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Abstract. Hydrological time series (HTS) is the key basis of water conservancy project planning and construction. However, 

under the influence of climate change, human activities and other factors, the consistency of HTS has been destroyed and 

cannot meet the requirements in mathematical statistics. Series dividing and wavelet transform are effective methods to reuse 

and analyse HTS. However, they are limited by the changepoint detection and mother wavelet (MWT) selection, and are 

difficult to apply and promote in practice. To address these issues, we constructed a potential changepoint set based on 10 

cumulative anomaly method, Mann-Kendal test and wavelet changepoint detection. Then, the degree of change before and 

after the potential changepoint was calculated with the Kolmogorov-Smirnov test, and the changepoint detection criteria was 

proposed. Finally, the optimization framework were proposed according to the detection accuracy of MWT, and continuous 

wavelet transform was used to analyse HTS evolution. We used Pingshan Station and Yichang Station in the Yangtze River 

as study cases. The result shows: (1) Changepoint detection criteria can quickly locate potential changepoints, determine the 15 

change trajectory and complete the division of HTS. (2) MWT optimal framework can select the MWT that conforms to 

HTS characteristics and ensure the accuracy and uniqueness of the transformation. This study analyses the HTS evolution 

and provides a better basis for hydrological and hydraulic calculation, which will improve the design flood estimation and 

the operation scheme preparation. 

1 Introduction 20 

Under the multiple influences of human activities, atmospheric circulation and other factors, the original evolution of river 

runoff is featured with randomness, fuzziness, nonlinearity, non-stationarity and multi-time scale variation, which breaks the 

consistency in the "three properties" of hydrological time series (formed by the time arrangement of hydrological elements 

such as rainfall and runoff, HTS) (Chen et al., 2021; Fang and Shao, 2022). Independent and identically distributed (IID) is 

an assumption of mathematical statistics in hydrological and hydraulic calculation (Mat Jan et al., 2020). When the series 25 

cannot meet the IID, analysing its internal evolution and division will help to improve the accuracy and decision-making of 

the hydrological forecasting and operation scheme preparation by the mathematical model (Li et al., 2021). 

In stochastic hydrology, HTS consists of deterministic components and stochastic components. The analysis of its evolution 

involves period, trend and changepoint (Sanaa et al., 2022). Period and trend mainly focus on deterministic components, 
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while changepoint detection is used to explain the stochastic components caused by various random and uncertain factors 30 

(Dang et al., 2021). Changepoint detection determines the starting and ending points of period and trend division, thus is the 

key to analyse HTS evolution (Şen, 2021). However, affected by feature uncertainty, changepoint detection has become a 

complex problem because the extent, number and occurrence time of changepoints must be determined at the same time 

(Zhao et al., 2019). T-test, two-sample Kolmogorov-Smirnov (K-S) test and Shapiro-Wilk test are commonly used 

quantitative methods for series variation. In particular, the K-S test can calculate the degree of change by indicators such as 35 

asymptotic significance (two-tailed, p ), therefore it is widely used (Jia et al., 2022). 

Commonly used changepoint detection methods include graphical methods (cumulative anomaly method, etc.), parametric 

methods (sliding T-test, Lee-Heghinian test, etc.) and nonparametric methods (ordered clustering method, Mann-Kendall test, 

wavelet changepoint detection, etc.). Graphical methods have the advantages of simple calculation and intuitive results, but 

the detection accuracy are low. Parametric methods assume that the series to be analysed obeys a known distribution, which 40 

have certain limitations (Liu et al., 2022). Nonparametric methods have higher detection accuracy, but are easily affected by 

factors such as parameter settings and series marginal effects (Stasolla and Neyt, 2019). Malki et al. (2022) used machine 

learning to compare the gap between historical data and forecasts from real-time monitoring data to determine whether the 

consistency of IoT energy consumption data has changed. Shi et al. (2022) constructed a single changepoint test based on the 

covariance, cumulative sum and likelihood ratio of forecast residuals to detect the potential changepoint in time series. 45 

Corradin et al. (2022) constructed a Bayesian nonparametric multivariate changepoint detection method by combining prior 

distributions with multivariate kernels, and argued that the posterior probability of most changepoints should be lower than 

the posterior estimate. Xie et al. (2022) calculated the fitted local trend line based on the piecewise linear representation 

algorithm and the Akaike information criterion to realize changepoint detection and series division, and classified 

changepoints into three categories with the help of slope and intercept. Changepoint detection is of great significance to 50 

series division and is the basis for making full use of HTS to carry out more research. It can be seen that there is no unified 

standard to determine the changepoint of HTS. Therefore, this is a field worthy of further study. 

After the changepoint detection, the period and trend of HTS can be further explored. These methods include cumulative 

anomaly method, Mann-Kendall (M-K) test, continuous wavelet transform (CWT) and mode decomposition (empirical, 

extreme point symmetric, etc.) (Oliveira-Júnior et al., 2022; Qin et al., 2021). Among them, CWT has a relatively complete 55 

theoretical system, which can comprehensively analyse the evolution of HTS and reveal its localization characteristics in in 

time domain (time variation) and frequency domain (frequency and amplitude variation), so it has been widely used in 

hydrology (Zerouali et al., 2022). However, the analysis results of CWT highly depend on the selection of mother wavelet 

(MWT). Moradi et al. (2022) optimized MWT by comparing the similarity of cross-correlation function, signal-to-noise ratio, 

and mean standard error between the denoised series and the original. Benhassine et al. (2021) determined the optimal MWT 60 

by comparing the minimum mean square error between the original image and the denoised. Strömbergsson et al. (2019) 

proposed and verified the validity of using the Shannon entropy of the wavelet coefficients as the index for selecting MWT. 
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However, changepoint detection has not been explored by scholars to optimize the MWT that conforms to the series 

characteristics. 

To solve the above problems, we proposed the changepoint detection criteria based on cumulative anomaly method, M-K 65 

test, wavelet changepoint detection and K-S test, which can detect the consistency of HTS and complete a reasonable 

division. Furthermore, based on the detection accuracy, a MWT optimal framework that conforms to series characteristics 

was proposed, and the evolution analysis was summarized by CWT. This work pioneeringly proposed an efficient way to 

optimize the MWT based on variance and changepoint detention. Using the optimal MWT in CWT is helpful in catching the 

HTS evolution accurately and fully mining its information, which provides a feasible way to use inconsistent measured data 70 

for hydrological and hydraulic calculations. 

