Dear Editor, Dear Referees,

We thank you for the comments and suggestions you provided to improve the quality and impact of
the article we are submitting for publication in E-Surf. In this final response you will find our detailed
answers to the questions raised.

We provide answers to each Referee comment below. The answer to a comment is given after
repeating the comment and colored in blue.

Best regards,
The Authors
Referee #1 :

The manuscript conducted a series of rockfall experiments in the Riou-Bourdoux catchment. The
authors utilized the video footage technique to retrieve the rockfall’s velocity and seismic record to
determine several parameters. Then, the random forest tree algorithm was applied to predict the
rockfall’s mass and velocity. The authors merged published techniques hitting an excellent point in
deciphering two critical parameters, mass, and velocity. However, some basic knowledge of rockfall
dynamics, further seismic analysis and other machine learning algorithms should be involved to
improve the quality of the manuscript. Thus, | make a decision of major revision to the manuscript.

1.Very detailed background information on seismic techniques for landslide and rockfall research in
the introduction. After reviewing the introduction, | supposed that the study is about using a new
and accurate reconstruction method of rockfalls’ trajectories, then linking rockfalls’ dynamic to
describe the recorded seismic parameters. However, based on the manuscript title, several machine
learning methods can be chosen. Why a Random Forest? What are the pro and coin of a Random
Forest? Authors can remove all extraneous information like unnecessary landslide parts, focus on
rockfall background review and involve machine learning.

We decided to work with the Random Forests for several reasons. First of all there are the inherent
qualities of this machine learning model for classification and regression as demonstrated in previous
works (cited in our manuscript). These qualities are the good accuracy generally achieved: in most
applications RF outperforms or equals the performance of other algorithms. Secondly the fact that
RF is not a black box, you can fully explore the model (the decision trees) visually. Thirdly and most
importantly for us, it is possible to test a large number of features without the bad features unduly
influencing the prediction result, and it is possible to easily estimate the importance of these
features. In our case, as we are as much interested in whether we can predict quantities as in why we
can (which features are the most linked to the physical properties), this third quality of the RF
algorithm is critical. Finally, RF has been successfully used for many applications to detect and classify
signals related to mass-wasting processes, and for operational purposes, one can imagine a future
system capable of both detecting, identifying and characterizing slope instabilities using the same
RF-based model.

2.Line 69-70. random forest tree is not an innovative approach.



In the context of this study it is more innovative than the classical approaches used to infer the
rockfall properties. We can remove the “innovative” if Referee #1 and the editor feels it is important
to do so.

3.section 2.1. Rockfalls’ physical processes, falling, bouncing, rolling, and sliding associated with the
slope angle (Ritchie, 1963). Authors should involve a topographic profile to show the slope angle
change along the rockfall trajectory. It is better to put the slope direction map and slope angle map
in the supplement material.

All the information about the slope, the blocks and the whole trajectories reconstruction analysis is
presented in Noél et al [2022] (link). We added a statement in the revised paper to make this very
clear to the reader and refer to the paper by Noel et al. [2022] as a companion paper.

4.Figure 1 lacks the color bar for the translation velocity of rocks.
We added this information in the revised manuscript

5.section 2.2. Rocks’ geometry is a vital parameter for rockfall trajectory (Caviezel et al., 2021). The
authors should put rocks’ photos and dimensions in supplement material.

See comment above on the companion paper by Noel et al. [2022]

6.Line 101-102. Where are the four locations with a terrestrial laser scanning device? Please mark
them on the map.

See comment above on the companion paper by Noel et al. [2022]

7.Can authors offer one video for a rockfall experiment to help the reader understand the whole
process?

See comment above on the companion paper by Noel et al. [2022]
8.Line 131. Falling is a mechanism term of rockfall linking to the slope angle. Remove free-falling.
We revised the manuscript according to this suggestion.

9.Line 158-159. What are the exact distances between the source and the receivers? Is that
point-to-point distance or the topographic distance? Both distances do not affect the big picture
when the source and the receivers are close. However, gradually enlarging the source-to-receiver
distance and the seismic wave transmits through high-relief topography. Two different distances may
produce the error for the body and surface wave model. The DEM did not cover the GEO1 to GEOS.
So, authors can use GEO9 to GEO16 and the early to middle stage of experiments to explain the
effect, then put test results in supplement material.

