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Abstract. We here report on a system developed to automatically measure the flow rate characteristics (i.e., the pump 

efficiency) of pumps on ozonesondes, under various pressure levels simulating upper-air conditions. The system consists of a 10 

flow measurement unit incorporating a polyethylene airbag, a pressure control unit that reproduces low-pressure environmental 

conditions, and a control unit that integrates and controls these elements to enable fully automatic measurement. The Japan 

Meteorological Agency (JMA) has operationally measured pump efficiency for Electrochemical Concentration Cell (ECC) 

ozonesondes using the system since 2009, resulting in a significant body of related data. Extensive measuring data collected 

for the same ozonesonde pump over a period of around 12 years indicate the long-term stability of the system’s performance. 15 

These long-term data also show that ozonesonde pump flow characteristics differed among production lots. Evaluation of the 

impacts of variance in these characteristics on observed ozone concentration data, as compared to reference ozone profiles, 

indicated that the influence on total ozone estimation was up to approx. 4%, the standard deviation per lot was approx. 1%, 

and the standard deviation among lots was approx. 0.6%. 

1 Introduction 20 

Atmospheric ozone protects the biosphere by absorbing harmful ultraviolet radiation. In this context, the World Meteorological 

Organization (WMO) plays a leading role in observing ozone profiles on a global scale to monitor ozone layer deterioration 

caused by chemical release from human activity (Smit et al., 2021). 

Ozonesonde observations are the only means of directly determining the actual vertical distribution of ozone from the 

troposphere to the lower stratosphere. The ozonesonde model used for such observations is a balloon-borne measurement 25 

sensor to be flown from the ground to a height of around 35 km, at which point the balloon bursts, ambient air is taken in and 

ozone concentration is  electrochemically measured. The downlink of the data, through the coupled radiosonde transmission, 

also provides pressure, temperature, humidity and position measurements. 

Since around 2008-2010 (depending on the station), the Japan Meteorological Agency (JMA) has used  Electrochemical 

Concentration Cell (ECC)-ozonesondes developed by Komhyr (1969, 1971). These units are used worldwide, and at more than 30 



2 

 

90% of WMO / Global Atmosphere Watch (GAW) ozone observing network stations (World Ozone and Ultraviolet Radiation 

Data Centre, Dataset Information: OzoneSonde). In 1968, JMA began observing vertical ozone distribution with a KI solution 

and carbon electrode-type (KC) ozonesondes developed at the Agency’s Meteorological Research Institute (Kobayashi et al., 

1966a; Kobayashi and Toyama, 1966b, 1966c; Hirota and Muramatsu, 1986). 

Ozone sounding measurement originates from an ozone sensor unit (piston pump, motor, reaction cells, tubes, etc.), and is 35 

extended with measuring data from a coupled radiosonde unit (pressure sensor, temperature sensor, humidity sensor, GPS 

antenna, etc.) as shown in Fig 1. The ozone sensor unit has a small piston pump to bubble ambient air into the reaction cell 

and measures the electric current generated by a chemical reaction from the potassium iodide solution in the cell and ozone in 

the sampled ambient air. Ozone concentration is calculated from this current. The ozone concentration is calculated from this 

electric current and the volumetric flow rate of the piston pump. 40 

 

Figure 1: ECC-type ozonesonde ozone sensor (left) and connected GPS sonde (right). 

Figure 2 illustrates pump operation. First, ambient air taken into the pump is compressed until its pressure is balanced with the 

back-pressure associated with the hydraulic head pressure of the reaction cell (1). The compressed air is then discharged to the 

cell by the force of the piston (2). When the piston is completely pushed in, there is a dead space inside the pump (3), and the 45 

compressed air remaining in it expands until it is balanced with the ambient air pressure (4). The piston draws in a fresh sample 

of ambient air (5). The cycle is repeated for each pump rotation. The steady pump speeds typically range from 2,400 – 2,600 

rotations per minute (RPM). Hydraulic head pressure, which is the main factor causing back-pressure, can be considered 
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essentially uniform regardless of ambient air pressure, while the latter varies with altitude. Under these conditions, the air 

taken in is more compressed in step (1) and that in the dead space is more expanded in step (4). In other words, as ambient air 50 

pressure decreases, the volume of air intake (=pump flow rate) into the reaction cell also falls. Thus, the pump is affected by 

ambient air pressure, which governs its efficiency. 

 

Figure 2: Piston pump operation during observation, and effect of dead space on pump efficiency.  

Based on laboratory pump flow measurements (Komhyr et al., 1986, 1995; Johnson et al., 2002), Smit and the panel for 55 

ASOPOS (2014) and Smit et al. (2021) provided useful tables listing pump flow correction factors and pump flow efficiencies 

as a function of air pressure. These values are averaged from experiments at the time of ECC-ozonesonde development and 

values recommended by the manufacturer. Causes of pump flow reduction (dead volume in the pump piston, pump leakage, 

hydraulic head pressure of the reaction solution in the reaction cell, etc.) can vary considerably among individual ozonesondes. 

