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Abstract.

The Madden-Julian Oscillation (MJO) is one of the main sources of sub-seasonal atmospheric predictability in the Tropical

region. The MJO affects precipitation over highly populated areas, especially around Southern India. Therefore, predicting

its phase and intensity is important as it has a high societal impact. Indices of the MJO can be derived from the first principal

components of wind speed and outgoing longwave radiation (OLR) in the Tropics (RMM1 and RMM2 indices). The amplitude5

and phase of the MJO are derived from those indices. Our goal is to forecast these two indices on a sub-seasonal timescale.

This study aims to provide an ensemble forecast of MJO indices from analogs of the atmospheric circulation, computed from

the geopotential at 500 hPa (Z500) by using a stochastic weather generator (SWG). We generate an ensemble of 100 members

for the MJO amplitude for sub-seasonal lead times (from 2 to 4 weeks). Then we evaluate the skill of the ensemble forecast

and the ensemble mean using probabilistic scores and deterministic skill scores. According to score-based criteria, we find that10

a reasonable forecast of the MJO index could be achieved within 40-day lead times for the different seasons. We compare our

SWG forecast with other forecasts of the MJO.

1 Introduction

Forecasting the Madden Julian Oscillation (MJO) is a crucial scientific endeavor as the MJO represents one of the most

important sources of subseasonal predictability in the tropics. The Madden Julian oscillation controls tropical convection, with15

a life cycle going from 30 to 60 days (Lin et al., 2008). It is characterized by a dominant eastward propagation over the tropical

Indo-Pacific basin in particular during the boreal winter. The MJO affects the Indian, Australian monsoons (Zhang, 2013), and

West African monsoon (Barlow et al., 2016). It was shown that it affects precipitation in East Asia (Zhang et al., 2013) and

North America (Becker et al., 2011). The MJO affects the global weather as it impacts the tropics as well as the extratropics

due to the atmospheric teleconnections (Zhang, 2013; Cassou, 2008).20

The improvement of the forecast skill of the MJO is subject of several studies. Numerical models have shown an ability to

forecast the MJO index (Kim et al., 2018). However, the forecast of the MJO is sensitive to the quality of the initial conditions
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(Zhang, 2013; Straub, 2013). This motivates probabilistic forecasts to overcome the chaotic nature of climate variability (Sivillo

et al., 1997; Palmer, 2000). Indeed, ensemble forecasts have shown improvements over deterministic forecasts for weather and

climatic variables on short and long term (Yiou and Déandréis, 2019; Hersbach et al., 2020). One of the advantages of ensemble25

forecasts is that they provide information about the forecast uncertainties, which deterministic forecasts cannot provide. In

addition, the use of ensemble means has shown better forecast results than the individual ensemble members in previous works

(Toth and Kalnay, 1997; Grimit and Mass, 2002; Xiang et al., 2015).

Statistical models, such as stochastic weather generators (SWG), have been used for this purposes. SWGs are designed to

mimic the behavior of climate variables (Ailliot et al., 2015). They have been used to forecast various weather and climatic30

variables such as temperature (Yiou and Déandréis, 2019), precipitation (Krouma et al., 2021) and the North Atlantic oscillation

(NAO) (Yiou and Déandréis, 2019). One of the benefits of using stochastic weather generators is that they have a low computing

cost compared to numerical models. Combining stochastic weather generators with analogs of the atmospheric circulation is

an efficient approach to generate ensemble weather forecasts with consistent atmospheric patterns (Yiou and Déandréis, 2019;

Krouma et al., 2021; Blanchet et al., 2018).35

Analogs of circulation were designed to provide forecast assuming that similar situations in the atmospheric circulation could

lead to similar local weather conditions (Lorenz, 1969). Recent studies have evaluated the potential of analogs to forecast the

probability distribution of climate variables: Yiou and Déandréis (2019) simulated large ensemble members of temperature

using random sampling of atmospheric circulation analogs; Atencia and Zawadzki (2014) used analogs of precipitation to

forecast precipitation.40

The goal of this study is to forecast a daily MJO index for a subseasonal lead time (≈ 2 – 4 weeks) with a SWG based on

analogs of the atmospheric circulation, described in Sec. 3.2. The SWG approach was evaluated in previous studies by Yiou

and Déandréis (2019) and Krouma et al. (2021) for European temperature and precipitation. The SWG was able to forecast the

temperature within 40 days and the precipitation within 20 days with reasonable skill scores in western Europe (Krouma et al.,

2021; Yiou and Déandréis, 2019). In this paper, we adjust the parameters of the SWG in order to forecast the MJO indices.45

More precisely, our goals are (i) to forecast the MJO amplitude (directly from the amplitude, and using the MJO indices), and

(ii) to evaluate the ability of our SWG model to forecast active events of the MJO for the following weeks. We will evaluate

the sensitivity of the SWG approach on the forecast with different seasons and compare the forecast skill using SWG to other

forecast approaches.

The paper is divided as follows: Section 2 shows the data used for running our forecast. Section 3 explains the methodology:50

circulation analogs, stochastic weather generator and the verification metrics that we used to evaluate the SWG forecast. Section

4 explains the experimental setup. Section 5 details results of simulations and the evaluation of the ensemble forecast. Section

6 is devoted to the comparison of the SWG forecast with the literature. Section 7 contains the main conclusions of the analyses.
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2 Data

The MJO has been described by various indices, that are obtained from different atmospheric variables (Stachnik and Chrisler,55

2020). Wheeler and Hendon (2004) defined an MJO index from two so-called Real-time Multivariate MJO series (RMM).

