Impact of wave-watersea level non-linear interactions for the projections of mean and extreme changes on future wave conditions along the coasts of western Europe

Alisée A. Chaigneau1, Saintéphane Law-Chane1, Angélique Melei1, Aurore Voldoire1, Guillaume Reffray2, Lotfi Aouf1

1CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France
2Mercator Ocean International, Toulouse, France

Correspondence to: Alisée A. Chaigneau (achaingeau@mercator-ocean.fr)

Abstract. Wave-waves and wave-watersea level interactions are major drivers of coastal environment changes. Wave setup contributes to coastal hazards such as coastal flooding during extreme water level events and erosion. Wave characteristics used to simulate wave setup are sensitive to changes in water depth in shallow and intermediate waters. However, wave models used for historical simulations and projections typically do not account for watersea level changes whether from tides, storm surges, or long-term sea rise. In this study, the sensitivity of projected changes in wave characteristics to the non-linear interactions between waves and watersea level is investigated along the Atlantic European coastline. For this purpose, a global wave model is dynamically downscaled over the northeastern Atlantic for the 1950-1970 to 2100 period and for two SSPs 5.8 climate change scenarios (SSP1-2.6 and SSP5-8.5 scenario). Twin experiments are performed by accounting with or without including hourly sea level variations from regional 3D ocean simulations in the regional wave model. The largest impact of the non-linear interaction of wave-watersea level interactions are found when waves are located on the wide continental shelf where shallow water dynamics prevail, especially in macro-tidal areas. For instance, in the Bay of Mont-Saint-Michel in France, due to a large tidal range of 10 m. At this location and during an extreme historical event, a significant wave height increase of 5 to 10 m was found to be up to 1 m higher when considering watersea level variations, as compared to the case where no watersea level variations are included. At the end of the 21st century under SSP5-8.5 scenario, the wave simulation including watersea level variations exhibits an increase in extreme significant wave heights and wave setup values larger by up to +30% and +10%, respectively. These results are found for many coastal points of the large continental shelf where shallow and intermediate water dynamics prevail and especially in macro-tidal areas. However, as the wave setup is computed with a parameterization based on offshore characteristics, the depth-induced wave breaking is not activated in the model. 30% (+60 cm) mainly due to the effect of tides and mean sea level rise. The estimates provided in this study therefore only partially represent the processes responsible for the wave-watersea level wave non-linear interactions due to model limitations in terms of resolution and processes included.

1 Introduction

Coastal zones are among the most densely populated and urbanized areas in the world (McMichael et al., 2020; Neumann et al., 2015; Wolf, 2020), which implies that monitoring their evolution in the context of climate change is important in several aspects. Wave-waves and wave-watersea level interactions are major drivers of coastal environment changes (Ranasighe, 2016), and can drive coastal marine hazards such as coastal flooding (Melet et al., 2020). Coastal marine flooding is rising nearly 2 m during extreme water level events. Extreme water level events usually cause most of the sea level-related damages and are on the rise due to mean sea level rise (e.g. P.M. Kemp et al., 2021; La Crozzi et al., 2022).

Wave-waves and wave-watersea level interactions contribute to extreme water level events at the coast via wave setup and runup, combined with astronomical tides, storm surge (due to low atmospheric surface pressure and wind setup) and mean sea level changes. In this study, wave contribution assessment will be limited to wave setup. Wave setup corresponds to the time-mean (over several wave groups) elevation of the water level in the shallow surf zone due to breaking waves (Dudet et al., 2019; Longuet-Higgins and Stewart, 1964). At a large spatial scale, wave setup usually scales with offshore wave characteristics such as the wave height and wavelength (Holman, 1986; Stockton et al., 2006; Dudet et al., 2019). As a rule of thumb, wave setup reaches 10-20% of the significant wave height (Holman, 1986; Guss and Thornton, 1984).

To build knowledge on future changes in wave climate, a growing number of global and regional wave projections have been developed and intercompared (Hamer et al., 2013; Hense and Warndt, 2017; Morin et al., 2018, 2021; Lobato et al., 2021; Mucci et al., 2021). These projections are commonly based on dynamical wave models forced by projected surface winds from general circulation models, notably from HadCM (Hamer et al., 2013; Morin et al., 2018; Mucci et al., 2021; Lobato et al., 2021). These projections are commonly based on dynamical wave models, often forced by surface winds projected by climate models contributing to the Coupled Model Intercomparison Project (CMIP), with potential downscaling of atmospheric forcing. Regional dynamic downscaling can be used to provide wave projections at higher
A multi-model analysis is required to assess uncertainties and robustness of projected changes in wave climate.

Morim et al., 2018, 2019 provided a review of wave projections. Over the northeastern Atlantic and Mediterranean Sea bordering the coasts of western Europe, models project a robust decrease in annual and seasonal mean significant wave height, together with a decrease in the mean wave period. Regarding mean wave direction, a robust clockwise change is projected for the Iberian Atlantic Biscay-coast. Extreme significant wave heights are also consistently projected to decrease over the northeastern Atlantic and Mediterranean Sea (Morim et al., 2018, 2021; Aarnes et al., 2017).

Wave characteristics used to estimate wave setup are sensitive to changes in water depth and to sea level variations in shallow and intermediate waters, where waves start to interact with the ocean bottom. This occurs through a variety of processes. Very close to the coast, in shallow waters, depth-induced wave breaking is the fundamental mechanism, but it is a very small-scale process compared to changes in projections due to the coarse resolution of global and regional models used for climate projections. In intermediate waters, at a greater distance from the coast, other larger scale processes are involved and can also be affected by water level variations for instance through bottom friction effects on non-linear interactions between the different waves of the spectrum. However, wave models used for historical simulations and projections typically do not account for water level changes, whether from tides, storm surges, or long-term sea level rise. Yet, if fine spatial scales, wave statistics have already been shown to be sensitive to sea level rise (Chini et al., 2010; Wandres et al., 2017) and to tide (tidal and surge) and barometric forcing during extreme wave events (Mas et al., 2018; Idier et al., 2019). Wave setup, it is estimated using a generic parameterization based on offshore characteristics. Nevertheless, these wave climate simulations are likely to be influenced by sea level variations through small to large scale processes, depending on those included in the model.

The present study aims at investigating the sensitivity of mean and extreme wave climate characteristics to non-linear interactions between waves and water level in the context of climate change scenarios. In particular, wave setup is presented as an indicator for coastal hazard related to coastal flooding on waves. To that aim, regional high-resolution simulations and projections of waves are produced over the Ibero-Mediterranean domain using the Regional Wave Model (IBI WAV, SD5-8.5 simple linear interactions between waves) forced by a global climate model (CNRM-CM6-1) representing two climate change scenarios corresponding to high-emissions, the high-mitigation (SPM-2.6) and high-emissions, low-mitigation (SPM-8.5) scenarios. The model is intended to represent the open ocean wave characteristics. Therefore, the depth-induced wave breaking is not activated. Given that the model resolution is not fine enough to calculate properly the wave setup, it is estimated using a parametric parameterization based on offshore characteristics. To assess the sensitivity of wave projection characteristics to the water level non-linear interaction to the extent of wave on ocean waves, the regional wave model is adapted to consider hourly variations of non-linear level from a 3D regional ocean model described in Chaingneu et al., 2022, for the same IIB domain.

The paper is organized as follows. GlobalThe wave model and regional wave model configurations and simulations are presented in Sect. 2. Together with the calculation of the wave setup contribution. Regional simulations for the northeastern Atlantic and the Mediterranean Sea bordering the coasts of western Europe are compared to observations over the historical period and to previously published 21st century projections in Sect. 3. In terms of mean and extreme conditions, Sect. 4 provides an assessment of the impact of including hourly water level changes on sensitivity of wave characteristics and wave setup. The non-linear interaction of sea level on waves is also considered along the European Atlantic coastlines. Finally, results are discussed in Sect. 5 and conclusions are drawn in Sect. 6.

2 Methods: models and simulations

The aim of the present study is to investigate the sensitivity of historical and projected sea states to the water level and non-linear interactions for the IIB coastline. To this end, a regional dynamical downscaling of a global wave model (CNRM HR-WAV, Sect. 3) is forced by a global climate model (CNRM CM6-1 HR) HR parent climate model). In addition, a regional wave configuration is set up to investigate wave-water level interactions by considering hourly water level outputs from IIB CCS in the wave model (IBI WAV, Sect. 2.2). Figure 1 describes the downscaling strategy and the link between the different models used in this study. All the wave simulations described in the following sections are performed over the historical period (1950-2014) and the 21st century (2015-2100) under the SSP1-2.6 and SSP5-8.5 climate change scenarios.
Figure 1: Sketch of the downscaling strategy explaining the links between the different models used in this study.

Two regional wave configurations IBI-CCS-WAV (Sect. 2.2) and IBI-CCS-WAV_ssh (Sect. 2.3) are set up to dynamically downscale global wave simulations over the IBI domain, considering or not hourly sea level outputs as a forcing in the wave model (Sect. 2.1). Table 1 summarizes the different simulations used in the study; the simulations performed and analyzed in this paper, the simulations used for the forcings, the simulations used for the validation in Sect. 3. Appendix A describes the downscaling strategy and the links between the different simulations used to force the regional wave model.