We used the 3D point to point distance without considering the topography. We added this
clarification in the revised manuscript. In an early stage of this work presented at EGU we did a
analysis which is kin to what Referee #1 is asking, we think. You can find an excerpt of the poster


https://esurf.copernicus.org/articles/10/1141/2022/

below. This figure and the table shows that there is no effect of the distance on the best fit of the
amplitude as a function of the distance. The best fit is always observed for the body-wave model.

Block #1 propagation : The block #1 was the block instrumented with the accelerometer /gyroscope positioned close
to its centre-of-mass. Its mass was 125 kg. After 8 impacts the block broke in half at the 9th impact. The two
fragments continued to propagate along the path. The timing of the impacts of each of the two fragments were
identified thanks to the videos.
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Fig. 3: Left panel : Seismic signals recorded at each geophone. Right panel: Maximum envelope amplitude as a function of the distance and
smaaother FFT spectrum for each impact and each station. The colours corresponds to the colour of the geophones on Fig, 1.

Amplitude attenuation : Fig. 3 shows the attenuation of the Impact# Modell Model2 Model3
amplitude of seismic waves generated by each impact, i.e. the

1 0,89 0,88
amplitude of the signal is decreasing with the distance of the
sensor to the location of the impact. Thanks to the trajectory 2 0,85 0,85
reconstruction we can determine the distance between each 3 0,79 0,76
impact and each geophone. Then we can compute attenuation a 0,86 082
models and find the one that better explain the observed decay of ' !
amplitude with distance. Determining an adequate attenuation 5 0,69 0,48
model is critical to determine the parameters (amplitude and g 0,61 0,39
energy) at the source which are then compared to dynamic
parameters. Li L 1

8 0,47 0,29
We tested two simple models, one for surface wave (Eg. 1) and g 0,71 0,59
one for body wave (Eq. 2), as well as the possibility of a simple 10 0.52 0.21

linear attenuation of the amplitude with distance (Eq. 3). For each
model we computed the regression line and assess the quality of 11 0,69 0,34

the regression by computing R? (Tab. 1). 12 033 021 0.03

Tab. 1: R? from the regression with each model of the
distance and amplitude data for each impact

Model 1 : Body Waves Model 2 : Surface Waves Model 3 : Simple Linear att.
G Ay = 4052 (Eq.2 A@r) =2 (Eq.3)
A(r) = A0— (Eq.1) (r) = NG (Eq.2) = (Eq.

Eg. 1,2 and 3 ; AQ is the amplitude at the source, r the distance to the source and £ the anelastic attenuation factor.



10.section 2.7. The authors cited several references to support the method of Random Forests, but it
could be more explicit. What are the criteria, gini or entropy, in this research? Does the author set
max depth for each tree? How to generate a result of OOB score in Figure 6? Random Forests is a
black box to produce the result whose opaque process means that implementers must fully trust the
model result and cannot understand details.

We used the default parameters of the TreeBagger function of the matlab machine learning toolbox,
which are the same as the RandomForest function from other toolboxes (e.g. scikit-learn in Python).
The only parameter we set was the number of trees. Nevertheless we added the details requested by
Referee #1 in the revised manuscript. The OOB score was computed by permutation of the features
values. We also added this information in the manuscript.

Other machining learning techniques like XGBoost, cluster model ...etc. needed to be considered to
double-check the result of Random Forests. Further, EGU society encourages authors to offer the
source code to allow other researchers reproduce the result. | suggested that the authors release the
machining learning code when the paper is published.

We are not convinced that other machine learning techniques are needed at this stage of this
analysis. In this paper we wanted to show that a machine learning algorithm can be used to perform
the task of retrieving the mass and the velocity of rockfalls. We choose the RF for the reasons
aforementioned. We do not want to benchmark machine learning techniques to perform this task
yet. As for the use of cluster models we are curious how those would help and what kind of model
Referee #1 would suggest performing the same task. We use an off-the-shelf implementation of the
RF algorithm. We used the one provided by the Machine Learning toolbox from Matlab because we
had former codes to compute the scaling laws in this language. We will update the data and code
repository with the machine learning code once the paper is published, as suggested by Referee #1.
However this code use a toolbox which is very expensive and we think it would be wrong to
encourage readers to use this toolbox when free and equally powerful versions exist in Python for
example, which is not a copyrighted language. The whole analysis can easily be reproduced in Python
with the data and the information we provided. We will do our best to provide a Python version of
the machine learning codes.