RMM1 and RMM2 represent respectively the first and second principal components of the empirical orthogonal functions

(EOFs) resulting from the combination of daily fields of the satellite-observed outgoing longwave radiation (OLR), and the

zonal wind at 250 hPa and 850 hPa latitudinally averaged between 15°N and 15°S (Rashid et al., 2011). The EOFs are computed

from daily normalized fields after applying a filter to remove the long timescale variability (annual mean and the first three60

harmonics of the seasonal cycle), the previous 120 days of anomaly fields and the El Niño signal as described by Wheeler and

Hendon (2004). Lim et al. (2018) and Ventrice et al. (2013) proposed other indices proposed of the MJO. The main difference

between the indices consists in the input fields and the computation of the index. For instance, Ventrice et al. (2013) replace

OLR with 200hPa velocity potential and Lim et al. (2018) do not remove an El Niño signal.

For this paper, we selected the RMM-based MJO index of The RMM1 and RMM2 allow to compute the amplitude and the65

phase of the MJO Wheeler and Hendon (2004). One of the reasons is that it is often used for MJO forecast (e.g. Kim et al.,

2018; Rashid et al., 2011; Silini et al., 2021).

To simplify notations in the equations, we will note R1 = RMM1 and R2 = RMM2. The amplitude (A) and phase (ϕ) are

defined as follows:

A(t) =
√

R1(t)2 + R2(t)2, (1)70

and

ϕ(t) = tan−1 R2(t)
R1(t)

. (2)

The amplitude and the phase describe respectively the evolution of the MJO and its position along the equator. The amplitude

is related to the intensity of the MJO activity. For instance, we consider that there is a MJO event when A(t)≥ 1. There are

different classifications related to the intensity of the active MJO events (Lafleur et al., 2015). The phase ϕ is decomposed into75

eight areas known as centers of convection of the MJO over the equator, starting from the Indian Ocean through the maritime

continent to the western Pacific Ocean. This leads to a discretization ϕ̂ of phase ϕ into those eight identified areas (Lafleur

et al., 2015). For each day t, we consider the amplitude A(t), which can be above 1 (active MJO) or below 1, and the phase

ϕ̂ ∈ {1, . . . ,8}. The amplitude and the phase are usually represented in a phase-space diagram (Lafleur et al., 2015), called the

Wheeler-Hendon phase diagram. An example of Wheeler-Hendon phase diagram is shown in Figure 1.80

We obtained daily time series of RMMs, amplitude (A) and phase (ϕ̂) from January 1979 to December 2020 over the

region covering 15°N – 15°S, from the University of Columbia (USA) (Wheeler and Hendon, 2004). In this paper, we aim at

forecasting RMM variations.
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We used the geopotential at 500 hPa (Z500), 300 hPa (Z300) and Outgoing Longwave Radiation (OLR) daily data to compute

the analogs. The data are available from 1948 to 2020 with a horizontal resolution of 2.5°× 2.5°. The data were downloaded85

from the National Centers for Environmental Prediction (NCEP, Kistler et al. (2001)).

In this paper, we predict the daily amplitude A and phase ϕ of the MJO, from the daily analogs of Z500, Z300 and OLR.

Figure 1. Wheeler-Hendon phase diagram of the MJO event for the period between 1986/03/03 and 1986/04/09, for observations. The

Diagram shows the 8 areas of activity of MJO starting from the Indian Ocean.
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3 Methodology

3.1 Analog computation

We start by building a database of analogs. For a day t, we define analogs as dates t′ within 30 calendar days of t that have a90

similar Z500 (or Z300 or OLR) configuration as t. We look for analogs in different years from t. We quantify the similarity

between daily Z500 maps using the Euclidean distance. The analogs are computed from daily data using a moving time window

of ∆ = 30 days. This duration ∆ corresponds to the life cycle of the MJO. Then, we keep the 20 best analogs. We define “best

analog” as dates which have the minimum Euclidean distance between t and t′. The use of the Euclidean distance and the

number of the analogs were explored and justified in previous studies (Krouma et al., 2021; Platzer et al., 2021).95

Hence the distance that is optimized to find analogs of the Z500(x,t) field is:

D(t, t′) =

[∑

x

(
τ∑

i=0

|Z500(x,t + i)−Z500(x,t′+ i)|2
)] 1

2

, (3)

where x is a spatial index, τ is a time window size (e.g. τ = 3 days).

We compute separately analogs of Z500, Z300 and OLR following the same procedure over the Indian Ocean as represented

in Figure 2. We explored different ways to compute the analogs mainly the search window of the analogs and the adjustment100

of the geographical domain. We considered different geographical regions to search for analogs. We computed analogs over

the Indian ocean, the Indian-Pacific ocean and the Indian-maritime ocean for verification purposes (Annex B1). This lead to

consider an optimal region for the analog search outlined in Figure 2.
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Figure 2. The optimal domain of computation of analogs, we computed analogs over the Indian ocean, in the geographic areas indicated by

the black dash rectangle with coordinates (50E – 85E; 15S – 15N). The figure shows the temporal correlation between Z500, RMM1 (panel

a) and RMM2 (panel b) for the whole studied period from 1979 to 2020. The correlation is weak but it is still significant (with p-values

≤ 0.05) for the indicated domain.
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3.2 Configuration of the stochastic weather generator