2 Methodology 

To solve the problems of incomplete changepoint detection and non-unique MWT optimization, we followed the process of 

potential changepoint set construction, changepoint determination, MWT optimization and evolution analysis, then proposed 

the changepoint detection criteria and the MWT optimization framework, as shown in Figure 1. 75 
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Figure 1: Study framework and main modules of MWT optimization 
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2.1 Wavelet Transform and Changepoint Detection 

Wavelet transform can be divided into Continuous Wavelet Transform (CWT) and Discrete Wavelet Transform (DWT). Its 

essence is to reveal the similarity between the HTS to be analysed and the MWT. Therefore, the selection of MWT is a key 80 

factor affecting the accuracy of wavelet transform. MWT ( ( )t ) is a wave of finite length and zero mean, with irregularity 

and asymmetry. The 16 commonly used MWT systems are shown in Table 1 (Moradi, 2022; Nielsen, 2001). 

Table 1: Properties and application range of commonly used MWT systems 

MWT System Symbol 
Properties and Application Range1 

Orthogonality Biorthogonality Symmetry CWT DWT 

Haar haar √ √ √ √ √ 

Daubechies db2, db3, db4, db5, db6, db7, db8, db9, db10 √ √ √* √ √ 

Biorthogonal 

bior1.1, bior1.3, bior1.5, bior2.2,  

bior2.4, bior2.6, bior2.8, bior3.1,  

bior3.3, bior3.5, bior3.7, bior3.9,  

bior4.4, bior5.5, bior6.8 

— √ — √ √ 

Coiflets coif1, coif2, coif3, coif4, coif5 √ √ √* √ √ 

Symlets 
sym2, sym3, sym4, sym5, sym6,  

sym7, sym8 
√ √ √* √ √ 

Morlet morl — — √ √ — 

Mexican Hat mexh — — √ √ — 

Meyer meyr √ √ √ √ √* 

Gaussian 
gaus1, gaus2, gaus3, gaus4,  

gaus5, gaus6, gaus7, gaus8 
— — √ √ — 

Dmeyer dmey — — √ — √ 

ReverseBior 

rbio1.1, rbio1.3, rbio1.5, rbio2.2,  

rbio2.4, rbio2.6, rbio2.8, rbio3.1,  

rbio3.3, rbio3.5, rbio3.7, rbio3.9,  

rbio4.4, rbio5.5, rbio6.8 

— √ √ √ √ 

Complex Gaussian 
cgau1, cgau2, cgau3, cgau4, cgau5,  

cgau6, cgau7, cgau8 
— — √ — — 

Complex Morlet 
cmor1-1.5, cmor1-1,  

cmor1-0.5, cmor1-0.1 
— — √ — — 

Frequency B-Spline 
fbsp1-1-1.5, fbsp1-1-1, fbsp1-1-0.5,  

fbsp2-1-1, fbsp2-1-0.5, fbsp2-1-0.1 
— — √ — — 

Fejer-Korovkin fk4, fk6, fk8, fk14, fk18, fk22 √ √ √* √ √ 

Shannon 
shan1-1.5, shan1-1, shan1-0.5,  

shan1-0.1, shan2-3 
— — √ — — 

Note 1: “√” means has this property. “√*” means approximately having this property. “—” means does not have this property. 

2.1.1 Continuous Wavelet Transform (CWT) 

CWT can be used to determine whether there is periodicity in HTS, and identify the main time scales and their local trends. 85 

Let ( )2L R  denote the measurable square-integrable functions on the real axis. If HTS ( )tX  ( )1,2,...,t T=  is a CWT in 

( )2L R , which can be expressed as: 

( ) ( ) ( )*

,,X a bW a b X t t dt
+

−
=   (1) 
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=  

 
a , b R , 0a    (2) 

Where, ( ),XW a b  is the coefficient of CWT. ( )*

,a b t  is the complex conjugate function of ( ),a b t . t  is the time. a  is 

the time scale factor, which reflects the period length of MWT. b  is the time position factor, which reflects the translation 

of MWT in time. 90 

The multi-time scale variation in wavelet transform refers to the multi-level structure and localized features of ( )X t  in the 

time domain, which is usually analysed with the help of the real part or modulus-square contour map of CWT coefficients. 

HTS evolution of a certain year on different time scales can be observed by vertically intercepting the contour map. At a 

certain period, the HTS evolution over time can be observed by horizontally intercepting the contour map. In addition, the 

positive wavelet coefficient corresponds to the wet season. The negative wavelet coefficient corresponds to the dry season. 95 

The wavelet coefficient is zero, which corresponds to the transition point of wet and dry. The larger the absolute value of the 

wavelet coefficient, the more obvious its change. 

2.1.2 Discrete Wavelet Transform (DWT) 

Since the measured HTS is usually discrete, by discretizing Eq.1, we can get: 

( ) ( ) ( )*

,,X j bW j b X t t dt
+

−
=   (3) 

( ) ( )2
0 0 0,

j

j

j b
t a a t kb 

−

−= −  (4) 

Where, ( ),XW j b  is the coefficient of DWT. 0a  and 0b  are both constants. j  ( )1,2,...,j J=  is the decomposition 100 

level. 

Both ( ),XW a b  and ( ),XW j b  are the values output by ( )X t  through the unit impulse response filter, which can reflect 

the evolution of ( )X t  in the time domain and frequency domain at the same time. In practical applications, it is often 

decomposed with the help of dyadic DWT, i.e. 0 2a =  and 0 1b = , Eq.4 can be expressed as: 

( ) ( )2

,
2 2

j

j

j b
t t k 

−

−= −  (5) 

According to the dyadic DWT, the theoretical maximum value J  of decomposition level j  is: 105 

( )( )2log
X t

J T =
 

 (6) 
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Where, [ ]  represents rounding operation. 
( )X t

T  represents the length of the ( )X t . 

