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Abstract. Data assimilation (DA), the statistical combination of computer models with measurements, is applied in a variety 

of scientific fields involving forecasting of dynamical systems, most prominently in atmospheric and ocean sciences. The 

existence of misreported or unknown observation times (time error) poses a unique and interesting problem for DA. Mapping 

observations to incorrect times causes bias in the prior state and affects assimilation. Algorithms that can improve the 10 

performance of ensemble Kalman filter DA in the presence of observing time error are described. Algorithms that can estimate 

the distribution of time error are also developed. These algorithms are then combined to produce extensions to ensemble 

Kalman filters that can both estimate and correct for observation time errors. A low-order dynamical system is used to evaluate 

the performance of these methods for a range of magnitudes of observation time error. The most successful algorithms must 

explicitly account for the nonlinearity in the evolution of the prediction model. 15 

1 Introduction 

Ensemble data assimilation (DA) is one of the tools of choice for many earth system prediction applications including 

numerical weather prediction and ocean prediction. DA is also applied for a variety of other earth system applications like sea 

ice (Zhang et al., 2018), space weather (Chartier et al., 2014), pollution (Ma et al., 2019), paleoclimate (Amrhein, 2020), and 

the earth’s dynamo (Gwirtz et al., 2021). While DA was originally applied to generate initial conditions for weather prediction, 20 

it is also used for many related tasks like generating long-term reanalyses (Compo et al., 2011), estimating prediction model 

error (Zupanski and Zupanski, 2006), and evaluating the information content of existing or planned observing systems (Jones 

et al., 2014). 

 

DA can also be used to explore other aspects of observations. An important part of many operational DA prediction systems 25 

is estimation and correction of the systematic errors (bias) associated with particular instruments (Dee and Uppala, 2009). 

Estimating the error variances, comprised of both instrument error and representativeness error (Satterfield et al., 2017), 

associated with particular observations is also possible (Desroziers et al., 2005) and can be crucial to improving the quality of 

DA products. DA methods have also been extended to explore problems with the forward operators, the functions used to 
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predict the value of observations given the state variables of the prediction model. These techniques can focus on particular 30 

aspects of forward operator deficiencies (Berry and Harlim, 2017) or attempt to do a more general diagnosis that can improve 

arbitrary functional estimates of forward operators, for instance an iterative method that can progressively improve the fit of 

the forward observation operator to the observations inside the data assimilation framework  (Hamilton et al., 2019). Here, DA 

methods for estimating and correcting errors in the time associated with particular observations are explored. 

 35 

Most observations of the earth system being taken now have precise times associated with them that are a part of the 

observation metadata. However, this is a relatively recent development for most applications. Even for the radiosonde network 

which is one of the foundational observing systems for the mature field of numerical weather prediction, precise time metadata 

has only been universally available for a few decades (Haimberger, 2007). Before the transition to current formats for encoding 

and transmitting radiosonde observations, many radiosonde data did not include detailed information about ascent time or the 40 

time of observations at a particular height. Even the exact launch time was not always available in earlier radiosonde data that 

are a key part of atmospheric reanalyses for the third quarter of the 20th century (Laroche and Sarrazin, 2013). 

 

This lack of time information is also a problem for surface-based observations, especially those taken before the radiosonde 

era which relied on similarly limited encoding formats. Ascertaining the time of observations becomes increasingly 45 

problematic as one goes further into the past. As an example, coordinated time zones were not defined in the Unites States 

until the 1880s, resulting in local time uncertainty of minutes to hours in extreme cases. In fact, the major push for establishing 

coordinated time was motivated by the need for consistent atmospheric observing systems (Bartky, 1989). Similar issues were 

resolved earlier or later in other countries and not resolved globally until the 20th century. 

 50 

As historic reanalyses extend further back in time (Slivinski et al., 2019), the lack of precise time information associated with 

observations can become an important issue. There is also a desire to use less quantitative observations taken by amateur 

observers and recorded in things like logbooks and diaries. An example is the assimilation of total cloud cover observations 

from personal records in Japan (Toride et al., 2017). While individual observers might have rigorous observing habits, the 

precise time at which their observations were taken often remains obscure. Curiously, the problem of time error may be less 55 

for observations used for historical ocean reanalyses (Giese et al., 2016). This is because a precise knowledge of time was 

required for navigation purposes. Nevertheless, observations obtained from depth can involve unknown delays and failures to 

record the exact time associated with observations can remain (Abraham et al., 2013). 

 

Even older observations, for instance those associated with paleoclimate, can have greater time uncertainty. Here, the 60 

fundamental relationship between the observations and the physical state of the climate system is poorly known and identifying 

the appropriate time scales is crucial to improved DA (Amrhein, 2020). Observations related to the evolution of the geosphere 

can have even more problematic time uncertainty. Initial work on using DA to reconstruct the evolution of the earth’s 
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geodynamo highlight the problems associated with specifying the time that should be associated with various observations 

(Gwirtz et al., 2021). 65 

 

Failing to account for errors in the time associated with an observation can lead to significantly increased errors in DA results. 

This is especially true if time errors are correlated for a set of observations since they can result in consistently biased forward 

operators. Section 2 briefly describes the problem of observation time error while Sect. 3 discusses extensions to ensemble 

DA algorithms that can explicitly use information about some aspects of time error. Section 4 describes several algorithmic 70 

extensions of ensemble DA that can provide estimates of time error distributions. Section 5 describes an idealized test problem 

while Sect. 6 presents algorithms combining the results of Sects. 3 and 4 to produce a hierarchy of ensemble DA algorithms 

that both estimate and correct for observation time error. Section 7 presents results of applying these algorithms and Sect. 8 

includes discussion of these results and a summary. 