The purpose of the stochastic weather generator (SWG) is to generate ensembles of random trajectories that yield physically105

consistent features. The SWG we use is based on circulation analogs that are computed in advance with the procedure described

in Section 3.1 (Yiou, 2014; Krouma et al., 2021). We produce an ensemble hindcast forecast with the circulation analog SWG

with the following procedure. For a given day t0 in year y0, we generate a set of S = 100 simulations until a time t0 + T ,

where T is the lead time, that goes from 3 to 90 days. We start at day t0 and randomly select an analog (out of K = 20) of day

t0 + 1. The random selection of analogs of day t0 + 1 among K analogs is performed with weights wk that are computed are110

the products of two weights wc
k and wϕ

k defined by the following rules:

1. weights wc
k are inversely proportional to the calendar difference between t0 and analog dates, to ensure that time goes

"forward". If δk is the difference of calendar days between t0 + 1 and the kth analogue of t0 + 1, then the calendar day

sampling weight wc
k is proportional to exp(−|δk|).

2. More weight is given to analogs which are in the same phase. If δ′k is the difference between ϕ̂(t0 + 1) and the discrete115

phase ϕ̂k of the kth analog, then the phase weight wϕ
k is proportional to exp(−|δ′k|).

Then we set wk = 0 when the analog year is y0. Indeed, excluding analog selection in year y0, ensures that we do not use

information from the T days that follow t0. Then wk = wc
k ×wϕ

k and the values of wk are normalized so that their sum is 1.

The rules 1 is similar to the SWG used by Krouma et al. (2021). Rule 2 adds a constraint to ensure a phase consistence across

analogs.120

We then replace t0 by the selected analog of t0 + 1 and repeat the operation T times. Hence we obtain a hindcast trajectory

between t0 and t0+T . This operation of trajectory simulation from t0 to t0+T is repeated S = 100 times. The daily MJO (A(t)

or RMMs) of each trajectory is time-averaged between t0 and t0 + T . Hence, we obtain an ensemble of S = 100 forecasts of

the average MJO (A(t) or RMMs) for day t0 and lead time T . Then t0 is shifted by ∆t≥ 1 days, and the ensemble simulation

procedure is repeated. This provides a set of ensemble forecasts with analogs.125

To evaluate our forecasts, the predictions made with the SWG are compared to the persistence and climatological forecasts.

The persistence forecast consists of using the average value between t0−T and t0 for a given year. The climatological forecast

takes the climatological mean between t0 and t0 + T . The persistence and climatological forecasts are randomized by adding

a small Gaussian noise, whose standard deviation is estimated by bootstrapping over T long intervals. We thus generate sets of

persistence forecasts and climatological forecasts that are consistent with the observations (Yiou and Déandréis, 2019).130

3.3 Forecast verification metrics

We assess the skill of the SWG to forecast the A(t) and the RMMs using two approaches. We start by evaluating the perfor-

mance of the SWG to forecast A(t). For that, we use probabilistic scores (Zamo and Naveau, 2018; Hersbach, 2000; Marshall

et al., 2016), like the Continuous Rank probability Score (CRPS) for each lead time T . The CRPS is a quadratic measure of
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the difference between the forecast cumulative distribution function and the empirical cumulative distribution function of the135

observation (Zamo and Naveau, 2018). The CRPS is defined by:

CRPS(P,xa) =

+∞∫

−∞

(P (x)−H(x−xa))2dx, (4)

where xa is the observed RMMobs or A(t)obs, P is the cumulative distribution function of x of the ensemble forecast and H
represents the Heaviside function, (H(y) = 1 if y ≥ 0, and H(y) = 0 otherwise). A perfect forecast yields a CRPS value equal

to 0.140

As the CRPS value depends on the unit of the variable to be predicted, it is useful to normalize it with the CRPS value of a

reference forecast, which can be obtained by a persistence or a climatology hypothesis. The CRPSS is defined as a percentage

of improvement over such a reference forecast (Hersbach, 2000). We compute the CRPSS using as a reference the climatology

and the persistence.

CRPSS = 1− CRPS

CRPSref

, (5)145

where CRPS is the average of the CRPS of the SWG forecast and CRPSref is the average of the CRPS of the reference

(either climatology or persistence).

The CRPSS values vary between −∞ and 1. The forecast has improvement over the reference when the CRPSS value is

above 0.

We also computed the rank (temporal) correlation between the observations and the median of the 100 simulations (Scaife150

et al., 2014).

A robust forecast requires a good discrimination skill. A discrimination skill represents the ability to distinguish events from

non-events. We measure the skill of the SWG in discriminating between situations leading to the occurrence of an MJO event

(active MJO) and those leading to the non-occurrence of the event (inactive MJO). To do so, we use the relative operating

characteristic (ROC) score. The ROC is used for binary events (Fawcett, 2006). Since we have a probabilistic forecast, we can155

use a threshold value of 1 to construct a classifier for the binary event of MJO from the feature A(t):

– If A(t)≥ 1 we predict a positive outcome (active MJO),

– if A(t) ∧ 1 we predict a negative outcome (inactive MJO).

