical analysis of these specific regions reveal zooplankton grazing (
✿✿✿✿✿✿

internal

✿✿✿✿✿✿✿✿✿

variability.
✿✿✿✿✿

Using
✿

a
✿✿✿✿✿✿✿✿

machine
✿✿✿✿✿✿✿

learning
✿✿✿✿✿✿✿✿

approach,
✿✿✿

we
✿✿✿✿✿✿✿

identify
✿✿✿

the
✿✿✿✿✿✿✿✿✿

importance
✿✿✿

of
✿✿✿✿✿✿✿

different
✿✿✿✿✿✿✿✿✿

predictors
✿✿

to
✿✿✿✿✿✿✿✿

changing
✿✿✿✿✿✿✿✿✿✿✿✿

phytoplankton

✿✿✿✿✿✿✿

biomass
✿✿✿✿✿✿

internal
✿✿✿✿✿✿✿✿✿

variability.
✿✿✿

In
✿✿

all
✿✿✿✿

four
✿✿✿✿✿✿✿✿✿

ecological
✿✿✿✿✿✿✿✿✿

provinces,
✿

a
✿✿✿✿✿✿✿✿✿✿✿

combination
✿✿

of
✿✿✿✿✿✿✿✿✿

bottom-up
✿✿✿✿✿✿✿

controls
✿✿✿✿

(e.g.,
✿✿✿✿✿✿✿

nutrient
✿✿✿✿✿✿

supply,
✿✿✿✿✿

light335
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✿✿✿✿✿✿✿✿✿✿

availability)
✿✿✿

and top-down control) as an important contributor to changes in phytoplankton variance, consistent with previous

studies (Bopp et al., 2001; Laufkötter et al., 2015)
✿✿✿✿✿✿

controls
✿✿✿✿✿

(e.g.,
✿✿✿✿✿✿

grazer
✿✿✿✿✿✿✿

biomass)
✿✿✿✿✿✿

predict
✿✿✿

the
✿✿✿✿✿✿✿

decline
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿✿

phytoplankton
✿✿✿✿✿✿✿

biomass

✿✿✿✿

CoV
✿✿✿✿

with
✿✿✿✿✿✿✿✿✿✿✿✿

anthropogenic
✿✿✿✿✿✿✿

warming.

While the CESM1-LE represents regional patterns
✿✿

the
✿✿✿✿✿✿

overall
✿✿✿✿✿✿

spatial
✿✿✿✿✿✿

pattern
✿

of observed interannual variability in phyto-

plankton carbon, the model ensemble tends to slightly overestimate
✿✿✿✿✿✿✿✿✿✿✿

overestimates
✿

the magnitude of observed internal variance340

in phytoplankton chlorophyll. As such, the magnitude of changes in phytoplankton internal variance derived from the model

ensemble should be interpreted as an overestimate when considering changes in phytoplankton internal variance driven by

anthropogenic warming.
✿✿✿✿✿✿✿✿✿

interannual
✿✿✿✿

and
✿✿✿✿✿✿✿

internal
✿✿✿✿✿✿✿✿✿

variability
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿✿

phytoplankton
✿✿✿

on
✿✿✿✿✿✿✿

regional
✿✿✿✿✿✿

scales.
✿

This caveat is particularly

important to consider when interpreting projections from offline fisheries models in the context of fisheries adaptation and

planning in a warming climate.345

Our statistical
✿✿✿✿✿✿✿

analysis approach has inherent limitations, especially in the context of a attributing drivers
✿✿✿✿✿✿

changes
✿

in an inher-

ently non-linear, coupled system (i.e., reconstructing linear relationships between co-varying variables
✿✿

one
✿✿✿

in
✿✿✿✿✿

which
✿✿✿✿✿✿✿✿

predictor

✿✿✿✿✿✿✿

variables
✿✿✿✿✿✿✿

co-vary). In a coupled system such as this, it is difficult to definitively identify cause and effect. In this context, the

statistical method can be used as an effective tool to provide a first-order approximation of drivers of phytoplankton variance

across the century
✿✿✿✿✿✿✿✿✿✿✿

contributions
✿✿

to
✿✿✿✿✿✿✿✿

changing
✿✿✿✿✿✿✿✿✿✿✿✿

phytoplankton
✿✿✿✿

CoV.350

While many studies attribute bottom-up controls to changing phytoplankton with anthropogenic warming (Steinacher et al.,