To eliminate such observational uncertainties, it is necessary to accurately determine the pump efficiency of individual 60 

ozonesondes in preflight preparation. However, such determination is not normal practice in ozonesonde launches, as it is 

considered technically difficult and time-consuming. As a result, most ozonesonde profiles are produced using average pump 

efficiency curves. 

Individual pump efficiencies have already been measured by other investigators. For example, the National Oceanic and 

Atmospheric Administration/Climate Monitoring and Diagnostics Laboratory (NOAA / CMDL) developed a bubble 65 

flowmeter involving the use of silicone oil (Johnson et al., 2002), and showed that the conventionally used standard pump 

efficiency correction tables (Komhyr et al., 1986, 1995) were underestimated as compared to the pump efficiency corrections 

of currently manufactured ECC-ozonesondes. The University of Wyoming also measured individual pump efficiencies using 
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an airbag evacuation type flowmeter equipped with an airbag (Johnson et al., 2002). However, as no pump efficiency 

measuring systems are currently commercially available, we developed such a system at the Aerological Observatory in Tateno, 70 

Japan. Examining of various measurement methods led to the adoption of an airbag method approach for ease of control. The 

system was automated in order to obtain pump efficiency measurements with uniform quality, and has been installed at Tateno, 

Sapporo, Naha and Syowa stations in sequence since 2009. The pump efficiency of individual ozonesondes is operationally 

measured at these stations, which have produced a significant body of data since installation. 

In this paper, Section 2 outlines the automated pump efficiency measuring system, Section 3 details the measurement method 75 

and procedures for the airbag type system, Section 4 describes pump efficiency calculation, and Section 5 covers statistical 

results for pump efficiency as obtained from operational observation for the current decade and the long-term stability of the 

pump measurement system. 

2 System overview 

The automated pump efficiency measuring system is roughly divided into three parts: a control unit, a pressure control unit 80 

and a flow measurement unit. Figure 3 outlines the system, and Figure 4 shows its actual appearance. The control unit is 

designed for control of the whole system via a PC with a module that communicates directly with peripheral equipment. The 

pressure control unit consists of a vacuum pump, a vacuum controller, and a digital barometer. The flow measurement unit 

consists of an air-bag type flowmeter in a vacuum desiccator that allows various pressure conditions down to 3 hPa. 

 85 

Figure 3: Automated pump efficiency measurement system for ECC ozonesondes.  
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Figure 4: Actual appearance of automated measurement system of the pump efficiency for the ECC ozonesonde. 

The control unit consists of a Windows PC combined with various communication modules (DIO, GPIB, and RS232C) to 

control the entire system and collect measurement data. As these modules and the control PC are connected via USB, the 90 

system can be controlled using a general-purpose PC. 

The Windows program used to adjust the pressure control unit and the flow measurement unit also enables conversion of 

various measurement data acquired from the flow measurement unit at regular intervals into physical values and collection of 

data together with other information such as digital barometer readings. 

The pressure control unit controls air pressure in a vacuum desiccator to reproduce low-pressure environments. As 95 

ozonesondes are subjected to decreasing atmospheric pressure and low-temperature conditions (-60 to -80°C) during balloon 

ascent, initial efforts were made to reproduce both conditions. However, measurements for a low-temperature environment 

showed that temperature does not exhibit a linear relationship with pump efficiency, and even shows a negligible effect, at 

least in the temperature range of actual atmospheric conditions. For this reason, pump efficiency was measured only with low-

pressure environmental conditions. Since the minimum pressure of the unit is less than 3 hPa, the entire pressure range of 100 

ozonesonde measurements can be reproduced. 

By manipulating the degree of exhaust valve opening in the vacuum controller with the control program, the speed of the 

vacuum pump (equating to the rate of decompression in the desiccator) can be adjusted. The pressurization rate can also be 

controlled by opening and closing the solenoid valve for atmospheric pressure release. With these adjustment functions, air 

pressure in the desiccator can be maintained to within approx. ± 0.1 hPa of the target by setting the decompression rate to zero 105 

during the flow measurement performed at each specified air pressure. At the start of depressurization and pressurization, a 

series of procedures is followed to prevent sudden air pressure changes in the desiccator, which might cause a backflow of oil 

from the vacuum pump to the desiccator. The control program allows safe execution these steps. 

The flow measurement unit consists of a vacuum desiccator, a flowmeter controller, and a control PC. Figure 5 shows the 

schematic diagram of the flow measurement unit. 110 
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Figure 5: Schematic diagram of the flow measurement unit. 

The ozonesonde pump and an airbag type flowmeter are inside the vacuum desiccator. The flowmeter controller, which is set 

outside the vacuum desiccator, supplies power to the flowmeter, allows monitoring and control of status every millisecond 

using a built-in microcomputer (H8/3052F), and enables issuance/receipt of control commands and transfer of measurement 115 

data to the control PC using RS232C. This allows real-time measurement control on a millisecond scale, thereby significantly 

reducing the control PC load. 

