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Abstract.

The Madden-Julian Oscillation (MJO) is one of the main sources of sub-seasonal atmospheric predictability in the Tropical
region. The MJO affects precipitation over highly populated areas, especially around Southern India. Therefore, predicting its
phase and intensity is important as it has a high societal impact. Indices of the MJO can be derived from the first principal
components of zonal wind and outgoing longwave radiation (OLR) in the Tropics (RMM1 and RMM2 indices). The amplitude
and phase of the MJO are derived from those indices. Our goal is to forecast these two indices on a sub-seasonal timescale.
This study aims to provide an ensemble forecast of MJO indices from analogs of the atmospheric circulation, computed from
the geopotential at 500 hPa (Z500) by using a stochastic weather generator (SWG). We generate an ensemble of 100 members
for the MJO amplitude for sub-seasonal lead times (from 2 to 4 weeks). Then we evaluate the skill of the ensemble forecast
and the ensemble mean using probabilistic scores and deterministic skill scores. According to score-based criteria, we find that
a reasonable forecast of the MJO index could be achieved within 40-day lead times for the different seasons. We compare our
SWG forecast with other forecasts of the MJO. The comparison shows that the SWG forecast has skill compared to ECMWF

forecast for lead time above 20 days and better skill compared to machine learning forecasts for small lead times.

1 Introduction

Forecasting the Madden Julian Oscillation (MJO) is a crucial scientific endeavor as the MJO represents one of the most
important sources of subseasonal predictability in the tropics. The Madden Julian oscillation controls tropical convection, with
a life cycle going from 30 to 60 days (Lin et al., 2008). It is characterized by a dominant eastward propagation over the tropical
Indo-Pacific basin in particular during the boreal winter. The MJO affects the Indian, Australian monsoons (Zhang, 2013), and
West African monsoon (Barlow et al., 2016). It was shown that it affects precipitation in East Asia (Zhang et al., 2013) and
North America (Becker et al., 2011). The MJO affects the global weather as it impacts the tropics as well as the extratropics
due to the atmospheric teleconnections (Zhang, 2013; Cassou, 2008).
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The improvement of the forecast skill of the MJO is subject of several studies. Numerical models have shown an ability to
forecast the MJO index (Kim et al., 2018). However, the forecast of the MJO is sensitive to the quality of the initial conditions
(Zhang, 2013; Straub, 2013). This motivates probabilistic forecasts to overcome the chaotic nature of climate variability (Sivillo
et al., 1997; Palmer, 2000). Indeed, ensemble forecasts have shown improvements over deterministic forecasts for weather and
climatic variables on short and long term (Yiou and Déandréis, 2019; Hersbach et al., 2020). One of the advantages of ensemble
forecasts is that they provide information about the forecast uncertainties, which deterministic forecasts cannot provide. In
addition, the use of ensemble means has shown better forecast results than the individual ensemble members in previous works
(Toth and Kalnay, 1997; Grimit and Mass, 2002; Xiang et al., 2015).

Statistical models, such as stochastic weather generators (SWG), have been used for this purposes. SWGs are designed to
mimic the behavior of climate variables (Ailliot et al., 2015). They have been used to forecast various weather and climatic
variables such as temperature (Yiou and Déandréis, 2019), precipitation (Krouma et al., 2021) and the North Atlantic oscillation
(NAO) (Yiou and Déandréis, 2019). One of the benefits of using stochastic weather generators is that they have a low computing
cost compared to numerical models. Combining stochastic weather generators with analogs of the atmospheric circulation is
an efficient approach to generate ensemble weather forecasts with consistent atmospheric patterns (Yiou and Déandréis, 2019;
Krouma et al., 2021; Blanchet et al., 2018).

Analogs of circulation were designed to provide forecast assuming that similar situations in the atmospheric circulation could
lead to similar local weather conditions (Lorenz, 1969). Recent studies have evaluated the potential of analogs to forecast the
probability distribution of climate variables: Yiou and Déandréis (2019) simulated large ensemble members of temperature
using random sampling of atmospheric circulation analogs; Atencia and Zawadzki (2014) used analogs of precipitation to
forecast precipitation.

The goal of this study is to forecast a daily MJO index for a subseasonal lead time (=~ 2 — 4 weeks) with a SWG based on
analogs of the atmospheric circulation, described in Sec. 3.2. The SWG approach was evaluated in previous studies by Yiou
and Déandréis (2019) and Krouma et al. (2021) for European temperature and precipitation. The SWG was able to forecast the
temperature within 40 days and the precipitation within 20 days with reasonable skill scores in western Europe (Krouma et al.,
2021; Yiou and Déandréis, 2019). In this paper, we adjust the parameters of the SWG in order to forecast the MJO indices.
More precisely, our goals are (i) to forecast the MJO amplitude (directly from the amplitude, and using the MJO indices), and
(ii) to evaluate the ability of our SWG model to forecast active events of the MJO for the following weeks. We will evaluate
the sensitivity of the SWG approach on the forecast with different seasons and compare the forecast skill using SWG to other
forecast approaches.