2 Statement of the problem 75 

The vector 𝝌(𝑡) is the time-dependent state of the dynamical system of interest and is defined at a set of discrete times {𝑡𝑖}, 𝑖 =

0 … where 𝑡𝑖+1 = 𝑡𝑖 + ∆𝑡. The state 𝝌 is assumed to be observed at evenly spaced analysis times starting at 0 with a period of 

𝑃∆𝑡, 𝑡𝑘+1
𝑎 = 𝑡𝑘

𝑎 + 𝑃𝛥𝑡, where 𝑃 is an integer. However, at each analysis time, the actual observation is taken at an observation 

time, 𝑡𝑘
𝑜 = 𝑡𝑘

𝑎 + 𝜀𝑘
𝑡  where the time offset 𝜀𝑘

𝑡   is unknown. In this paper, we make the simplifying assumption that 𝜀𝑘
𝑡  is drawn 

from a normal distribution with mean 𝜇𝑡 and variance 𝜎𝑡
2. In practice, including the experiments in this paper, only the case 80 

where 𝜇𝑡 is assumed to be 0 is relevant. This is because if 𝜇𝑡 is known, it is easy to reduce the problem to the case where 𝜇𝑡 =

0  by advancing the ensemble by −𝜇𝑡  when initializing it. On the other hand, if 𝜇𝑡  is unknown, then the problem is 

indistinguishable from the case where 𝜇𝑡 = 0, but with an unknown bias in the initial ensemble. If the assimilation scheme is 

working properly, this bias should disappear over time anyway.  

 85 

The time errors involved with many real measurements could be distinctly non-Gaussian. For instance, there is reason to 

believe clock errors may be skewed. For real application, it would be important to involve input from experts with detailed 

knowledge on the expected time error distributions. The case where time error is non-Gaussian can be approached using the 

same arguments as in Sect. 4, but is not explored further here.  

 90 

The observations have an error 𝜺𝑘
𝑥 ∼ 𝑁(𝟎, 𝐑)  with diagonal observation error covariance matrix 𝐑 . In this work, the 

observation operator is taken to be the identity, though this assumption is discussed further in Sect. 8. Hence, the observation 

at the 𝑘th analysis time is 𝒚𝑘
𝑜  ~ 𝑁(𝝌(𝑡𝑘

𝑜), 𝐑). When simulating this problem numerically, we do not have exact knowledge of 

𝝌(𝑡𝑘
𝑜)  when 𝑡𝑘

𝑜  is not an integer multiple of Δ𝑡 ; linear interpolation is used to approximate 𝝌(𝑡𝑘
𝑜)  in these cases. This 
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approximation uses the assumption that Δ𝑡 is small enough that 𝝌(𝑡) is nearly linear at the scale of one timestep; if this 95 

assumption is violated even basic ensemble Kalman filters can be ineffective. 

3 Extending ensemble Kalman filters 

Algorithms are described to extend ensemble Kalman filters (Burgers et al., 1998; Tippett et al., 2003) to use information about 

the time offset of observations. Suppose the time offset at the current analysis time, conditioned on the value of the current 

observation, is distributed as 𝜀𝑘
𝑡 ∣ 𝒚𝑘

𝑜   ~ 𝑁(𝜇̃𝑡,𝑘 , 𝜎̃𝑡,𝑘
2 ). An ensemble Kalman filter assimilation for this analysis time can make 100 

use of this information by adjusting the prior ensemble estimate (the result of applying the forward operator to each ensemble 

state) and the observation error variance. First, the ensemble prior estimate of the observations, 𝒚𝑛
𝑝

, 𝑛 = 1 … 𝑁 , where 

subscript 𝑛 indexes the ensemble member and 𝑁 is the ensemble size, can be selected to simulate observations taken at (or 

near) time 𝑡𝑘
𝑎 + 𝜇̃𝑡,𝑘; this time is the maximum likelihood estimate of the observation time. Second, the specified observation 

error covariance matrix 𝐑 can be augmented to include contributions from uncertainty due to the variance 𝜎𝜏
2 of the estimate 105 

of the time offset. 

 

Two methods of obtaining the prior mean and observation error variance are explored in the following subsections. In both 

cases, assume that an ensemble of prior estimates of the true state, 𝒙𝑛
𝑝

(𝑡𝑖) is available at the same discrete times 𝑡𝑖 as the truth 

𝝌(𝑡𝑖). 110 

3.1 Extrapolation 

Define 𝝂 as the time derivative of the prior ensemble mean at the analysis time,  

𝒗 =  
d𝒙𝑝̅̅ ̅̅

dt
(𝑡𝑘

𝑎),            (1) 

where the overbar represents an ensemble mean. The prior state for each ensemble member can then be linearly extrapolated 

to the most likely observation time,  115 

𝒚𝑛
𝑝

= 𝒙𝑛
𝑝(𝑡𝑘

𝑎) + 𝜇̃𝑡,𝑘𝒗           (2) 

(recall that the observation operator here is the identity.) This could also be done with additional cost by using the time 

derivative of each ensemble member, but that method is not explored here. The uncertainty in the time offset also leads to 

increased uncertainty in the observations. A linear approximation gives an enhanced observation error covariance matrix of 

𝐄 = 𝐑 +  diag(𝜎̃𝑡,𝑘
2 𝒗2).           (3) 120 
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This approach assumes that time errors are small enough compared to the characteristic time scale of the system that the 

linearity approximation is valid.  If this is not the case, it is more appropriate to use the more expensive method discussed in 

the next section. It also assumes that 𝒗 is a good estimate of the time derivative of the truth itself, 
𝑑𝝌

𝑑𝑡
(𝑡𝑘

𝑎).  

3.2 Interpolation 

A prior estimate of the observations for each ensemble can be obtained by linearly interpolating the values of the state to time 125 

𝑡𝑘
𝑎 + 𝜇̃𝑡,𝑘. It is convenient to require that this time is not earlier than the previous analysis time or later than the next analysis 

time, 𝑡𝑘−1
𝑎 ≤ 𝑡𝑘

𝑎 + 𝜇̃𝑡,𝑘 ≤ 𝑡𝑘+1
𝑎 . In order to interpolate to times between those limits, it is necessary to run the prior ensemble 

forecasts for up to twice as long as for a normal ensemble Kalman filter, out to 𝑡𝑘+1
𝑎 . This is no more than a doubling of the 

computation cost of prior forecasts for each analysis. The prior ensemble members must also be stored at all times between 

the previous and next analysis times to facilitate interpolation. Computing the adjusted observation error variance in a more 130 

accurate way than just extrapolating (method 1 above) appears to be costly and complex and is not explored further here. 