<table>
<thead>
<tr>
<th>Name of the simulation</th>
<th>Model type</th>
<th>Name of the model</th>
<th>Historical time-span</th>
<th>Future time-span and scenario</th>
<th>Horizontal resolution</th>
<th>Forcings</th>
<th>Application in the paper</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBI-CCS-WAV and IBI-CCS-WAV_ssh</td>
<td>Regional wave model</td>
<td>MFWAM</td>
<td>1970-2014</td>
<td>2015-2100 (SSP5-8.5)</td>
<td>1/10°</td>
<td>IBI-CCS (surface currents, sea level), CNRM-HR-WAV (wave spectra)</td>
<td>Analyses (Sect. 3 and 4)</td>
<td>;</td>
</tr>
<tr>
<td>CNRM-HR-WAV</td>
<td>Global wave model</td>
<td>MFWAM</td>
<td>1970-2014</td>
<td>2015-2100 (SSP5-8.5)</td>
<td>1°</td>
<td>CNRM-CM6-1-HR (wind, surface currents, ice cover)</td>
<td>Forcing</td>
<td>;</td>
</tr>
<tr>
<td>IBI-WAV (reanalysis)</td>
<td>Regional wave model</td>
<td>MFWAM</td>
<td>1993-2020</td>
<td>N/A</td>
<td>1/20°</td>
<td>ERA5 (winds), IBIRYS (surface currents), WAVERYS (wave spectra), with assimilated data</td>
<td>Validation (Sect. 3)</td>
<td>Copernicus Marine Service: García San Martin et al., 2021; Toledano et al., 2021</td>
</tr>
<tr>
<td>WAVERYS (reanalysis)</td>
<td>Global wave model</td>
<td>MFWAM</td>
<td>1993-2021</td>
<td>N/A</td>
<td>1/5°</td>
<td>ERA5 (winds), GLORYS12V1 (surface currents, with assimilated data)</td>
<td>Calibration, Forcing</td>
<td>Law-Chau et al., 2021</td>
</tr>
<tr>
<td>CNRM-CM6-1-HR</td>
<td>Global climate model</td>
<td>NEMO3.6</td>
<td>1970-2014</td>
<td>2015-2100 (SSP5-8.5)</td>
<td>1/4° ocean, ½° atm</td>
<td>N/A</td>
<td>Forcing</td>
<td>Volkamer et al., 2019; Saint-Martin et al., 2021</td>
</tr>
<tr>
<td>IBI-CCS</td>
<td>Regional ocean model</td>
<td>NEMO3.6</td>
<td>1970-2014</td>
<td>2015-2100 (SSP5-8.5)</td>
<td>1/3°</td>
<td>CNRM-CM6-1-HR</td>
<td>Forcing</td>
<td>Chainieux et al., 2022</td>
</tr>
<tr>
<td>IBIRYS (reanalysis)</td>
<td>Regional ocean model</td>
<td>NEMO3.6</td>
<td>1993-2020</td>
<td>N/A</td>
<td>1/3°</td>
<td>ERA5, GLORYS2V4 (surface currents, with assimilated data)</td>
<td>Forcing</td>
<td>Copernicus Marine Service: Lejeune et al., 2020</td>
</tr>
</tbody>
</table>

Table 1: List of the different simulations used in the study. The first box is for wave simulations and the second for ocean simulations.
2.1 The numerical wave model: MFWAM

The MFWAM wave model is a spectral sea-state prediction model (wind-wave and swell). It is a modified version of IFS ECMWF-CY41R2 cycle (ECMWF, 2014) developed at Météo-France for their operational applications (Anuf and Lefèvre, 2015). The variables used to force such a model are surface winds, ocean currents and sea ice cover relevant for the ocean domain for the latest PM for the ocean domain for the latter. Technical details on the model are explained in Law-Chane et al., 2021.

MFWAM primarily aims at describing the open ocean sea states. As such, the coastal depth-induced breaking is not activated in the model and overall, the model is not able to resolve some coastal processes such as the shoaling effect even if included. Large-scale processes included in the model are the terms of wave growth by wind, non-linear interactions between waves, dissipation by breaking in deep water referred to as whitecapping, dissipation by friction between long and short waves, bottom friction. These processes, which occur from the deep ocean to intermediate waters, are likely to be affected by the water level variations.

The method consists in forcing the regional wave model by high-resolution wind fields from a Copernicus Marine Service (CMEMS) configuration (https://marine.copernicus.eu). The regional domain covered by MFWAM-WAV extends from 2 to 72° N and from 14° W to 78° E (Fig. 2), leading to a horizontal resolution ranging from 5.5 to 10 km. MFWAM-WAV is used to dynamically downscale the CNRM-HIR-WAV global simulations described in Sect. 2.2. The dynamical downscaling method allows the resolution of regional processes at a linear scale.

Regional wave simulations IBI-CCS-WAV (IBI Climate Change Scenarios Wave) are produced over the 1970-2100 period using MFWAM (Sect. 2.1) at a 1° resolution. The configuration was designed over the IBI domain based on a Copernicus Marine Service (CMEMS) configuration (https://doi.org/10.24381/mess-0003). The regional domain covered by IBI-CCS-WAV extends from 27 to 61° N and 17° W to 8° E (Fig. 2), leading to a horizontal resolution ranging from 5.5 to 10 km. IBI-CCS-WAV is used to dynamically downscale the CNRM-HIR-WAV global simulations described in Sect. 2.2. The dynamical downscaling method allows the resolution of regional processes at a linear scale.

The IBI zone is interesting for wave modeling as it contains a variety of physical processes. First, the domain contains strong variations of bathymetry, with a wide continental shelf in the northern part of the domain (North Sea, English Channel) and a steep continental shelf in the southern part (Spain, Portugal, Morocco, Mediterranean Sea) (Fig. 2). There are also contrasting wave regimes: The Atlantic coasts are subject to very energetic events in terms of significant wave heights, wave periods and energy flows (Masselink et al., 2016; Bruciaferri et al., 2021) whereas the Mediterranean Sea and North Sea are more sheltered areas dominated by wind waves (Chen et al., 2002; Bergsma et al., 2022). In addition, the zone also contains
very different tidal regimes with both macro and micro tidal regimes respectively in the English Channel/Celtic Sea (Valiente et al., 2019; Stokes et al., 2021) and in the Mediterranean Sea.

Regional wave simulations IBI-CCS-WAV (IBI Climate Change Scenario WAV) are produced using MFWAM (Sect. 2.1) at a 1/10° resolution. The configuration was designed over the IBI domain based on the Copernicus Marine Service regional configuration (Tab. 1, IBI-WAV, https://doi.org/10.48670/mois-00030). The regional domain covered by IBI-CCS-WAV extends from 25° to 61° N and 17° W to 8° E (Fig. 1), leading to a horizontal resolution ranging from 5.5 to 10 km. The regional wave configuration is used to dynamically downscale global wave simulations. The dynamical downscaling method allows the resolution of regional processes at a finer scale. The method consists in forcing the regional wave model at its lateral boundaries by wave spectra from the larger scale wave model and at the surface by winds and surface currents from other suitable models (global climate model and 3D regional ocean model, Tab. 1). The models and simulations that provide these forcings are described in the Appendix A. The bathymetry used is a smoothed ETOP01 ocean bathymetry (https://www.ngdc.noaa.gov/datasets/etopo1-topography-and-bathymetry/). The wave simulations are performed over the historical period (1970-2014) and the 21st century (2015-2100) under SSP5-8.5 climate change scenario. Classical integrated wave parameters such as the significant wave height H_s and the peak period T_p are generated hourly.
2.3 External forcings

2.3.1 Wave forcing from CNRM-HR-WAV global wave model

The regional wave model described in Sect. 2.2 is forced at its lateral boundaries by 3-hourly wave spectra information from CNRM-HR-WAV global wave model. CNRM-HR-WAV simulations are produced over the 1950-2100 period using MERMAM Sect. 2.1 at a 1° resolution. Three simulations are forced by 3-hourly surface winds (1/2°), monthly sea ice cover (1/4°) and daily ocean surface currents (1/4°) taken from the CNRM-CM6-1 HR global climate simulations (Voldoire et al., 2019; Saint-Martin et al., 2021). The historical simulation of CNRM CM6-1 HR is used over the 1950-2014 period. Then, over the 2015-2100 period, the SSP1-2.6 and SSP5-8.5 climate change scenario simulations are used (O’Neill et al., 2014).

CNRM-HR-WAV simulations use 2° min gridded global topography data from ETOP02/NOAA (National Geophysical Data Center, 2008). The model grid is constant opening in longitude but is compressed in latitude to maintain a constant resolution (200 m). Wave growth calibration was performed to adjust the mean significant wave height of CNRM-HR-WAV to the Copernicus Marine Service WAVEYS wave reanalysis (Lio-Ciane et al., 2021) over the IBI domain. As for the regional simulations, the wave spectrum is discretized in 24 directions and 30 frequencies starting from 0.035 up to 0.58 Hz. The time step is fixed at 720 s. Classical integral wave parameters such as significant wave height (Hs) or average wave period (Tm) are generated three-hourly for CNRM-HR-WAV.
2.3.2 Atmospheric forcing from CNRM-CM6-1-HR global climate model

Regional wave projections are driven by the same 3-hourly surface winds as CNRM-HR-WAV (Sect. 2.3.1) produced by the CNRM-CM6-1-HR global climate model (Voldoire et al., 2010; Saint Martin et al., 2021), which is part of the CMIP6 database. The setup of a global climate model with a higher spatial resolution compared to the typical coarse resolutions of CMIP5 and 6 models, was interesting for the atmosphere (1/12°) for the extreme wind variability.

By driving our simulations with only one global climate model simulation, the aim of the study is not to characterize the uncertainties of wave projected changes over the IBI domain, but rather to discuss the impact of the water level changes on the downscaling. A comparison of extremes (99th percentile) between CNRM-CM6-1-HR, some other CMIP6 global climate models, the atmospheric reanalysis ERA5 (Hersbach et al., 2020) and wave observations from wave buoys (Wehde et al., 2021) is performed at different locations in the IBI region (Fig. 3). Three different time-simulated scenarios are chosen along storm trajectories in the northeastern Atlantic and North Sea (Lozano et al., 2004). Figure 3a shows that CNRM-CM6-1-HR is representative of an ensemble of 21 CMIP6 models over the historical period. In general, CNRM-CM6-1-HR is also in good agreement with ERA5 which is the reference here. However, it is evident that CNRM-CM6-1-HR is different from both the global climate models and ERA5, especially in the North Sea region. Figure 3b shows the projected changes for the extreme wind speed at the three locations. Projected changes in extreme wind speed are quite small in all models and rather uncertain in a high percentage of cases. Projected changes at the same sign for 7, 8 and 10 models out of twelve at the three buoys respectively. In the English Channel and North Sea, CNRM-CM6-1-HR shows an increase in extreme wind speed which is quite small in all models and rather uncertain in a high percentage of cases. Projected changes are of the same sign for 7, 9 and 10 models out of twelve for the three

![Figure 3a: Extreme wind speed (99th percentile) for CNRM-CM6-1-HR (dark red dot), 21 different CMIP6 global climate models (black box), the atmospheric reanalysis ERA5 (dark red cross) and wind observations from wave buoys (yellow cross) at the three locations in the IBI region marked on Fig. 2a for the 2011-2014 period. The 2011-2014 period was chosen as it covers the same time period as the wave buoys in the North Sea, if the wave buoys were available. (a) Projected changes in extreme wind speed for CNRM-CM6-1-HR and 12 different CMIP6 climate models at the three locations marked in Fig. 2a under the SRES-A2 scenario (2081-2100 vs. 1980-2005). The selected CMIP6 climate models are those with three different climate models and ERA5) representative of the other CMIP6 models. In the North Atlantic, CNRM-CM6-1-HR exhibits a large decrease in extreme wind speed which is in the high range in absolute value of CMIP6 models but still of the same sign or most models.