2.1.3 Wavelet Changepoint Detection 

Variance is one of the important parameters to detect whether HTS has fundamentally changed. Wavelet changepoint 

detection is based on the Maximal Overlap Discrete Wavelet Transform (MODWT). By calculating the variance of wavelet 

coefficients to be analysed one by one (Strömbergsson et al., 2019), the number and location of changepoint at Confidence 110 

Level 95% can be determined through the MATLAB software toolbox. 

(1) MODWT multi-resolution analysis 

Decompose ( )X t  into T-dimensional column vectors 1W , 2W , …, JW  and JV . Where JW  is calculated from the 

MODWT wavelet coefficient of ( )X t  within 
j t  . JV  consists of 

1j t +   and higher dimensional MODWT scaling 

coefficients. ( )X t  can be expressed as: 115 

1

J

j j

j

X D S
=

= +  (7) 

Where, 
*

kF

F

j j
j

D W h=  ( )0,1,..., 1k T= −  is the 
thj  maximal-overlap detail. 

*
kF

F

j j
j

S V g=  is the 
thj  maximal-overlap 

smooth. jh  and g j  are the high-frequency filter and the low-frequency filter, respectively. F  is a T T  dimensional 

matrix that cyclically shifts jh  by one unit. 

(2) MODWT variance decomposition 

After a series of decompositions are performed on the variance of ( )X t  part by part, on the premise that the wavelet 120 

coefficient is stable, it can be expressed as: 

2 22

1

J

j j

j

X W V
=

= +  (8) 

Based on the above decomposition, the evolution of wavelet coefficient variance of ( )X t  with time in different time scales 

can be obtained, and the point where the variance changes can be recorded as the changepoint. It is worth noting that the 

MWT used for changepoint detection needs to be biorthogonal (see Table 1). 

2.2 Traditional Changepoint Detection Method 125 

Changepoint detection has always been a significant issue in hydrology. However, except for the deterministic runoff 

changes caused by human activities such as large-scale river regulation, reservoir construction or operation (seasonal and 
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above regulation capacity), there exist many uncertain factors, such as whether there is a change point in HTS, how many 

changepoints exist, and the specific occurrence time of each changepoint. Therefore, it is necessary to integrate multiple 

detection methods. The main methods used in this study are as follows. 130 

2.2.1 Cumulative Anomaly Method 

Cumulative anomaly is a graphic method. The cumulative anomaly value of ( )X t  at a certain time can be expressed as: 

( ) ( )
1

N

t

JP X t X t X
=

 = −      (9) 

Where,  JP   is the cumulative anomaly value of ( )X t . T  and X  are the length and mean of ( )X t , respectively. 

The cumulative anomaly curve can be obtained by drawing the cumulative anomaly value in chronological order. According 

to the curve fluctuation, the change trend and potential changepoint of HTS can be identified. If the cumulative anomaly 135 

value is greater than 0, it indicates that the HTS is in an uptrend, otherwise, the HTS is in a downtrend. The point that 

changes the trend can be regarded as the potential changepoint. 

2.2.2 Mann-Kendall（M-K）Test 

The M-K test analyses the number, location, trend and significance of changepoints in HTS by setting a Confidence Level 

  and calculating statistics (
kFU  and 

kBU ). Statistics 
kFU  of ( )X t  is calculated as follows: 140 

( )
( ) ( )

( )k

X t X t

k k

F
X t

k

S E S
U X t

Var S

 −
 =  

 
 

 (10) 

Where, ( )
kFU X t    is the statistical series of ( )X t  calculated in order. 

( )X t

kS  is the rank sum of Time k  in ( )X t , 

which is the cumulative value of the numbers at Time k  greater than Time i  ( )1 k i  . 
( )X t

kE S 
 

 and 
( )

ar
X t

kV S 
 

 

are the mean and variance of 
( )X t

kS , respectively. 

When ( ) 0
kFU X t    , ( )X t  shows an upward trend, it shows a downward trend. The statistic ( )

kBU X t    is 

obtained by repeating Eq.10 in the reverse order. Draw ( )
kFU X t    and ( )

kBU X t    in the same figure. If the two 145 

statistics intersect within the Confidence Interval 0.05 1.96U =   (Confidence Level 95%), the time corresponding to the 

intersection is the changepoint of ( )X t . 
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2.2.2 Kolmogorov-Smirnov (K-S) Test 

The K-S test can determine whether the distributions of the two series are the same according to the maximum vertical 

distance between the two empirical distributions. The empirical distribution of ( )X t  is: 150 

( )   ( ),
1

1 T
n

n T
t

F X t I X t
T

−
=

=        (11) 

Where, 
  ( ),

n

T
I X t
−

    is the indicator function of ( )X t . 

Original hypothesis 0H : ( ) ( )1 2F X t F X t=       , that is, the empirical distribution of the two series is consistent. 

Alternative hypothesis 1H : ( ) ( )1 2F X t F X t       , that is, the empirical distribution is inconsistent. To quantify the 

difference between the empirical distributions, a maximum difference D  is proposed, calculated as: 

( )
( ) ( )1 2sup

X t

D F X t F X t
− 

= −        (12) 

,TD   is used to represent the rejection domain when the series capacity is T  at Significant Level  . When
,TD D  , 155 

reject 0H , otherwise, accept 0H . To further quantify the significance of the difference, p  is introduced to concretize  . 

The value of   is usually 95% or 99%, and the corresponding p  is 0.05 and 0.01. If 0.01p  , it indicates that the 

determination result is strong and 0H  should be rejected, that is, the two series obey different distributions and are not 

consistent. If 0.01 0.05p  , the determination result is weak. In this case, p  is considered to be marginal, and 0H  is 

usually rejected. If 0.05p  , 0H  is acceptable. 160 

2.3 Changepoint Detection Criteria 

Based on the changepoint detection results of various methods, the potential changepoint set ( )CPP n  ( )1,2,...,n N=  of 

HTS is constructed with deduplication and sorting. To determine the changepoint, it is necessary to further calculate the 

degree of change ( p ) before and after potential changepoints with the help of the K-S test. At Confidence Level 99%, first, 

record the starting point and ending point of ( )X t  as ( )0CPP  and ( )1CPP N +  respectively, and arrange the potential 165 

changepoint set in chronological order. Secondly, take ( )0CPP  as the starting point and ( )1CPP  as the change point, and 

use K-S test to successively calculate the p  of the end point from ( )2CPP  to ( )1CPP N + . Finally, the changepoint and 

its trajectory (connection of change points) of ( )X t  are determined according to the changepoint detection criteria:  
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Criterion ①:  Before and after the changepoint of ( )X t , 0.01p  .  