The paper is divided as follows: Section 2 shows the data used for running our forecast. Section 3 explains the methodology:
circulation analogs, stochastic weather generator and the verification metrics that we used to evaluate the SWG forecast. Section
4 explains the experimental setup. Section 5 details results of simulations and the evaluation of the ensemble forecast. Section

6 is devoted to the comparison of the SWG forecast with the literature. Section 7 contains the main conclusions of the analyses.
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2 Data

The MJO has been described by various indices, that are obtained from different atmospheric variables (Stachnik and Chrisler,
2020). Wheeler and Hendon (2004) defined an MJO index from two so-called Real-time Multivariate MJO series (RMM).
RMMI1 and RMM2 represent respectively the first and second principal components of the empirical orthogonal functions
(EOFs) resulting from the combination of daily fields of the satellite-observed outgoing longwave radiation (OLR), and the
zonal wind at 250 hPa and 850 hPa latitudinally averaged between 15°N and 15°S (Rashid et al., 2011). The EOFs are computed
from daily normalized fields after applying a filter to remove the long timescale variability (annual mean and the first three
harmonics of the seasonal cycle), the previous 120 days of anomaly fields and the El Nifio signal as described by Wheeler and
Hendon (2004). Lim et al. (2018) and Ventrice et al. (2013) proposed other indices proposed of the MJO. The main difference
between the indices consists in the input fields and the computation of the index. For instance, Ventrice et al. (2013) replace
OLR with 200hPa velocity potential and Lim et al. (2018) do not remove an El Nifio signal.

The RMM1 and RMM2 allow to compute the amplitude and the phase of the MJO (Wheeler and Hendon, 2004). For this
paper, we selected the RMM-based MJO index. One of the reasons is that it is often used for MJO forecast (e.g. Kim et al.,
2018; Rashid et al., 2011; Silini et al., 2021).

To simplify notations in the equations, we will note R; = RMM1 and R; = RMMZ2. The amplitude (A) and phase (¢) are

defined as follows:

A(t) =V Ra(t)? + Ra(1)?, (D

_1 Ra(2)
Ri(t)

The amplitude and the phase describe respectively the evolution of the MJO and its position along the equator. The amplitude

o(t) = tan )

is related to the intensity of the MJO activity. There are different classifications related to the intensity of the active MJO events
(Lafleur et al., 2015). In this paper, we consider that there is an MJO event when A(¢) > 1 (Lafleur et al., 2015). The phase ¢
is decomposed into eight areas known as centers of convection of the MJO over the equator, starting from the Indian Ocean
through the maritime continent to the western Pacific Ocean. This leads to a discretization qAS of phase ¢ into those eight
identified areas (Lafleur et al., 2015). For each day ¢, we consider the amplitude A(t), which can be above 1 (active MJO) or
below 1, and the phase gZ; € {1,...,8}. The amplitude and the phase are usually represented in a phase-space diagram (Lafleur
et al., 2015), called the Wheeler-Hendon phase diagram. An example of Wheeler-Hendon phase diagram is shown in Figure 1.
We obtained daily time series of RMMs, amplitude (A) and phase ((;AS) from January 1979 to December 2020 over the region
covering 15°N — 15°S, from IRI (2022) (Wheeler and Hendon, 2004). In this paper, we aim at forecasting RMM variations.
We used the geopotential at 500 hPa (Z500), 300 hPa (Z300) and Outgoing Longwave Radiation (OLR) daily data to compute
the analogs. The data are available from 1948 to 2020 with a horizontal resolution of 2.5° x 2.5°. The data were downloaded

from the National Centers for Environmental Prediction (NCEP, Kistler et al. (2001)).
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In this paper, we predict the daily amplitude A and phase ¢ of the MJO, from the daily analogs of Z500, Z300 and OLR.
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Figure 1. Wheeler-Hendon phase diagram of the MJO event for the period between 1986/03/03 and 1986/04/09, for observations. The

Diagram shows the 8 areas of activity of MJO starting from the Indian Ocean.

3 Methodology
3.1 Analog computation

We start by building a database of analogs. For a day ¢, we define analogs as dates ¢’ within 30 calendar days of ¢ that have a
similar Z500 (or Z300 or OLR) configuration as ¢t. We look for analogs in different years from ¢. We quantify the similarity
between daily Z500 maps using the Euclidean distance. The analogs are computed from daily data using a moving time window

of A = 30 days. This duration A corresponds to the life cycle of the MJO. Then, we keep the 20 best analogs. We define “best
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analog” as dates which have the minimum Euclidean distance between ¢ and t’. The use of the Euclidean distance and the
number of the analogs were explored and justified in previous studies (Krouma et al., 2021; Platzer et al., 2021).

Hence the distance that is optimized to find analogs of the Z500(x,t) field is:

D(t,t") = lz (i |Z500(x,t +14) — Z500(z, ¢’ —H’)Q)] 2 , (3)

z  \i=0
where z is a spatial index, 7 is a time window size (e.g. 7 = 3 days).

We compute separately analogs of Z500, Z300 and OLR following the same procedure over the Indian Ocean as represented
in Figure 2. We adjusted the parameters of computation of the analogs mainly the search window of the analogs and the
geographical domain. We considered different geographical regions to search for analogs. We computed analogs over the Indian
ocean, the Indian-Pacific ocean and the Indian-maritime ocean for verification purposes (Annex B1). This lead to consider an

optimal region for the analog search outlined in Figure 2.
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Figure 2. The optimal domain of computation of analogs, we computed analogs over the Indian ocean, in the geographic areas indicated by
the black dash rectangle with coordinates (SOE — 85E; 15S — 15N). The figure shows the temporal correlation between Z500, RMM!1 (panel
a) and RMM2 (panel b) for the whole studied period from 1979 to 2020. The correlation is weak but it is still significant with p-values < 0.05

that we indicated by black dots over each grid of the considered domain (including the optimal region used to compute analogs).
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3.2 Configuration of the stochastic weather generator

The stochastic weather generator (SWG) aims to generate ensembles of random trajectories that yield physically consistent
features. Our SWG is based on circulation analogs that are computed in advance with the procedure described in Section
3.1 (Yiou, 2014; Krouma et al., 2021). We produce an ensemble hindcast forecast with the circulation analog SWG with the
following procedure (see Figure 3 for a summary).