2.3.3 Ocean forcing from IBI-CCS regional ocean model

Regional wave projections are also forced by the hourly surface current and hourly water simulations with sea level variations in the dedicated simulations (Sect. 2.3.1) of IBI-CCS, a regional ocean model at a 1/12° horizontal resolution, itself forced by CNRM-CM6-1-HR global climate model. IBI-CCS was implemented in Chaignon et al., 2022 to output sea level projections of CNRM-CM6-1-HR over the northeastern Atlantic region through a dynamical downscaling. For a more complete representation of processes driving coastal water level changes, tides and
atmospheric surface pressure forcing are explicitly resolved in IBI-CCS in addition to the ocean general circulation (dynamic sea level).

2.4 Inclusion of water level variations in the regional wave model: IBI-CCS-WAV_ssh

The water levels over which the waves propagate control the intermediate and shallow water wave dynamics and the refraction by bathymetric gradients, as well as bottom friction induced wave breaking. To measure the impact of water level variations on non-linear interactions between sea level on waves, in the IBI region, a twin configuration to IBI-CCS-WAV (Sect. 2.2) was set up to consider water level variations as an additional forcing: IBI-CCS-WAV_ssh. For this purpose, MFWAM (Sect. 2.1) has been modified to include non-hourly water level forcing coming from IBI-CCS-WAV, the same 3D regional ocean simulations. Sect. 2.3.3 in which adds bathymetric depth (Fig. 2) to hydrodynamic effects such as the surface currents. Hourly sea level forcing includes tides, storm surges, mean sea level but also the non-linear interactions between these processes. In our ocean simulations, the mean sea level contains the steric (sea level thermal expansion and dynamic sea level associated with ocean circulations) and the barystatic sea level change (the addition of water mass to the oceans) thus long-term mean sea level rise over the next century. In practice, water elevation is read at the same time as ocean surface currents (Fig. 1) and included in the hourly sea level forcing. From a practical point of view, in order to simulate the sea level variations in the wave model, the sea level obtained from the ocean simulations is added to the topographic depth at each forcing time step. These depth variations associated with water level variations affect the source terms Sect. 2.1.5 and wave propagation from intermediate to shallow waters. Water elevation measurements at every grid point.

The wave model operates with a look-up table system as the following: as a pre-processing, wave propagation parameters such as group velocities and wave numbers, as well as parameters that affect the source terms described in Sect. 2.1 are tabulated at the beginning of the simulation according to a fixed list of depths and frequencies as the form of look-up. During the simulation, the required parameters are retrieved from these tables. As explained in Figure 2, the inclusion of sea level affects the local water depth and therefore affects the parameters needed for wave propagation and source terms (Sect. 2.1) in intermediate to shallow waters. The depth discretization for the propagative aspects was adapted of the tables follows a geometric series with a first level at 3 meters and a vertical resolution of the order of about 15 centimeters near the surface. For IBI-CCS-WAV, a minimum water depth of 6 meters was chosen to be consistent with that applied in the forcing from the regional ocean simulations. In the regional ocean model, this value avoids the occurrence of uncovered banks in macro-tidal areas, especially around Mont-Saint-Michel in France and in the Bristol Channel. For IBI-CCS-WAV, since the depth is set to a minimum of 6 meters (Sect. 2.2), values less than 6 meters in the tables are not used. For IBI-CCS-WAV_ssh, since the local depth fluctuates around that of IBI-CCS-WAV, values less than 6 meters in the tables are used, for example at low tide. In this case, the values can be used up to a minimum of 3 meters which corresponds to the first term of the geometric series used to discretize the tables (Fig. 2).

A minimum time-mean water depth of 6 meters was chosen to be consistent with that applied in the ocean simulation from IBI-CCS (Chaigneau et al., 2020). This value avoids the occurrence of uncovered banks in macro-tidal areas, especially around Mont-Saint-Michel in France and in the Bristol Channel. These settings are applied for all regional wave simulations, whether they are forced by time-varying water levels (IBI-CCS-WAV_ssh) or not (IBI-CCS-WAV).

3.5 Wave setup calculation based on a parametrization

The present study aims at investigating the sensitivity of projected changes in mean and extreme wave conditions to wave-water level non-linear interactions. In particular, the focus is given on the wave setup which drives coastal sea level hazards such as coastal flooding. Wave setup and runup can be resolved directly from wave-resolving coastal models, such as XBeach (Roeleveld et al., 2009), SWASH (Zijlema et al., 2011), or BOSS (Pinault et al., 2022). Such models require a high resolution of several meters and nearshore profiles as input. They cannot yet simulate nearshore morphological changes over long time periods and at large spatial scales due to their limitations to represent cross-shore sediment exchanges (Elsdén and Owens, 2017). For models such as MFWAM that do not directly resolve the wave setup and runup, they can be estimated, at first order, via empirical formulations that relate them to a set of simple deep water environmental parameters (e.g., Dodet et al., 2019b). In our study, the wave contribution to sea level is limited to wave setup. As the aim is to provide a first order estimate of wave setup projected changes, our wave setup estimates are based on an empirical formulation (Stockdon et al., 2006), applicable for sandy beaches:

\[
g = 0.35 p' L_{swt}^2 f_{swt}^{-1/2} - 1\] (Stockdon et al., 2006)

where \(g\) is the foreshore beach slope (e.g. the slope in the swash zone), \(H_{swt}\) is the deep water significant wave height, \(L_{swt}\) is the deep water peak wave wavelength related to the deep water peak wave period \(T_{swt}\) through the deep water linear dispersion relationship: \(L_{swt} = \frac{2\pi}{2\nu T_{swt}}\) and \(\nu\) is the acceleration of gravity.

As the wave setup estimation largely depends on the beach slope parameter, in this study, for the wave setup changes of Sect. 2.2 and 3, we provided a wave setup scaling \(H_{swt} L_{swt}^2 T_{swt}f_{swt}\) rather than using the formulation of equation (1) to allow our results to be scaled with different beach slopes or empirical formulae (Dodet et al., 2019a). To provide a range of wave setup changes at
In their study, Melet et al., 2020a, uses broad section of CCS (and observations from wave buoys (Wehde et al., 2021). As a result, the limitations of such an approach based on parametrizations are discussed in Section 5.

To assess the impact of the non-linear interaction of sea level on wave extremes, nonstationary extreme value analyses (EVA) are performed for each coastal location. To do that, the approach of Mentaschi et al., 2016 is used, allowing the detection of long-term trends in extremes and, in our case, the filtering of variability on time scales shorter than 20 years. For each coastal location and wave time series, the output of the EVA is a time-varying generalized Pareto distribution (GPD), from which the return levels can be obtained, such as the 1-in-100-year return level analyzed in Sect. 4.

3 Validation and projections of IBICCS-WAV without waves-sea level interactions in the regional wave simulations

3.1 Validation of IBICCS-WAV and IBICCS-WAV_ssh over the 1993-2014 period

IBI-CICS-WAV and IBI-CICS-WAV_ssh are validated over the 1993-2014 period against Copernicus Marine Service products: a regional wave reanalysis which will be referred to as IBI-CICS-WAV thereafter (García San Martin et al., 2021; Tolodano et al., 2021) and observations from wave buoys (Wehde et al., 2021). The IBI-CICS-WAV reanalysis covers the whole 1993-2020 period and has a horizontal resolution of 5 km. IBI-CICS-WAV uses the current from the IBIRYS regional ocean reanalysis (García San Martin et al., 2021). In the present study, we considered the IBI-CICS-WAV as the reference for the domain as Tolodano et al., 2021 have shown that the system showed good performance when compared to satellite and buoy observations over the 1993-2019 period. The selected wave buoys have a temporal data coverage of at least 60% over the validation period. The 1993 (Tolodano et al., 2021). In our case, the 1993-2014 period was chosen for the validation period because it corresponds to the intersection between the period covered by the IBI-CICS-WAV regional reanalysis (starting in 1993) and the historical period of IBI-CICS-WAV (ending in 2014).

Wave buoys were selected to have a temporal data coverage of at least 60% over the validation period. The ability of IBI-CICS-WAV and IBI-CICS-WAV_ssh to reproduce observed distributions is assessed for the mean state and the 99th percentile of the significant wave height H_s and peak period since these variables are then used in computing $\overline{\phi}$ and for the mean wave direction through wave roses. In this section, it is rather IBI-CICS-WAV which is validated against the wave setup scaling (Sect. 3.2.1) reanalysis because as IBI-CICS-WAV, the reanalysis does not consider hourly sea level variations as a forcing.

3.1.1 Significant wave height and mean wave peak period

Mean state validation
Figure 4. (a), (b), (c) and (d) show the mean significant wave height (H_s, in m) over the 1993-2014 period for: (a) IBI-CCS-WAV, for the domain and wave buoys for the circles. (b) Differences between IBI-CCS-WAV and the reanalysis IBI-WAV. (c) Bias between IBI-CCS-WAV and CMEMS wave buoys at buoy locations. (d) Scatter plot at each wave buoy location of simulations: IBI-CCS-WAV (red marks), IBI-CCS-WAV_ssh (yellow marks) and IBI-WAV. The
reanalysis (blue marks) vs observations. (e), (f), (g) and (h) are the corresponding figures for peak period (for peak period in s).

For the mean peak period, the mean significant wave height and peak period of IBI-CSS-WAV seem to be validated in Figure 5 and are in reasonable agreement with both the reanalysis IBI-CSS and the wave buoys over the 1993-2014 period. Around the Strait of Gibraltar, the performance of IBI-CSS-WAV and the reanalysis against wave buoys data is quite similar on average over the domain with a root mean square error (RMSE) of the same order of magnitude: about 20 cm for the mean significant wave height and 1 s for the mean peak period (Fig. 3d,h).