4 Computing estimates of the time offset 

The previous section has presented algorithms to extend ensemble Kalman filters to cases where an estimate of the distribution 

of time offset 𝜏 at an analysis time is known. This section presents algorithms for estimating the distribution of 𝜏 at an analysis 

time for use in an ensemble Kalman filter. Recall that 𝜇𝑡 is assumed to be 0 in Sect. 5 and onward. 135 

4.1 No correction 

The distribution is (incorrectly) assumed to be 𝜀𝑘
𝑡 ∣ 𝒚𝑘

𝑜  ~ 𝑁(0,0), so the default ensemble Kalman filter is applied. 

4.2 Variance only 

The distribution from which the time offset is drawn is used, 𝜀𝑘
𝑡 ∣ 𝒚𝑘

𝑜  ~ 𝑁(𝜇𝑡 , 𝜎𝑡
2), without updating it based on the observation. 

Using this with extrapolation results in no change to the prior mean but an increased observation error variance.  140 

4.3 Impossible linear estimate 

This algorithm assumes that the difference between the observation and the truth at the analysis time,  𝒅̃ = 𝒚𝑘
𝑜 − 𝝌(𝑡𝑘

𝑎) is 

known; this is not possible in real systems where the truth is unknown (hence the name ‘impossible’) but provides an interesting 

baseline for practical algorithms. A method that drops this assumption (and is therefore possible) is discussed in the next 

section.   145 
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Assuming the system has locally linear behavior near time 𝑡𝑘
𝑎 , if 𝜀𝑘

𝑡  is sufficiently small we can approximate 𝝌(𝑡𝑘
𝑜) =

 𝝌(𝑡𝑘
𝑎 +  𝜀𝑘

𝑡 ) as 𝝌(𝑡𝑘
𝑎) + 𝒗𝜀𝑘

𝑡  . In that case, the difference between the observation and the truth is approximately  𝒅̃ =  (𝒚𝑘
𝑜 −

𝝌(𝑡𝑘
𝑜)) + (𝝌(𝑡𝑘

𝑜) − 𝝌(𝑡𝑘
𝑎)) =   𝜺𝑘

𝑥 + 𝒗𝜀𝑘
𝑡 .  

 150 

We want to find the relative likelihood of a particular time offset 𝜏, i.e., the relative PDF 𝑝(𝜏) of the distribution of 𝜀𝑘
𝑡 ∣ 𝒚𝑘

𝑜 . 

By Bayes’ theorem, recalling that 𝒅̃ is known, we have  

𝑝(𝜏) ∝ 𝑃( 𝜀𝑘
𝑡 = 𝜏 ∣∣  𝜺𝑘

𝑥 + 𝒗𝜀𝑘
𝑡 =  𝒅̃ ) ∝ 𝑃( 𝜺𝑘

𝑥 + 𝒗𝜀𝑘
𝑡 =  𝒅̃ ∣∣ 𝜀𝑘

𝑡 = 𝜏 )𝑃(𝜀𝑘
𝑡 = 𝜏).      (4) 

𝜺𝑘
𝑥 + 𝒗𝜀𝑘

𝑡 =  𝒅̃ conditioned on 𝜀𝑘
𝑡 =   𝜏 if and only if 𝜺𝑘

𝑥 =  𝒅̃ − 𝜏𝒗. Since 𝜺𝑘
𝑥 and 𝜀𝑘

𝑡  are independent, the assumption that 𝜺𝑘
𝑥 

is normally distributed (with mean 𝟎 and covariance matrix 𝐑) gives  155 

𝑃( 𝜺𝑘
𝑥 + 𝒗𝜀𝑘

𝑡 =  𝒅̃ ∣∣ 𝜀𝑘
𝑡 = 𝜏 ) = 𝑃(𝜺𝑘

𝑥 =  𝒅̃ − 𝜏𝒗) ∝  exp (−
1

2
(𝒅̃ − 𝜏𝒗)

𝑇
𝐑−1(𝒅̃ − 𝜏𝒗)).    (5) 

Finally, the assumption that 𝜀𝑘
𝑡  is also normally distributed (with mean 𝜇𝑡 and variance 𝜎𝑡

2) gives 

𝑝(𝜏) ∝ exp (−
1

2
(𝒅̃ − 𝜏𝒗)

𝑇
𝐑−1(𝒅̃ − 𝜏𝒗)) exp (−

1

2
(𝜏 − 𝜇𝑡)2𝜎𝑡

−2)      (6) 

𝑝(𝜏) ∝ exp (−
1

2
[𝒅̃ 𝑇𝐑−1𝒅̃ + 𝜇𝑡

2𝜎𝑡
−2 − 𝜏(𝒅̃ 𝑇𝐑−1𝒗 +  𝒗 𝑇𝐑−1𝒅̃ + 2𝜇𝑡𝜎𝑡

−2) +  𝜏2𝛽]),    (7) 

where 𝛽 = 𝒗𝑇𝐑−1𝒗 + 𝜎𝑡
−2 . Note that since 𝐑  is a covariance matrix, it is real symmetric (hence self-adjoint), so 160 

𝒅̃ 𝑇𝐑−1𝒗 =  𝒗 𝑇𝐑−1𝒅̃: 

𝑝(𝜏) ∝ exp (−
𝛽

2
[𝜏2 − 2𝜏

 𝒗 𝑇𝐑−1𝒅̃+𝜇𝑡𝜎𝑡
−2

𝛽
+  

𝒅̃ 𝑇𝐑−1𝒅̃+𝜇𝑡
2𝜎𝑡

−2

𝛽
]).       (8) 

Since any constants may be absorbed into the proportionality, completing the square yields 