For a given day ¢, in year y,, we generate a set of S = 100 simulations until a time o + 7', where T is the lead time, which
goes from 3 to 90 days. We start at day ¢y and randomly select an analog (out of K = 20) of day tg + 1. The random selection
of analogs of day ¢y + 1 among K analogs is performed with a weight wj, that is computed as the products of two weights wy,

and w,f defined by the following rules:

1. weights wy, are inversely proportional to the calendar difference between ¢y and analog dates, to ensure that time goes
"forward". If §j, is the difference of calendar days between ¢y + 1 and ¢, where ¢y, is the date of the kth analog of ¢5 + 1,

then the calendar day sampling weight w, is proportional to exp(—|dx|).

2. weights w,‘f are the difference between the phase at ¢y and analog dates. Indeed, we give more weight to analogs that are

in the same phase. If ¢}, is the difference between (;AS(to + 1) and the discrete phase qﬁk of tx, then the phase weight w,f is

proportional to exp(—|d']).

Then we set wy =0 when the analog year is yo. Indeed, excluding analog selection in year yg, ensures that we do not use
information from the 7" days that follow to. Then wy = w§ X w,‘f and the values of w;, are normalized so that their sum is 1.

Rule 1 is similar to the SWG used by Krouma et al. (2021). Rule 2 adds a constraint to ensure phase consistency across analogs.
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Figure 3. Illustration the SWG process. The 1st step goes from one day to the next day. The 2nd Step explains how we randomly select a kth

analog with respect to weight wy.

We then replace ty with ¢ the selected analog of ty + 1 and repeat the operation 7' times. Hence we obtain a hindcast
trajectory between tg and ¢y + 7. This operation of trajectory simulation from % to o+ 7 is repeated S = 100 times. The daily
MIJO (A(t) or RMMs) of each trajectory is time-averaged between to and ¢y + 7. Hence, we obtain an ensemble of S = 100
forecasts of the average MJO (A(t) or RMMs) for day ¢ and lead time T'. Then ¢, is shifted by At > 1 days, and the ensemble
simulation procedure is repeated. This provides a set of ensemble forecasts with analogs.

To evaluate our forecasts, the predictions made with the SWG are compared to the persistence and climatological forecasts.
The persistence forecast consists of using the average value between ¢y — 71" and ¢ for a given year. The climatological forecast
takes the climatological mean between t( and ¢y + 7". The persistence and climatological forecasts are randomized by adding
a small Gaussian noise, whose standard deviation is estimated by bootstrapping over 7" long intervals. We thus generate sets of

persistence forecasts and climatological forecasts that are consistent with the observations (Yiou and Déandréis, 2019).
3.3 Forecast verification metrics

We assess the skill of the SWG to forecast the A(t) and the RMMs using two approaches. We start by evaluating the perfor-
mance of the SWG to forecast A(t). For that, we use probabilistic scores (Zamo and Naveau, 2018; Hersbach, 2000; Marshall
et al., 2016), like the Continuous Rank Probability Score (CRPS) for each lead time 7'. The CRPS is a quadratic measure of
the difference between the forecast cumulative distribution function and the empirical cumulative distribution function of the

observation (Zamo and Naveau, 2018). The CRPS is defined by:
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where 1, is the observed RM M°® or A(t)°%*, P is the cumulative distribution function of z of the ensemble forecast and H
represents the Heaviside function, (H(y) = 1 if y > 0, and H(y) = 0 otherwise). A perfect forecast yields a CRPS value equal
to 0.
As the CRPS value depends on the unit of the variable to be predicted, it is useful to normalize it with the CRPS value of a
reference forecast, which can be obtained by a persistence or a climatology hypothesis. The CRPSS is defined as a percentage
of improvement over such a reference forecast (Hersbach, 2000). We compute the CRPSS using as a reference the climatology

and the persistence.

CRPSS =1 SIPS ®)
CRPS,.;

where CRPS is the average of the CRPS of the SWG forecast and CRPS,..; is the average of the CRPS of the reference
(either climatology or persistence).

The CRPSS values vary between —oo and 1. The forecast has improvement over the reference when the CRPSS value is
above 0.

We also computed the rank (temporal) correlation between the observations and the median of the 100 simulations (Scaife
et al., 2014).

A robust forecast requires a good discrimination skill. A discrimination skill represents the ability to distinguish events from
non-events. We measure the skill of the SWG in discriminating between situations leading to the occurrence of an MJO event
(active MJO) and those leading to the non-occurrence of the event (inactive MJO). To do so, we use the relative operating
characteristic (ROC) score. The ROC is used for binary events (Fawcett, 2006). Since we have a probabilistic forecast, we can

use a threshold value of 1 to construct a classifier for the binary event of MJO from the feature A(t):
— If A(t) > 1 we predict a positive outcome (active MJO),
— if A(t) <1 we predict a negative outcome (inactive MJO).

The ROC curve is a plot of the success rate versus the false alarm rate (Verde, 2006). The ROC curve could be also a plot
of the sensitivity versus the specificity (Fawcett, 2006). The sensitivity (true positive rate) is the probability of an active MJO
event, assuming that A(t) > 1 is really observed. The specificity (true negative rate), refers to the probability of an inactive
MIJO event, as long as we have A(t) < 1. Moreover, the sensitivity is a measure of the ability of the prediction to identify true
positives and the specificity is a measure of the ability to identify true negatives. Both quantities describe the accuracy of a
prediction that signals the presence or absence of a MJO event (Fawcett, 2006). Therefore, we define the relationship between

sensitivity and specificity as follow:
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— speci ficity = 1 — sensitivity means that we have a poor prediction because the rate of true negative and the false alarm

rate are the same,
— specificity > 1 — sensitivity means that we have a good prediction.