The airbag type flowmeter has a conversion board to adapt the output of various sensors to the input of a small computer board, 

and a switch board to control the power supply of the pump and solenoid valve. The power supply/signal lines are electrically 

isolated using photo couplers to reduce noise contamination. Figure 6 shows the airbag type flowmeter piping connection. The 120 

inflation and deflation valves are fluororesin three-way solenoid types, with NO (normally open) to COM (common) 

communication when not powered, and NC (normally closed) to COM communication when powered, and are switched 

alternately to pump air into and out of the airbag. 
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Figure 6: Airbag type flowmeter piping connection. The 140 ml. bag is made of polyethylene. The inflation and deflation of the bag 125 
is conducted by using two magnet valves. The pressure between the inside and outside of the bag is measured with a differential 

pressure gauge. Temperatures in the bag and pump are measured by thermometers. The revolving speed of the pump is measured 

by an optical instrument. 

The airbag is equipped with a port for differential pressure measurement separately from the intake and exhaust ports to ensure 

stable differential pressure measurement. A model 265 Setra Systems pressure transducer is used as a micro differential 130 

pressure gauge with a measurement range of ±1 hPa and an accuracy of ±1 %FS. 

The airbag material must be able to deform with very weak forces, be airtight and have little stretch and shrinkage, and should 

be easy to work with and manipulate. Among the available materials, polyethylene film with a thickness of 0.01 mm 

demonstrated optimal behavior. Since wrinkles caused by uneven deformation as the airbag repeatedly expands and contracts 

can cause erroneous measurements, a smaller fluoroplastic film is placed inside the bag. After repeated prototyping, an airbag 135 

with a shape similar to that of an intravenous drip bag was adopted. 

The main control and measurement features of the flow measurement unit are as follows: 

⚫ Pump ON / OFF control 

⚫ Control of flow path switching via valve inflation/deflation 

⚫ Measurement of differential pressure inside/outside the airbag (0.01hPa) 140 

⚫ Measurement of pump, desiccator and airbag temperature (internal thermistor) (0.1°C) 

⚫ Measurement of pump motor speed with a handmade digital tachometer attached to the ozone sensor (0.1 rpm). The 

tachometer shines light on the rotating part of the pump and detects reflection to determine the number of revolutions. 

The rotating part is partially covered with a non-reflective black sticker to indicate a full revolution. 

⚫ Time interval measurement triggered by the specified differential pressure (1msec) 145 
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3 Method for measuring pump efficiency using the airbag method 

3.1 Concept 

The concept of estimating the pump flow rate (pumping power) using an airbag involves timing inflation from the least to the 

most  inflated state and vice versa. Assuming an airbag internal volume of 𝑉𝑎𝑖𝑟𝑏𝑎𝑔 when the most inflated/deflated states are 

assumed to be constant regardless of ambient pressure, as long as internal/external pressure are equal, the pump flow rate 𝑆(𝑝) 150 

at a given pressure 𝑝 can be estimated with the average inflation and deflation time 𝑡(𝑝) as 

𝑆(𝑝) = 𝑉𝑎𝑖𝑟𝑏𝑎𝑔 𝑡(𝑝)⁄ .            (1) 

Pump efficiency 𝑘(𝑝) at the given pressure 𝑝, defined as the ratio of the pump flow rate to that estimated at ground-level 

pressure 𝑝0, can be calculated as 

𝑘(𝑝) = 𝑆(𝑝) 𝑆(𝑝0)⁄ = (𝑉𝑎𝑖𝑟𝑏𝑎𝑔 𝑡(𝑝)⁄ ) (𝑉𝑎𝑖𝑟𝑏𝑎𝑔 𝑡(𝑝0))⁄⁄ = 𝑡(𝑝0) 𝑡(𝑝)⁄ .      (2) 155 

As this equation shows, the exact volume of the airbag does not need to be known. 

Meanwhile, it is necessary to assess whether the airbag is fully inflated or deflated, which is done by evaluating its 

internal/external differential pressure. The threshold was set to +/- 0.8 hPa (+: inflation; -: deflation) as discussed later. The 

flow was switched using two valves shown in Fig. 6 when the differential pressure reached the threshold. Figure 7 shows 

temporal variations in differential pressure from the time of maximum deflation. A series of measurements was made when 160 

the flow was switched at ground-level pressure. Plotting of differential pressure during deflation from around the time of 

maximum inflation (red line) shows that the inflation and deflation times are equal, since they match at the time of maximum 

deflation. In addition, since the pump flow rate at ground level was stable, the elapsed time can be considered associated with 

the internal volume of the airbag. These results indicate that differential pressure values during inflation and deflation each 

represent a certain airbag volume. From the above, pump efficiency can be determined from equation (2) by measuring the 165 

time interval at which a certain differential pressure is observed. 
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Figure 7: Schematics of pressure differences between the inside and outside of the bag as a function of lapsed time. The blue line 

plots four-time average difference pressure values with bag inflation/deflation changed when the difference pressure reaches 0.8 

hPa. The red line shows a symmetric reference of deflation to maximum inflation at an elapsed time of approx.. 36 seconds. On/off 170 
lines for inflation and deflation are plotted at the top. 