𝑝(𝜏) ∝ exp (−
𝛽

2
[𝜏 − 

𝒗𝑇𝐑−1 𝒅̃+𝜇𝑡𝜎𝑡
−2

𝛽
]

2

).         (9) 

This is the PDF of a normal with mean  165 

𝜇̃𝑡,𝑘 =  
𝒗𝑇𝐑−1 𝒅̃+ 𝜇𝑡𝜎𝑡

−2

𝛽
=

𝒗𝑇𝐑−1 𝒅̃+ 𝜇𝑡𝜎𝑡
−2

𝒗𝑇𝐑−1𝒗+ 𝜎𝑡
−2          (10) 

and variance 

𝜎̃𝑡,𝑘
2 =  

1

𝛽
=

1

𝒗𝑇𝐑−1𝒗+ 𝜎𝑡
−2.           (11) 

4.4 Possible linear estimate 

In real applications, the difference between the observation and the truth at the analysis time cannot be computed, but the 170 

difference between the observation and the prior ensemble mean, 𝒅 = 𝒚𝑘
𝑜 −  𝒙𝑝̅̅ ̅(𝑡𝑘

𝑎)  can. Linearly extrapolating (again, 
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assuming sufficiently linear local behavior near 𝑡𝑘
𝑎) gives an estimate 𝒅 ≈ 𝜺𝑘

𝑥 + 𝒗𝜀𝑘
𝑡 − 𝜺𝑘

𝑝
, where 𝜺𝑘

𝑝
 ~𝑁(𝟎, 𝚺𝑝(𝑡𝑎

𝑘)) is a draw 

from the prior ensemble sample covariance at the analysis time. Here 𝚺𝑝(𝑡𝑎
𝑘) refers to the sample covariance matrix of the 

prior ensemble at the analysis time 𝑡𝑎
𝑘. This assumes that the prior ensemble distribution is consistent with the truth so that the 

truth over many analysis times is statistically indistinguishable from the prior ensemble members. In real applications, this is 175 

never the case. For instance, any practical problem would certainly have model deficiencies so that the prior would be biased 

and 𝜺𝑘
𝑝
 would have a non-zero mean.  

 

Defining the difference of the observation error 𝜺𝑘
𝑥 and the prior uncertainty 𝜺𝑘

𝑝
 as 𝜺𝑘

𝛿 = 𝜺𝑘
𝑥 − 𝜺𝑘

𝑝
, we have 

𝜺𝑘
𝛿  ~ 𝑁(𝟎, 𝐑 + 𝚺𝑝(𝑡𝑘

𝑎)). The analysis for the impossible linear estimate can be repeated by solving for the probability 180 

𝑝(𝜏) = 𝑃( 𝜀𝑘
𝑡 = 𝜏 ∣∣  𝜺𝑘

𝛿 + 𝒗𝜀𝑘
𝑡 =  𝒅 ).         (12) 

in the same fashion. The result is that  

𝜇̃𝑡,𝑘 =  
𝒗𝑇[𝐑+𝚺𝑝(𝑡𝑘

𝑎)]−1 𝒅+ 𝜇𝑡𝜎𝑡
−2

𝒗𝑇[𝐑+𝚺𝑝(𝑡𝑘
𝑎)]−1𝒗+ 𝜎𝑡

−2           (13) 

and 

𝜎𝜏
2 =  

1

𝒗𝑇[𝐑+𝚺𝑝(𝑡𝑘
𝑎)]−1𝒗+ 𝜎𝑡

−2           (14) 185 

Under the linearity assumption, because time error contributes a Gaussian error 𝒗𝜀𝑘
𝑡  to the observation, it is statistically 

difficult to distinguish between the usual observation error and error due to time offset. This can lead to time error estimates 

with a magnitude that is too large. This error can propagate to subsequent analysis times and lead to biased prior estimates that 

can result in unstable feedback in the assimilation. Sect. 6.3 presents evidence of this problem and describes a solution that 

works for the test applications explored there. 190 

4.5 Nonlinear estimate 

As for the interpolation method in Sect. 3.2, assume that an ensemble of prior estimates of the true state, 𝒙𝑛
𝑝(𝑡𝑖) is available at 

the same discrete times as the truth for 𝑡𝑘−1
𝑎 ≤ 𝑡𝑖 ≤ 𝑡𝑘+1

𝑎 . Assume that the prior is normal with the ensemble giving a good 

estimate of the prior distribution, i.e., a priori, the true state at time 𝑡𝑖, 𝝌(𝑡𝑖) is drawn from the multivariate normal distribution 

with mean 𝒙𝑝(𝑡𝑖) (the average of the prior ensemble at time 𝑡𝑖) and covariance 𝚺𝑝(𝑡𝑖) (the covariance of the prior ensemble). 195 

Recall that the observation error 𝜀𝑘
𝑥 is assumed to be drawn from a normal distribution with mean 𝟎 and covariance 𝐑. Hence, 

conditioned on 𝑡𝑘
𝑜 = 𝑡𝑖 for some 𝑡𝑖, the relative likelihood of making the observation 𝒚𝑘

𝑜 = 𝒚 for some 𝒚 is given by a sum of 

Gaussians: 

𝑃( 𝒚𝑘
𝑜 = 𝒚 ∣∣ 𝑡𝑘

𝑜 = 𝑡𝑖 ) = 𝑃(𝜀𝑘
𝛿 = 𝒚 − 𝒚𝑘

𝑜 ∣ 𝑡𝑘
𝑜 = 𝑡𝑖) ∝ 𝑁(𝒙𝑝̅̅ ̅ (𝑡𝑖), 𝚺𝑝(𝑡𝑖) + 𝐑;  𝑦),     (15) 
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where 𝑁(𝝁, 𝚺; 𝒙) refers to the PDF of a normal distribution with mean 𝝁 and covariance matrix 𝚺, evaluated at 𝒙 (in one 200 

dimension, the PDF of a normal distribution with specified mean and variance, evaluated at a point). 