The ROC curve is a plot of the success rate versus the false alarm rate (Verde, 2006). The ROC curve could be also a plot

of the sensitivity versus the specificity (Fawcett, 2006). The sensitivity (true positive rate) is the probability of an active MJO160

event, assuming that A(t)≥ 1 is really observed. The specificity (true negative rate), refers to the probability of an inactive

MJO event, as long as we have A(t)≤ 1. Moreover, the sensitivity is a measure of the ability of the prediction to identify true

positives and the specificity is a measure of the ability to identify true negatives. Both quantities describe the accuracy of a
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prediction that signals the presence or absence of a MJO event (Fawcett, 2006). Therefore, we define the relationship between

sensitivity and specificity as follow:165

– specificity = 1−sensitivity means that we have a poor prediction because the rate of true negative and the false alarm

rate are the same,

– specificity > 1− sensitivity means that we have a good prediction.

Another performance measurement that we can infer from the ROC curve is the Area Under the Curve (AUC). The AUC

explains how much the forecast model is able to distinguish between binary classes. The AUC is the area in the ROC curve170

between sensitivity and the false positive rate computed as follow:

AUC =

1∫

0

S(x)dx (6)

Where S is the sensitivity and x is the false positive rate.

An increase in AUC indicates an improvement in discriminatory abilities of the model at predicting a negative outcome as a

negative outcome and a positive outcome as a positive outcome. An AUC of 0.5 is non-informative.175

Finally, we evaluate the ensemble mean forecast of RMM1 and RMM2 using the usual scalar metrics for MJO forecast

(Rashid et al., 2011; Silini et al., 2021; Kim et al., 2018). We computed the bivariate anomaly correlation coefficient (COR)

and the bivariate root mean square error (RMSE) between the forecasted RMMs (Rpred
i ) and the observed RMMs (Robs

i ) as

follow:

COR(T ) =
∑t=N

t=1 [Robs
1 (t)Rpred

1 (t,T ) +Robs
2 (t)Rpred

2 (t,T )]√∑t=N
t=1 [Robs

1 (t)2 + Robs
2 (t)2]

√∑N
t=1[R

pred
1 (t,T )2 + Rpred

2 (t,T )2]
, (7)180

RMSE(T ) =

√∑t=N
t=1 [|Robs

1 (t)−Rpred
1 (t,T )|2 + |Robs

2 (t)−Rpred
2 (t,T )|2]

N
, (8)

where t is the time, T is the lead time of the forecast, N is the length of the time series (N ∼ 104). We interpret the values of

COR and RMSE using thresholds fixed by previous studies to define the forecast skill of the SWG. The forecast has skill when

the COR value is larger than 0.5 and the RMSE value is lower than
√

2. Rashid et al. (2011) explain that for a climatological

forecast, RMSE =
√

2 because the standard deviation of the observed RMM indices is 1. Hence, forecasts are considered to185

be skilful for RMSE <
√

2 (i.e., they have lower RSME than a climatological forecast). We will use those threshold in our

analyses.

We compare the RMSE to the ensemble spread in order to evaluate the forecast accuracy. The ensemble spread measures

the difference between the members of the ensemble forecast. The ensemble spread ES is obtained by the root mean square

difference between the ensemble members and the ensemble mean defined as follow:190

ES =

√∑S
n=1(An−A)2

S
, (9)
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where S is the size of the ensemble members, An is the amplitude of the nth ensemble member of the forecast and Â is the

ensemble average of An over the S members.

We compute the average amplitude error (EA) and the average phase error (Eϕ) for the different lead times T . They allow

to evaluate the quality of the forecast. The average amplitude error (EA) is defined as follow:195

EA(T ) =
1
N

t=N∑

t=1

[Apred(t,T )−Aobs(t)], (10)

The value of EA(T ) indicates how fast the forecast system loses the amplitude of the MJO signal. If a positive value indicates

an overestimation of the amplitude in predictions compared to the observation. A negative value indicates an underestimated

amplitude. Rashid et al. (2011) define the average phase error (Eϕ) as:

Eϕ(T ) =
1
N

t=N∑

t=1

tan−1 Robs
1 (t)Rpred

2 (t,T )−Robs
2 (t)Rpred

1 (t,T )

Robs
1 (t)Rpred

1 (t,T ) +Robs
2 (t)Rpred

2 (t,T )
. (11)200

This formulation stems from the ratio of the cross product (numerator) and dot product (denominator) of the vectors of

forecast (Rpred
1 ,Rpred

2 ) and observations (Robs
1 ,Robs

2 ). Eq. (11) is equivalent to the average phase angle difference between

the prediction and observations, with a positive angle indicating the forecast leads the observations (Rashid et al., 2011).

The negative (positive) value of Eϕ(T ) indicates a slower (faster) propagation of the phase in predictions compared to the

observations.205

4 Forecast Protocol

We explore the skill of a SWG to forecast the A(t) and the RMMs (R1 and R2) using analogs of the atmospheric circulation.

We generate separately an ensemble of 100 members of the A(t) of the MJO and RMMs using the same approach. The goal is

to have a probabilistic forecast of the A(t) for a subseasonal lead time T (≈ 2 to 4 weeks). As input to the SWG, we are using

analogs of the atmospheric circulations. We computed analogs separately from Z500, Z300 and the OLR. And we choose to210

keep analogs from the geopotential at height 500 hPa instead of the fields OLR or Z300. One reason of this choice is based

on the composition of the RMMs index. Indeed, the OLR is used as a proxy for organized moist convection. However, the

fractional contribution of the convection to the variance of RMMs is considerably lower than the fraction of the zonal wind

fields (Kim et al., 2018; Straub, 2013).