The pump correction factor (the reciprocal of the pump efficiency) is obtained only from the time required for airbag inflation 

and deflation, and in the case of differential pressure ∆𝑝 is expressed from equation (2) as follows, 

 𝑝𝑐𝑓0(𝑝, ∆𝑝) =
1

𝑘(𝑝)
=

𝑡(𝑝,∆𝑝)

𝑡(𝑝0,∆𝑝)
,           (3) 

where 𝑝𝑐𝑓0(𝑝, ∆𝑝) is the pump correction factor for differential pressure ∆𝑝 at air pressure 𝑝 and 𝑡(𝑝, ∆𝑝) is the time taken to 175 

reach ∆𝑝 at 𝑝 (𝑝0 is ground-level pressure). In practice, however, the effects of differences in differential pressure thresholds 

and temperature changes due to heat generated by solenoid valves and pump motors can cause measurement errors, giving rise 

to a need for consideration of a correction method. The details are described in section 4. 

3.2 Measurement sequence and measured value 

In the series of measurements, the automated pump efficiency measuring system recorded values at  ground-level pressure (six 180 

times) and at 500, 200, 100, 50, 30, 20, 10, 7, 5, 4, and 3 hPa (four times each). In each case, as the first record was at the 

"break-in" of the airbag, values from the second time onward were taken as the actual measurements. The final pump correction 

factor was the average of values observed at the time of inflation and deflation. For each measurement, the system also acquired 

additional data on the time taken for bag’s internal/external differential pressure to reach ±0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 
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hPa (+:inflation; -: deflation), pump temperature, and bag internal temperature. After the cycle of measurements at the different 185 

pressure levels, six measurements at ground pressure were made to check the reproducibility of pump operation. The 

measurement pressure, the number of measurements, the differential pressure threshold, and other settings for the sequence 

can be changed in the control program. 

3.3 Consideration of the back-pressure (load) effect 

The ECC-ozonesonde has a Teflon rod protruding from the bottom of the reaction cathode cell allowing the tube from the 190 

pump to be guided appropriately into the reaction solution, by sliding it over the rod, which narrows air flow and produces 

pressure resistance. Additionally, in actual ozonesonde observation, reaction cells are filled with a solution. As, back-pressure 

necessarily affects pump efficiency with these conditions, the back-pressure effect of the Teflon rod and the reaction solution 

on pump efficiency was examined. In all measurement tests, the same ECC-type (EN-SCI 1Z) sensor was used. This section 

describes the outcomes. 195 

Figure 8 (a) shows the results of comparison between cases in which the pump is directly connected to the flowmeter from its 

exhaust port and in which air flows through an empty reaction cell. The experiment showed that pump efficiency decreased 

(up to approx. -6% at 3 hPa) with connection through the cell and that the cell itself generated back-pressure, possibly due to 

the presence of the Teflon rod. 

The relationship between the volume of the reaction solution and back-pressure was also examined. However, if pump 200 

efficiency is measured with an in-cell solution, the airbag-type flowmeter will fail due to backflow caused by boiling of the 

solution during flow observation, especially under low-pressure conditions. Accordingly, silicon oil with almost the same 

specific density as the reaction solution was used instead. Figure 8 (b) shows the results of comparison between an empty 

reaction cell and one with 3 ml of an ECC-type standard reaction solution indicate that the load caused by the solution also 

reduced pump efficiency (up to approx. -4% at 3 hPa). The solution’s head pressure is considered to have produced this effect. 205 
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Figure 8: (a) Ratio of pump efficiency with direct connection directly to the flowmeter from the pump exhaust port and through an 

empty reaction cell. (b) Ratio of pump efficiency between an empty reaction cell and one with the standard 3 ml of ECC silicon oil. 

Inf: inflation; Def: deflation; BP0: back-pressure 0hPa; 0ml: no reaction solution; 3ml: 3 ml of reaction solution. 

The above outcomes indicate that a filled reaction cathode cell generates back-pressure, thereby affecting pump efficiency, as 210 

in real atmospheric conditions. The results in Fig.9show the correlation of back-pressure and solution volume in the cell at 

ground-level pressure. Back-pressure is approx. 3 hPa for the standard ECC-type reaction solution volume of 3 ml. To 

reproduce this load, the length and diameter of the piping were adjusted, and a load of 3 hPa was applied to the exhaust side 

with no solution in the cell. All further pump correction factors reported in chapters 4 and 5 are always measured and 

determined with a 3 ml reaction solution in the cathode cell. 215 
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Figure 9: Exhaust side load with a reaction cell. 3 ml of the standard reaction solution is equivalent to a load of approx. 3 hPa. 