Another performance measurement that we can infer from the ROC curve is the Area Under the Curve (AUC). The AUC
explains how much the forecast model is able to distinguish between binary classes. The AUC is the area in the ROC curve

between sensitivity and the false positive rate computed as follow:
1
AUC = /S(x)dm (6)
0

Where S is the sensitivity and x is the false positive rate.

An increase in AUC indicates an improvement in discriminatory abilities of the model at predicting a negative outcome as a
negative outcome and a positive outcome as a positive outcome. An AUC of 0.5 is non-informative.

Finally, we evaluate the ensemble mean forecast of RAM M1 and RM M2 using the usual scalar metrics for MJO forecast
(Rashid et al., 2011; Silini et al., 2021; Kim et al., 2018). We computed the bivariate anomaly correlation coefficient (COR)
and the bivariate root mean square error (RMSE) between the forecasted RMMs (Rf md) and the observed RMMs (R;-’bs) as

follow:
COR(T Si N[RO“( JRY“(4,T) + R ()R (1,T)] 0
I S T e S e e T
t= N red red
[| RS () — RY"“(t,T)|2 + | RSb* (t) — RY™*(¢,T)[2
RMSE(T \/z ()= B D) RS0 - R T ©

where ¢ is the time, 7' is the lead time of the forecast, IV is the length of the time series (N ~ 10%). We interpret the values of
COR and RMSE using thresholds fixed by previous studies to define the forecast skill of the SWG. The forecast has skill when
the COR value is larger than 0.5 and the RMSE value is lower than v/2. Rashid et al. (2011) explain that for a climatological
forecast, RM SE = /2 because the standard deviation of the observed RMM indices is 1. Hence, forecasts are considered to
be skilful for RMSE < /2 (i.e., they have lower RSME than a climatological forecast). We will use those threshold in our
analyses.

We compare the RMSE to the ensemble spread in order to evaluate the forecast accuracy. The ensemble spread measures
the difference between the members of the ensemble forecast. The ensemble spread E'S' is obtained by the root mean square
difference between the ensemble members and the ensemble mean defined as follow:

; =
B = \/2”21(1;” -, ©)

where S is the size of the ensemble members, A,, is the amplitude of the nth ensemble member of the forecast and A is the

ensemble average of A,, over the S members.

10
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We compute the average amplitude error (£4) and the average phase error (E,) for the different lead times 7'. They allow

to evaluate the quality of the forecast. The average amplitude error (F 4) is defined as follow:

1 t=N
Ea(r) = 5 D [Aprea(t.T) = Aops (1)), (10)
t=1

The value of F 4 (1) indicates how fast the forecast system loses the amplitude of the MJO signal. If a positive value indicates
an overestimation of the amplitude in predictions compared to the observation. A negative value indicates an underestimated

amplitude. Rashid et al. (2011) define the average phase error () as:

E(f)(T) = l tan_l R?bs (t)RIQ)"'ed (t)T) — Rghs (t)RIfT.Ed(t’ T)
N

b pred b pred : (11)
=1 RO RY™ (8, T) + Ry (t) Ry (¢,T)

This formulation stems from the ratio of the cross product (numerator) and dot product (denominator) of the vectors of
forecast (RY"®, RE"*?) and observations (R$"®, R3**). Eq. (11) is equivalent to the average phase angle difference between
the prediction and observations, with a positive angle indicating the forecast leads the observations (Rashid et al., 2011).
The negative (positive) value of Ey 7y indicates a slower (faster) propagation of the phase in predictions compared to the

observations.

4 Forecast Protocol

We explore the skill of a SWG to forecast the A(t) and the RM M s (R; and R3) using analogs of the atmospheric circulation.
We generate separately an ensemble of 100 members of the A(t) of the MJO and RMMs using the same approach. The goal is
to have a probabilistic forecast of the A(t) for a subseasonal lead time T" (= 2 to 4 weeks). As input to the SWG, we are using
analogs of the atmospheric circulations. We computed analogs separately from Z500, Z300, the wind at 250 hPa and 850 hPa
and the OLR. We choose to keep analogs from the geopotential at height 500 hPa instead of the other atmospheric fields. We
explain our choice in section 5.

Then, we adjusted the geographical region and the window search of analogs Annexe-figure B1. Indeed, the forecast skill
of the MJO depends on the geographical region. We choose to compute the analogs over the Indian Ocean with coordinates
(50°E — 85°E; 15°S —15°N). We argued our choice by the fact that (i) the Indian Ocean corresponds to the first phase of the
MJO in the phase-space diagram, where the MJO starts. (ii) Different models found good results by initiating their forecast
in this region (Kim et al., 2018), (iii) and based on the experiment analyses that we made over different geographical regions
Annexes-Figure B2. We explained that in the Annexe B.

We search for analogs within 30 calendar days. This duration corresponds to the life cycle of the MJO. In addition, we adjust
the SWG in order to select analogs from the same phase, as described in Section 3.2.

To evaluate the skill score of our forecasts, we used two approaches. We used the probabilistic scores such as CRPS,

correlation and ROC score (section 3.3) to evaluate the ensemble forecast of the amplitude. Then, we evaluate the ensembles

11
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mean of RM M1 and RM M?2. For that, we used scalar metrics such as the COR and the RMSE (section 3.3), as they are
commonly used to evaluate MJO forecast (Rashid et al., 2011; Lim et al., 2018).

5 Results

We show results of the forecast of A(t) and RM M s (R; and R») from the analogs of Z500 over the Indian Ocean with a time
of search of 30 days. As explained in section 4, we explored the potential of other atmospheric circulations (wind at 250 hPa
and 850 hPa, OLR and Z300) to forecast the MJO amplitude. The forecast skill with analogs of OLR and the zonal wind at the
upper and lower troposphere (250 and 850 hPa) was not that satisfying compared to the forecast skill using analogs of Z500 or
7300 Figure 4. Indeed, the wind at 250 hPa, 850 hPa, and the ORL do not improve the bivariate correlation and RMSE forecast
skill of the MJO index for a longer lead time (above 20 days) over Z500 or Z300 Figure 4, despite the fact they are the driver
of the MJO. This could be explained by different reasons.