Criterion ②: The changepoint can realize the continuous division of ( )X t  from ( )0CPP  to ( )1CPP N + .  170 

Criterion ③: The trajectory contains the largest number ( 1,2,...,m M= ) of changepoints. 

Criterion ④: The p  of 1M −  in the trajectory be the minimum value. 

2.4 MWT Optimization Framework 

By comparing ( )
CP

R n  and the results of wavelet changepoint detection, a MWT that conforms to HTS characteristics can 

be selected. The MWT optimization framework includes the construction of potential changepoint set, changepoint detection 175 

and optimal MWT determination. Among them, the potential changepoint set is built to improve the efficiency of 

changepoint detection, and the specific optimization steps are as follows: 

Optimization Step (1):  Select candidate wavelet with the highest changepoint detection accuracy. 

Optimization Step (2): When two or more candidate wavelets have the same detection accuracy, the MWT or the MWT 

system with the highest frequency in different statistic series (length, flow, etc.) of the same hydrological station is selected 180 

as the optimal one. 

After optimization, we can perform CWT according to the MWT conforming to HTS characteristics and analyse its 

evolution. For DWT, HTS can be more accurately decomposed and reconstructed, providing a good basis for hydrological 

forecasting and reservoir operation scheme formulation. 

3 Data and Study Area 185 

The Yangtze River originates from the southwest of the Tanggula Mountains on the Qinghai-Tibet Plateau. Its main stream 

flows through central China from west to east, with a total length of about 6,300 km, and the total catchment area is 1.8 

million km2, accounting for about 18.8% of the total area of China. The main stream from Yibin to Yichang is called the 

upstream, with a length of about 4,504 km and an area of about 1 million km2. With the superposition and collection of 

upstream floods to the Yichang Hydrological Station (Yichang Station), it tends to form a process of high peaks and large 190 

volumes (Shuhui et al., 2021). The Pingshan Hydrological Station (Pingshan Station) on the Jinsha River controls about half 

of catchment area and one-third of the flood season average flow of Yichang Station, and is the basic source of upstream 

flooding. Therefore, exploring the runoff evolution at Pingshan Station and Yichang Station will help to scientifically 

arrange the watershed storage space to alleviate the frequent floods in flood seasons and water shortages in dry seasons in the 

middle and lower Yangtze River. The overview of the upper Yangtze River is shown in Figure 2, and the hydrological 195 

parameters of the tow stations are shown in Table 2. 
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Figure 2: Location of the study area 

Table 2: Main hydrological parameters of Pingshan Station and Yichang Station 

River Jinsha Yangtze 

Hydrological Station Pingshan Yichang 

Catchment Area 
Area (km2) 485,099 1,005,501 

Proportion (%) 48.2 100 

Annual Average Water Volume 
Volume (108 m3) 1,147 3,410 

Proportion (%) 33.6 100 

Annual Distribution of Runoff 

Flood Season (month) 6-11 5-10 

Flow (m3/s) 44,850 127,700 

Proportion (%) 81.34 78.67 

The flood season of Pingshan Station is from June to November, and the flood season of Yichang Station is from May to 200 

October. The three months with the largest flow on the two stations are both from July to September (accounting for 49.96% 

and 54.18% of the year, respectively). In 2012, Pingshan Station was moved down 24 km to Xiangjiaba Hydrological Station. 

In addition, the runoff of Pingshan Station should consider the influence of the upstream Ertan Reservoir (seasonal 

regulation, water storage in May 1998), and Yichang Station should consider the Three Gorges Reservoir (annual regulation, 

water storage in June 2003). Combined the above factors, the measured runoff data of Pingshan Station (1950-2011) and 205 

Yichang Station (1950-2016) were used to test the applicability of the changepoint detection framework and the MWT 

optimization framework proposed in this study, and the runoff evolution of the two stations was analysed by CWT. 

4 Results and Discussion 

The statistical series of the two stations used in the study includes: Pingshan annual mean runoff series (Pingshan Annual 

Series, PAS), Pingshan 6-11 mean runoff series (Pingshan Flood Season Series, PFSS), Yichang annual mean runoff series 210 
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(Yichang Annual Series, YAS) and Yichang 5-10 mean runoff series (Yichang Flood Season Series, YFSS), collectively 

referred to as 4-Series. 

4.1 Construction of Potential Changepoint Set 

The cumulative anomaly method, M-K test and wavelet changepoint detection were used to detect the potential changepoints 

in the 4-Series. At the same time, by comparing the annual series and the flood season series at the same station, we further 215 

analysed the sensitivity of the three methods to the variation of flow amplitude and the influence of flood season on the 

annual series. 

4.1.1 Results of Cumulative Anomaly Method and M-K Test 

The points causing the trend change can be regarded as potential changepoints, and the detection results of the cumulative 

anomaly method are shown in Figure 3. At Confidence Level 95% (the upper and lower critical lines are ±1.96), the 220 

intersection of 
kFU  and 

kBU  is a potential changepoint, and the M-K test results are shown in Figure 4. Potential 

changepoints in the two figures were marked in red. 
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Figure 3: Potential changepoints of the cumulative anomaly method at Pingshan Station and Yichang Station 

The number of potential changepoints of 4-Series detected by the cumulative anomaly method is 15, 15, 16 and 18 (Figure 3). 225 

However, the number detected by the M-K test is 2, 2, 0 and 0 (Figure 4). In addition, there are differences in the potential 

changepoint detection results between the annual series and the flood season series, indicating that the cumulative anomaly 

method has certain response ability to flow changes. However, the consistent rate of potential changepoints in Pingshan 

Station is 100%, while Yichang Station is 37.5% and 33.33%, respectively. This means that the response ability can only be 

reflected when the flow variation reaches a certain extent. 230 
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Figure 4: Potential changepoints of the M-K test at Pingshan Station and Yichang Station 

The changepoint detection results of M-K test at Pingshan Station (Figure 4a-b) are concentrated around 1956 and 2005. 