Between 35° N and 45° N in the deep ocean, IBI-CSS-WAV nevertheless exhibits a positive bias for the mean significant wave height inherited from the global wave model forcing through the boundary reanalysis (Fig. 3b). This feature is due to the wind forcing generated from the CNRM-CM6-1 HR (Sect. 2.3, global climate model (Tab. 1)). In CNRM-CM6-1 HR, the wave forcing is slightly underestimated. However, the significant wave height and peak period differences between IBI-CSS-WAV and IBI-WAV forcing reanalysis are often larger in coastal zones and can reach a relative error of 20% in the Gulf of Cadiz (Fig. 3d,h and 3b,f). Differences in wave heights are mainly due to the different forcing in the surface currents forcings coming from IIBIRS and IBI-CSS-WAV and from IBIRYS (Leveret et al., 2020) for IBI-WAV. The currents are particular around the Strait of Gibraltar. At this location, the incoming transport and the currents from IBIRYS are more intense than those of IBI-CSS. Indeed, IBI-CSS has been corrected in Chaigneau et al. 2022 to obtain a more accurate transport through the Strait of Gibraltar.

Figure 4d,h displays the mean significant wave height biases between IBI-CSS-WAV and wave buoys over the 1993-2014 period. The spatial pattern of the biases is generally in agreement with Figure 4b showing a negative bias in the northern part of the domain and a positive bias for the mean peak period. Around the Strait of Gibraltar (Fig. 4b and c). Around the Iberian Peninsula, the biases found for the peak period between IBI-CSS-WAV and the reanalysis IIBIRYS (Fig. 4f) seem to be in contradiction with those found between IBI-CSS-WAV and the wave buoys (Fig. 4d and 4g). Toldano et al., 2021 also reported large errors between the reanalysis and wave buoys on the mean wave period in northern Spain between IBI-CSS-WAV and the wave buoys for the mean wave period. The uncertainty seems to be large in these regions and IBI-CSS-WAV is within the uncertainty range of uncertainty. The scatter plot of Figure 4d,h and 4b,h shows that the performance of both IBI-CSS-WAV and IBI-WAV are quite similar on average over the domain with a root mean square error (RMSE) of the same order of magnitude: about 20 cm for the significant wave height and 1 s for the peak period. Figure 4b,h must be interpreted with caution as the observations of peak period are scarce and located close to the coast. Most likely coastal buoys are subject to very local effects that are poorly represented at the 1/10° model resolution (Fig. 4d,h).

The comparison of IIBIRS-WAV_ssth with the reanalysis is not relevant since the latter does not consider the forcing with hourly sea level variations. The IIBIRS-WAV_ssth simulation is compared to the buoy data in Figure 4d,h and Figure 5.d,h. However, it is difficult to get useful information from these comparisons as the wave buoys (Fig. 4d,h) and Figure 4d,h but the performance of IBI-CSS-WAV_ssth is similar to that of IBI-CSS-WAV since the buoys since they are not necessarily located at the coast. Actually, they are in an area where there is no impact of the wave water level with linear interactions between wave periods (Sect. 4) so the performance of IBI-CSS-WAV_ssth are similar to those of IBI-CSS-WAV.

Extremely valid: 99th percentile
Figure 5: (a), (b), (c) and (d) show the 99th percentile (based on hourly outputs) coastal significant wave height H_s in m over the 1993-2014 period for: (a) IBI-CCS-WAV, for the domain and wave buoys for the circles. (b) Differences between IBI-CCS-WAV and the reanalysis IBI-WAV. (c) Bias between IBI-CCS-WAV and CMEMS wave buoys at buoy locations. (d) Scatter plot at each wave buoy location of simulations IBI-CCS-WAV (red marks), IBI-CCS-WAV_ssh
overestimation is also shown in smaller RMSE with IBI-WAV due to the complexity of the Strait of Gibraltar where the values are 1 close, with a slight underestimation of the largest extreme significant wave heights in global wave simulations. The performance of both IBI-CCS-WAV and IBI-WAV as the reanalysis is close, with a slight underestimation of the largest extreme significant wave heights in both models. In addition, IBI-CCS-WAV seems to overestimate the smallest 99% percentile of significant wave height, particularly in the Gulf of Cadiz and around the Strait of Gibraltar where the values are 1 m too large (Fig. 5b and Fig. 4c). This feature is also mainly associated with the currents which are quite different around the Strait of Gibraltar: current forcing in IBI-CCS-WAV compared to those of IBI-WAV due to the complexity of the this very complex zone. Figure 5f shows for the comparison of the extreme peak period 50% percentiles between IBI-CCS-WAV and IBI-CCS-WAV, differences of 5% (relative error of 20%) are found between IBI-CCS-WAV and IBI-WAV along the Atlantic coasts and between IBI-CCS-WAV and the reanalysis (Fig. 10). However, this feature seems to be related to an overestimation of the extreme peak periods in the reanalysis IBI-WAV as the differences do not appear when IBI-CCS-WAV is directly compared to wave buoys (Fig. 5b). The scatter plot of Fig. 5f also shows a smaller RMSE with IBI-CCS-WAV than with IBI-WAV when compared to wave buoys (Fig. 5f). This overestimation is also reported in Toledo et al., 2021 in which the reanalysis IBI-WAV is validated.
3.1.2 Wave roses

Figure 6.5: Directional distributions of significant wave height at star locations of Fig. 2.1a.9: North Atlantic buoy 6200093 (first row), Belle-Ile buoy 6200074 (French Atlantic coast, second row). First column (a, d) are the wave roses based on wave buoy data over the [a] 2003-2022 period for (a) and (d) 2005-2022 for (d) periods. Second column (b, e) are the roses for IBI-CCS-WAV over the 1993-2014 period and last column (c) for the IBI-WAV-reanalysis over the 1993-2014 period. Different periods are chosen for the wave buoys because of the lack of data for the wave direction over the 1993-2014 period. Wave roses at North Atlantic buoy 6200093 location were computed using mean wave direction. Wave roses at Belle-Ile buoy 6200074 location were computed using the wave direction at spectral peak as it was the data provided by the wave buoy. However, this variable was not an output of the IBI-WAV-reanalysis. Colors indicate the wave height distribution in each direction bin.
430 Directional distributions are shown validated on wave roses at two locations in the Atlantic Ocean (marked on Fig. 2a). In
431 Figure 4, (a) (Fig. 5): The focus is only on the IBI-CCS-WAV simulation as we found that the impact of the surface
432 level variations on the mean wave direction was negligible over the 1993–2014 period. As both locations were
433 located in deep waters (Fig. 1a). Since both sites are located in the Atlantic Ocean exposed to the westermly
434 forced Atlantic Ocean, the wave roses indicate dominant waves in the west, west-northwest and west-southwest directions. For
435 the North Atlantic buoy 6200093, IBI-WAV shows the same main wave direction as both the buoy data (Fig. 5a,c,e)
436 and reanalysis and so. However, the observed west distribution is slightly underestimated (by 5%) by IBI-CCS-WAV and IBI-WAV, especially for
437 the highest waves, superior to 4 m. In IBI-WAV, this could be IBI-CCS-WAV tend to have a southward direction bias
438 compared to the wave buoy associated with a larger surface directional spread of the biggest waves coming from the north
439 (Fig. 5a,b,c). For the reanalysis data, in IBI-CCS-WAV none tend to have a slight southward direction bias as the dominant
440 wave direction is west for the buoy (Fig. 5c) while in IBI-CCS-WAV the dominant wave direction is west-southwest (Fig.
441 5a,c). For the Belle-Ille buoy 6200074, the west direction represents 70% of occurrence in IBI-CCS-WAV against 60% for
442 the wave buoy (Fig. 5a,b,c) but data of the nile is related to the difference is coming from waves with a significant wave
443 height of less than 2 m. Whereas for the buoy it represents only 25%. The difference is found in the west-northwest
444 direction bias for the wave buoy data.
445 Overall, the IBI-CCS-WAV and IBI-CCS-WAV,eb regional wave models show fair simulations show good
446 performance, performance, compared to the IBI-WAV reanalysis and wave buoys, although observations are scarce. For the
447 future period, as in the present study we use a single global climate model forcing, we assess the regional projections compared
448 to previous published studies.

3.2 Regional wave projections of IBI-CCS-WAV under two climate change scenarios—the SSP5-8.5 and SSP1-2.6 climate change scenario

Regional projections 2015-2100 for the end of the 21st century are now presented for IBI-CCS-WAV under the SSP5-8.5
450 and SSP1-2.6 climate change scenario for the significant wave height and peak period and mean wave direction
451 validated in Sect. 3.1 and for wave setup scaling (H immigrants) (Sect. 2.5.3).

3.2.4 By driving our regional simulations with a single global climate model, the aim of the study was not to provide
455 regional wave projections with characterized uncertainties over the domain. Nonetheless, we verified that our regional
456 projections were consistent with other large-scale studies. Projected changes in significant wave height, peak period and wave
457 setup scaling for IBI-CCS-WAV are not presented in this section because they are not directly comparable to other studies
458 that do not include sea level variations, this simulation will be used to characterize the impact of the non-linear interaction of
459 sea level on waves in Sect. 4.