The first reason is related to the composition of the RMMs index. Indeed, the OLR is used as a proxy for organized moist
convection (Kim et al., 2018). However, the fractional contribution of the convection to the variance of RMMs is considerably
lower than the fraction of the zonal wind fields (Kim et al., 2018; Straub, 2013). The second reason is that the MJO predictability
can be improved by including atmospheric and oceanic processes (Pegion and Kirtman, 2008). According to some theories that
explain the MJO, the geopotential and the moisture are considered as a driver of precipitation and convection(Zhang et al.,
2020). For instance, in the gravity-wave theory for MJO (Yang and Ingersoll, 2013), the convection and precipitation are
triggered by a specific geopotential threshold.

Another reason is related to our forecast approach. The composites of OLR and wind speed highly depend on the phase of
the MJO (Kim et al., 2018). As our analog approach is constrained by choice of a geographical region, it misses the spatio-
temporal variability of OLR and wind speed during the MJO. We computed analogs from other regions (Annexes: Figure B1).
However, we obtain better forecast scores by focusing on the “small” area represented by a dashed rectangle (Annexes - Figure
B1). This is explained by the higher quality of analogs. Indeed, choosing a “large” region to compute analogs yields rather
large distances or low correlations for analogs. This implies that the analog SWG gets lower skill scores because the analogs
are not very informative. The OLR or zonal wind analogs were computed on the optimal window obtained for Z500 or Z300
as mentioned in Figure 2 which is not appropriate for OLR or wind speed, as reflected by Kim et al. (2018). Therefore, we
find lower COR and RMSE scores compared to the forecast using Z300 and Z500. This is a potential feature of analogs. The
analog geometry needs to be imposed a priori in a rather simplistic way, which does not follow the spatio-temporal features of
the MJO, which are known independently.

We tested the forecast of A(¢) and RMMs using analogs of Z300. We get a satisfactory forecast skill (i.e. with COR > 0.5 and
RMSE < +/2) up to T = 60 days. However, we notice that the forecast skill scores based on analogs of Z500 are higher for
small lead times (up to 30 days). This is explained by the fact that Z300 analogs are close to where the MJO takes place, even
if this does not lead to significant improvement over Z500 analog skill scores. Therefore the geopotential heights, although

less physically and dynamically relevant for the MJO, are more appropriate predictors from the statistical and mathematical

12



constraints of the analog-based method. The results of the forecast with analogs of Z300 can be found in the Annexe A where

we compared the performance of the SWG forecast based on the analogs of Z500 and Z300 for different seasons Annexes-

Figures A2 and Al. For those reasons, we decided to keep the results of the forecast for A(t) and RMMs with analogs of Z500.
260 This analysis highlights the capacity of Z500 to catch the variability of the MJO.

13
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Figure 4. COR (panel a) and RMSE (panel b) values for different lead time of forecast from 3 days to 60 days over the period from 1979 to
2020 for the SWG forecast using analogs of OLR, zonal wind speed at 250 hPa and 850hPa, Z300 hPa and Z500 hPa.

As an illustration, we show the time series of the simulations and observations of the MJO amplitude for 1986. This year
yields an unusually large period of RMM amplitude above 1, suggesting an important MJO activity. Figure 5 shows the mean

of the 100 simulations and the observations for lead times of 3, 5 and 10 days for the whole year. We find that there is a strong

14



correlation between observed and simulated A(t) for the different lead times represented. Moreover, the SWG was able to
265 distinguish between the active MJO days (A(¢) > 1) and inactive MJO (A(¢) < 1). The same figures for the forecast with the
SWG based on analogs of OLR and Z300 are provided in the Annexe A.
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Figure 5. Time series of observations and simulations of the MJO Amplitude for lead time of 3, 5 and 10 days, respectively (a), (b) and
(c), for the year 1986. The red line represents the mean of the 100 simulations, the black line represents the observations, and the blue line

indicates the threshold of the MJO activity (below 1: inactive; above 1: active)
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5.1 Evaluation of the Ensemble forecast of the MJO Amplitude

We evaluate the forecast of amplitude A(t) using the probabilistic skill scores (CRPSS, ROC and correlation) defined in
Section 3.3. We are considering the average of the skill scores up to each lead time 7'. In Figure 6, we show the CRPSS and the
correlation for DJF (December, January and February) and JJA (June, July and August) for different lead times 7" going from
3 to 40 days.

The CRPSS was computed using as a reference the forecast made from climatology and persistence. We notice that the
CRPSS vs. persistence reference is decreasing with time. It has higher values for 7' = 3, 5,10 days. We notice that when the
lead time is larger than 7" = 15 days, CRPSS values become stable for both seasons. However, the CRPSS vs. climatology
is increasing with lead times. We notice that for small lead times (1" < 15 days), the SWG forecast is doing better than the
persistence, while for big lead times 7" > 15 days, the SWG forecast is doing better than the climatology. We can say that the
forecast has positive improvement compared to climatology and persistence for DJF and JJA for all the studied lead times. We
see that correlation is mostly decreasing with lead times. The highest correlation is related to small lead times (7" < 15 days).