11.section 3.1. What 3 values are in the rockfall experiment? When adapting the body wave model,
those [ values are located in the ideal range or not.

We do not understand what Referee #1 is referring to when mentioning “ideal range”. The B values
are in the same range as the one obtained in a previous experiment [Hibert et al., 2015].

12.Line 238-239. “Low R? values might be explained by irregular kinematic behaviors such as the
block hitting an obstacle (trees, other rocks) ” Also, sliding shows typically in the early stage of a
rockfall, with significant impact after energy loss or near the stopping moment. Please offer a video
or time-lapse photos to support the result.

There was no sliding in the early stage of those triggered rockfalls. For videos see comment above on
the companion paper by Noél et al. [2022]

13.The dark and light grey lines in Figure 3 are hard to see.



We improved this figure in the revised version.

14.section 3.3. what is the distribution of predicted values? Underestimate or overestimate the
actual values (velocity/ mass)? An extra figure for predicted values should be included.

Following this remark we looked at the sign of the difference between the predicted values and the
real values. For the speed we underestimate the value for about 50% of the events. For the mass we
overestimate it for 60% of the events. The distribution of the values being already given by figure 5,
we decided to give these values in the text rather than proposing a new figure which would be
redundant with figure 5.

15.section 3.4. Lengthy in this section. In Figure 6(a), #13 gets a more substantial OBB score than
others and the result. In Figure 6(b), the OBB score of the top 6-10 is close to the top 4-5. Only
describing the top 3 parameters of velocity and mass result is enough where their OBB scores are
higher than 0.3.

We feel there is information and discussion to have on more than the first three best features so we
prefer to keep this section like it is in the original version of the paper.

16. Line 285-287. How about the kinetic energy after impact? It is no difference in R? between 0.39
and 0.34(Figure 4g, 4h). Figure 4 should include a confidence interval around the slope of a
regression line.

Given the low R2 we believe that showing a confidence interval around the slope of the regression
line might mask the whole plot so we decided not to modify this figure.

17. Line 287-289. Although the rock boulder moved in the West-East direction, the seismic wave
transmitted from South to North in the initial stage of rockfall and West-East in the middle stage.
Different stages may present different features. Putting different stages of data in one figure is unfair.
Further, the poorest correlation observed between Viy, and A, may be caused by the signals near
GEO1 and GEO16, which is worth examining the signals from which experiments and what stage of
rockfall bring the poorest correlation.

The general direction of the rockfall is always the same. There are no differences in the initial and the
middle stage (see videos in Noél et al. [2022]).

18. Line 308. what is the definition of spectrum width?
In this case it would be the variance of the FFT spectra. We clarified this in the revised version.

19. Line 323-324. “This suggests that the difference of seismic energies recorded at different stations
is important information for the prediction of the velocity (not for the mass).” Why not use signals
from cluster stations to execute Random Forest and see their difference? For example, GEO1 to GEO3
and GEO11 to GEO 13 can be grouped. Stations in each group inherit similar paths and site effects,
which can reveal how distance affects the results.



The very purpose of our study, and the results we produce, show that the propagation distance does
not affect the RF result. This is the interest of this approach, to be able to determine the mass and
velocity without the need to localize the impacts.

20. Line 324-325. Huang et al. (2007) already conducted drop experiments of individual rocks,
showing that the larger stones generate the extending feature of lower frequency signals.

Thanks for these suggestions, we added the references in the manuscript.
21.The cause and effect should be clarified between Lines 326-331.
We clarified this part in the revised manuscript.

22. Parameters of ES1 to ES5 are crucial to mass and velocity prediction. Let the y-axis of figure2b be
a log scale, which highlights the low-frequency band.

A log scale will deform the spectrogram in the high-frequency band. We used only frequencies
above 1Hz in our features bank. We think that a linear scale here is better for the readers to have the
best readability of the information given by the spectrogram.