 

On the other hand, recall that the relative likelihood that 𝑡𝑘
𝑜 = 𝑡𝑖 is a normal distribution with mean 𝑡𝑘

𝑎 and variance 𝜎𝑡
2. Hence, 

Bayes’ theorem gives that for each 𝑡𝑖 ∈ [𝑡𝑘−1
𝑎 , 𝑡𝑘+1

𝑎 ] , the relative likelihood that the offset observation was taken at this time 

is given by the following product: 205 

𝑃(𝑡𝑘
𝑜 = 𝑡𝑖) ∝ 𝑁(𝒙𝑝̅̅ ̅ (𝑡𝑖), 𝚺𝑝(𝑡𝑖) + 𝐑; 𝒚𝑘

𝑜) 𝑁(𝑡𝑘
𝑎 + 𝜇𝑡 , 𝜎𝑡

2;  𝑡𝑖),        (16) 

The value of 𝑡𝑖 with the largest relative likelihood given by Eq. (16) is assumed to correspond to the maximum likelihood 

estimate of the time offset, 𝜇̃𝑡,𝑘 = 𝑡𝑘
𝑎 − 𝑡𝑖. It is complex and expensive to compute a nonlinear estimate of the variance of the 

offset, 𝜎̃𝑡,𝑘
2 , and that is not explored here. It is also possible to compute the 𝜇̃𝑡,𝑘  in other related ways. For example, the 

likelihood weighted average of the {𝑡𝑖}, could be used instead. This was found to make only small differences to the results 210 

described in Sect.  7.  

5 Low-order model test problems 

A set of assimilation methods described in the next section are applied to the 40-variable model described in Lorenz and 

Emmanuel (1998), referred to as the L96 model. The model has 40 state variables 𝑋1, … , 𝑋40 (with 𝑋40 also labelled 𝑋0 and 

𝑋39 also labelled 𝑋−1), and the evolution of the model is given by the following 40 differential equations: 215 

𝑑𝑋𝑖

𝑑𝑡
= 𝑋𝑖−1 (𝑋𝑖+1 − 𝑋𝑖−2) − 𝑋𝑖 + 𝐹,   𝑖 = 1, … , 40.      (17) 

The forcing parameter 𝐹 is set to 8 in this work. This value was chosen by Lorenz and Emmanuel (1998) for their baseline 

exploration because it is one of the smallest values that results in chaotic dynamics. This value is used in a large number of 

applications of the L96 model (for example Anderson 2001; Dirren and Hakim, 2005; van Leeuwen 2010). 

 220 

 A fourth-order Runge-Kutta time differencing scheme is applied with a non-dimensional timestep of ∆𝑡 = 0.01 instead of the 

0.05 that is more frequently used in previous work. The choice to use a smaller timestep is intended to make the timestep 

smaller than the values of 𝜎𝑡 for which the algorithm was tested. If Δ𝑡 were much larger than 𝜎𝑡, then most true observation 

times would be within one timestep of the reported observation times. Since linear interpolation was used to compute the states 

of the system between timesteps, this would lead to time error contributing a linear factor to overall observation error. In 225 

practical applications, we are quite interested in the effect of the system’s nonlinearity on the total error in the presence of time 

error, which would not be represented in the experiment if the timestep were larger. 

 

Results are explored for 5 different simulated observing systems that differ by the analysis period, 𝑃, with which observations 

are supposed to be taken. The periods are 5, 10, 15, 30 and 60 timesteps corresponding to 0.05, 0.1, 0.15, 0.3 and 0.6 time 230 
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units. Each experiment performs 1100 analysis steps and the first 100 analysis steps (corresponding to between 500 and 6000 

timesteps) are always discarded. Inspection of time series of prior ensemble mean error suggests that the system is equilibrated 

well before 100 steps for all experiments. 

 

For a given analysis period, the L96 model is integrated from an initial condition of 1.0 for the first state variable and zero for 235 

all others to generate truth trajectories. Eleven initial conditions are generated by saving the state every 1100 analysis times. 

The first initial condition is used to empirically tune localization and inflation, and the other ten are used for ten trials using 

the tuned values. 

 

For each observing system, several values of the standard deviation of the observation time offset 𝜎𝑡  are explored. The 240 

combination of 𝜎𝑡 and an analysis period 𝑃 define a case. Table 1 shows the cases explored. For each method applied to each 

case, a set of 49 assimilation experiments is performed using pairs of Gaspari-Cohn (Gaspari and Cohn 1999) localization half-

widths selected from the set {0.125, 0.15, 0.175, 0.2, 0.25, 0.4, ∞} and fixed multiplicative variance inflation (Anderson 

and Anderson 1999) selected from the set {1, 1.02, 1.04, 1.08, 1.16, 1.32, 1.64}. The pair of half-width and inflation that 

produces the minimum posterior ensemble mean root mean square error from the truth is used for ten subsequent experiments 245 

for the case that differ only in the initial truth condition. 

 

At each analysis time 𝑘, all 40 state variables are observed at a time 𝑡𝑘
𝑜 that has an offset 𝜀𝑘

𝑡  from the analysis time, 𝑡𝑘
𝑜 = 𝑡𝑘

𝑎 +

𝜀𝑘
𝑡 . All observations at a given time share the same time offset which is generated as a random draw from a truncated normal 

distribution with mean 0, variance  𝜎𝑡
2 and bounds at  ±𝑃∆𝑡.  250 

 

 

Table 1: List of observing system cases explored. For each of five analysis periods, a number of different values 

for the time offset standard deviation were explored. 

Analysis Period 𝜎𝑡 

0.05 0, 0.0125, 0.025, 0.05 

0.10 0, 0.0125, 0.025, 0.05, 0.1 

0.15 0, 0.0125, 0.025, 0.05, 0.1 

0.30 0, 0.0125, 0.025, 0.05, 0.1, 0.2 

0.60 0, 0.0125, 0.025, 0.05, 0.1, 0.2 

 

Figure 1 shows a short segment of the trajectory of the truth, 𝝌(𝑡𝑖), for a single L96 state variable and the generation of 

observations for the case with analysis period 0.60 and time error standard deviation 0.2. The true observation values 𝒚𝑘
𝑡𝑟 for 255 
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each state variable are generated by linearly interpolating the true state trajectory 𝝌(𝑡𝑖) that is available every 0.01 time units 

to the offset observing times 𝑡𝑘
𝑜 (blue circles in Fig. 1). The observation error variance is 1 for all experiments and the actual 

observations that are assimilated, 𝒚𝑘
𝑜 (yellow ‘X’ in Fig. 1) are generated by adding an independent draw from 𝑁(0, 1) to 𝒚𝑘

𝑡𝑟 

for each of the 40 state variables. 