Then, we adjusted the geographical region and the window search of analogs. Indeed, the forecast skill of the MJO depends215

on the geographical region. We choose to compute the analogs over the Indian Ocean with coordinates (50°E – 85°E; 15°S

–15°N). We argued our choice by the fact that (i) the Indian Ocean corresponds to the first phase of the MJO in the phase-space

diagram, where the MJO starts. (ii) Different models found good results by initiating their forecast in this region (Kim et al.,

2018).

We search for analogs within 30 calendar days. This duration corresponds to the life cycle of the MJO. In addition, we adjust220

the SWG in order to select analogs from the same phase, as described in Section 3.2.
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To evaluate the skill score of our forecasts, we used two approaches. We used the probabilistic scores such as CRPS,

correlation and ROC score (section 3.3) to evaluate the ensemble forecast of the amplitude. Then, we evaluate the ensembles

mean of RMM1 and RMM2. For that, we used scalar metrics such as the COR and the RMSE (section 3.3), as they are

commonly used to evaluate MJO forecast (Rashid et al., 2011; Lim et al., 2018).225

5 Results

We show the results of the forecast of A(t) and RMMs (R1 and R2) from the analogs of Z500 over the Indian Ocean with

a time of search of 30 days. As explained in section 4, we explored the potential of other atmospheric circulations (OLR and

Z300) to forecast the MJO amplitude. However, the forecast skill using analogs of OLR were not that satisfying compared to

the Z500 (Annexes: Figures A4). This could be explained by the fact that the MJO predictability can be improved by including230

atmospheric and oceanic process (Pegion and Kirtman, 2008).

We also tested the forecast of A(t) and RMMs using analogs of Z300. We get good forecast skill (i.e. with COR > 0.5 and

RMSE <
√

2) up to T = 60 days. However, we notice that the forecast skill scores based on analogs of Z500 are higher for

small lead times (up to 30 days). The results of the forecast with analogs of Z300 could be found in the annexes (A1 to A3). For

those reasons, we decided to keep results of the forecast for A(t) and RMMs with analogs of Z500. Therefore, this highlights235

the capacity of Z500 to catch the variability of the MJO.

For an illustration, we show the time series of the simulations and observations of the MJO amplitude for 1986. This year

yields an unusually large period of RMM amplitude above 1, suggesting an important MJO activity. Figure 3 shows the mean

of the 100 simulations and the observations for lead times of 3, 5 and 10 days for the whole year. We find that there is a strong

correlation between observed and simulated A(t) for the different lead times represented. Moreover, the SWG was able to240

distinguish between the active MJO days (A(t)≥ 1) and inactive MJO (A(t) ∧ 1).
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Figure 3. Time series of observations and simulations of the MJO Amplitude for lead time of 3, 5 and 10 days, respectively (a), (b) and

(c), for the year 1986. The red line represents the mean of the 100 simulations, the black line represents the observations, and the blue line

indicates the threshold of the MJO activity (below 1: inactive; above 1: active)
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5.1 Evaluation of the Ensemble forecast of the MJO Amplitude

We evaluate the forecast of amplitude A(t) using the probabilistic skill scores (CRPSS, ROC and correlation) defined in

Section 3.3. We are considering the average of the skill scores up to each lead time T . In Figure 4, we show the CRPSS and the

correlation for DJF (December, January and February) and JJA (June, July and August) for different lead times T going from245

3 to 40 days.

The CRPSS was computed using as a reference the forecast made from climatology and persistence. We notice that the

CRPSS vs. persistence reference is decreasing with time. It has higher values for T = 3,5,10 days. We notice that when the

lead time is larger than T = 15 days, CRPSS values become stable for both seasons. However, the CRPSS vs. climatology

is increasing with lead times. We notice that for small lead times (T ≤ 15 days), the SWG forecast is doing better than the250

persistence, while for big lead times T ≥ 15 days, the SWG forecast is doing better than the climatology. We can say that the

forecast has positive improvement compared to climatology and persistence for DJF and JJA for all the studied lead times. We

see that correlation is mostly decreasing with lead times. The highest correlation is related to small lead times (T ≤ 15 days).

We used the ROC diagram to determine the discrimination between active and inactive events of the MJO. We associated

1 to active MJO event and zero to the inactive events. In Figure 5, we show the ROC diagram for the different lead times T255

from 3 to 40 days. Analyzing the AUC, shown in Table 1, we find that until 40 days, the SWG is able to separate non-events

(inactive MJO) from events as the AUC values are between 0.88 and 0.61. It is still significant as it is over the diagonal (random

forecast). We notice that the sensitivity value is 0.9 for 3 days, and it decreases with lead time to reach 0.7 by 40 days. We

also find that the specificity and sensitivity are equal for small lead times. However, the specificity remains above ≈ 0.5 for

T = 40 days. This value of specificity is still higher than (1− sensitivity = 0.2). This indicates that the forecast has skill to260

distinguish between MJO events until 40 days ahead.

Table 1. Area under ROC curve (AUC) for the different lead times T from 3 to 40 days

T 3 days 5 days 10 days 20 days 30 days 40 days

AUC 0.88 0.83 0.74 0.66 0.62 0.61

Using three probabilistic metrics (CRPSS, correlation and ROC), we show that the SWG is able to skillfully forecast the

MJO amplitude from analogs of Z500. The CRPSS shows a positive improvement of the forecast until 40 days. However, the

correlation is significant until 20 days. By using the ROC curve and the discrimination skill, we show that the forecast still has

skill until 40 days.265

The difference between the lead times that we found using the CRPSS, correlation and the ROC result from the difference

between the skill scores. In fact, the CRPS is used for different categories of events, while the ROC is used for binary events,

which is more suitable with our case of study.