Mean state projections
3.2.1 Projected changes in incoming mean and extreme significant wave height and peak period

Figure 3: Projected changes in incoming mean and extreme significant wave height and peak period for the 2081-2100 period (relative to 1986-2005) under the SSP1-2.6 (first column) and SSP5-8.5 (second column) scenario/nature climate change scenarios for (a,b) the significant wave height (Hs, in m) and (c,d) the peak period (Tp, in s) and (a,d) scaling for wave setup (mis, in m). Projected changes in the mean and extreme significant wave height, and peak period and wave setup scaling are illustrated in Figure 3 for the end of the century under two climate change scenarios. Projected changes under the SSP5-8.5 climate change scenario are qualitatively consistent with other studies (Lobo et al., 2021; Melet et al., 2020a; Morin et al., 2019; Aarnes et al., 2017; Casas-Post et al., 2018), with a large decrease in the mean significant wave height and peak period and thus in the wave setup scaling in the Atlantic Ocean and Mediterranean Sea (Fig. 3a,b). For the SSP5-8.5 scenario, in the south of the domain, projected changes in the mean peak period can reach 0.5 s, which represents a decrease of 6.5% or 6%. In the southern domain, in comparison to the historical period (Fig. 3c,d). For the mean significant wave height, projected changes are largest in the north-western domain and can reach 0 cm or 10 cm. Changes in the wave height and peak period result from changes in the wave spectrum composed by different wave regimes (e.g. swells and wind-waves). The large decrease in the significant wave height under the SSP5-8.5 scenario is due to a general decline in the wind speed forcing from CMIP6 CMIP6 global climate model forcings (Tab. 3) over the domain and in the North Atlantic Ocean, inducing changes in both wind-waves and swells in the domain (not shown). The decrease in the wind speed under the SSP5-8.5 scenario is consistent with other CMIP6 models projections (Carvalho et al., 2021). In terms of wave setup scaling, projected changes can reach a decrease of 3 m or 6% under SSP5-8.5 scenario along the south domain coast (Fig. 3). In form of wave level equivalents, wave parameterization is with a base of the 2.5% and 5% percentiles, the decrease in the wave setup in the deep ocean can reach between -3.8 cm and -4.9 cm. These changes are thus rather small but not negligible compared to the projected sea level rise of about 48 cm over the northeastern Atlantic domain (Chaigneau et al., 2022) but are of opposite sign. These changes in wave setup are mainly related to moderate changes in the peak period which is squared in formulation. 16.6% of the wave setup changes are due to those in peak period and 37% are due to changes in significant wave height. Except in the North Sea, the spatial patterns of the wave projected changes under the SSP5-2.6 scenario (Fig. 3a,c,e) are broadly the same as under the SSP5-8.5 scenario, but with an overall smaller magnitude.
Projected changes in the 99th percentile of significant wave height, peak period and wave setup scaling extremes are illustrated in Figure 8 for the end of the century under two climate change scenarios. Changes in the 99th percentile of peak period are moderate as it generally represents a decrease of less than 2.5% for the SSP5-8.5 scenario (Fig. 8d). For the significant wave height, projected changes in the 99th percentile under SSP5-8.5 scenario are large with a decrease of more than 30 cm or 12% in the southern part of the domain. These changes are projected changes in the 99th percentile of significant wave height and substantially different from those in the mean state, as reported in Morim et al., 2018. This is associated with different changes in the extreme wind speed forcing compared to those in the mean state (not shown). For example, for the SSP5-8.5 scenario, there is a large decrease in the extreme wind speed (Fig. 2b;3b) and thus in the significant wave height of more than 1 m or 12% is located in the North Atlantic south of 45°N and north of 55°N (Fig. 2b,3b). This is consistent with other studies (Aarnes et al., 2017; Menucci et al., 2021) in which the largest decrease in the 99th percentile of extreme significant wave height is also found in the southern domain (Fig. 3b). In the English Channel, Celtic Sea and French Atlantic coasts, the model even exhibits an increase in the extreme significant wave height that has not been reported in other studies for both scenarios (Fig. 2a,3a). This increase is however consistent with projected changes in extreme wind speed shown in Fig. 2a,3a for the English Channel. In the Mediterranean Sea, the SSP5-8.5 and SSP5-2.6 scenarios exhibit significant wave height projected changes of a different sign (Fig. 8a,b) associated with different projected changes in forcing global climate model. Projected changes in the extreme winds (not shown). Over the whole domain, projected changes in extreme peak periods and small projected changes in extreme wave setup scaling are mostly governed by those in extreme significant wave height (Fig. 8c-f). In contrast to the projected changes in mean state of Figure 7. For instance, along the north Iberian coasts, projected changes in wave setup scaling show a decrease of 2 m or 1%, with 70% of the changes due to those in significant wave height and 30% due to changes in peak period. In terms of sea level equivalent, the decrease in extreme wave setup can

Figure 8: Projected changes in incoming extreme (99th percentile) waves conditions for the 2081-2100 period (relative to 1986-2005) under the SSP1-2.6 climate column and SSP5-8.5 warming climate scenario in 2050-2100. (a, b) significant wave height (m/s, in m), (c, d) peak period (Tp, in s) and (e, f) scaling for wave setup (\(\sqrt{H_s \cdot T_p} \), in m).
reach between -2.8 cm and +1.9 cm using (1), as for the mean state of Figure 7, peak period are moderate as they generally represent a decrease of less than 2.5 % (Fig. 6d).
3.2.2 Projected changes in wave roses

Figure 9: Projected changes (SSP5-8.5 scenario) in directional distribution of significant wave height for the 2081-2100 period (narrow angle bins, dark colors) relative to 1986-2005 (wide angle bins, pale colors) in IBI-CCS-WAV at

(a) North Atlantic 6200093 Wind wave
(b) Primary swell

(c) Belle-Ile 6200074 Wind wave
(d) Primary swell
Projected changes in the directional wave height distributions are shown in Fig. 5. The wave roses illustrate the wind and wave or primary swell contributions. The significant wave heights are based on the significant wave height as those of Fig. 5. The roses show that most waves are due to the primary swell at this location. The main contribution to significant wave height in the Atlantic Ocean is the wind wave. In the main direction of the wind wave under the SRES 3.2 scenario (Fig. 6), the wave rose at the Belle-Ile buoy exhibits a clockwise shift of 20° in the direction of the wind wave under the SRES 4.5 scenario (Fig. 7). Over the historical period, the main direction is changing from a west-southwest to a west-northwest direction (20°) at the end of the century under the SRES 3.5 scenario (Fig. 8). In this zone, a clockwise shift in the wave direction has already been documented in Morim et al., 2019. This shift seems to come mainly from small waves with significant wave height less than 50 cm. For the primary swell at Belle-Ile, we observe a slight strengthening of the swell from the west direction and thus associated with a reduction of the wave components coming from the southwest (Fig. 9a). The roses show different wave directions at the end of the century under the SRES 3.5 scenario (Fig. 9b). A large strengthening of the wind-wave heights in the southwest, west-southwest direction has been observed in Fig. 9a. Also, for North Atlantic buoy 6200093, the predicted changes in the significant wave height are larger than at Belle-Ile buoy 6200074 (second row). The results of the model for the two locations validated with previous studies.

In Sect. 3.5, as reported in other studies, we observe a general decrease in mean and extreme significant wave height and peak period over the domain as well as a clockwise mean wave direction change along the French Atlantic coast. As IBCCS-WAV and IBCCS-WAV-obs respectively are compared in terms of significant wave height and peak period for both the mean state and extreme events, we can assess the model results for investigating the hourly sea level variations in the wave model in the regional wave model. For that purpose, the two simulations that do not account for the non-linear interaction of sea level on waves (IBCCS-WAV and IBCCS-WAV-obs, respectively) are compared in terms of significant wave height and peak period for both the mean state and extreme events.
4 Impact of non-linear wave-water level interactions accounted for in the regional wave model

4.1 Impact for the entire coastal domain
Figure 10: Impact of the inclusion of the hourly water level variations in the wave model on the mean state of (a,b) significant wave height (first row, ΔHs, in cm) and (c,d) peak period (second row, Tp, in s). Shading indicates the difference between IBI-CCS-WAV ssh and IBI-CCS-WAV for the 1986-2005 period. The second column shows the relative differences of mean state between IBI-CCS-WAV ssh and IBI-CCS-WAV for the 2081-2100 period under the SSP5-8.5 scenario. Note that the color bars of Figure 8 and 9 are not linear and are identical to facilitate the comparisons between the two figures.

The impact of accounting for hourly water level variations in the wave model on the mean state of wave conditions is shown in Figure 10 by comparing IBI-CCS-WAV ssh to IBI-CCS-WAV. Except for a few places, like in (c) and (d) for a few locations, such as the Bay of Mont-Saint-Michel or the mouth of some rivers in the United Kingdom, the impact of including the hourly water level variations on the wave model has almost no impact on average wave height in the first column/mean state of wave conditions for the historical period (Fig. 8a,b,c). This suggests that there are no strong non-linear effects between waves and water level on waves that would make an impact on differences on the 20-year mean state on average for the majority of the coastal domain with our model settings.

Differences in the wave projections due to the inclusion of hourly water level changes are illustrated in the second column of Fig. 10 (c-d) at the end of the century (2081-2100) under the SSP5-8.5 scenario. Sea level projected sea level changes in the IBI-CCS regional ocean model during the 21st century simulations used as forcing (Tab. 1: Sect. 2.2) are mainly dominated by the mean sea level rise, (sterodynamic and barystatic) sea level rise, with rather small changes in tides and storm surges (Chaigneau et al., 2022). Therefore, in IBI-CCS-WAV and IBI-CCS-WAV ssh, sea level changes are forced by the same winds. Figure 10 mostly shows the impact of mean sea level rise on waves, even if not completely linear. In IBI-CCS, the mean sea level rise averaged over the IBI domain reaches ~80 cm in our region in 2100 compared to the 1986-2005 period under the SSP5-8.5 scenario, considering changes in tides and storm surges too (Chaigneau et al., 2022). Until the end of the paper, the mean sea level rise term will also consider projected changes in the mean state of tides. Therefore, since IBI-CCS-WAV and IBI-CCS-WAV ssh are forced by the same winds and storm surges, thus the same storms, Figure 8 mainly shows the impact of mean sea level rise on the mean wave conditions. This long-term mean sea level rise has an overall small effect on the coastal points of the large continental shelf where shallow and intermediate water dynamics prevail (dominate) (Fig. 2a). The 1a). Future mean significant wave height projections/reach are up to +30 cm larger (e.g., +6% larger) higher in IBI-CCS-WAV ssh than in IBI-CCS-WAVs along the French Atlantic coasts and in the southern North Sea (Fig. 10a,b,c).
This result is consistent with Arns et al., 2017 who showed that changes in water depth changes induced by sea level rise might lead to greater amplitudes and periods, breaking closer to the shore. Changes in wave amplitudes near the coast. The impact of the sea level rise on the mean state of significant wave height leads to an impact of the same order of magnitude (up to +6%) on the wave setup scaling mean state (Fig. 10f). For the peak period, the impact is moderate (Fig. 10d), future mean peak period is even smaller, with differences up to +4% (or 0.05 s) (Fig. 10d). In the southern North Sea, projected changes in both significant wave height and peak period are small (Fig. 2c) and therefore the added impact of a cm due to the sea level rise corresponds to more than 70% of the projected total change under SSP5-8.5 scenario.