During the same time scale, the intersection of the flood season series is slightly later than the annual series, but the 

amplitude of 
kFU  and 

kBU  is lower, which indirectly reflects the flood season in Pingshan Station is relatively gentle, but 235 

the difference between the wet and dry seasons of the year is obvious. The YFSS is the opposite. In addition, the detection 

results of M-K test for 4-Series are basically consistent, insensitive to flow variation. The detected number of potential 

changepoints is small. It can be included that the cumulative anomaly method is more suitable for constructing the potential 

changepoint set of HTS. A more accurate locating of the changepoint needs other methods. 
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4.1.2 Results of Wavelet Changepoint Detection 240 

Among the 16 commonly used MWT systems, 8 of them satisfy the biorthogonality (59 MWT in total). In this study, 59 

MWT were used to detect the potential changepoints of 4-Series one by one, and the number of decomposition layers used is 

5. However, only 5 MWT systems can detect the changepoints of 4-Series, as shown in Table 3. 

Table 3: Wavelet changepoint detection results of biorthogonal MWT at Pingshan Station and Yichang Station (decomposition 

layers is 5)  245 

MWT Systems Symbol PAS1 PFSS2 YAS3 YFSS4 

Daubechies 

db2 1999 1985  1999  1996 1975 1961 1977 1975 

db3 —— 1985  1968   —— 

db4 1999 1995 1992 1999 1992 1962   1960  

db5 —— 2000 1963 —— —— 

db63 2000 1965  2000 1965 20023   1972  

db7 —— —— 1962   2000  

db812 19981 1992  19982 1991 2004   2005  

db9 1965   1964  1966   1998  

db10 1983 1959  —— 1992 1965  1994 1967 

Symlets 

sym2 1999 1985  1999  1996 1975 1961 1977 1975 

sym3 —— 1985  1968   —— 

sym4 1996 1990  1996  1959   1959  

sym5 —— 1983  2003   —— 

sym6 1989 1963  1962  1969   2005  

sym7 1967   —— —— —— 

sym8 1989   —— 1998   1999  

Coiflets 

coif1 —— —— 1968 1961  —— 

coif2 1990 1960  1964  1971   2005 1972 

coif3 —— —— 1966   1993  

coif4 1993 1992  1993 1990 1990   —— 

coif5 1968   1968  1998 1985  1969  

Dmeyer dmey 1969 1966  1968 1965 —— —— 

Fejer-Korovkin 

fk4 1996   1996  1995 1971  1975 1969 

fk6 —— —— 1968   —— 

fk8 19981 1992 1990 19982 1989 1961   1984 1959 

fk144 —— 2000  1966   20034  

fk18 —— 1966  2000   1992  

fk22 —— 1959  —— 1983  

Note: The changepoint and the optimal MWT are marked with the same number (in the upper right corner) as the series. 

From Table 3, the number of potential changepoints detected by a single MWT is between 1 and 3. The top two potential 

changepoint of the PAS are 1992 and 1999, the PFSS are 1999 and 2000, the YAS are 1961 and 1968, and the YFSS are 
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1975 and 2005. The number of 4-Series of changepoints detected is 19, 18, 19 and 17 respectively. Compared with the 

cumulative anomaly method and M-K test, the wavelet changepoint detection has the highest contribution to the construction 

of the potential changepoint set, followed by the cumulative anomaly method.  250 

As the MWT changes, the detection results are quite different. For the same hydrological station and the same MWT, there is 

also a difference in the detection results between the annual series and the flood season series, indicating that the wavelet 

changepoint detection is very sensitive to the flow variation of HTS. Furthermore, the detection results of Pingshan Station 

are concentrated in 1959-2000, while Yichang Station are concentrated in 1959-2004. Compared with the series length used 

in the study (Pingshan 1950-2011 and Yichang 1950-2016), the detection results are susceptible to marginal effects, and the 255 

potential changepoints at both ends of the series (before and after 10 years) may be ignored. 

4.2 Results of Changepoint Detection  

We deduplicated and sorted the above detection results as potential changepoint sets for each series, with capacities of 31, 30, 

31, and 28, respectively. The degree of change ( p ) before and after each potential changepoint was calculated by the K-S 

test. Traditional changepoint detection often adopts the method of traversal series. Take PAS as an example (62 years in 260 

total), because the starting point, changepoint and end point are changing, its p -value is calculated 

60

n 1 1

n

i

i
= =

  =35990 times. 

After constructing the potential changepoints set, the number of calculation is reduced to 

29

n 1 1

n

i

i
= =

 =4060, and the efficiency 

is improved by 88.72%, and the calculation results are shown in Figure 5a. The changepoint trajectories (marked with red 

lines and blue dots) and alternative trajectories of 4-Series were determined according to the Detection Criteria in Section 2.3, 

as shown in Figure 5b-c. 265 
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Figure 5: Changepoint trajectory of Pingshan Station and Yichang Station (Confidence Level 99%) 

For PAS, The starting point of the changepoint trajectory is 1950. We need to find the grid point with 0.01p   in Figure 

5a-1. Then, with the changepoint as the starting point and the ending point as the changepoint, find the grid point with 

0.01p   until 2011. At Confidence Level 99%, there are 3 points in Figure 5a-1 that meet the requirements of Criterion ①, 270 

namely 1950-1998-2005 (Trajectory 1), 1950-1998-2007 (Trajectory 2) and 1950-1999-2005 (Trajectory 3), and p  is 

shown in Figure 5b. It can be seen that the Criterion ① can effectively narrow the selection range of changepoints from 
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many potential points. Criterion ② requires further search extending to 2011, which can fully explore the changepoint and 

ensure the continuity of the trajectory. When there are multiple alternative trajectories with inconsistent number of 

changepoints, Criterion ③ requires to select the one with the most points, which helps to divide the series in detail. Figure 275 

5b~e shows all alternative trajectories that meet the requirements of the above 3 detection criteria. According to Criterion ④, 

select the year with small p  of the first 1M −  changepoints one by one, which can make the series before and after the 

changepoint have a large degree of change. 