 260 

Figure 1 also shows the value of the state linearly extrapolated from the analysis time to the observed time as a blue vector and 

teal ‘+’. This is analogous to the extrapolation performed by Eq. (2) using the ensemble mean estimate as a base point. In Eq. 

(2), all ensemble members are shifted by the same vector analogous to the blue one in Fig. 1, but that vector is an approximation 

of the one shown in Fig. 1. The figure also gives a feeling for how nonlinear the time offset problem is at a particular analysis 

time, i.e., where the linearity assumptions in Eq. (2) would fail. For example, near time 369.5, the linearity assumption fails 265 

and leads to additional error, while near 371.5 it is partially effective and gives a better estimate for the truth. In cases where 

the linearity assumption is likely to fail, it may be more appropriate to use the interpolation method discussed in Sect. 3.2.  

 

 

 270 

Figure 1: A short segment of the truth for a state variable and the observation generation process from the case with analysis 

period 0.6 and time error standard deviation 0.2. The true trajectory is indicated by the small grey asterisks every 0.01 time 

units. The black asterisks indicate the true value at each analysis time. The blue circles are the truth at the actual observed time 

(the analysis time plus the observation time offset for that analysis time). The yellow crosses are the actual observations that 

are assimilated and are generated by adding a random draw from 𝑁(0, 1) to the truth at the actual observed time. The teal ‘+’ 275 

indicate the result of linearly extrapolating the truth at the analysis time to the actual observed time using the time derivative 

of the model at the analysis time (𝒗 in Eq. (1)); a blue line segment connects the truth to the extrapolated value. 
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6 Assimilation Methods 

Five assimilation methods were tested for each L96 case. All applied a standard ensemble adjustment Kalman filter (EAKF, 280 

Anderson 2001) with 80 members using a serial implementation (Anderson 2003) to update the ensemble with observations. 

All but the first method made adjustments to the prior observation ensemble and/or the observation error covariance to deal 

with the observation time offset.  

 

6.1 No correction (referred to as NOCORRECTION)  285 

Observations were assimilated with a standard EAKF. This is consistent with the assumption made in Sect. 4.1 that the time 

offset is 𝜀𝑘
𝑡 ∣ 𝒚𝑘

𝑜 = 0. 

 

6.2 Adjust observation error variance only (referred to as VARONLY)  

This method assumed time offset 𝜀𝑘
𝑡 ∣ 𝒚𝑘

𝑜  ~ 𝑁(0, 𝜎𝑡
2) as in Sect. 4.2 and only adjusted the observation error variance using the 290 

linear approximation given in Eq. (3). 

 

6.3 Possible linear correction (referred to as LINEAR) 

This method used Eq. (13) and Eq. (14) to compute the mean and variance of the time offset. This distribution for 𝜏 was then 

used with the extrapolation method of Sect. 3.1, using Eq. (2) to compute prior ensemble estimates of each observation and 295 

Eq. (3) to compute the observation error variance.  

 

A naive application of this method was not successful in any of the L96 cases. The tuned assimilations worked successfully 

for some number of analysis times, but the RMSE of the ensemble mean always began to increase with time before 1100 

analysis times and results were worse than for NOCORRECTION. The magnitude of the estimate of the mean value of the 300 

time offset |𝜇̃𝑡,𝑘| would also systematically increase with time.  

 

This occurred because of the statistical challenge of separating observation time offset from prior model error. Suppose this 

method was applied to a model with only a single time varying variable that is observed. The prior ensemble mean will almost 

always have an error. If, for example, that error has the same sign as the time tendency of the model at the analysis time, the 305 

linear correction method will attribute part of that error to a time offset in the observation and will not correct the error as 

strongly as it would if no time offset were assumed. This means that the forecast at the next analysis time is likely to be 

consistent with the model state at a time later than the analysis time. Again, the algorithm will attribute some of this error to a 

time offset in the observation. The net result is that the estimated model state is likely to drift further and further ahead of the 

true trajectory in time.  310 
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To avoid this problem, estimates of the time offset that were (nearly) independent of the error for a given state variable were 

needed. This was accomplished by using a modified version of Eq. (13) to compute a separate value of 𝜇̃𝑡,𝑘  for each 

observation:  

𝜇̃𝑡,𝑘
≈𝑚 =

𝒗𝑇[𝐑+𝚺𝑝(𝑡𝑘
𝑎)]

−1
𝒅≈𝑚

𝒗𝑇[𝐑+𝚺𝑝(𝑡𝑘
𝑎)]

−1
𝒗+𝜎𝑡

−2
.      𝑚 = 1 … 𝑀         (18) 315 

where 𝑀  is the number of observations (here, 𝑀 = 40, the size of the model, for all experiments). The vector 𝒅≈𝑚  is a 

modification of the original vector 𝒅, the distance between the observations and the prior ensemble mean at the analysis time. 

The 𝑖th component of 𝒅≈𝑚 is given by 

𝒅𝑖
≈𝑚 = {

𝒅𝑖 ,    ‖𝑖, 𝑚‖ > 𝑇;

0,     ‖𝑖, 𝑚‖ ≤ 𝑇,
           (19) 

where 𝑇 is an integer cutoff threshold and ‖𝑖, 𝑚‖ is the cyclical distance in units of grid intervals between two variables in the 320 

40-variable L96 model, 

‖𝑖, 𝑚‖ = {
|𝑖 − 𝑚|,      |𝑖 − 𝑚| ≤ 20;

40 − |𝑖 − 𝑚|,         |𝑖 − 𝑚| > 20.
          (20) 

For example, if 𝑚 = 35, then ‖𝑖, 𝑚‖ ≤ 10 for 25 ≤ 𝑖 ≤ 40 and 𝑖 ≤ 5. 