23. Perspective: What are the installation criteria, like station geometry, for further research? Is it
necessary to have ten stations with linear arrays? Is all stations equally important for machine
learning? If not, what is the restriction? Can further research transfer learning from this research?
After reviewing the manuscript, | supposed the authors should answer those questions rather than
extraneous information in section 5 to enhance the quality of the paper.

Those are indeed very interesting questions but which are a step further of what we propose here. In
this study we want to show that machine learning can perform the task of predicting the mass and
the velocity of rockfalls without having to localize them. We also wanted to show that the ML
approach performs better in this case than those based on scaling laws. Future work will allow us to
reproduce the same experiment in other contexts, to work on natural events, and to assess the
transferability of models, but with the data we present here we cannot yet answer those questions.

Referee # 2 :

17 February 2023 This manuscript uses data from a controlled rockfall experiment to evaluate
relationships between directly measured features of discrete rockfall impacts and the seismic energy
generated by these impacts. A conventional approach is initially taken where linear scaling relations
between seismic energy or amplitude and kinematic attributes of the impacts are explored. However,
the authors also use a supervised machine learning regression to predict rockfall impact parameters
(mass and velocity) using >100 features calculated from the seismic data. Labeled data examples
(rockfall impacts with measured mass and velocity) are used to train a random forest regressor.
Prediction errors of about 11% for velocity and 25% for mass are achieved. The authors examine the
importance of each feature in the regression task and find that features associated with
frequency-specific seismic energy are particularly influential, consistent with previous work.



Operational potential and specific benefits of the machine learning workflow (versus other more
conventional methods) are discussed.

Generation of a labeled dataset for supervised machine learning tasks is a significant challenge when
working with exotic seismic sources such as rockfalls, as these events are not usually cataloged. The
documentation of the rockfall experiment and how the kinematic features of the rock impacts are
obtained will be of interest to ESurf readers. The benefits of a machine learning approach for linking
seismic observations with desired mass movement parameters (e.g., avoiding the specification of a
velocity model, event locations not required) are well-motivated. | appreciate that the authors make
a distinction between larger events capable of producing long period seismic energy suitable for
inversion versus the smaller events studied here which cannot be analyzed using the same
techniques.

The text could benefit from some editing to reduce emphasis on the wavefield attenuation analysis
and add more detail elsewhere. | don't think that the introduction and evaluation of the three simple
attenuation models is r elevant for the thrust of the paper. It is enough to share the "best fit" model
and show (via Figs. 3 and 4) the limitations of this.

We fully understand this remark by Referee #2. We asked ourselves the same question. What pushed
us to show the three models is that in the literature it is almost accepted that the attenuation model
using surface waves was the one to choose. However, our study shows that it is more complex than
that, and that at least in the near field, a model based on volume waves is more relevant. Even if this
result is not directly related to the rest of our analysis, we think that it is nevertheless important to
communicate it to the community interested in seismic signals generated by rockfalls. However, it is
true that the third model involving attenuation only with distance adds nothing to this discussion and
we therefore remove it from the manuscript and Figure 3 as suggested.

Instead, the authors could further discuss the utility of this work in the context of monitoring. For
example, the input to a trained model is presumably the triggered, windowed seismograms for each
impact. How might those windowed seismograms be obtained?

This is the object of other research we do for the detection and the classification of rockfall seismic
signals using the same machine learning algorithm (Random Forests). The aim of all these researches
is to eventually be able to propose a system for detecting, classifying and characterizing the
properties of rockfalls that would integrate all machine learning approaches for near real time
monitoring. We are still far from being able to propose such a system, but all our recent works,
including this study, is contributing to it.

For the training dataset presented in this work they were manually picked. An application involving
the training of a site-specific model for each monitoring location is introduced. Do the authors think
that their existing random forest model could instead be generalized to new locations? If not, why
not? Presumably this would not be possible for different source types (e.g., granular flow instead of
rockfall). The model encompasses both the path/site effects as well as the source physics, though, so
generalization to new geologic settings may itself be non-trivial.