Figure 11(a). The small impact of the non-linear interaction of sea level on waves (+3 cm, +0.05 s) therefore represents more than 70% of the future change.
Considering extreme events, the impact of sea level on significant wave height and wave setup scaling is substantially more important when considering the 99th percentile instead of the mean state (Fig. 11, fourth column/box). The coastal points of the intertidal continental shelf are particularly impacted (southern North Sea, English Channel, seas around the United Kingdom, French Atlantic coasts). This is particularly the case for macro-tidal locations (Fig. 2b1b), such as the Bay of Mont-Saint-Michel, the Bristol Channel and the eastern Irish Sea. These areas, the historical 99th percentile 1-in-100 year event of significant wave height and wave setup scaling is up to 45% and 45% +10 cm higher respectively when considering mean sea level variations, most notably by tidal variations.

The, as discussed in Sect. 4.2, at the end of the century, the impact of including the hourly water level variations in the wave model on the 99th percentile 1-in-100 year return level of significant wave height (first row, ∆Hs in %) and peak period (second row, ∆Tp in %) and wave setup scaling (third row, ∆Tssh in %). The first column shows the relative differences of the 99th percentile 1-in-100 year return level between IBI for the 1986-2005 period. The second column shows the relative differences of the 99th percentile 1-in-100 year return level between IBI and IBI for the 2081-2100 period under the SSP5 scenario. The large diamonds represent the locations where the differences between both simulations are significant (i.e. where the confidence intervals associated with the 99th year level are saturated for some points for (a), (b) of Figure 8 and 9 are not linear and may be identified to facilitate the comparisons between the two figures.

Figure 8: Impact of the inclusion of the hourly water level variations in the wave model on the 99th percentile 1-in-100 year return level of significant wave height (first row, ∆Hs in %) and peak period (second row, ∆Tp in %) and wave setup scaling (third row, ∆Tssh in %). The first column shows the relative differences of the 99th percentile 1-in-100 year return level between IBI and IBI-SSP5 for the 1986-2005 period. The second column shows the relative differences of the 99th percentile 1-in-100 year return level between IBI and IBI-SSP5 for the 2081-2100 period under the SSP5 scenario. The large diamonds represent the locations where the differences between both simulations are significant (i.e., where the confidence intervals associated with the 100-year return level calculation are disjoint). Note that the color bars are saturated in red for some points for (a), (b) of Figure 8 and 9 are not linear and may be identified to facilitate the comparisons between the two figures.
heights and peak periods in IBI-CCS-WAV are quite small at the coast (Fig. 8b,c), especially on the French Atlantic coasts and on the North Sea coast (+0.1 m, +0.3 s), an impact of the hourly sea level variations of +6 cm increased by up to +40% or +1.1 s represents more than 80% of the projected changes in IBI-CCS-WAV_ssh. These results highlight that wave-water level non-linear interactions should be considered for applications on wave extreme events in particular in coastal zones subject to large water level variations or on large continental shelves, with implications for estimates of both past and future sea level changes. 60 cm (Fig. 9b). On the contrary, extreme peak periods are negligibly impacted by the non-linear interaction of sea level on waves (Fig. 9c,d).

4.2 Impact: Example of the impact on extreme events at two specific locations: Bay of Mont-Saint-Michel and French Atlantic coast.

The largest impact of including water level variations in the wave modeling is found during extreme events, as shown in Figure 11. Indeed, (2 b, d). We now focus on two specific French regions where an impact of non-linear wave-water level interactions on the wave extremes has been identified in Figure 11. Figure 9. In the Bay of Mont-Saint-Michel, strong hourly water level variations occur due to the large tidal range in the region (about 10 m, Fig. 2b, b). For the French Atlantic coast, the tidal range is large (4 m, Fig. 2b, b) but smaller than in the Bay of Mont-Saint-Michel.
Time series of significant wave height and peak period—wave setup scaling and differences in the wave setup scaling for two during an extreme significant wave height event are illustrated in Figure 12. The events selected in the model did not actually occur since 10. Note that the global climate model forcing is not in phase with the observed forcing—observation in terms of internal climate variability, the event selected cannot be compared directly to observations. Nevertheless, we have validated in section 3.1 that the amplitude of simulated extreme events was realistic. The significant wave height and wave setup scaling—time series from IBI-CCS-WAV ssh (dark yellow curve) and IBI-CCS-WAV ssh (dark red curve) illustrate the consideration of hourly wave level variations in the regional wave model (Fig. 12(b)). In the case of the Bay of Mont-Saint-Michel, due to the large tidal range, the highest significant wave height, reached on day 25/10/1993, is larger in 1893 than in IBI-CCS-WAV ssh. The impact of the water level variations on the peak period is however almost zero due to the large tidal range (Fig. 12(b)). In both IBI-CCS-WAV and IBI-CCS-WAV ssh, diurnal variations of the peak period appear due to tidal current that shortens or lengthens the dominant wave period (Arduhin et al., 2012). The impact of the inclusion of wave modelled hourly water level variations on the wave setup scaling (Fig. 12(b)) is balanced by the effects on the significant wave height and peak period of the water level variations. For the peak of day 25/10/1993, the differences of the wave setup scaling between IBI-CCS-WAV and IBI-CCS-WAV ssh can reach 6 meters (Fig. 12(b)). Differences in the wave setup can reach ±8.5 cm to ±14.7 cm for the peak event using parameterization (1) with breach slopes of 1:1 and 7.5:1 (5a). As the Bay of Mont-Saint-Michel has one of the highest tidal ranges in the IBI domain, the impacts found correspond—Derived impact of sea level variations on waves correspond to the upper bound—within the constraints of our model.

For the French Atlantic coast, due to a lower tidal range of 1 meter, the impact of including that this specific case, the extreme event of significant wave height occurs at low tide during a random near-tide so the impact of hourly wave level variations on the extreme water conditions is less important (Fig. 12 second column). For the event of 20/11/2002, differences between IBI-CCS-WAV ssh and IBI-CCS-WAV ssh of ±25 cm (±6%) for the significant wave height and of ±1 m (±3%) for the wave setup scaling (Fig. 12(b)). In terms of wave setup, this would result in differences between ±1.8 cm and ±7.3 cm with parameterization (1) which is substantially lower than in the Bay of Mont-Saint-Michel.

Horseshoe null. In both cases, it can be pointed out that the most significant increase in wave height occurs in both cases at high tide. These results are in agreement with Lewis et al., 2019 and Calvino et al., 2022 who both showed a significant increase in wave height at high tide at a finer scale. In Calvino et al., 2022, this impact seems to be explained mainly by the effect of bottom friction, which is less important at high tide as there is more water. In our case, additional analyses would be needed to understand which process is the primary process included in the model (Sect. 2.1) responsible for the non-linear interactions—the water column is higher. In the case of Arms et al., 2017, waves are higher when sea level increases (e.g. at high tide) because they break closer to the shore. In our case, additional analyses would be needed to understand which process is the primary process included in the model (Sect. 2.1) is the most responsible for the non-linear interaction of sea level on significant wave height. In both IBI-CCS-WAV and IBI-CCS-WAV ssh, diurnal variations of the peak period appear due to tidal current that shortens or lengthens the dominant wave period (Arduhin et al., 2012) but the impact of sea level variations is almost null (Fig. 10(c,d)).
4.3 Impact on extreme events in terms of return periods

It was shown in Sect. 4.1 that the impact of the inclusion of the hourly water level variations in the wave model had a larger effect on the 99th percentile than on the mean state of wave conditions. To better document the impacts on extreme events, we now focus on high return periods, such as the 100-year return level. In Sect. 4.3, a non-stationary extreme value analysis (EVA) is performed for each location time series by using the approach described by Mentaschi et al., 2016. This method is used to detect long-term trends in the extremes and to filter out the variability on time scales shorter than 30 years. For each location and wave time series, the output of the EVA analysis is a time-varying generalized Pareto distribution (GPD).

Figure 13: Impact of the inclusion of the hourly water level variations in the wave model on the 100-year return level of (a,b) significant wave height (first row, ΔH_s, in %), (c,d) peak period (second row, ΔT_p, in s) and (e,f) wave setup scaling (third row, $\Delta \sqrt{H_s L_p}$, in %). The first column shows the relative differences of the 100-year return level between IBI-CCS-WAV and IBI-CCS-WAV_ssh for the year 1985 (representative of the 1970-2000 period). The second column shows the relative differences of the 100-year return level between IBI-CCS-WAV_ssh and IBI-CCS-WAV for the year 2085 (representative of the 2070-2100 period) under the SSP5-8.5 scenario.
Bay of Mont-Saint-Michel

French Atlantic coast

The large diamonds represent the locations where the differences between both simulations are significant, whereas the confidence intervals associated with the 100-year return level calculation are depicted. Note that the colorbars are saturated in red for some points for (b).

Projected changes in the 100-year return level under SSP5-8.5 are globally consistent with projected changes in the 99th percentile of significant wave height, peak period and wave setup scaling of Figure 5. Therefore, we use the IBI-CCS-WAV and IBI-CCS-WAV_ssh simulations to assess the influence of the inclusion of hourly water level variations in the wave model during high return period events. As for the 99th percentile, the coastal points of the large continental shelf of Figure 12 are highly impacted and particularly macro-tidal locations (Fig. 2b). However, the differences between IBI-CCS-WAV and IBI-CCS-WAV_ssh for the 100-year return level are of a larger amplitude than the differences for the 99th percentile of Figure 11 for the whole domain. At the end of the century, the consideration in the wave model of the combination of the tidal range, storm surge and mean sea level rise lead to greater values in extreme significant wave height and wave setup scaling by up to ±20 % and ±10 %, respectively. However, these large impacts are found in locations where the projected changes for the 21st century are generally small since the largest projected changes are located in the southern domain. In spite of this, the effect of sea level on waves should be important to consider when analyzing extreme wave events but also when analyzing extreme water level events even if fewer locations are concerned for the wave setup scaling.