 

A subset of the components of the vector 𝒅 that correspond to observed state variables close to the 𝑚th state variable were set 325 

to 0, effectively eliminating the impact of these state variables on the estimated time offset for the 𝑚th observation. All results 

shown here for the LINEAR method used a threshold 𝑇 of 10 so that 21 components (out of 40) were set to zero. Larger or 

smaller values of 𝑇 increased the RMSE in tuning experiments performed for the case with analysis period 𝑃 = 0.3 and time 

offset standard deviation 𝜎𝑡 = 0.1. It is likely that improved performance for other cases could result from retuning 𝑇, but this 

was not explored here. Any applications of this algorithm to real problems would require tuning of the threshold. 330 

 

6.4 Impossible linear correction (referred to as IMPOSSIBLE) 

This method used Eq. (10) and Eq. (11) to compute the mean and variance of the time offset. This distribution for 𝜏 was then 

used with the extrapolation method of Sect. 3.1, using Eq. (2) to compute prior ensemble estimates of each observation and 

Eq. (3) to compute the observation error variance. As noted, computing 𝒅̃ for use in Eq. (10) requires knowledge of the true 335 

state so this is not a practical algorithm. Knowledge of the truth prevents the drift away from the truth that necessitated the use 

of Eq. (16) for LINEAR. 

 

6.5 Nonlinear correction (referred to as NONLINEAR) 

The nonlinear algorithm in Sect. 4.5 was used to estimate the most likely value of the time offset 𝜇̃𝑡,𝑘 and the interpolation 340 

method in Sect. 3.2 was used to adjust the prior estimates of each observation.  
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In addition to estimating the model state, each of the 5 methods also estimated the value of the time offset, 𝜇̃𝑡,𝑘 at each analysis 

times. Methods NOCORRECTION, VARONLY and LINEAR used the possible estimate from Eq. (13), IMPOSSIBLE used 

the estimate from Eq. (10), and NONLINEAR used the estimate from Sect. 4.5.  345 

7 Results 

Figure 2 shows the results for the five methods applied to all cases. For each case, the RMSE of the prior ensemble mean is 

plotted for each of the ten trials made with each assimilation method. The results for different methods are distinguished by 

the color of the markers and the horizontal offset of the plot columns. Note that ranges of both axes vary across the figures and 

that the horizontal axis is logarithmic (with the exception of the value for no time offset). 350 

 

The blue markers (leftmost) are the results of the NOCORRECTION method which ignores the time offset and does a standard 

ensemble adjustment Kalman filter using 𝑁(0, 1) as the observation error. The VARONLY method, shown in orange (middle), 

accounts for the added uncertainty in the observation values due to the unknown time offset. VARONLY is better than 

NOCORRECTION for longer analysis periods and larger time error standard deviations. There are no cases for which 355 

VARONLY is obviously worse than NOCORRECTION. 

 

The LINEAR method is shown in teal (second from left). For almost all cases, it generally produces smaller RMSE than 

NOCORRECTION with the relative improvement being largest for analysis period 0.1 and 0.15 and larger time error standard 

deviation. LINEAR produces larger RMSE than NOCORRECTION for all cases with analysis period 0.6. The poor 360 

performance for the cases with time error standard deviation greater than 0.15 is due to errors in the linear tangent 

approximation for the evolution of the L96 state trajectories (see examples for the 0.6 analysis period in Fig. 1). LINEAR 

applies the same increment to the observational error variance as VARONLY. It performs better than VARONLY for most 

cases. However, VARONLY is better than LINEAR for cases with period 0.6, showing that the additional linear correction to 

the prior ensemble is clearly inappropriate for these cases. 365 

 

Additional insight into the performance of LINEAR can be gained from the results for IMPOSSIBLE, shown in black (second 

from right) in the figure. Not surprisingly, since it has access to the truth when estimating the offset, it always produces smaller 

RMSE than LINEAR (except for cases with no time error). For the 0.05, 0.1 and 0.15 analysis period cases, the RMSE for 

IMPOSSIBLE is nearly independent of the time error standard deviation. This is not the case for analysis periods 0.3 and 0.6 370 

where the error increases as the time error standard deviation increases. The cause of this error increase is that the linear tangent 

approximation becomes inaccurate as the time error increases. However, especially for analysis period 0.6, IMPOSSIBLE does 

not produce significantly better RMSE than NOCORRECTION, even for smaller time error standard deviation where the 
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linear tangent approximation should normally be accurate. Apparently, the larger prior error resulting from infrequent 

observations dominates the errors introduced by the time error in these cases. 375 

 

The NONLINEAR method plotted in yellow (rightmost) has additional information about the distribution of the time offset 

and almost always performs significantly better than NOCORRECTION. The relative importance of nonlinearity in the prior 

truth trajectories is revealed by comparing the RMSE for IMPOSSIBLE and NONLINEAR. For time error standard deviations 

smaller than 0.1, IMPOSSIBLE is almost always significantly better, but for time error standard deviation of 0.1 and 0.2, 380 

NONLINEAR is always better.  

 

All methods also produce an estimate, 𝜇̃𝑡,𝑘, of the true time offset, 𝜀𝑘
𝑡 , at each analysis time, 𝑡𝑘

𝑎. The RMSE of the estimate for 

each method for cases with analysis periods 0.1 and 0.3 are shown in Fig. 3 with the same color/position scheme as in Fig. 2. 

For NOCORRECTION, the offset is estimated using Eq. (13) even though the offset is not used in the algorithm. For LINEAR, 385 

the estimate is the estimate using all state variables from Eq. (13), not the revised estimates using Eq. (16). For IMPOSSIBLE, 

the offset is computed using Eq. (10).  