We used the ROC diagram to determine the discrimination between active and inactive events of the MJO. We associated
1 to active MJO event and zero to the inactive events. In Figure 7, we show the ROC diagram for the different lead times T’
from 3 to 40 days. Analyzing the AUC, shown in Table 1, we find that until 40 days, the SWG is able to separate non-events
(inactive MJO) from events as the AUC values are between 0.88 and 0.61. It is still significant as it is over the diagonal (random
forecast). We notice that the sensitivity value is 0.9 for 3 days, and it decreases with lead time to reach 0.7 by 40 days. We
also find that the specificity and sensitivity are equal for small lead times. However, the specificity remains above ~ 0.5 for
T = 40 days. This value of specificity is still higher than (1 — sensitivity = 0.2). This indicates that the forecast has skill to
distinguish between MJO events until 40 days ahead.

Table 1. Area under ROC curve (AUC) for the different lead times 7" from 3 to 40 days

T 3days Sdays 10days 20days 30days 40 days

AUC 0.88 0.83 0.74 0.66 0.62 0.61

Using three probabilistic metrics (CRPSS, correlation and ROC), we show that the SWG is able to skillfully forecast the
MIJO amplitude from analogs of Z500. The CRPSS shows a positive improvement of the forecast until 40 days. However, the
correlation is significant until 20 days. By using the ROC curve and the discrimination skill, we show that the forecast still has
skill until 40 days.

The difference between the lead times that we found using the CRPSS, correlation and the ROC result from the difference
between the skill scores. In fact, the CRPS is used for different categories of events, while the ROC is used for binary events,

which is more suitable with our case of study.
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has a good skill, i.e. the forecast has the potential to distinguish between success and false alarm.
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5.2 Evaluation of the Ensemble mean forecast of RMMs

295 In this part, we evaluate the performance of the SWG to forecast the RMMs (R; and R5). We simulated R, and Ry using the
SWG and analogs of Z500. Then we used the ensemble mean of R; and Ry to compute the verification metrics mainly the
COR and RMSE (Rashid et al., 2011; Kim et al., 2018; Silini et al., 2021), as shown in Figure 8. We looked at COR and RMSE
averaged up to each lead time T'. Respecting the threshold 0.5 for the COR and /2 for RMSE, we found that the forecast has
skill until 7" = 40 days. We have to mention that 7" of 60 and 90 days were used for verification purposes.
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Figure 8. The COR and RMSE, respectively (a) and (b), for the different lead time of forecast from 3 days to 90 days over the period from
1979 to 2020. Confidence intervals are obtained with a bootstrap with 1000 samples.
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In order to verify the forecast skill, we computed the ensemble spread and we compared it to the RMSE values for the
different lead times going from 3 to 40 days (Figure 9). We found that the difference between the ensemble spread and the
RMSE is increasing with lead time. The RMSE is becoming larger with lead time, which indicates that the distance between the
observations and simulations is increasing. In addition, the ensemble spread is decreasing, which indicates that the uncertainties
are increasing with time. This was verified by computing the bias of the forecast where we could find that it is increasing with
lead time. The bias represents the average bias of RMM1 and RMM2. It was computed between the ensemble mean of the

RMMs and the observations of RMMs.
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Figure 9. (a) Comparison between the ensemble spread and the RMSE. We notice that the difference is small for short lead times (< 15
days). "Metric" in the vertical axes refers to Ensemble spread and RMSE. (b) The bias between the simulations and the observations for the

lead time going from 3 to 40 days.

We explored the sensitivity of the forecast to seasons as shown in Figure 10. We found that the forecast for DJF and MAM
(March, April, May) has a good skill (i.e., with RMSE lower than v/2) within 30 days. However, for SON (September, October
and November) and JJA, a similar forecast skill was obtained for a lead time of 40 days. The DJF and MAM seasons show the
largest RMSE values. This implies that the ensemble forecast in DJFM yield a larger range of values than in SON and JJA,
even if the observations and simulations are well correlated. The highest correlation in DJF and MAM could be explained by
the fact that the MJO is more active in the boreal winter (DJFM). However, the RMSE values in JJA are more consistent as
they represent low distance between simulations and observations. Indeed, even if the MJO events tend to be more intense in
DJFM, the amplitude is underestimated. The assessment of the ensemble mean forecast of RMM1 and RMM?2 showed that the

forecast has skill until 40 days. However, it is sensitive to seasons and this is consistent with the previous studies of Wheeler
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and Hendon (2004); Rashid et al. (2011); Wu et al. (2016b). Indeed, we found that the SWG forecast of RMM1 and RMM2
has skill, with respect to the thresholds of COR and RMSE, within 40 days for summer (JJA) and 30 days for winter (DJF).
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Figure 10. The COR and RMSE, respectively (a) and (b), for the different lead time of forecast from 3 days to 90 days over the period from
1979 to 2020 for the different seasons DJF, JJA, MAM and SON.

We also computed the amplitude and phase errors (Figure 11). We found that the F4(;) is negative for all lead times. That

indicates a weak amplitude in predictions compared to the observations. The Fy ;) is positive until 30 days, which indicates
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320 fast propagation of the phase in predictions compared to the observations. Then it becomes negative, which means that the
phase is slower. We notice that the phase is well predicted while the amplitude is underestimated Figure 11. This is consistent

with previous studies (Silini et al., 2021; Rashid et al., 2011).
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Figure 11. MJO Amplitude and phase average errors over all seasons for the period from 1979 to 2020. We notice that the amplitude is

underestimated and the phase is well predicted by comparing predictions to forecast.
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6 Comparison of the SWG forecast with other forecasts