Based on the changepoint detection criteria, the year in which the series consistency has changed due to human factors 

(water storage of large reservoirs, etc.) can be determined (Figure 5b~e red line). The changepoint trajectory of PFSS is 280 

consistent with PAS, while YFSS lags behind YAS by one year. The reason could be related to the interannual variation of 

runoff. The flood season of Pingshan Station is from June to November, accounting for 81.34% of the annual average runoff. 

The upstream Ertan Reservoir (water storage in May 1998) has seasonal regulation capacity, so it can have a direct impact 

on PFSS, which is divided into 1950-1997, 1998-2004 and 2005-2011. However, the flood season of Yichang Station is from 

May to October, and the runoff in May accounts for 7.1% of the year. The annual mean runoff from 2001 to 2004 is 285 

13154.73 m3/s, 12454.25 m3/s, 12991.84 m3/s and 13115.10 m3/s respectively. The monthly mean runoff in flood season 

from 2001 to 2004 is 20010.98 m3/s, 18895.22 m3/s, 20690.22 m3/s and 19841.30 m3/s respectively. For hydrological regime, 

2002 is a year with less water inflow, while 2003 is the opposite. However, affected by the Three Gorges Reservoir, the 

water inflow in 2002 is closer to 2003-2010 in the flood season series, while the annual series is closer to 1950-2001. It 

indirectly shows that the changepoint detection framework proposed in this study considers the influence of both human 290 

factors and hydrological regime on the series. The HTS division results of Pingshan Station and Yichang Station are shown 

in Figure 5b~e. Dividing series helps ensure consistency of HTS and provides a basis for better information mining through 

statistical analysis methods. 

4.3 Results of MWT Optimization 

Based on the changepoint trajectories, the detection accuracy of the three methods was calculated, and the MWT 295 

optimization can be completed according to the optimization framework in Section 2.4. The screening process is shown in 

Table 3, and the optimization results of MWT are shown in Table 4. 

Table 4: Changepoint and optimal MWT of Pingshan Station and Yichang Station (Confidence Level 99%) 

Detection 

Method 

Cumulative Anomaly M-K Test Wavelet Changepoint Detection Optimal 

MWT Accuracy Contribution1 Accuracy Contribution1 Accuracy Contribution1 

PAS 6.67% 48.39% 50% 6.45% 50% 61.29% db8 

PFSS 6.67% 50% 50% 6.67% 50% 60% db8、fk8 

YAS 6.25% 51.62% 0 0 50% 32.26% db6 

YFSS 5.56% 64.29% 0 0 50% 60.71% fk14 

Note 1: Contribution refers to the percentage of changepoints provided by the detection method for the potential changepoint set. 

Combining the MWT optimization results in Table 3 and Table 4, it is found that the changepoint is the key to series division, 

and Optimization Step (1) can quickly locate the MWT that conforms to the series characteristics. For Pingshan Station, the 300 
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annual series of MWT meeting Optimization Step (1) is db8, and the flood season series are db8 and fk8. The Optimization 

Step (2) is selected according to the runoff physical cause at the same station, which makes it easier to analyse the evolution 

of the two series from the time-frequency space of the same MWT. Therefore, the optimal MWT of PFSS is db8. 

When the optimal MWT of the series is determined, the accuracy of wavelet changepoint detection is generally higher than 

the cumulative anomaly method and the M-K test (Table 4). Except for YAS, the contribution rate of wavelet changepoint 305 

detection to the overall potential changepoint is also higher than both of them. The results show that the MWT optimization 

framework proposed in this study can accurately screen the optimal MWT of each series. The wavelet transform based on 

the MWT conforming to the series characteristics is helpful to improve the rationality of the analysis. 

4.4 Analysis of HTS Evolution Based on CWT 

Based on the optimization results of MWT in Table 4, the evolution of 4-Series was analysed by CWT. To further explore 310 

the influence of MWT, Haar, Morlet and Mexican Hat (referred to as 3 common wavelets) were used in CWT of PAS, as 

shown in Figure 6a. The analysis results of the optimal MWT are shown in Figure 6b~e. 
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Figure 6: Results of CWT at Pingshan Station and Yichang Station (Wavelet Variance and Real Part Contour Map, Confidence 

Level 99%) 315 
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The 3 common wavelets have great differences in the analysis results of the main periods of PAS, namely 10a and 35a, 10a 

and 29a, and 3a and 10a (Figure 6a). Furthermore, they frequently alternate between wet and dry in the short time period, 

and exhibit a distinct "Wet-Dry-Wet" evolution over the long time period. Compared with Figure 6b, the CWT of 3 common 

wavelets is relatively scattered in the time scale of 0 to 60a, and the Morlet and Mexican Hat wavelets show a wet period 

after 1998, which does not reflect the regulation effect of the Ertan Reservoir on Pingshan Station, and the accuracy of the 320 

analysis results is questionable. According to historical records, during the flood season in June 1998, a basin wide flood 

occurred in the middle and lower Yangtze River due to continuous heavy rain in Dongting Lake and Panyang lake below 

Yichang Station (Zhang et al., 2021). From the time scale (Figure 6b-c), Pingshan Station and Yichang Station suffer 

continuous dry years, which is consistent with the actual situation. Based on the analysis of integrated moisture transport, 

land-falling atmospheric rivers geometric metrics and large-scale climatic circulations, Ayantobo et al. (2022) believed that 325 

the extreme rainfall in the Yangtze River Basin had a declining period after 1999, which was consistent with the analysis 

results of this study. We believe that optimizing the MWT that conform to series characteristics based on the changepoint 

detection is a suitable approach. 

According to the analysis, the main periods of PAS are 10a and 30a, and the flood season series are 10a and 29a. The long-

period scale of flood season is slightly earlier than the annual series, indicating that the annual adjustment of Pingshan 330 

Station has a certain buffer capacity. On the short-period scale 10a, the two series show the phenomenon of frequent 

alternation of wat and dry seasons, but the consecutive dry seasons from 1926 to 1968 and 1998 to 2004 have a serious 

impact on the series. Especially after 1998, due to the operation of Ertan Reservoir, the runoff reduction in the annual series 

is larger than that in flood season, so attention should be paid to the annual water demand of river channels and cities along 

the route. From 2005 to 2011, Pingshan Station had the wet season, and attention should be paid to flood control and flood 335 

resource utilization. The main periods of YAS are 9a and 27a, and the main periods of flood season series are 9a and 31a. 