Yes it would be non-trivial and we cannot answer this question with only this analysis and yes, the
trained model for this specific context might not be transferable in other contexts. This is a point that
we underline in our conclusion. This first study that we are proposing is more intended to serve as a
“proof of concept”, and to demonstrate that the new approach we are proposing is efficient. The
question of the transferability of models will arise in a second step, when we will have access to data
from other contexts acquired through other experiments. It is a more global challenge in seismology
and geophysics in general, to have fairly large datasets that would allow to have a model trained for
all possible contexts. It is not yet the case, but we hope that this study and others will demonstrate
the relevance of machine learning approaches for the study of environmental processes, and push
our community to develop shared databases. However, the effort required to build these databases
can only be justified if we can demonstrate the relevance of these approaches. We believe that the
study we are proposing participates in it.

While the transferability of the machine learning model trained with our experiment might be
complex, the transferability of the approach would however be relatively easy. In our study we
deployed a large array of sensors to get a maximum of accurate information from the experiment on
both the dynamics of the blocks and their seismic signals. However, if someone wants to deploy this
kind of approach for an operational application, they would only have to deploy their seismic sensors
network and throw 10 to 30 blocks within their network to get enough data to train a model to be
able to predict the mass of the blocks. If they want to predict the velocity then it would need a bit
more field work, such as using a mobile GNSS to find the positions of each impact for each block and
then compute the impact velocities. Other approaches, based on physical models, would require the
same work (especially to calibrate the scaling laws), but would require to have a good attenuation
model of the medium (through seismic tomography) and a method to accurately localize each impact
for each new event, all while having a probably worse accuracy. One of the strengths of the RF
approach is that we do not need an attenuation model and we do not need to localize the impact to
be able to get an estimate of the block mass and velocity.

In light of the above general comments, | feel this paper requires moderate revisions prior to
publication.

Please see the specific scientific and technical comments that follow, with line/section/figure
numbers provided.

Scientific comments:

§2.5 A figure showing the binary impact time series compared with the seismic signal would be
helpful to explain this somewhat unusual process. For example, the binary impact time series could
be shown as an additional panel at the top of Fig. 2. This would help readers understand the time lag
present as well as how the camera-obtained timings of impacts correspond with the seismic signals
of the same.

This is a great suggestion and we modified figure 2 accordingly. We decided not to add a new panel
but to indicate the time of the impact identified on the video by red lines on the figure showing the
raw seismic signal.



165, 168 Eq. 3 is not a linear function of r — though such a linear function is what is plotted as a
black line in Fig. 3. Please reconcile this — but also see my synoptic comment on the attenuation
model analysis in the third paragraph above.

See our previous response to your comment on the attenuation model.

208-210 Please provide justification for including the standard deviations of these features, as this is
not done in Provost et al. (2017) or Hibert et al. (2017c) — and some of the feature standard
deviations are shown to be important in the subsequent feature importance analysis.

In contrast to the studies mentioned, here we aggregate the features of several seismic signals within
a single event (in the ML term). To do this, we average the feature values of the seismic signals
recorded at all the stations for the same impact. In addition to this average, in order to include the
dispersion of these values for the same impact, we have chosen to also include the standard
deviation as a feature. We reformulated and detailed this choice in the revised version.

252 This is the first time the mass of the blocks is discussed. Since the random forest predicts mass
and velocity for each impact, is the mass expected to be constant? In other words, what is the "real
value" used for the mass error analysis? Is it the measured block mass? | assume the modulus of the
velocity is taken from the kinematics reconstruction as explained in §2.4?

We removed from our dataset every impact that resulted in a breaking of the block. We have kept
only the impacts for which the block did not undergo major changes according to our visual
observations. We cannot exclude a marginal change in the mass of the block due to successive
impacts, but this should not have a major impact on our results.

253 "real value" — see comment immediately above. Please be explicit about what these values are
and how they are obtained.

We added the requested clarification in the revised manuscript.

338-346 | generally find this paragraph hard to follow. Is "frequency content" referring to a seismic
parameter that was predicted like the impact force was in the study cited? Additionally, in the
sentence starting on line 342 ("This may suggest..."), what is meant by "a change of the velocity" or
"a change of the mass" (for the latter, see also my comment on line 252)? Is the "variability of the
impacted forces" being linked with the measured seismic features implicitly in this argument? The
final sentence of this paragraph is an important conclusion, but | think the preceding body of the
paragraph needs to be rewritten for clarity with definitions in particular made more explicit.