The assessment of the forecast of MJO amplitude with SWG and analogs of Z500 shows good skill until 40 days using
probabilistic scores (CRPSS vs. climatology is 0.2 and CRPSS vs. Persistence is 0.4) and scalar scores (COR = 0.54 and
RMSE =1.30) as explained in sections 5.1 and 5.2. The SWG forecast shows a positive improvement compared to the
climatology and the persistence within 40 days Figure 6. In addition, the ROC curve confirmed the ability of the SWG forecast
to distinguish between the active and inactive MJO amplitude as shown in Figure 7. The same result was obtained using the
ensemble mean of RMM1 and RMM?2 as represented in Figure 8. The SWG forecast of RMMI1 and RMM2 has good skill
within 30 — 40 days respecting the threshold of 0.5 for the COR and /2 for RMSE. The difference on the lead time of the
forecast depends on the seasons as represented in figure 10. This is consistent with Wu et al. (2016a); Wheeler and Weickmann
(2001); Rashid et al. (2011), who found significant differences of skill scores between seasons. We find that the forecast has
skill until 30 days for DJF and MAM (with RMSE = v/2) and 40 days for JJA and SON (with COR = 0.5) as shown in
Figure 10. This is different from Rashid et al. (2011) and Silini et al. (2021) who obtain higher forecast skill in the winter.
However, it is consistent with the results of Wu et al. (2016b) and Vitart (2017) who found higher skill scores for JJA.

We assessed the forecast skill of the SWG with other forecast. We selected two models POAMA (the Australian Bureau
of Meteorology coupled ocean-atmosphere seasonal prediction system) and ECMWF, which are providing respectively prob-
abilistic and deterministic forecast of the MJO. We compared mainly the maximum lead time of the MJO amplitude forecast.
The POAMA model provides 10-member ensemble. In hindcast mode, the POAMA model has skill up to 21 days (Rashid et al.,
2011). The ECMWEF reforecasts with Cycle 46r1 has skill to around 40 days. For the error of the amplitude and phase, we found
that ECMWEF reforecast shows lower amplitude and phase averaged errors compared to those from the SWG forecasts. How-
ever, what we found is consistent with other dynamical models (Kim et al., 2018) where they overestimate or underestimate
the amplitude and the phase of the MJO.

In addition, we compared quantitatively the SWG forecast with the ECMWF forecast Figure 12. The ECMWF reforecats
were taken from (Silini et al., 2022). We found that the ECMWF forecast has highest correlation until 20 days compared to
the SWG forecast. The RMSE values of ECMWF forecast are always small compared to the SWG forecast, which indicates a
good reliability skill of the ECMWF forecast for lead times of 5 and 10 days. However, for lead times of 20 days the RMSE
of ECMWEF forecast coincides with the RMSE of the SWG, which shows the improvement of the SWG forecast to lead time
above 20 days. The skill scores of the ECMWF (COR and RMSE) (Silini et al., 2022) are computed for each lead time, which
is different from our way of computing the skill score (considering the average lead time). Of course, this comparison was
made to check the performance of our forecast and not to say that the SWG model can replace a numerical prediction.

We also compared the SWG forecast skill with a machine learning forecast of MJO indices (RMM1 and RMM?2) (Silini et al.,
2021). Silini et al. (2021) explored the skill forecast of two artificial neural network types, FFNN (feed-forward neural network)
and the AR-RNN (autoregressive recurrent neural network) on MJO indices. Silini et al. (2021) found that the machine learning
method gives good skill scores until 26 — 27 days with respect to the standard thresholds of COR and RMSE. We compared the
skill scores (RMSE and COR) of the SWG and Silini et al. (2021) forecasts for all lead times. We found that the two models
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have the same correlation until 10 days. After 10 days, the correlation of Silini et al. (2021) forecasts decreases rapidly while
the correlation of SWG is still significant. For the RMSE, we found that the SWG has smaller values for lead time of 10 days.
This indicates that the SWG forecast is more reliable. However, from 30 days, the RMSE of the two models starts to be the
same.

To sum up, the comparison of SWG forecast to ECMWF and Silini et al. (2021) forecasts shows that for small lead time (up
to 10 days) the ECMWF forecast has better skill. However, the SWG shows positive improvement for long lead times.
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7 Conclusions

We performed an ensemble forecast of the MJO amplitude using analogs of the atmospheric circulation and a stochastic weather
generator. We used the Z500 as a driver of the circulation Figure 4 over the Indian ocean Figure 2 and we considered analogs
from the same phase to provide the forecast for the subseasonal lead time. We explored two ways to forecast the MJO, starting
by forecasting directly the daily amplitude, then the daily MJO indices, RMM1 and RMM2, from 1979 to 2020.

We assessed the forecast skill of the MJO forecast by evaluating the ensemble member and the mean of the ensemble
member, using respectively probabilistic and scalar verification methods. This allowed us to evaluate the forecast and also to
explore the difference between the two verification methods.

We used probabilistic skill scores as the CRPSS and the AUC of the ROC curve Table 1. We found that the forecast showed
positive improvement over the persistence and the climatology within 40 days (CRPSS Figure 6). The SWG forecast of the
MJO amplitude also showed the capacity to distinguish between active and inactive MJO (ROC curve Figure 7) for the different
lead times. Using the scalar scores (COR and RMSE) and the ensemble mean of the forecast of RMM1 and RMM?2, we found
that the SWG is able to forecast the MJO indices (RMM1 and RMM?2) within 30 — 40 days.

We found that the forecast is sensitive to seasons Figure 10. The forecast has skill up to 30 days for the boreal winter
(DJF and MAM), while it goes to 40 days for the boreal summer (JJA) and SON. That was consistent with previous studies
(Silini et al., 2021; Rashid et al., 2011; Vitart et al., 2017). We also noticed that the forecast of the phase is better than of the
amplitude according to the errors for amplitude and phase Figure 11. Finally, we found that the SWG had improvement over
the ECMWF forecast for long lead times (7" > 30 days) and a machine learning forecast (Silini et al., 2021) forecasts for lead
times 1" > 20days.

This paper hence confirms the skill of the SWG to generate ensembles of MJO indices forecasts from analogs of circulation.