2010; Bopp et al., 2013; Lotze et al., 2019; Tittensor et al., 2021), top-down controls may also play an important role, partic-

ularly in our understanding of changing phytoplankton biomass and its variance
✿✿✿✿✿✿

internal
✿✿✿✿✿✿✿✿✿

variability. Our study demonstrates a

key role for top-down controls on changing phytoplankton biomass and its variance
✿✿✿✿✿✿✿✿✿

connection
✿✿✿✿✿✿✿

between
✿✿✿✿✿✿✿✿✿✿✿✿

phytoplankton
✿✿✿✿✿✿✿

internal

✿✿✿✿✿✿✿✿

variability
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

zooplankton
✿✿✿✿✿✿

carbon in the subpolar North Atlantic and subpolar North
✿✿✿✿✿✿

Pacific
✿✿✿

and
✿✿✿✿✿✿✿✿✿

Equatorial Pacific. Previous355

studies of phytoplankton change with climatic warming have demonstrated that grazing pressure is a driver of
✿✿✿✿✿✿✿✿✿

contributor

✿✿

to biomass decline in low to intermediate latitude regions across a suite of model simulations with different marine ecosys-

tem models (Laufkötter et al., 2015) and that top-down controls can affect regional changes in NPP and export production

(Bopp et al., 2001) and is a driver of
✿✿✿✿✿✿✿✿✿

contributor
✿

to
✿

future shifts in bloom timing (Yamaguchi et al., 2022
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Yamaguchi et al., 2022)

). While grazing pressure has been shown to increase in response to climate change, several ecosystem models have also360

identified zooplankton grazing as a dominant driver of
✿✿✿✿✿✿✿✿

contributor
✿✿✿

to phytoplankton assemblage succession during blooms

(Hashioka et al., 2012; Prowe et al., 2012a). Additionally, top-down controls have also been observed to affect the onset of the

spring bloom (Behrenfeld, 2010; Behrenfeld et al., 2013), to influence primary production in a trait-based ecosystem model

(Prowe et al., 2012b).

The relative simplicity of the ocean biogeochemical ecosystem model in CESM1 (e.g., representation of a single zooplankton365

functional type with multiple grazing rates) may limit a more detailed evaluation of changing grazing pressures with climate

change. While the recent parameterization of the biogeochemical ecosystem model in CESM2 (MARBL) includes similar

representation of three PFTs and a single adaptive ZFT (Long et al., 2021), more complex configurations of MARBL include

explicit representation of additional PFTs such as coccolithophores (Krumhardt et al., 2019) and ZFTs. Using more complex

ecosystem models, additional insights into drivers of
✿✿✿✿✿✿✿✿✿

Additional
✿✿✿✿✿✿

insights
✿✿✿✿

into
✿✿✿✿✿✿✿✿✿✿✿

contributions
✿✿

to
✿✿✿✿✿✿

internal
✿

variability may be gained370
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using our statistical approach
✿✿✿✿

more
✿✿✿✿✿✿✿

complex
✿✿✿✿✿✿✿

models. Additionally, the use of an ecosystem model of higher complexity may

provide more realistic projections of the marine ecosystem with climate change considering change in phytoplankton and

zooplankton species diversity with anthropogenic warming (Benedetti et al., 2021). However, our regional analyses suggest

that zooplankton grazing pressure should be considered as an important driver of changes in phytoplankton biomass and its

variance with anthropogenic warming.375

The magnitude and direction of regional changes in phytoplankton variance
✿✿✿✿✿✿

internal
✿✿✿✿✿✿✿✿✿

variability
✿

are an essential constraint for

near-term (subseasonal to decadal) predictions of the local marine ecosystem, particularly in important fisheries regions such

as the subpolar Atlantic (ASP) and the subpolar Pacific (SAP) ecological provinces (FAO, 2020). Accurate near-term predic-

tions require foreknowledge of both internal climate variability and external climate change signals. On subseasonal to decadal

timescales, the magnitude of internal climate variability is often stronger than forced climate change signals (Meehl et al.,380