Bay of Mont-Saint-Michel

French Atlantic coast

Figure 14: Return period curves of incoming significant wave conditions height (H_s, in m) for IBI-CCS-WAV (dark red curves) and IBI-CCS-WAV_ssh (dark yellow curves) for (a) the Bay of Mont-Saint-Michel (first column) and (b)(c) the French Atlantic coast (second column; see also Fig. 10b). The solid lines represent the year 1985, representative of the 1985-2005 period, and the dashed lines the year 2085, representative of the 2081-2100 period, for under the SSP5-8.5 scenario. The rows show 3 variables: (a,b) significant wave height (H_s, in m); (c,d) peak period (T_p, in s); and (e,f) scaling for wave setup (H_s, in m). The thin solid and dashed lines are the confidence intervals (corresponding to 1 sigma confidence).
associated with the extreme value analysis (EVA). The differences between IBI-CCS-WAV and IBI-CCS-WAVssh are considered significant when the confidence intervals associated with the return levels calculation are disjoint.

The return period curves for the Bay of Mont-Saint-Michel and for the French Atlantic coast are displayed in Figure 11 for the two simulations IBI-CCS-WAV and IBI-CCS-WAVssh. In the Bay of Mont-Saint-Michel, the differences between the two simulations are very important for the 100-200-year period (dark curves) for the significant wave height (Fig. 11a). It is especially the case for high return periods such as the 100-year return level: As the confidence intervals for the two simulations are disjoint, the differences are considered significant. For the 2070-2100 period under the SSP5-8.5 scenario, the differences between the two simulations are even larger due to the mean sea level rise of about +80 cm. For example, in the case of the significant wave height, the 100-year return level is +43.5% larger when considering the water level variations and for the wave setup scaling it represents an increase of +11.4%. In terms of wave setup using parameterization (1), the differences in the wave setup can reach from +7 cm to +12.25 cm for the 100-year return level depending on the beach slope. This value seems small but is important to consider in the context of threshold exceedance calculations to predict coastal flooding. For the French Atlantic coast, the confidence intervals between IBI-CCS-WAV and IBI-CCS-WAVssh are not distinct. Therefore, the differences due to the inclusion of the water level variations on the wave model are not considered significant. Overall, the longer the return period, the larger the differences between the two simulations.

To better assess the impact of sea level variations on the extreme significant wave heights, return period curves are displayed in Figure 11 for the two locations. The higher the return period, the larger the impact of the non-linear interaction of sea level on waves. For instance, in the Bay of Mont-Saint-Michel, the 1-in-100-year return level of significant wave height is +60% larger when considering sea level variations in the wave model (Fig. 11a). At the end of the century, the differences between the two simulations are even larger and can reach +70% mainly due to the mean sea level rise of about +80 cm under the SSP5-8.5 scenario. The curves also indicate that considering the interaction of sea level on waves modifies the shape of the return period curve, which may have important implications for the future amplifications of extreme events.

5 Discussion

5.1 Model resolution limitations

The use of a single forcing climate model does not allow to quantify the uncertainties of the projected changes. Here, the focus of the study is not providing a likely range of wave projected changes over the IBI domain but rather the focus is process-oriented. In our study, the estimation of the impact of including the hourly sea level variations in the wave model is limited by several resolution aspects. The first limitation is the horizontal resolution of the wave model. The model resolution of 1°/10° (~10 km) is conditioned by the computational cost due to the length of the simulations needed to address the question of extremes in sea climate variability. It does not allow a very fine representation of the coastline and of the bathymetry in the coastal zones. For instance, to maintain a realistic balance between the littoral and wave momentum fluxes, the model resolution of 1 m within a 10 km grid point is challenging. In consequence, the wave model has a limited bathymetry (6 m) and has a more realistic representation of the 10 km horizontal resolution and the water depth. This results in fewer areas of shallow water near the shoreline. However, this issue is expected to be further addressed in future model versions.

Another limitation that may limit the non-linear interactions between waves and water level is the resolution of the atmospheric forcing from the global climate model (ESACCI-L3-5T). Given that winds are the major drivers of extreme wave events in our study, the relative contributions of wind speed and atmospheric drivers (~50 km) implies that generated waves are more representative of a large-scale forcing than of coastal processes. Therefore, the results are more representative of the large-scale processes at the coast but rather more representative of local regional processes. A second step of dynamical downscaling at higher resolution would be necessary to overcome such resolution limitations.

5.2 Limitations associated with the use of parameterizations for the wave setup

Limitations in the use of parameterizations to estimate wave setup are thoroughly discussed in Dodet et al. (2020). Lambert et al. (2018), including sensitivity analyses of the wave setup and runup contributions to different empirical parameterizations. The generic parameterization of Stockton et al. (2006) used to compute the wave setup in our study is subject to intrinsic limitations. A major limitation is to the formulation of only representative of sandy beaches. Other parameterizations (Goda and Thornton, 1981; Holman, 1986) are not representative of sandy beaches. Other parameterizations (Goda and Thornton, 1981; Holman, 1986) are not representative of sandy beaches. Other parameterizations (Goda and Thornton, 1981; Holman, 1986) are not representative of sandy beaches. Other parameterizations (Goda and Thornton, 1981; Holman, 1986) are not representative of sandy beaches. Other parameterizations (Goda and Thornton, 1981; Holman, 1986) are not representative of sandy beaches. Other parameterizations (Goda and Thornton, 1981; Holman, 1986) are not representative of sandy beaches. Other parameterizations (Goda and Thornton, 1981; Holman, 1986) are not representative of sandy beaches. Other parameterizations (Goda and Thornton, 1981; Holman, 1986) are not representative of sandy beaches. Other parameterizations (Goda and Thornton, 1981; Holman, 1986) are not representative of sandy beaches. Other parameterizations (Goda and Thornton, 1981; Holman, 1986) are not representative of sandy beaches. Other parameterizations (Goda and Thornton, 1981; Holman, 1986) are not representative of sandy beaches. Other parameterizations (Goda and Thornton, 1981; Holman, 1986) are not representative of sandy beaches. Other parameterizations (Goda and Thornton, 1981; Holman, 1986) are not representative of sandy beaches. Other parameterizations (Goda and Thornton, 1981; Holman, 1986) are not representative of sandy beaches. Other parameterizations (Goda and Thornton, 1981; Holman, 1986) are not representative of sandy beaches. Other parameterizations (Goda and Thornton, 1981; Holman, 1986) are not representative of sandy beaches. Other parameterizations (Goda and Thor
are often limited to specific coastal environments (e.g. dissipative sandy beaches, rocky cliffs) and have been calibrated with relatively few field data. The calibration therefore does not cover all the spectra of the environmental conditions.

For our large-scale study, another major limitation is that the parameterization relies on the specification of a beach slope. As explained in Melet et al. (2020), the beach slope evolves over different time scales: extreme events, seasonal, interannual, and in response to sea level rise (Sect. 5.5). The sand budget and spatial scales (from shoreline to a given local beach to regional scales) and generally range between 0.01 and 0.20 (Kumar, 1998). At the moment, however, no observations of the shoreline beach slope applicable in empirical formulations is available worldwide or in Europe. Therefore, a time and space constant beach slope value is commonly used for global and regional studies (Serafin et al., 2017; Melet et al., 2018, 2020a), as done in this study. In Melet et al. (2020), a beach slope of 0.04 is used, corresponding to the median value of local values at 308 sites along the global ocean coastlines. In Serafin et al. (2017), a constant beach slope of 0.05 is used, corresponding to the median value of local values of 0.06 at sites along the global ocean coastlines. In Serafin et al., 2017, a constant beach slope of 0.05 is used corresponding to the median value of local values at 308 sites along the global ocean coastlines. In Serafin et al., 2017, a constant beach slope of 0.05 is used corresponding to the median value of local values at 308 sites along the global ocean coastlines. In Serafin et al., 2017, a constant beach slope of 0.05 is used corresponding to the median value of local values at 308 sites along the global ocean coastlines. In Serafin et al., 2017, a constant beach slope of 0.05 is used corresponding to the median value of local values at 308 sites along the global ocean coastlines. In Serafin et al., 2017, a constant beach slope of 0.05 is used corresponding to the median value of local values at 308 sites along the global ocean coastlines. In Serafin et al., 2017, a constant beach slope of 0.05 is used corresponding to the median value of local values at 308 sites along the global ocean coastlines. In Serafin et al., 2017, a constant beach slope of 0.05 is used corresponding to the median value of local values at 308 sites along the global ocean coastlines. In Serafin et al., 2017, a constant beach slope of 0.05 is used corresponding to the median value of local values at 308 sites along the global ocean coastlines. In Serafin et al., 2017, a constant beach slope of 0.05 is used corresponding to the median value of local values at 308 sites along the global ocean coastlines. In Serafin et al., 2017, a constant beach slope of 0.05 is used corresponding to the median value of local values at 308 sites along the global ocean coastlines. In Serafin et al., 2017, a constant beach slope of 0.05 is used corresponding to the median value of local values at 308 sites along the global ocean coastlines. In Serafin et al., 2017, a constant beach slope of 0.05 is used corresponding to the median value of local values at 308 sites along the global ocean coastlines. In Serafin et al., 2017, a constant beach slope of 0.05 is used corresponding to the median value of local values at 308 sites along the global ocean coastlines. In Serafin et al., 2017, a constant beach slope of 0.05 is used corresponding to the median value of local values at 308 sites along the global ocean coastlines. In Serafin et al., 2017, a constant beach slope of 0.05 is used corresponding to the median value of local values at 308 sites along the global ocean coastlines. In Serafin et al., 2017, a constant beach slope of 0.05 is used corresponding to the median value of local values at 308 sites along the global ocean coastlines. In Serafin et al., 2017, a constant beach slope of 0.05 is used corresponding to the median value of local values at 308 sites along the global ocean coastlines. In Serafin et al., 2017, a constant beach slope of 0.05 is used corresponding to the median value of local values at 308 sites along the global ocean coastlines.

5.3 Limitations associated with the applicability of the parameterization to coastal points

To calculate the wave setup for the coastal points of our regional domain, we chose to use the simple parameterization of Stockdon et al. (2006) based on deep water parameters. However, the coastal points are theoretically not purely deep water as shown in Figure 2a (yellow dotted lines). Yet, this approach, used in other climate studies (Melet et al., 2018, 2020a; Lambert et al., 2018), appears pragmatic given the model resolution limitations (Sect. 5.1) and the processes accounted for in the wave model (Sect. 2.1).