Such information would be useful to forecast impact variables such as precipitation and temperature.
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Appendix A: Comparison of the forecast skill of the MJO using analogs computed from Z500, Z300 and OLR fields

We did the forecast of RMM1 and RMM?2 using analogs of Z300 (Figure A4), OLR (Figure A3) and the zonal wind at 250 hPa
and 850 hPa (figure 4). The aim of using different atmospheric fields to compute analogs, is to choose the analogs circulation for
the MJO forcast with the SWG as explained previously in section 4. We found that the SWG based on analogs of Z300 yields
good skills (COR > 0.5 and RMSFE < v/2) within T = 60 days (Figure 4). However, the skill of the forecast is better for
small lead times < 30 days with analogs of Z500 (Figure 4). We checked the sensitivity of the forecast to seasons as illustrated
in Figures A2 and Al using separately analogs of Z500 and Z300. We compared the COR and the RMSE for different lead
times Figures A2 and Al. We found that the RMSE values for the SWG forecast based on analogs of Z300 are the same as
the forecast from analogs of Z500 for the different seasons and at the different lead times Figure A2. The RMSE for SON and
JJA is lower than the threshold for the T" from 3 to 90 days for both forecast Figure A2. However, for DJF and MAM the SWG
forecast reaches the threshold of /2 respectively at 37 days with analogs of Z300 which is slightly higher than the maximum
lead time with Z500 Figure A2. The COR is slightly higher with analogs of Z500 at different lead times Figure A1l. However,
the threshold of 0.5 is exceeded with forecast based on analogs of Z300 Figure Al.

In this part, we also show the time series for the forecast at different lead times 7' = 3,5, 10 days for the same year 1986
for the SWG forecast with analogs circulation computed from OLR Figure A3 and from Z300 hPa Figure A4. We notice that
the correlation between the mean of the simulations (red line) and the observations of the MJO amplitude are better correlated

with SWG forecast based on analogs of Z300 Figure A4. than the one based on analogs of OLR Figure A3.
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Figure A1. COR values for different lead times of forecast from 3 days to 90 days over the period from 1979 to 2020 for the SWG forecast
based on analogs of Z500 and Z300 for different seasons (DJF, JJA, MAM and SON).
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Figure A2. RMSE values for different lead times of forecast from 3 days to 90 days over the period from 1979 to 2020 for the SWG forecast
based on analogs of Z500 and Z300 for different seasons (DJF, JJA, MAM and SON).
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days, respectively (a), (b) and (c), for the year 1986. The red line represents the mean of the 100 simulations, the black line represents the

observations, and the blue line indicates the threshold of the MJO activity A(t) > 1.
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observations, and the blue line indicates the threshold of the MJO activity A(t) > 1.
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Appendix B: Domains of computation of analogs

We show in the figure B2 the bivariate correlation (COR) and the RMSE from different geographical regions that we represent
in figure B1. The different geographical regions shown in Figure B2 were used to adjust the geographical region to compute
analogs.

The COR reaches the threshold of 0.5 at 7' = 40 days for the geographical region with coordinate (S0°E — 85°E; 15°S —
15°N) Figure B2. The same result is found for the region with coordinates (60°E — 120°E; 15°S — 15°N) Figure B2 (light blue
line). However, the COR is lower for the other lead times 7' = 3,10,20,30 days compared to the one for the region (50°E —
85°E; 15°S — 15°N). For the region with the coordinates (85°E — 120°E; 15°S — 15°N), the threshold of 0.5 for the COR is
obtained at a lead time of 34 days Figure B2 (green line). For the region with coordinates (90°E — 150°E; 15°S — 15°N), the
forecast skill is significant with COR 0.5, at T' = 30 days Figure B2 (orange line), which remains the same results for this
region compared to (Silini et al., 2022). The RMSE for the different regions is quite the same Figure B2, even if the values
for the region (50°E — 85°E; 15°S — 15°N) are slightly lower within 30 days. Therefore the skill forecast (using the bivariate
correlation and the RMSE) remains higher for the considered geographical region with the coordinates (50°E — 85°E; 15°S —
15°N).
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Figure B1. Domains of computation of analogs, we computed analogs over the Indian ocean with coordinates (50°E, 85°E — 15°S,15°N)
blue rectangle, the Indian-Pacific ocean with coordinates (85°E , 120°E — 15°S , 15°N) and the Indian-maritime ocean with coordinates (90°E

, 150°E — 15°S , 15°N).
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Figure B2. Comparison between the COR and RMSE, respectively (a) and (b), of the SWG forecast based on analogs of Z500 computed
over different geographical regions, for lead times going from 3 to 60 days over the period from 1979 to 2020. The forecast was made with
analogs computed over the Indian ocean with coordinates (50°E , 85°E — 15°S, 15°N) and (60°E , 120°E — 15°S, 15°N), the Indian-Pacific
ocean with coordinates (85°E , 120°E — 15°S , 15°N) and the Indian-maritime ocean with coordinates (90°E , 150°E — 15°S , 15°N). As the

latitude is the same for the different considered geographical regions, we just mentioned the longitude of each domain in the legend.
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Appendix C: Dependence of the forecast skill on MJO phases

We checked the dependence of the SWG forecast skill of the amplitude of the MJO and the MJO phases. We verified the
relationship between the CRPS at T = 5 days and the MJO phases Figure C1. We divided the CRPS values in two classes:

— CRPS values above the 75" quantile C1 (a),
— CRPS values below the 25" quantile C1 (b).

As shown in Figure C1 the difference between the boxplots in the two cases is smaller. Hence, we can say that the dependence

of the forecast skill of the MJO amplitude with SWG and the MJO phases is small.
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Figure C1. Relationship between CRPS and MJO phases. (a) CRPS values above the 75th quantile and (b) CRPS values above the 25th

quantile.
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