2009, 2014). In this context, a decline in phytoplankton internal variance
✿✿✿✿✿✿✿✿

variability with anthropogenic climate change may

improve the accuracy of near-term predictions of phytoplankton biomass, producing more reliable forecasts of fisheries pro-

ductivity
✿✿✿

and
✿✿✿✿✿✿

marine
✿✿✿✿✿✿

carbon
✿✿✿✿✿✿

cycling. Future work can utilize these constraints on phytoplankton variance
✿✿✿✿✿✿

internal
✿✿✿✿✿✿✿✿✿

variability,

particularly on regional scales, to inform climate mitigation and adaptation efforts.
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Supplemental information635

In our discussion of zooplankton grazing as a driver of changing phytoplankton variance
✿✿✿✿✿✿✿✿✿

contributor
✿

to
✿✿✿✿✿✿✿✿

changing
✿✿✿✿✿✿✿✿✿✿✿✿

phytoplankton

✿✿✿✿✿✿

internal
✿✿✿✿✿✿✿✿✿

variability with anthropogenic warming, we consider the parameterization of zooplankton grazing in the CESM1-LE.

The biogeochemical ecosystem model simulates a single generic zooplankton functional type (ZFT) with different grazing rates

and half saturation constants prescribed for different PFTs (e.g. slower zooplankton grazing rates for larger phytoplankton).

Grazing rate for the single ZFT is computed using a Holling Type III (sigmoidal) relationship:640

G= gmax ·Tlim ·Z ·

P 2

P 2 +K2
(4)

where gmax is the maximum grazing rate, Tlim is the temperature limitation (Q10) function, Z is the zooplankton concen-

tration, P is the phytoplankton concentration, and K is the half-saturation constant for grazing. Zooplankton loss scales with

temperature and a linear mortality term which represents zooplankton losses from predation.

Figure S1.
✿✿✿✿✿✿

Holling
✿✿✿✿

Type
✿✿

III
✿✿✿✿✿✿✿✿✿

(sigmoidal)
✿✿✿✿✿✿✿✿

functional
✿✿✿✿✿✿✿✿✿✿✿✿

parameterization
✿✿

of
✿✿✿✿✿✿✿✿✿

zooplankton
✿✿✿✿✿✿

grazing
✿✿✿

rate
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

biogeochemical
✿✿✿✿✿✿✿✿

ecosystem
✿✿✿✿✿

model
✿✿

of

✿✿

the
✿✿✿✿✿✿✿✿✿

CESM1-LE
✿✿✿✿✿

across
✿✿

a
✿✿✿✿

range
✿✿

of
✿✿✿✿✿✿✿✿✿✿

temperatures.
✿✿✿✿✿✿✿

Changes
✿✿

in
✿✿✿✿✿✿

diatom
✿✿✿✿✿✿✿✿✿✿

concentration
✿✿✿✿✿✿

between
✿✿✿

the
✿✿✿✿✿✿✿✿

beginning
✿✿✿

and
✿✿✿

end
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

century
✿✿✿✿✿

(BOC
✿✿✿

and

✿✿✿✿

EOC,
✿✿✿✿✿✿✿✿✿✿

respectively)
✿✿

are
✿✿✿✿✿

shown
✿✿

in
✿✿✿

the
✿✿✿

dark
✿✿✿

and
✿✿✿✿

light
✿✿✿✿✿

orange
✿✿✿✿✿✿

circles,
✿✿✿✿✿✿✿✿✿

respectively,
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿

changes
✿✿

in
✿✿

the
✿✿✿✿

ASP
✿✿✿✿✿

region
✿✿✿✿✿

shown
✿✿✿✿✿

above
✿✿✿

and
✿✿✿✿✿✿

changes

✿

in
✿✿✿

the
✿✿✿✿✿

SAP
✿✿✿✿✿

region
✿✿✿✿✿

shown
✿✿✿✿✿

below.