We have rewritten this entire paragraph to clarify our argument and our thinking.
389-390 The code used for this work is only partially shared in the linked Zenodo repository. The

authors should make the code for the rest of the workflow (in particular, the setup/training/testing
of the random forest) available in this repository.



See our response to the similar comment made by referee #1

Technical comments:

"and an a priori knowledge of the environment" — assumptions about the seismic propagation
model are mentioned in the next phrase, so what is this referring to? Please be more specific, or
remove.

Manuscript revised as suggested

13 "constrain" — "constraints on"

Manuscript revised as suggested

16, 18 Do not capitalize "world" or "earthquake" here.

Manuscript revised as suggested

24 "complete" seems an odd choice here, since of course there is always more information that can
be obtained. Suggest "augment"

Manuscript revised as suggested

42 "will most of the time generate high-frequency seismic waves" — this energy is always present
even if the long-period energy is not prominent. | think "will most of the time" could be removed
here.

Manuscript revised as suggested

42-45 This is an important point that could be rephrased to avoid the false binary of "either small or
catastrophic volumes" (what about events in between these two end members?) — suggest
something like "...most mass wasting processes, including smaller-volume events, which..."
Manuscript revised as suggested

55 It isn't surprising that source physics affect the scaling laws, so | suggest that "sometimes even of"
be removed here.

Manuscript revised as suggested

63 For clarity, | suggest noting that the wave propagation model is a challenge for the high-frequency
case specifically.

Manuscript revised as suggested



86—-94 | could not find information about the mass and dimensions of the blocks anywhere in the
text. This paragraph is a logical place to insert that information.

We added here information on the range of values of the masses of the blocks.

87—-89 Two methods were used to measure the block shapes. Which method was ultimately chosen?

For shape and volume, the laser model was used as a reference to adjust the scale of the
photogrammetric model (and ensure that it was not deformed). We used the ICP algorithm to match
the photogrammetric model to the laser model (manually excluding areas that do not overlap before
applying the algorithm). For the final shape and volume of the blocks, we had to complete the model
of each block by adding a flat base aligned with the surrounding flat terrain. With a mesh model for
each block, we were able to obtain their volume, from which we deduced the mass by assuming a
homogeneous density from the density measured on samples taken (cores from the small drillings to
install the accelerometers/gyro). Those details are given in Noel et al. [2022]

167 Note erroneous p inserted before A(r).

We removed the erroneous p inserted before A(r)

191 Remove "In other words" as what follows are examples (of applications of random forest
classification and regression).

We removed this part

196 | feel the quotes around "predict" can be removed as this terminology is widely used in machine
learning (e.g., scikit-learn syntax).

We removed the quotes

Fig. 1 The color scale used for the trajectories (absolute velocities) should be changed so that it
doesn't conflict with the geophone colors and confuse the reader. Also, please include a legend for
this color scale (a colorbar).

We changed the color scale for the trajectories to red so that is does not conflict with the geophone.
Fig. 2 Per my comment on §2.5 above, consider adding a panel to the top of this figure which shows
the impact time series derived from the camera-based workflow, so that readers can see the
correspondence between those impacts and the transients in the seismic waveform.

We have modified this figure following suggestions made per your comment on section 2.5.

Fig. 3 See my comment on lines 165, 168 above. The black line does not correspond with Eq. 3.

Please reconcile. Also, note that the subpanel letters are not currently referenced in the figure
caption. 3



As we do not discuss the model with only a geometrical attenuation anymore we removed this line.

Fig. 4 Note that the rainbow color scale is now being used for rockfall launch specification instead of
geophone specification, which could confuse readers. Consider using a different color scale.

We indicate explicitly what the colors corresponds to in the legend so we think attentive readers will
not be confused.

Fig. 6 It appears that the standard deviation features are plotted with some transparency. Please be
explicit about this in the legend or the caption to clarify for the reader.

We added the information in the caption.
Table Al In the table header, "[mean(std)]" is confusing since it appears like a mathematical
expression. Perhaps just write "number for standard deviation of feature given in parentheses" or

similar. 4

We agreed and modified the table header accordingly.