13

https://doi.org/10.5194/egusphere-2022-524
Preprint. Discussion started: 27 June 2022
c© Author(s) 2022. CC BY 4.0 License.



Lead time (days)

C
R

P
S

S

0.
0

0.
2

0.
4

0.
6

0.
8

03d 10d 20d 40d

DJF

Persistence
Climatology

Amplitude MJO

Lead time (days)

C
or

re
la

tio
n

0.
0

0.
2

0.
4

0.
6

0.
8

03d 10d 20d 40d

DJF

Amplitude MJO

Lead time (days)

C
R

P
S

S

0.
0

0.
2

0.
4

0.
6

0.
8

03d 10d 20d 40d

JJA

Persistence
Climatology

Amplitude MJO

Lead time (days)

C
or

re
la

tio
n

0.
0

0.
2

0.
4

0.
6

0.
8

03d 10d 20d 40d

JJA

Amplitude MJO

Figure 4. Skill scores for the MJO Amplitude for lead times going from 3 to 40 days for DJF (blue) and JJA (red) for analogs computed from

Z500. Squares indicate CRPSS where the Persistence is the reference, triangles indicates CRPSS where the climatology is the reference, and

box-plots indicates the probability distribution of correlation between observation and the median of 100 simulations for the period from

1979 to 2020.
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Figure 5. ROC curve for all lead times. The plot represents the sensitivity versus the specificity. The diagonal line represents the random

classifier obtained when the forecast has no skill. If the ROC curve is below the diagonal line, then the forecast has a poor skill, otherwise it

has a good skill, i.e. the forecast has the potential to distinguish between success and false alarm.

15

https://doi.org/10.5194/egusphere-2022-524
Preprint. Discussion started: 27 June 2022
c© Author(s) 2022. CC BY 4.0 License.



5.2 Evaluation of the Ensemble mean forecast of RMMs

In this part, we evaluate the performance of the SWG to forecast the RMMs (R1 and R2). We simulated R1 and R2 using the270

SWG and analogs of Z500. Then we used the ensemble mean of R1 and R2 to compute the verification metrics mainly the

COR and RMSE (Rashid et al., 2011; Kim et al., 2018; Silini et al., 2021), as shown in Figure 6. We looked at COR and RMSE

averaged up to each lead time T . Respecting the threshold 0.5 for the COR and
√

2 for RMSE, we found that the forecast has

skill until T = 40 days. We have to mention that T of 60 and 90 days were used for verification purposes.
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Figure 6. The COR and RMSE, respectively (a) and (b), for the different lead time of forecast from 3 days to 90 days over the period from

1979 to 2020. Confidence intervals are obtained with a bootstrap with 1000 samples.
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In order to verify the forecast skill, we computed the ensemble spread and we compared it to the RMSE values for the275

different lead times going from 3 to 40 days (Figure 7). We found that the difference between the ensemble spread and the

RMSE is increasing with lead time. The RMSE is becoming larger with lead time, which indicates that the distance between the

observations and simulations is increasing. In addition, the ensemble spread is decreasing, which indicates that the uncertainties

are increasing with time. This was verified by computing the bias of the forecast, where we could find that it is increasing with

lead time.280
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Figure 7. (a) Comparison between the ensemble spread and the RMSE. We notice that the difference is small for short lead times (≤ 15

days). "Metric" in the vertical axes refers to Ensemble spread and RMSE. (b) The bias between the simulations and the observations for the

lead time going from 3 to 40 days.

We explored the sensitivity of the forecast to seasons as shown in Figure 8. We found that the forecast for DJF and MAM

(March, April, May) has a good skill (i.e., with RMSE lower than
√

2) within 30 days. However, for SON (September, October

and November) and JJA, the a similar forecast skill was obtained for a lead time of 40 days. The DJF and MAM seasons

show the largest RMSE values. This indicates that the spread of the forecast is larger in DJFM than SON and JJA, even if the

observations and simulations are well correlated. The highest correlation on DJF and MAM could be explained by the fact that285

the MJO is more active in the boreal winter (DJFM). However, the RMSE values of JJA are more consistent as they represent

low distance between simulations and observations. Indeed, even if the MJO events tend to be more intense in DJFM, the

amplitude is underestimated. The assessment of the ensemble mean forecast of R1 and R2 showed that the forecast has skill

until 40 days. However, it is sensitive to seasons and that is consistent with previous studies of Wheeler and Hendon (2004);
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Rashid et al. (2011); Wu et al. (2016b). Indeed, we found that the SWG forecast of R1 and R2 has skill, with respect to the290

thresholds of COR and RMSE, within 40 days for summer (JJA) and 30 days for winter (DJF).
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Figure 8. The COR and RMSE, respectively (a) and (b), for the different lead time of forecast from 3 days to 90 days over the period from

1979 to 2020 for the different seasons DJF, JJA, MAM and SON.