Figure S1 illustrates changes in grazing rate as a function of diatom concentration using this parameterization. To approxi-645

mate the effects of climatic warming, we plot the relationship for across a series of increasing temperatures: (blue) 5◦C, (orange)

10◦C, and (green) 15◦C. The maximum grazing rate increases with warming temperatures. Changes in diatom concentration

in mmol m−3 between the beginning and end of the century are denoted by dark and light orange circles, respectively.

Figure S2. Holling Type III (sigmoidal) functional parameterization of zooplankton grazing rate
✿✿✿

The
✿✿

11
✿✿✿✿✿

ocean
✿✿✿✿✿✿✿✿

ecological
✿✿✿✿✿✿✿

provinces
✿✿✿✿✿✿

defined

in the biogeochemical ecosystem model of the CESM1-LE across a range of temperatures. Changes in diatom concentration between the

beginning
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Tagliabue et al. (2021) and end
✿✿✿✿✿✿✿✿✿✿✿✿✿

Vichi et al. (2011)
✿

.
✿✿✿✿✿✿✿

Provinces
✿✿✿✿

were
✿✿✿✿✿✿✿✿✿

aggregated
✿✿✿✿

using
✿✿✿✿✿✿✿✿✿

multivariate
✿✿✿✿✿✿✿

statistical
✿✿✿✿✿✿

analysis
✿

of the century

✿✿✿✿✿✿

physical
✿

(BOC and EOC
✿✿

i.e., respectively
✿✿✿✿✿✿

salinity,
✿✿✿✿✿✿✿✿✿

temperature,
✿✿✿✿✿

mixed
✿✿✿✿

layer
✿✿✿✿✿

depth) are shown in the dark and light orange circles
✿✿✿✿✿✿✿

biological

✿✿✿

(i.e., respectively,
✿✿✿✿✿✿✿✿✿

chlorophyll
✿✿✿✿✿✿✿✿✿✿✿

concentration)
✿✿✿✿✿

ocean
✿✿✿✿✿✿✿✿

parameters
✿✿

to
✿✿✿✿✿

group
✿✿✿✿✿

ocean
✿✿✿✿✿✿

regions with the changes in the ASP region shown above

✿✿✿✿✿

similar
✿✿✿✿✿✿

physical
✿

and changes in the SAP region shown below
✿✿✿✿✿✿✿✿✿✿

environmental
✿✿✿✿✿✿✿✿

conditions.
✿✿✿✿✿

Figure
✿✿✿✿✿✿

adapted
✿✿✿✿

from
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Tagliabue et al. (2021)
✿

.
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Table S1.
✿✿✿

The
✿✿✿✿✿✿✿

temporal
✿✿✿✿✿✿

standard
✿✿✿✿✿✿✿✿

deviation
✿

of
✿✿✿✿✿✿✿✿✿✿✿

phytoplankton
✿✿✿✿✿✿

biomass
✿✿✿✿✿✿✿✿✿

(σtemporal)
✿✿✿

for
✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿

member
✿✿

1
✿✿

of
✿✿

the
✿✿✿✿✿✿✿✿✿

CESM1-LE
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿

satellite

✿✿✿✿✿✿✿✿✿

observations
✿✿✿✿

from
✿✿✿✿

1998
✿✿

to
✿✿✿✿

2019
✿✿✿✿✿✿✿

averaged
✿✿✿✿✿

across
✿✿

the
✿✿✿

11
✿✿✿✿✿✿✿✿

ecological
✿✿✿✿✿✿✿

provinces
✿✿✿✿✿✿

defined
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Vichi et al. (2011)
✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Tagliabue et al. (2021).
✿✿✿✿✿

Units

✿✿

are
✿✿✿

mg
✿✿

C
✿✿✿✿

m−3.