 

 

 390 

 

Figure 2: RMSE of the ensemble mean over 1000 

analysis time steps for cases with analysis period (A) 

0.05, (B) 0.1, (C) 0.15, (D) 0.3, or (E) 0.6 time units. 

Each dot in the graphs corresponds to an experiment run 

with a particular method, analysis period, and time error. 

Ten experiments were run for each method-analysis 

period combination. The horizontal axis is logarithmic 

except for the 0 value. 
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For analysis period of 0.1 (Fig. 3A), the estimates from all methods are always less than the specified time error standard 

deviation and become smaller fractions of the specified value as the value increases. This is because it is easier to detect time 

error when that error is relatively larger compared to the observation error. LINEAR and VARONLY have smaller RMSE 

than NOCORRECTION for larger time error standard deviations with LINEAR being slightly better than VARONLY. The 395 

RMSE for NONLINEAR is much larger than for NOCORRECTION for smaller time error standard deviations. This is because 

the possible offset estimates are selected from the discrete set of times for which the truth and prior ensemble are computed 

(see Eq. (15)) which are spaced 0.01 time units apart. The time offset estimates for all other methods can take on any real 

value.  For the case with time error standard deviation 0.1, the nonlinearity is large enough that the NONLINEAR estimate of 

the offset is comparable to that produced by VARONLY and is better than NOCORRECTION. 400 

 

For larger analysis period of 0.3 (Fig. 3B), the estimate from LINEAR is not better than NOCORRECTION, while VARONLY 

is better than LINEAR for larger time error standard deviations. In this case, NONLINEAR still has the largest RMSE for 

cases with time error standard deviation of 0.025 and 0.05, but has by far the smallest RMSE for cases with 0.1 and 0.2.  

 405 

 

Figure 3: The RMSE of the estimate of the time offset for cases with analysis period (A) 0.1 time units and (B) 0.3 time units. 

Ten experiments were run for each of 5 methods with each method indicated by a different color. The horizontal axis is 

logarithmic except for the 0 value. 

8 Discussion and summary 410 

A number of simplifying assumptions were made in the algorithms described here. These include assuming that every state 

variable is observed directly, that all observations share the same time offset, that the observation error covariance matrix 𝐑 is 

diagonal, and that the time offset variance, 𝜎𝑡
2, is known a priori. Additionally, the assumption of linearity and the assumption 

that the average time offset, 𝜇𝑡, is 0 are discussed above. 

 415 

It is straightforward to deal with some of these issues. The assimilation problem can be recast in terms of a joint phase space, 

where an extended model state vector is defined as the union of the model state variables and prior estimates of all observations 
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(Anderson 2003). Then, all observed quantities are model state variables by definition. However, for methods that use linear 

extrapolation via Eq. (1), the model equations are no longer sufficient. One can either develop equations for the time tendency 

of observations, or simply use finite difference approximations to compute 𝒗  for the extended state. It is even more 420 

straightforward to extend the method to cases where not all (extended) state variables are observed. Both the methods for using 

(Sect. 3) and computing (Sect. 4) information about the time offset at the current analysis time can be applied just to the 

variables that are observed.  

 

Since a serial ensemble filter is being used for the actual assimilation, it is possible to partition the observations into subsets 425 

that are themselves assimilated serially. All observations that share a time offset can be assimilated as a subset, including a 

subset for those observations with no time offset.  

 

All of the methods for estimating the offset at a given analysis time except NOCORRECTION make explicit use of 𝜎𝑡
2, the 

variance of the distribution from which the offsets are drawn. If this is not known accurately, the performance of all the 430 

algorithms is expected to degrade. However, tests in which the value used in the assimilation was either 4 or 16 times larger 

than the actual value of 𝜎𝑡
2 led to only limited increases in the RMSE of the various methods. It is also possible to refine the 

estimate of this variance by starting with a large value and examining the estimated values of the time offset that result. 

 

The methods also assume that the observation error covariance matrix 𝐑 is diagonal, which simplifies the derivation of the 435 

equations in Sects. 4.3 and 4.4 and allows the serial implementation. Removing this simplifying assumption requires computing 

and inverting matrices of size 𝑀 × 𝑀, where 𝑀 is the number of observations with mutually correlated errors. The increase in 

cost is the same as for algorithms that do not estimate time offset. 

 

The methods described have a range of computational costs. The VARONLY method only requires a single evaluation of Eqs. 440 

(2) and (3) at each analysis time step and has an incremental cost that is a tiny fraction of the NOCORRECTION base filter. 

The LINEAR method requires an evaluation of Eq. (16) for every observation, and Eq. (16) requires the computation, storage, 

and inversion of a prior ensemble covariance matrix. However, this matrix could be reduced in size to only include the subset 

of observations that is used to compute the offset for each observation. It would be application specific to determine this size. 

For example, a radiosonde would make a large number of observations, e.g., temperature and wind at a number of levels, but 445 

many of these are correlated in time. We can capture most of the information about time offset from a smaller subset of the 

observations, and just do the inversion on those to make the matrix small compared to the total model size. 

 

The NONLINEAR method involves a large amount of additional computation. The prior ensemble needs to be available over 

a range of times covering the possible offsets. In the idealized cases here, that meant that ensemble forecasts were required to 450 

extend to the second analysis time in the future, doubling the forecast model cost. Then Eq. (15) must be evaluated for each of 
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the available times. The dominant cost in Eq. (15) is computing the prior covariance matrix for the observations that share an 

offset. This requires 𝑂(𝑀2) computations, where 𝑀 is the number of observations. Again, the relative cost would be highly 

application specific, but this method is the most expensive of the five. 

 455 

The importance of accounting for observation time errors in many earth system DA applications remains unexplored. The 

range of methods discussed here have varying cost, but all could be applied for at least short tests in any application for which 

ensemble DA is already applicable. In particular, applications to atmospheric reanalyses for periods well before the radiosonde 

era seem to be especially good candidates for improvement. Future work will assess the algorithms presented here in both 

observing system simulation and real observation experiments with global atmospheric models and observing networks from 460 

previous centuries. 
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