We also computed the amplitude and phase errors (Figure 9). We found that the EA(t) is negative for all lead times. That

indicates a weak amplitude in predictions compared to the observations. The Eϕ(t) is positive until 30 days, which indicates
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fast propagation of the phase in predictions compared to the observations. Then it becomes negative, which means that the

phase is slower. We notice that the phase is well predicted while the amplitude is underestimated Figure 9. This is consistent295

with previous studies (Silini et al., 2021; Rashid et al., 2011).
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Figure 9. MJO Amplitude and phase average errors over all seasons for the period from 1979 to 2020. We notice that the amplitude is

underestimated and the phase is well predicted by comparing predictions to forecast.
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6 Comparison of the SWG forecast with other forecasts

The assessment of the forecast of MJO amplitude with SWG and analogs of Z500 shows good skill until 40 days using

probabilistic scores (CRPSS vs. climatology is 0.2 and CRPSS vs. Persistence is 0.4) and scalar scores (COR = 0.54 and

RMSE = 1.30) as explained in sections 5.1 and 5.2. The SWG forecast shows a positive improvement compared to the300

climatology and the persistence within 40 days Figure 4. In addition, the ROC curve confirmed the ability of the SWG forecast

to distinguish between the active and inactive MJO amplitude as shown in Figure 5. The same result was obtained using the

ensemble mean of RMM1 and RMM2 as represented in Figure 6. The SWG forecast of RMM1 and RMM2 has good skill

within 30 – 40 days respecting the threshold of 0.5 for the COR and
√

2 for RMSE. The difference on the lead time of the

forecast depends on the seasons as represented in figure 8. This is consistent with Wu et al. (2016a); Wheeler and Weickmann305

(2001); Rashid et al. (2011), where they found significant differences between seasons. We found that the forecast has skill until

30 days for DJF and MAM (with RMSE =
√

2) and 40 days for JJA and SON (with COR = 0.5) Figure 8. This is different

from Rashid et al. (2011) and Silini et al. (2021) who obtain higher forecast skill in the winter. However, it is in accordance

with results of Wu et al. (2016b) who found better skills for JJA.

We assessed the forecast skill of the SWG with other forecast. We selected two models POAMA (the Australian Bureau310

of Meteorology coupled ocean-atmosphere seasonal prediction system) and ECMWF, which are providing respectively prob-

abilistic and deterministic forecast of the MJO. We compared mainly the maximum lead time of the MJO amplitude forecast.

The POAMA model provides 10-member ensemble. In hindcast mode, the POAMA model has skill up to 21 days (Rashid et al.,

2011). The ECMWF reforecasts with Cycle 46r1 has skill to around 40 days. For the error of the amplitude and phase, we found

that ECMWF reforecast shows lower amplitude and phase averaged errors compared to those from the SWG forecasts. How-315

ever, what we found is consistent with other dynamical models (Kim et al., 2018) where they overestimate or underestimate

the amplitude and the phase of the MJO.

In addition, we compared quantitatively the SWG forecast with the ECMWF forecast Figure 10. The ECMWF reforecats

were taken from (Silini et al., 2022). We found that the ECMWF forecast has highest correlation until 20 days compared to

the SWG forecast. The RMSE values of ECMWF forecast are always small compared to the SWG forecast, which indicates a320

good reliability skill of the ECMWF forecast for lead times of 5 and 10 days. However, for lead times of 20 days the RMSE

of ECMWF forecast coincides with the RMSE of the SWG, which shows the improvement of the SWG forecast to lead time

above 20 days. The skill scores of the ECMWF (COR and RMSE) (Silini et al., 2022) are computed for each lead time, which

is different from our way of computing the skill score (considering the average lead time). Of course, this comparison was

made to check the performance of our forecast and not to say that the SWG model can replace a numerical prediction.325

We also compared the SWG forecast skill with a machine learning forecast of MJO indices (RMM1 and RMM2) (Silini et al.,

2021) . Silini et al. (2021) explored the skill forecast of two artificial neural network types, FFNN (feed-forward neural network)

and the AR-RNN (autoregressive recurrent neural network) on MJO indices. Silini et al. (2021) found that the machine learning

method gives good skill scores until 26 – 27 days with respect to the standard thresholds of COR and RMSE. We compared the

skill scores (RMSE and COR) of the SWG and Silini et al. (2021) forecasts for all lead times. We found that the two models330
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have the same correlation until 10 days. After 10 days, the correlation of Silini et al. (2021) forecasts decreases rapidly while

the correlation of SWG is still significant. For the RMSE, we found that the SWG has smaller values for lead time of 10 days.

This indicates that the SWG forecast is more reliable. However, from 30 days, the RMSE of the two models starts to be the

same.

To sum up, the comparison of SWG forecast to ECMWF and Silini et al. (2021) forecasts shows that for small lead time (up335

to 10 days) the ECMWF forecast has better skill. However, the SWG shows positive improvement for long lead times.
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Figure 10. Comparison of the values of COR (a) and RMSE (b) between the SWG forecast and forecasts of Silini et al. (2021) (blue lines)

and ECMWF (black lines). Confidence intervals for SWG (red lines) were obtained by with a bootstrap procedure over the simulations (1000

samples).
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7 Conclusions

We performed an ensemble forecast of the MJO amplitude using analogs of the atmospheric circulation and a stochastic

weather generator. We used the Z500 as a driver of the circulation over the Indian ocean and we considered analogs from the

same phase to do the forecast. We explored two ways to forecast the MJO, starting by forecasting directly the daily amplitude,340

then the daily MJO indices, RMM1 and RMM2, from 1979 to 2020.

We assessed the forecast skill of the MJO forecast by evaluating the ensemble member and the mean of the ensemble

member, using respectively probabilistic and scalar verification methods. This allowed us to evaluate the forecast and also to

explore the difference between the two verification methods.

We used probabilistic skill scores as the CRPSS and the ROC. We found that the forecast is good within 40 days. Using the345

scalar scores (COR and RMSE) and the ensemble mean of the forecast of RMM1 and RMM2, we found that the SWG is able

to forecast the MJO indices (RMM1 and RMM2) within 30 – 40 days.