✿✿✿✿✿

Biome
✿✿✿✿✿

Name
✿✿✿✿✿✿✿✿✿✿✿✿✿

σtemporal,model
✿ ✿✿✿✿✿✿✿✿✿✿✿

σtemporal,obs

✿✿✿

ARC
✿ ✿✿✿✿✿

Arctic
✿✿

2.7
✿✿

4.5

✿✿✿

ASP
✿ ✿✿✿✿✿✿

Atlantic
✿✿✿✿✿✿✿

subpolar
✿✿

9.7
✿✿

4.1

✿✿✿

NAS
✿ ✿✿✿✿

North
✿✿✿✿✿✿✿

Atlantic
✿✿✿✿✿✿✿✿

subtropical
✿✿✿✿

gyre
✿✿

2.8
✿✿

1.7

✿✿✿

EQA
✿ ✿✿✿✿✿✿✿

Equatorial
✿✿✿✿✿✿

Atlantic
✿ ✿✿

1.3
✿✿

1.4

✿✿✿

SAS
✿ ✿✿✿✿

South
✿✿✿✿✿✿✿

Atlantic
✿✿✿✿✿✿✿✿

subtropical
✿✿✿✿

gyre
✿✿

1.1
✿✿

1.2

✿✿✿

IND
✿ ✿✿✿✿

Indian
✿✿✿✿✿

Ocean
✿ ✿✿✿

0.81
✿ ✿✿

2.0

✿✿✿

SAP
✿ ✿✿✿✿✿✿

subarctic
✿✿✿✿✿

Pacific
✿ ✿✿

3.7
✿✿

4.0

✿✿✿

NPS
✿ ✿✿✿✿

North
✿✿✿✿✿

Pacific
✿✿✿✿✿✿✿✿✿

subtropical
✿✿✿

gyre
✿ ✿✿✿

0.85
✿ ✿✿

1.5

✿✿✿

EQP
✿ ✿✿✿✿✿✿✿✿

Equatorial
✿✿✿✿✿

Pacific
✿✿

5.8
✿✿

1.8

✿✿✿

SPS
✿ ✿✿✿✿

South
✿✿✿✿✿

Pacific
✿✿✿✿✿✿✿✿✿

subtropical
✿✿✿

gyre
✿ ✿✿✿

0.60
✿ ✿✿✿

0.93

✿✿✿

SOC
✿ ✿✿✿✿✿✿

Southern
✿✿✿✿✿

Ocean
✿ ✿✿

2.7
✿✿

2.7

Figure S3. Coefficient of variance
✿✿✿✿✿✿

variation
✿

(internal standard deviation divided by ensemble mean) in annual mean global surface ocean

chlorophyll concentration from 2006 to 2100 across a suite of CMIP5 model ensembles: (a) (pink) GFDL-ESM2M (b) (orange) MPI-ESM-

LR1 (c) (green) CanESM2 (d) (blue) CESM1-LE. The average coefficient of variance
✿✿✿✿✿✿

variation
✿

of the synthetic ensemble (SE) created using

the MODIS surface ocean chlorophyll record is shown in the purple dot on the vertical axis (Elsworth et al., 2020, 2021).
✿✿✿✿✿

Trend
✿✿✿✿✿✿✿✿✿

significance

✿

is
✿✿✿✿✿✿✿✿✿

determined
✿✿

by
✿

a
✿✿✿✿

t-test
✿✿✿✿

with
✿

a
✿✿✿✿✿✿

p-value
✿✿✿

less
✿✿✿✿

than
✿✿✿✿

0.05.

To provide context for the CESM1-LE results, we examine changes in chlorophyll variance
✿✿✿✿✿✿

internal
✿✿✿✿✿✿✿✿✿

variability from a subset

of the Coupled Model Intercomparison Project 5 (CMIP5) models (Taylor et al., 2011): the GFDL-ESM2M from the Geo-650

physical Fluid Dynamics Laboratory (GFDL; (Dunne et al., 2012, 2013), the CanESM2 from the Canadian Centre for Climate

Modelling and Analysis (Christian et al., 2010; Arora et al., 2011), and the MPI-ESM-LR from the Max Planck Institute (MPI;

(Giorgetta et al., 2013; Ilyina et al., 2013), consisting of 30, 50, and 100 ensemble members, respectively. Similarly to the

CESM1-LE, historical forcing was applied through 2005, followed by RCP8.5 forcing through 2100.