4 Pump correction factor calculation 

As discussed above, a number of factors can cause observation errors in pump efficiency measurements. This section outlines 

correction for such errors. 220 

4.1 Correction for effects of in-pump heat generation 

The study’s series of pump efficiency measurements began with ground-level pressure and continued with lower pressure 

values. As the pump motor gradually heated up due to friction, the exhaled air was warmer in the later stages. Volume changes 

caused by the heating of inflowing air caused errors requiring correction in the results. As the heat capacity of air discharged 

from the pump is relatively small, it was assumed that air was warmed to the same temperature as the pump while passing 225 

through it, and the initial pump correction factor 𝑝𝑐𝑓0(𝑝, ∆𝑝) was adjusted as, 

𝑝𝑐𝑓1(𝑝, ∆𝑝) = 𝑝𝑐𝑓0(𝑝, ∆𝑝)
𝑇𝑝𝑢𝑚𝑝(𝑝0,∆𝑝=0.8)

𝑇𝑝𝑢𝑚𝑝(𝑝,∆𝑝=0.8)
,          (4) 

where 𝑇𝑝𝑢𝑚𝑝(𝑝, ∆𝑝) is the pump temperature (K) at differential pressure ∆𝑝 with air pressure 𝑝 (𝑝0 is ground-level pressure). 

These are temperature values at a differential pressure of 0.8 hPa (the most inflated state). Table 1 shows the average pump 

temperature during efficiency measurements performed by JMA from 2009 to 2022. Measurements started after 30 minutes 230 

of warm-up measurements, and the temperature typically increased by 5 -6 °C as the measurement progressed. 
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Table 1: Pump temperature measurement results for Sapporo, Tateno, and Naha from 2009 to 2022. 

 235 

4.2 Correction for differential pressure effects 

The measurement time is defined as that required for the pump to exhaust all air and inflate the airbag from zero volume to 

𝑉𝑎𝑖𝑟𝑏𝑎𝑔 or to deflate it similarly under atmospheric pressure p. However, the airbag is actually further inflated or deflated in 

relation to the differential pressure ± ∆𝑝  in addition to the ambient air pressure 𝑝 . Differential pressure, thus enables 

determination of bag content and internal volume. There is a need to consider related effects on the measurement time by 240 

converting the air pressure change inside the airbag into a volume change. Using the Boyle-Charles law (assuming no change 

in temperature), the internal volume of the airbag, 𝑉𝑎𝑖𝑟𝑏𝑎𝑔, changes with the ratio of the airbag differential pressure ∆𝑝, to the 

ambient air pressure 𝑝. Accordingly, the measurement time 𝑡𝑚 for the net measurement time 𝑡(𝑝), at the air pressure 𝑝 is 

expressed as 

𝑡𝑚 = 𝑡(𝑝) ∙ (1 + ∆𝑝 𝑝⁄ ).            (5) 245 

Here, it can be seen that lower ambient pressure 𝑝 values produce a larger effect on the measurement time. To check the effects 

of this operation (referred to here as pressure correction) using 𝑡𝑚 as the measurement time, the differential pressure threshold 

was varied from ±0.1 to ±0.8 hPa in turn, pump efficiency with this correction was determined for each pressure, and 

comparison to values without correction was performed. Figure 10 shows the results of comparison at an ambient pressure of 

3 hPa. It can be seen that pressure correction is generally effective, but the correlation between the pump correction factor and 250 

the differential pressure threshold remains high. The effects of differential pressure can therefore be seen as another pump 

loading factor. Thus, if differential pressure acts as an exhaust (intake) side load when the airbag is inflated (deflated), the 

Pressure (hPa)
Pump Temperature (℃)

[JMA 2009 - 2022]

3 37.0 ± 2.2

4 36.7 ± 2.2

5 36.4 ± 2.2

7 36.1 ± 2.1

10 35.7 ± 2.1

20 35.4 ± 2.1

30 35.1 ± 2.1

50 34.6 ± 2.1

100 33.9 ± 2.1

200 33.1 ± 2.0

1000 31.1 ± 2.0
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results can be seen as consistent with those of the previous pressure correction. However, deriving correction for this effect is 

not straightforward, as loads change during measurement and each pump responds differently. Measurements at even lower 

differential pressure thresholds should be considered to avoid such effects, but there is a limit to the thresholds that can be set; 255 

very low differential pressures are outside the detection limit of the micro differential pressure gauge and time-interval 

measurement is prone to errors. However, since the pump correction factor without differential pressure correction shows a 

very high correlation with the differential pressure threshold, the y-intercept of the regression line can be comprehensively 

used as an estimate of the pump correction factor for a zero threshold. Accordingly, the pump correction factor corrected for 

the effects of differential pressure in actual measurement can be estimated from the regression line obtained from the time 260 

taken at each differential pressure threshold. The correction factor 𝑝𝑐𝑓2(𝑝) at zero differential pressure with this approach is 

𝑝𝑐𝑓2(𝑝) = 𝑝𝑐𝑓1(𝑝, Δ𝑝 = 0).          (6) 

 

Figure 10: Pump correction factors calculated for various differential pressure thresholds. Values (representing the inverse of pump 

efficiency)  are plotted with and without correction pressure correction. The values in (a) and (b) are based on the measurement 265 
times during expansion and contraction, respectively, at 3 hPa ambient air pressure, as determined with the pump's inlet and exhaust 

ports directly connected to a flowmeter. 