Similarly, Yichang Station frequently alternates between wet and dry on the short-period scale. The annual series shows the 

evolution of "Wet-Dry-Wet-Dry-Wet" on the long-period scale, while the flood season series shows "Wet-Dry-Wet-Dry". 

After 2002-2003, YFSS did not enter the wet season as the annual series, indicating that the operation of the Three Gorges 

reservoir has a large reduction in the flood season. On the premise of ensuring the storage of the downstream reservoir at the 340 

end of the flood season, it is helpful to adjust the annual and interannual distribution of the runoff in the Yangtze River and 

improve the utilization efficiency of water resources. 

5 Conclusion 

Hydrological Time Series (HTS) is the basis of water conservancy project planning and construction. However, under the 

multiple effects of human activities and other factors, the consistency of HTS is destroyed. It is necessary to analyse its 345 

evolution to ensure the rationality of hydrological and hydraulic calculation. Wavelet transform is one of the widely used 

analysis tools of evolution in hydrology, but the its analysis accuracy is closely related to Mother Wavelet (MWT). To solve 
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these two problems, with the help of cumulative anomaly method, Mann-Kendall (M-K) test and wavelet changepoint 

detection, we proposed the changepoint detection criteria and a MWT optimization framework in this study, and took 

Pingshan Station and Yichang Station of the Yangtze River as study cases to test their effectiveness. The main conclusions 350 

are as follows: 

(1) Changepoint detection criteria: Based on the three changepoint detection methods, a potential changepoints set of HTS is 

constructed, which can make up for the limitations of a single method affected by factors such as parameter settings and 

marginal effects, and improve the calculation efficiency. In addition, with the help of Kolmogorov-Smirnov (K-S) test, we 

proposed the detection criteria to quickly confirm the changepoint trajectory from the beginning to the end of HTS. While 355 

ensuring the uniqueness of the result, the changepoint formed by the combined action of multiple factors can be accurately 

identified to complete the series division. 

(2) MWT optimization framework: Based on the changepoint detection accuracy of wavelet changepoint detection, the 

MWT consistent with the series characteristics can be selected to ensure the accuracy of wavelet transform to analyse the 

HTS evolution and provide a good basis for hydrological and hydraulic calculation. 360 

It is found that the changepoints of the Pingshan annual series and the Pingshan flood season series both are 1998 and 2005, 

the Yichang annual series are 2002 and 2011, and the Yichang flood season series are 2003 and 2012. In addition, the 

optimal MWT of 4-Series are db8, db8, db6 and fk8 respectively. The Ertan reservoir has a greater impact on the annual 

runoff of Pingshan Station, while the Three Gorges Reservoir only reduces the runoff of the Yichang Station to a large extent 

during the flood season. Limited by the data, we did not explore the evolution of the two stations after 2017. It is also found 365 

that the wavelet changepoint detection is not sufficient enough to detect the potential changepoint of 10 years before and 

after the series. 

Acknowledgements 

The authors would like to give special thanks to the anonymous reviewers. 

Acronym List 370 

Order Acronym Full name Order Acronym Full name 

1 HTS Hydrological Time Series 7 DWT Discrete Wavelet Transform 

2 MWT Mother Wavelet 8 MODWT Maximal Overlap Discrete Wavelet Transform 

3 IID Independent and identically distributed 9 PAS Pingshan Annual Series 

4 K-S Kolmogorov-Smirnov 10 PFSS Pingshan Flood Season Series 

5 M-K Mann-Kendall 11 YAS Yichang Annual Series 

6 CWT Continuous Wavelet Transform 12 YFSS Yichang Flood Season Series 



23 

 

Authors’ Contributions 

Jiqing Li: Conceptualization, Validation, Writing - Review & Editing, Supervision, Project administration, Funding 

acquisition 

Jing Huang: Conceptualization, Methodology, Software, Formal analysis, Resources, Writing - Original Draft, 

Visualization 375 

Lei Zheng: Methodology, Software, Formal analysis, Data Curation 

Wei Zheng: Software, Validation, Investigation, Visualization 

Funding 

This study is financially supported by the National Natural Science Foundation of China (No. 52179014) and the National 

Key R&D Program of China (2022YFC3002702-4). 380 

Data Availability Statement 

Data for this study can be downloaded from the Yangtze River Hydrological Network (http://www.cjh.com.cn/). In this 

study, the wavelet changepoint detection is based on the Matlab (R2020b) toolbox, and the rest of the codes (PyCharm 

2021.2.2) are available from the corresponding author upon reasonable request. 

Compliance with Ethical Standard 385 

Declaration The authors confirm that this article is original research and has not been published or presented previously in 

any journal or conference. 

Conflict of Interest None. 

Ethical Approval Not applicable. 

Consent to Participate Not applicable. 390 

Consent to Publish Not applicable. 

References 

Ayantobo, O. O., Wei J. and Wang G.: Climatology of landfalling atmospheric rivers and its attribution to extreme 

precipitation events over Yangtze River Basin, J. Atmos Res, 270, 106077, doi:10.1016/j.atmosres.2022.106077, 2022. 



24 

 

Benhassine, N. E., Boukaache, A. and Boudjehem, D.: Medical image denoising using optimal thresholding of wavelet 395 

coefficients with selection of the best decomposition level and mother wavelet, J. Int J Imag Syst Tech, 31, 1906-20, 

doi:10.1002/ima.22589, 2021. 

Chen, Y., Paschalis, A., Wang, L. and Onof, C.: Can we estimate flood frequency with point-process spatial-temporal 

rainfall models?, J. J Hydrol, 600, 126667, doi:10.1016/j.jhydrol.2021.126667, 2021. 

Corradin, R., Danese, L. and Ongaro, A.: Bayesian nonparametric change point detection for multivariate time series with 400 

missing observations, J. Int J Approx Reason, 143, 26-43, doi:10.1016/j.ijar.2021.12.019, 2022. 