We found that the forecast is sensitive to seasons. The forecast has skill up to 30 days for the boreal winter (DJF and MAM),

while it goes to 40 days for the boreal summer (JJA) and SON. That was consistent with previous studies (Silini et al., 2021;

Rashid et al., 2011). We also notice that the forecast of the phase is better than of the amplitude. Finally, we find that the SWG350

had improvement over the ECMWF and a maachine learning (Silini et al., 2021) forecasts, especially for long lead times.

This paper hence confirms the skill of the SWG to generate ensembles of MJO indices forecasts from analogs of circulation.

Such information would be useful to forecast impact variables such as precipitation and temperature.

Code availability. The code and data files are available at http://doi.org/10.5281/zenodo.4524562

Acknowledgements. This work is part of the EU International Training Network (ITN) Climate Advanced Forecasting of subseasonal Ex-355

tremes (CAFE). The project receives funding from the European Union’s Horizon 2020 research and innovation programme under the Marie

Skłodowska-Curie Grant Agreement No 813844. Authors would like to thank A. Corral and M. Minjares for the discussions.

23

https://doi.org/10.5194/egusphere-2022-524
Preprint. Discussion started: 27 June 2022
c© Author(s) 2022. CC BY 4.0 License.



Appendix A: Comparison of the forecast skill of the MJO using analogs computed from Z500, Z300 and OLR fields

We did the forecast of RMM1 and RMM2 using analogs of Z300 (Figure A5) and OLR (Figure A4). We found that the model360

yields good skills (COR > 0.5 and RMSE < 1.4) until T = 60 days (Figure A1). However, the skill of the forecast is better

for small lead times ≤ 30 days with Z500 (Figure A1). We checked the sensitivity of the forecast to seasons (Figures A3 and

A2).
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Figure A1. COR (panel a) and RMSE (panel b) values for different lead time of forecast from 3 days to 90 days over the period from 1979

to 2020 with analogs of Z300 and Z500.

25

https://doi.org/10.5194/egusphere-2022-524
Preprint. Discussion started: 27 June 2022
c© Author(s) 2022. CC BY 4.0 License.



 

 
C

O
R

Lead time (Days)

0.
0

0.
2

0.
4

0.
6

0.
8

03 05 10 15 20 30 40 60 90

DJF

Z300
Z500

 

 
C

O
R

Lead time (Days)

0.
0

0.
2

0.
4

0.
6

0.
8

03 05 10 15 20 30 40 60 90

MAM

Z300
Z500

 

 
C

O
R

Lead time (Days)

0.
0

0.
2

0.
4

0.
6

0.
8

03 05 10 15 20 30 40 60 90

SON

Z300
Z500

 

 
C

O
R

Lead time (Days)

0.
0

0.
2

0.
4

0.
6

0.
8

03 05 10 15 20 30 40 60 90

Z300
Z500

JJA

Figure A2. COR values for different lead times of forecast from 3 days to 90 days over the period from 1979 to 2020 for the different seasons

(DJF, JJA, MAM and SON).
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Figure A3. RMSE values for different lead times of forecast from 3 days to 90 days over the period from 1979 to 2020 for the different

seasons (DJF, JJA, MAM and SON).
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Figure A4. Time series of observations and simulations of the MJO Amplitude computed from analogs of OLR, for lead time of 3, 5 and 10

days, respectively (a), (b) and (c), for the year 1986. The red line represents the mean of the 100 simulations, the black line represents the

observations, and the blue line indicates the threshold of the MJO activity.

28

https://doi.org/10.5194/egusphere-2022-524
Preprint. Discussion started: 27 June 2022
c© Author(s) 2022. CC BY 4.0 License.



Days from January to December of 1986

(A
m

pl
itu

de
 =

 3
 d

 m
ea

n)
0.

5
1.

0
1.

5
2.

0
2.

5
3.

0
3.

5

1 27 52 79 105 131 157 183 209 235 261 287 313 339 365

obssimu

(c)

Days from January to December of 1986

(A
m

pl
itu

de
 =

 5
 d

 m
ea

n)
0.

5
1.

0
1.

5
2.

0
2.

5
3.

0

2 26 52 78 104 130 156 182 208 234 260 286 312 338 365

obssimu

(c)

Days from January to December of 1986

(A
m

pl
itu

de
 =

 1
0 

d 
m

ea
n)

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

5 30 55 80 105 130 155 185 210 235 260 285 310 335 365

obssimu

(c)

Figure A5. Time series of observations and simulations of the MJO Amplitude computed from analogs of Z300, for lead time of 3, 5 and 10

days, respectively (a), (b) and (c), for the year 1986. The red line represents the mean of the 100 simulations, the black line represents the

observations, and the blue line indicates the threshold of the MJO activity.
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We compared the CRPS and the RMSE (computed between the mean of the simulations and the observations) for different

lead times. We found that the RMSE values for the forecast based on analogs of the OLR are slightly higher than the RMSE365

values for the forecast based on analogs of Z500.

Appendix B: Domains of computation of analogs
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Figure B1. Domains of computation of analogs, we computed analogs over the Indian ocean with coordinates (50E, 85E – 15S,15N), the

Indian-Pacific ocean with coordinates (85E, 120E – 15S,15N) and the Indian-maritime ocean with coordinates (120E, 170E – 15S,15N).
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