4.3 Correction for temperature airbag capacity variations 

As the polyethylene of The airbag used for differential pressure measurement expands and contracts with the temperature, 

changes in bag volume during measurement must be considered. Internal temperature gradually rises because the piping 270 

leading to the bag is heated by the solenoid valve and the circuit board inside the flowmeter housing, and the air pumped in is 

heated by pump friction. The temperature eventually rises by around 5 to 10°C in a measurement sequence. Since related 

variations in airbag volume also cause measurement errors, pump efficiency is corrected using temperature data from 

thermistors near the bag. 
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After pump efficiency measurement with airbag internal temperature variations in a thermostatic bath, it was found that 275 

approximate halving of the temperature change rate affected the pump correction factor. Charles' law also held when the pump 

temperature was changed using the same experimental apparatus. This is attributed to the effects of changes in airbag 

elongation and elasticity due to the thermal properties of the polyethylene film offsetting the effects of volume change relating 

to Charles' law by around half. The experimental results indicated that the pump correction factor after correction for 

temperature-dependent changes in airbag capacity can be expressed as 280 

𝑝𝑐𝑓3(𝑝) = 𝑝𝑐𝑓2(𝑝) (1 − 0.5
𝑇𝑎𝑖𝑟𝑏𝑎𝑔(𝑝0,∆𝑝=0.8)−𝑇𝑎𝑖𝑟𝑏𝑎𝑔(𝑝,∆𝑝=0.8)

𝑇𝑎𝑖𝑟𝑏𝑎𝑔(𝑝0,∆𝑝=0.8)
),       (7) 

where 𝑇𝑎𝑖𝑟𝑏𝑎𝑔(𝑝, ∆𝑝) is the airbag temperature (K) at differential pressure ∆𝑝 with air pressure 𝑝 (𝑝0 is ground-level pressure). 

4.4 Application of pump efficiency measurement results to ozone partial pressure calculation 

Pump efficiency 𝑘(𝑝) at atmospheric pressure 𝑝 is given by Kobayashi and Toyama, 1966b as 

𝑘(𝑝) = 1 − 𝐾 ∙ (
1

𝑝
−

1

𝑝0
),            (8) 285 

where 𝑝0 is ground-level pressure (hPa) and 𝐾 is a constant. According to Steinbrecht et al. (1998), when adiabatic change 

occurs in the pump, a power term (specific heat ratio 𝛾 ≈ 1.4) should be added to the second term on the right: 

𝑘(𝑝) = 1 − 𝐾 ∙ (
1

𝑝
−

1

𝑝0
)

1

𝛾
.            (9) 

Assuming that this is actually a polytropic change relating to the effects of heat exchange with the pump in addition to adiabatic 

change, the following approximate equation can be given: 290 

𝑝𝑐𝑓(𝑝) =
1

𝑘(𝑝)
=

1

1−𝐾∙(
1

𝑝
−

1

𝑝0
)

1
𝑛

=
1

1−𝑐0(
1

𝑝
−

1

𝑝0
)

𝑐1,         (10) 

where 𝑛 is a polytropic index dependent on the ozone sensor, 𝑐0 is a constant dependent on the ozone sensor and 𝑐1 is 
1

𝑛
. 

The application of pump efficiency measurement results to ozonesonde observations is based on 𝑝𝑐𝑓3(𝑝) with the corrections 

described in Section 4.3. 𝑝𝑐𝑓3(𝑝) is calculated from the average of three measurements for each of inflation and deflation at 

specified atmospheric pressure of 200 hPa or less. Using this equation, 𝑐0 and 𝑐1 in equation (10) are obtained by fitting. The 295 

pump correction factor 𝑝𝑐𝑓(𝑝) at pressure 𝑝 is then calculated from the same equation using the obtained constants 𝑐0 and 𝑐1. 

Ground pressure data are not used because 𝑝𝑐𝑓3(𝑝0) should be 1. 
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5 Data from JMA's automated pump efficiency measuring system 

Since 2009, JMA has comprehensively evaluated EN-SCI ECC ozone sensor pump efficiency using the automated system, 

and pump correction factors calculated from the results are used to correct ozonesonde observations from Sapporo, Tateno and 300 

Naha. This section presents the results of these measurements made over this last 13 years. 

5.1 Comparison of pump correction factors between JMA and other organizations 

Figure 11 shows the results of pump correction factor measurements at Sapporo, Tateno, and Naha from 2009 to 2022 using 

sensors with similar serial numbers at each station. The values are generally consistent, with slightly larger differences at 3 

hPa, where measurement accuracy is lower. 305 

 

Figure 11: Pump efficiency measurement for Sapporo and Naha from 2009 to 2018, and Tateno from 2009 to 2022. The error bars 

in the left figure represent one-sigma standard deviation. All sites show close correspondence. 