Dang, C., Zhang, H., Singh, V. P., Zhi, T., Zhang, J. and Ding, H.: A statistical approach for reconstructing natural 

streamflow series based on streamflow variation identification, J. Hydrol Res 52, 1100-15, doi:10.2166/nh.2021.180, 

2021. 

Fang, L. and Shao, D.: Application of Long Short-Term Memory (LSTM) on the Prediction of Rainfall-Runoff in Karst Area, 405 

J. Frontiers in Physics, 9, doi:10.3389/fphy.2021.790687, 2022. 

Jia, B., Zhou, J., Tang, Z., Xu, Z., Chen, X. and Fang, W.: Effective stochastic streamflow simulation method based on 

Gaussian mixture model, J. J Hydrol, 605, 127366, doi:10.1016/j.jhydrol.2021.127366, 2022. 

Li, J., Huang, J., Chu, X. and Lund, J. R.: An Improved Peaks-Over-Threshold Method and its Application in the Time-

Varying Design Flood, J. Water Resour Manag, 35, 933-48, doi:10.1007/s11269-020-02758-3, 2021. 410 

Liu, W., Wen, J., Chen, J., Wang, Z., Lu, X., Wu, Y., et al.: Characteristic analysis of the spatio-temporal distribution of key 

variables of the soil freeze-thaw processes over the Qinghai-Tibetan Plateau, J. Cold Reg Sci Technol, 197, 103526, 

doi:10.1016/j.coldregions.2022.103526, 2022. 

Malki, A., Atlam, E. and Gad, I.: Machine learning approach of detecting anomalies and forecasting time-series of IoT 

devices, J. Alexandria Engineering Journal,  61, 8973-86, doi:10.1016/j.aej.2022.02.038, 2022. 415 

Mat Jan, N. A., Shabri, A. and Samsudin, R.: Handling non-stationary flood frequency analysis using TL-moments approach 

for estimation parameter, J. J Water Clim Change, 11, 966-79, doi:10.2166/wcc.2019.055, 2020. 

Moradi, M.: Wavelet transform approach for denoising and decomposition of satellite-derived ocean color time-series: 

Selection of optimal mother wavelet, J. Adv Space Res, 69, 2724-44, doi:10.1016/j.asr.2022.01.023, 2022. 

Nielsen, M.: On the Construction and Frequency Localization of Finite Orthogonal Quadrature Filters, J. J Approx Theory, 420 

108, 36-52, doi:10.1006/jath.2000.3514, 2001. 

Oliveira-Júnior, J. F. D., Correia, F. W., Monteiro, L. D. S., Shah, M., Hafeez, A., Gois, G. D., et al. Urban rainfall in the 

Capitals of Brazil: Variability, trend, and wavelet analysis, J. Atmos Res, 267, 105984, 

doi:10.1016/j.atmosres.2021.105984, 2022. 

Qin, Y., Sun, X., Li, B. and Merz, B.: A nonlinear hybrid model to assess the impacts of climate variability and human 425 

activities on runoff at different time scales, J. Stoch Env Res Risk A, 35, 1917-29, doi:10.1007/s00477-021-01984-4, 

2021. 



25 

 

Sanaa, H., Gab, A., Ukkola, A. M., Martin, D. K., Andy, P., et al.: Reconciling historical changes in the hydrological cycle 

over land, J. NPJ climate and atmospheric science, 5, 1-9. doi:10.1038/s41612-022-00240-y, 2022. 

Şen, Z.: Jump point identification in hydro-meteorological time series by crossing methodology, J. Theor Appl Climatol 144, 430 

769-77, doi:10.1007/s00704-021-03576-2, 2021. 

Shi, X., Gallagher, C., Lund, R. and Killick, R.: A comparison of single and multiple changepoint techniques for time series 

data, J. Comput Stat Data An, 170, 107433, doi:10.1016/j.csda.2022.107433, 2022. 

Wang, S. H., Su, B. R., Wang, Y. Q., Wang, Y. J., Zhu, J. Q. and Fu, J.: Change analysis of runoff and sediment in the Three 

Gorges Reservoir Region in recent 16 years, J. Science of Soil and Water Conservation, 19, 69-78, 435 

doi:10.16843/j.sswc.2021.01.009, 2021 (In Chinese) 

Stasolla, M. and Neyt, X.: Enhanced Morphological Filtering for Wavelet-Based Changepoint Detection, J. IEEE, 56-60, 

doi:10.1109/SITIS.2019.00021, 2019. 

Strömbergsson, D., Marklund, P., Berglund, K., Saari, J. and Thomson, A.: Mother wavelet selection in the discrete wavelet 

transform for condition monitoring of wind turbine drivetrain bearings, J. Wind Energy, 22, 1581-92, 440 

doi:10.1002/we.2390, 2019. 

Xie, Y., Liu, S., Huang, S., Fang, H., Ding, M., Huang, C., et al.: Local trend analysis method of hydrological time series 

based on piecewise linear representation and hypothesis test, J. J Clean Prod, 339, 130695, 

doi:10.1016/j.jclepro.2022.130695, 2022. 

Zerouali, B., Chettih, M., Abda, Z., Mesbah, M., Santos, C. A. G., Brasil, N. R. M.: A new regionalization of rainfall 445 

patterns based on wavelet transform information and hierarchical cluster analysis in northeastern Algeria, J. Theor Appl 

Climatol, 147, 1489-510, doi:10.1007/s00704-021-03883-8, 2022. 

Zhang, Y., Fang, G., Tang, Z., Wen, X., Zhang, H., Ding, Z., et al.: Changes in Flood Regime of the Upper Yangtze River, J. 

Frontiers in Earth Science, 9, doi:10.3389/feart.2021.650882, 2021. 

Zhao, Y. H., Yu, B. K., Qu, P., Li, S., Zhan, D. Q. and Wang, X. Q.: Analysis of runoff variation characteristics in Yishuhe 450 

River Basin. IOP conference series, J. Earth and environmental science, 344, 12080, doi:10.1088/1755-

1315/344/1/012080, 2019. 

 