We compare the variance
✿✿✿✿✿✿

internal
✿✿✿✿✿✿✿✿✿

variability
✿

in chlorophyll observed among the large ensembles to a synthetic ensemble655

generated from observational chlorophyll concentrations over the MODIS remote sensing record (Elsworth et al., 2020, 2021).

A synthetic ensemble is a novel technique that allows the observational record to be statistically emulated to create multiple

possible evolutions of the observed record, each with a unique sampling of internal climate variability (McKinnon et al., 2017;

McKinnon and Deser, 2018). We use the synthetic ensemble of chlorophyll concentration to compare the variability observed

in the real world to the variability simulated across a suite of ESM ensembles.660
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Table S2.
✿✿✿✿✿✿✿

Summary
✿✿✿✿✿✿✿

statistics
✿✿

for
✿✿✿

the
✿✿✿✿

t-test
✿✿✿✿✿✿✿✿

performed
✿✿✿

on
✿✿✿✿

total
✿✿✿✿✿✿✿✿✿✿✿

phytoplankton
✿✿✿✿✿✿

biomass
✿✿

to
✿✿✿✿✿✿✿✿

determine
✿✿✿✿

trend
✿✿✿✿✿✿✿✿✿✿

significance
✿✿✿✿✿

across
✿✿

the
✿✿✿✿✿✿✿

RCP8.5

✿✿✿✿✿

forcing
✿✿✿✿✿✿✿

scenario
✿✿✿✿

(2006
✿✿

to
✿✿✿✿✿

2100).
✿✿✿✿✿✿✿

Datasets
✿✿

are
✿✿✿✿✿✿✿

normally
✿✿✿✿✿✿✿✿✿

distributed.