Figure 12 compares average pump correction factors for the same pump type (EN-SCI ECC) obtained by other organizations 

with typical JMA data. The pump motor specifications were different from those of post-24000 serial number ozone sensors 310 

delivered to JMA in 2013. The results indicate air pressure dependence in terms of motor speed, and suggest that speed was 

unstable among production lots. This is considered to have affected pump efficiency. Accordingly, as the characteristics of 

current ozone sensors differ from those of sensors before serial number 24000, the measurement results of later sensors are 

used to calculate representative JMA data. For evaluation of past observation data, pre-24000 values are shown in Table 2. 

The standard deviation is larger for sensors after this serial number. Stauffer et al. (2020a) also reported the discovery of an 315 

apparent instrument artifact that caused a fall in total ozone measurements from around a third of global stations starting in 
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2014 - 2016, limiting suitability for ozone trend calculation. Stauffer et al. (2020b) also noted a fall in total column ozone in 

various En-SCI ozonesonde sites around serial number 25250. 

Measurements were conducted by the University of Wyoming  with no exhaust-side loading using a reaction solution, and 

NOAA/CMDL made measurements with exhaust-side loading using non-evaporative oil instead of a reaction solution 320 

(Johnson et al., 2002). We replicated this work with longer tubing to simulate back-pressure from 3ml of the reaction solution. 

Comparison indicated that pump correction factors for the period during expansion were close to those obtained by other 

organizations, and that the tendency in relation to ambient air pressure was also similar. These outcomes suggest the 

effectiveness of the proposed measurement system. 

These measured pump flow efficiencies significantly differ from those reported by Komhyr et al. (1995) because, as noted by 325 

Smit et al. (2021), in the values of Komhyr et al. (1995) represent overall correction including both pump flow efficiency and 

estimated stoichiometry increase over the period of flight. 

 

Figure 12: Comparison of pump correction factors from JMA’s airbag method with those from other experiments. Factors as a 

function of pressure are represented for the standard Komhyr et al. (1995) by the black line with squares, and JMA factors are 330 
represented by the pink line with circles. The error bars represent one-sigma standard deviation. NOAA/CMDL average oil bubble 

flowmeter values are shown by the green line with triangles, and those from the Wyoming bag method are shown by the blue line 

with rhombuses (Johnson et al., 2002). 
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Table 2: Average JMA pump correction factors for pre andpost-24000 sensor serial numbers and for the entire time period (2009 -

2022). 335 

 

5.2 Long-term system stability 

The long-term stability of the measurement system was examined using sample data collected from four pumps at the 

Aerological Observatory in Tateno from 2010 to 2021. In addition to the correction outlined in Section 4, for this experiment 

only, the pump correction factors in the experiment were adjusted in line with pump motor speed to eliminate factor biases 340 

between different uses of the same pump using 

𝑝𝑐𝑓𝑐𝑜𝑟𝑟(𝑝) = 𝑝𝑐𝑓(𝑝)
𝑀𝑆(𝑝0)

𝑀𝑆(𝑝)
,           (11) 

where 𝑝𝑐𝑓𝑐𝑜𝑟𝑟(𝑝) is the pump correction factor after motor speed correction at atmospheric pressure 𝑝, 𝑝𝑐𝑓(𝑝) is the same 

before correction, and 𝑀𝑆(𝑝) is the motor speed at 𝑝 (𝑝0 is ground-level pressure). Figure 13 show  flow correction factors 

for the four pumps exhibit no increasing or decreasing trends, although individual differences are seen. This demonstrates the 345 

long-term stability of the measurement system and freedom from any aging degradation effect. 
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Figure 13: Pump correction factors at 10 hPa determined with the same four sensors from 2010 to 2021. 

5.3 Decadal monitoring of individual pump efficiency 

Figure 14 shows a time-series representation of individual pump correction factors at 50, 20 and 10 hPa as recorded at Sapporo, 350 

Tateno, and Naha from 2009 to 2022 (Sapporo and Naha terminated ozonesonde observations in February 2018). At all stations, 

the factor exhibits temporal changeswith a slightly increasing trend along different slopes. The slope is larger with lower 

ambient pressure values to around 2018 - 2019 (for 50 hPa: Sapporo: +1%/9 years; Tateno: +1%/decade; Naha: +1% or less 

/9 years. For 20 hPa: Sapporo: +2%/9 years; Tateno: +2%/decade; Naha: +2%/9 years. For 10 hPa: Sapporo: +4%/9 years; 

Tateno: +4%/decade; Naha: +2%/decade). The serial numbers of the ozone sensors used at each station were fairly balanced. 355 