✿✿✿✿✿✿

Variable
✿ ✿✿✿✿✿✿

Sample
✿✿✿

Size
✿ ✿✿✿✿

Mean
✿✿✿✿✿✿✿

Standard
✿✿✿✿

Error
✿✿✿✿

95%
✿✿

CI

✿✿✿✿

Total
✿✿✿✿✿✿✿✿✿✿✿

Phytoplankton
✿✿✿✿✿✿

Biomass
✿✿✿✿✿

Mean
✿✿✿✿✿

Trend
✿✿

94
✿✿✿✿✿✿

-0.0697
✿✿✿✿✿

0.00459
✿ ✿✿✿✿✿✿

-0.0743
✿✿

to
✿✿✿✿✿✿

-0.0651

✿✿✿✿

Total
✿✿✿✿✿✿✿✿✿✿✿

Phytoplankton
✿✿✿✿✿✿

Biomass
✿✿✿✿✿✿✿

Standard
✿✿✿✿✿✿✿✿

Deviation
✿✿✿✿

Trend
✿ ✿✿

94
✿✿✿✿✿✿

-0.0164
✿✿✿✿✿

0.00323
✿ ✿✿✿✿✿✿

-0.0196
✿✿

to
✿✿✿✿✿✿

-0.0132

Figure S4.
✿✿

(a)
✿✿✿✿

Total
✿✿✿✿✿✿✿✿✿✿✿

phytoplankton
✿✿✿✿✿✿

carbon
✿✿✿✿✿✿✿✿✿✿

concentration
✿✿✿✿✿✿✿

simulated
✿✿✿

by
✿✿

the
✿✿✿✿✿✿✿✿✿

CESM1-LE
✿✿

in
✿✿✿✿✿

mmol
✿✿

C
✿✿✿

m−2

✿✿✿✿✿✿✿

averaged
✿✿✿✿✿

across
✿✿✿

the
✿✿✿✿✿✿

RCP8.5
✿✿✿✿✿✿

forcing

✿✿✿✿✿✿

scenario
✿✿✿✿✿

(2006
✿✿

to
✿✿✿✿✿

2100).
✿✿✿

(b)
✿✿✿✿✿✿

Internal
✿✿✿✿✿✿✿

standard
✿✿✿✿✿✿✿

deviation
✿✿

in
✿✿✿✿

total
✿✿✿✿✿✿✿✿✿✿✿

phytoplankton
✿✿✿✿✿

carbon
✿✿✿✿✿✿✿✿✿✿✿

concentration
✿✿✿✿✿✿✿

averaged
✿✿✿✿

over
✿✿

the
✿✿✿✿✿

same
✿✿✿✿✿

period.
✿✿✿✿

The

✿✿✿✿✿

change
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿

coefficient
✿✿

of
✿✿✿✿✿✿✿

variation
✿✿

is
✿✿✿✿✿✿✿✿

calculated
✿✿✿✿✿

using
✿✿✿✿✿✿

averages
✿✿✿✿✿

across
✿✿✿

the
✿✿✿✿

first
✿✿✿✿✿

(2006
✿✿

to
✿✿✿✿

2016)
✿✿✿✿

and
✿✿✿

last
✿✿✿✿✿

(2090
✿✿

to
✿✿✿✿

2100)
✿✿✿✿✿✿✿

decades
✿✿

of
✿✿✿

the

✿✿✿✿✿✿

RCP8.5
✿✿✿✿✿

forcing
✿✿✿✿✿✿✿

scenario.

To provide context for Figure 3, we include the spatial distribution of total phytoplankton carbon concentration (Fig-

ure S3
✿✿

S4a) and internal standard deviation in phytoplankton carbon concentration (Figure S3
✿✿

S4b) simulated by the CESM1-LE

across the RCP8.5 forcing scenario (2006 to 2100). Total phytoplankton carbon concentration is relatively high in the subpolar

Atlantic and Pacific, the Southern Ocean, and the Eastern Equatorial Upwelling Zone and relatively low in the subtropical gyre

regions (Figure S3
✿✿

S4a). Regions of relatively high phytoplankton carbon concentrations correspond to regions of high variance665

✿✿✿✿✿✿

internal
✿✿✿✿✿✿✿✿✿

variability (Figure S3
✿✿

S4b).

(a) Total phytoplankton carbon concentration simulated by the CESM1-LE in mmol C m−2 averaged across the RCP8.5

forcing scenario (2006 to 2100). (b) Internal standard deviation in total phytoplankton carbon concentration averaged over the

same period.

Reconstructed changes in the contribution of each driver variable to phytoplankton biomass variance across the RCP8.5670

forcing scenario (2006 to 2100) using variable regression coefficients between the beginning and end of the century. Regions

were selected which aligned with the highest fisheries catch in the (a) Atlantic and (b) Pacific basins with the beginning of the

century shown in light blue and the end of the century shown in dark blue.

Reconstructed global changes in the contribution of each driver variable to changes in (a) mean phytoplankton biomass and

(b) phytoplankton biomass variance across the RCP8.5 forcing scenario (2006 to 2100). The beginning of the century is shown675

in light blue and the end of the century is shown in dark blue.

Reconstructed global changes in the contribution of each driver variable to changes in (a) mean phytoplankton biomass and

(b) phytoplankton biomass variance across the RCP8.5 forcing scenario (2006 to 2100) across the beginning of the century.

The contribution of cross terms to the MLR reconstruction is shown in the rightmost bar in each panel.

Reconstructed changes in the contribution of each driver variable to mean phytoplankton biomass across the RCP8.5 forcing680

scenario (2006 to 2100) with the beginning of the century shown in light blue and the end of the century shown in dark blue.

Marine ecological regions are defined in Tagliabue et al. (2021). Regions were selected which aligned with the highest fisheries

catch in the (a) Atlantic and (b) Pacific basins and the biogeochemically important (c) Southern Ocean and (d) Equatorial

24



Pacific regions. The dominant phytoplankton functional type is considered in each region. In regions with a mixed ecological

assemblage, total phytoplankton carbon is considered.685

Reconstructed changes in the contribution of sea surface temperature and diatom carbon to changes in diatom grazing

variance in the Atlantic supolar (ASP) region across the RCP8.5 forcing scenario (2006 to 2100). The contribution of the

change in diatom biomass variance dominates the change in diatom grazing variance.
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