As the pump efficiency measurement system turned out to be very stable (Section 5.2), these pump correction factor trends 

should be ascribed to ozonesonde pumps themselves. 
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Figure 14: Pump correction factors for 2009 - 2022 (top to bottom: 10, 20 and 50 hPa). Over this 11 year period, the factor has 

changed by + 1% at 50hPa, + 2% at 20hPa and + 4% at 10hPa. 360 

To highlight the extent to which this trend is caused by the pump, pump correction factors for the different stations are presented 

as a function of the ozonesonde serial number in Fig. 15a. In Fig. 15b, the factors at 10 hPa are averaged for bins of 1000 serial 

numbers. It can be seen that the variability of the correction factors within each production lot is rather modest (1.8%), and 

that differences between different production lots are mostly statistically insignificant. 
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 365 

Figure 15: Top: Pump correction factors at 10 hPa from 2009 to 2022 sorted by ozone sensor serial number. Bottom: The same 

averaged for each bin of 1000 of ozonesonde serial numbers for 2009 - 2022. Error bars represent standard deviation. 

Figure 16 compares measured values of the pump flow rate, motor speed, and pump stroke obtained by dividing the flow rate 

by the motor speed at ground-level pressure and 10 hPa. Although there is no significant change in the measured flow rate, the 

pump motor speed increased by about 5 to 10% and the pump stroke decreased by the same after serial number 24000. This 370 

indicates that a shortened pump stroke may increase the relative volumetric ratio of the pump dead space to the piston volume 

due to different motor specifications after serial number 24000 (Section 5.1), which may be a deteriorating factor in pump 

efficiency. Focusing on deviations between ground-level pressure and 10 hPa measurements, there is little change in motor 

speed differences but a visible trend in the pump flow rate and pump stroke differences.  From this, it is considered that the 

difference in pump flow rate changes between the ground and lower pressure values; that is, the difference in measurement 375 

time changes, resulting in an increased pump correction factor. In all cases, motor characteristics fluctuate discontinuously 

after serial number 24000, and the flow rate and other characteristics of the ozone sensor change with each group of sensor 

serial numbers. Accordingly, the increasing trend of the pump correction factor is largely attributed to the sensor side. 
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Figure 16: (a) Temporal variations in pump flow rate, (b) pump motor speed and (c) pump stroke at ground pressure and 10 hPa 380 
averaged for each serial number of ozone sensors from 2009 to 2022 (left: measurement averages; right: relative difference to values 

at ground pressure). 

5.4 Influence on the estimation of ozone concentration 

This subsection discusses the effects of variability caused by changes in the characteristics of the pump flow rate outlined so 

far on total ozone. Fig. 17 shows impacts on total ozone integrated values if the table values of pump correction factors 385 

measured by JMA for ozone sensor serial numbers before 24000 were used rather than measured individual pump efficiency 

correction values. The effects were calculated using JMA average ozone partial pressure values for the period from 1994 to 

2008as a typical mid-latitude profile. The ozone partial pressure obtained using table values for pump efficiency correction 

were obtained by dividing the average partial pressure by the measured pump correction factor and then multiplying the result 

by the table value. Each of these ozone partial values at each pressure level (ground-level and 500, 200, 100, 50, 30, 20, 10, 7 390 

and 5 hPa) was integrated to determine the total ozone integrated value, and the relative difference was determined for each 

pump efficiency measurement during the period from 2009 - 2022. The variation in total ozone was up to around 4%. The 

standard deviation in the relative differences of total ozone integrated values by lot was around 1%, and that between 

production lots was around 0.6%. As per Section 5.3, the pump correction factors tended to increase, but a decreasing tendency 

was seen with conversion to total ozone integrated values. The step observed after 2014 is consistent with the drop-off of total 395 

ozone discussed by Stauffer et al. (2020a, 2020b). 
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Figure 17: Top: Estimated impacts on total ozone integrated values with use of the average pump efficiency correction table. Bottom: 

Impacts on total ozone integrated values for each serial number lot, with error bars indicating standard deviation. 

6 Conclusion 400 

The unique JMA system reported here enables fully automatic pump efficiency measurement for individual ECC ozonesondes. 

Time-series representations of individual pump correction factors for EN-SCI ozonesondes calculated using this approach 

indicate temporal changes with an increasing tendency and variations depending on the production lot. These effects can be 

attributed to differences in the characteristics of mechanical pumps and pump motors for each production lot. In this situation, 

if a table of correction values for the pump flow rate correction factor is used without individual pump efficiency measurement, 405 

the total ozone value will be affected by up to around ±4%. 

Systematic biases in ozonesonde observations due to pump performance variations can lead to erroneous stratospheric vertical 

ozone trend values. To avoid the influence of lot-dependent pump correction factors in relation to EN-SCI's ozonesondes on 

stratospheric ozone trends and to enable accurate determination of actual atmospheric changes, it is advisable to determine the 

pump efficiency of each lot to pinpoint pump correction factor trends and enable adaptation to the calculation of ozone 410 
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concentration. Although the costs of system production may hinder introduction at present, commercialization may enable the 

use of similar systems at lower cost in the near future. 
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