5.4 Impact of the absence of depth-induced wave breaking

Very close to the coast, the depth-induced wave breaking is a fundamental depth-dependent process that can have a first-order effect on the shallow water wave statistics and thus on the wave setup. As explained in Sect. 2.1, the physics associated with the explicit representation of coastal breaking waves is not activated. Such an approach is justified because our primary interest is to calculate the wave setup contribution to include it in further analyses on extreme water levels and the parameterization used to compute this contribution is based on deep water parameters (Sect. 5.5) that are not supposed to be affected by coastal wave breaking. In consequence, as the regional wave model does not have a very fine representation of the bathymetry or the coastline (Sect. 5.1) and does not resolve the wave transformations in the coastal zone, the estimates provided in this study only partially represent the processes responsible for the wave water level non-linear interactions.

With the coastal wave breaking included, the significant wave heights should be substantially impacted in shallow water. The impact of the inclusion of water level variations in the wave model would also probably differ. A perspective for this study would be to take into account coastal wave breaking and to apply new specific wave setup formulations which would not require deep water characteristics or to use a wave model that directly resolves the wave setup.

5.5.2 Impact of waves on sea level

The aim of the study was to better understand the non-linear interactions between waves and sea level. In the modeling framework of the paper, only the effect of sea level on waves is accounted for. However, both are coupled in reality with waves impacting on sea level. For instance, Bonaduce et al., 2020 have studied the contribution of wave processes to sea level variability over the European Seas with ocean-wave coupled simulations at an eddy-resolving spatial resolution of 3.5 km. They highlighted the occurrence of mesoscale features of the ocean circulation and a modulation of the surge at the shelf break due to the effect of the wave forcing on sea level. More importantly, they also reported a large contribution of wave induced processes to sea level extremes which are up to 20% higher on the European continental shelf due to these wave processes.

By considering these processes into account in the ocean model, as the water level would be higher, the impact on the wave model would be larger which means increased wave energies, meaning an increase in waves set up levels feedback.
rise, such as along the eastern coasts of the United States, the Gulf of Mexico and the Caribbean Sea where a rise of +1.4 m is expected by the end of the century under the SSP5-8.5 scenario (Fox Kemper et al., 2021).

Marine flooding hazards cannot be quantified based on wave setup alone but wave setup can locally partially balance or enhance water levels at the coast (Maler et al., 2020a). Depending on the location (wave regime, local ocean processes involved, sign of the extreme wave-projected changes, amplitude of the projected changes in ocean processes), the inclusion of the non-linear interactions could thereby enhance or balance the future wave extremes and may be important to consider for future flooding hazard calculations. The results presented in this study highlight that wave-water level non-linear interactions can be substantial for extreme wave height and wave setup but are region-dependent. For instance, the extreme wave projections are directly dependent on the water level variations. In our case, the future water level variations and therefore a large part of the non-linear interactions are mainly associated with the mean sea level rise of about +80 cm and less to changes in tide or storm surge. In other regions, large projected changes in tides or flood surges could impact the future water levels conditions. For instance, Pickering et al. (2017) and Kharin et al. (2019) showed changes up to +20 cm in the S2 component in the China Sea and in the Gulf of Saint Lawrence. Their future wave extremes could also be substantially more impacted in areas subject to larger mean sea level rise such as along the eastern coasts of the United States, in the Gulf of Mexico and in the Caribbean Sea where a rise of +1.4 m is expected by the end of the century under scenario SSP5-8.5 (Fox Kemper et al., 2021).

6 Conclusions

Several studies have shown that water depth changes induced by sea level rise can induce changes in wave height in the wave field at a fine spatial scale (Hoeke et al., 2015; Arns et al., 2017; Lewis et al., 2019; Idier et al., 2019; Calvino et al., 2022). The aim of this paper was to characterize, at a larger scale, the sensitivity of historical and projected sea states to the non-linear interactions between waves and water level changes on waves, notably during extreme events. To address this question, a regional wave model has been adapted to include the non-linear interactions between waves and water levels over the wide continental shelf, taking into account hourly water level variations, over the northeastern Atlantic for the 1950-2100 period. This is one of the first studies assessing the impact of sea level changes on waves conditions at such a regional large-scale.

As a first step, the regional wave model has been presented and validated over the 1993-2014 period. Comparisons to observations and a wave reanalysis show an overall good performance of the model. Second, as we used a single forcing climate model, projected regional changes in wave mean and extreme wave conditions were compared to previous studies. They are shown to be representative of other published projections over the northeastern Atlantic region, with a general decrease in mean and extreme significant wave height and peak period under the SSP5-8.5 scenario.

The impact of including hourly projected water level variations in the wave model was assessed over the historical period and for the 21st century projections for the mean state and extremes of wind-wave characteristics and wave setup. The latter contributes to coastal sea level hazards such as coastal flooding. For the historical-period wave-water level interactions, the impact on the mean wave state and wave setup was found to be small. The impact of water level changes on wave conditions is weak in general over the historical period is substantially more important when considering the 50th percentile or 100-year return value level along the coast of the large continental shelf and particularly in large tidal range areas. For example, in the Bay of Mont-Saint-Michel where the tidal range is 10 m, extreme significant wave heights were found to be larger by 1 meter (or +35%) during a historical extreme wave event when considering hourly water level variations in the wave model. The corresponding increase in water setup reached +8.4 cm and +15.7 cm when considering both slopes of 4% and 7%, respectively. However, these values are the upper bound of the sensitivity of significant wave height and wave setup to wave-water level interactions with the settings of our model, as the Bay of Mont-Saint-Michel is subject to one of the largest tidal ranges of the IBI domain.

Measured at the end of the 21st century, the 90-year return level for wave heights over the wide continental shelf where shallow water dynamics prevail and particularly in large tidal range areas. For example, the Bay of Mont-Saint-Michel where the tidal range is 10 m, extreme significant wave heights are found to be larger by 1 meter (+30%) during a historical extreme wave event. Accounting for the combination of tides, storm surges and sea level rise in the wave model also lead to projected higher values of an increase of 100-year return significant wave height, up to +60 cm in 2100 compared to the 1986-2005 mean return period for the SSP5-8.5 high-emission climate change scenario. The wave model shows that wave-water level interactions are crucial in areas subject to large tidal range variation.
Overall, the inclusion of water level variations on the wave model had almost no impact on the peak period. However, North Sea around United Kingdom and Ireland. Moreover, as the regional wave model does not have a very fine representation of the bathymetry of the coastline and does not resolve the deep/shallow water breaking in the shallow areas, the feedback of waves on sea level, the estimates provided in this study only partially represent the processes responsible for the wave-mass flux, level-wave non-linear interactions. Moreover, the results found might be dependent on inclusion of water level variations on the parameterization used to compute the wave setup and therefore the model had almost no impact on the beach-shore-peak period.

In conclusion, our results advocate for the inclusion of wave-mass flux, level-wave non-linear interactions in modelling studies of wave extremes at this resolution or higher, in particular when extreme significant wave heights are of interest. These non-linear interactions should be accounted for when threshold exceedances are calculated for example in order to prevent coastal flooding or to build coastal protection structures in a climate change context.

Code availability
The MFWAM model used in this study is based on the wave model WAM freely available at https://github.com/mywave/WAM.

Data availability

Author contribution:
AM designed the study. LA prepared the regional wave model configuration. SLC adapted the regional wave model to consider hourly variations of sea level and performed the regional wave simulations. AAC performed the sea level regional simulations and did the analyses of the study. AM, AV, GR, SLC and LA supervised the project. AM and AAC wrote the introduction, Methods, results and Acknowledgements sections. Discussion and Conclusions sections. All authors contributed to manuscript revisions and read and approved the submitted version.

Competing interests:
All authors declare that they have no conflicts of interest.

Acknowledgements
Analyses were carried out with Python. The authors thank Joanna Staneva for her advice and help on the implementation of the sea level forcing in the regional wave model.

Financial support
The PhD thesis of AAC is supported by Mercator Ocean and Météo-France.

33
Appendix A: External forcings used to produce the regional wave simulations

Figure A1: Sketch of the downscaling strategy explaining the links between the different simulations used in this study.

1. Wave forcing from CNRM-HR-WAV global wave simulations

The regional wave simulations IBI-CCS-WAV and IBI-CCS-WAV_ssh described in Sect. 2.2 and Sect. 2.3 are forced at lateral boundaries by 3-hourly wave spectra information from CNRM-HR-WAV global wave simulations (Fig. A1, Tab. 1). CNRM-HR-WAV simulations are produced over the 1970-2100 period using the MPWAM wave model (Sect. 2.1) at a 1° resolution. These simulations are forced by 3-hourly surface winds (1/2°), monthly sea ice cover (1/4°) and daily ocean surface currents (1/4°), taken from the CMIP6 CNRM-CM6-1-HR global climate simulations (Voldoire et al., 2019; Saint-Martin et al., 2021). The historical simulation of CNRM-CM6-1-HR is used over the 1970-2014 period. Then, over the 2015-2100 period, the SSP5-8.5 climate change scenario simulations is used (O’Neill et al., 2016).

CNRM-HR-WAV simulations use 2-min gridded global topography data from ETOPO2/NOAA (National Geophysical Data Center, 2008). The model grid has a constant spacing in longitude but is compressed in latitude to maintain a constant resolution (Bullot, 2012). A wave growth calibration was performed to adjust the mean significant wave height at CNRM-HR-WAV to the Copernicus Marine Service WAVERYS wave reanalysis (Hersbach et al., 2020) over the IBI domain. The wave spectrum is discretized in 24 directions and 30 frequencies starting from 0.035 up to 0.58 Hz. Classical integrated wave parameters such as significant wave height (H_s) or peak period (T_p) are output at a three-hourly from CNRM-HR-WAV.

2. Atmospheric forcing from CNRM-CM6-1-HR global climate model

Regional wave projections are driven by the same 3-hourly surface winds as CNRM-HR-WAV (Sect. A1.1) produced by the CNRM-CM6-1-HR global climate model (Voldoire et al., 2019; Saint-Martin et al., 2021), which is part of the CMIP6 database. The use of a global climate model with a higher spatial resolution compared to the typical coarse resolutions of CMIP5 and 6 models was interesting for the atmosphere (1°×1°) for the intensity of the winds notably.

By driving our simulations with only one global climate model simulation, the aim of the study was not to characterize the uncertainties of wave projected changes over the IBI domain but rather to discuss the impact of the sea level changes on the downscaled projections. However, before using the winds to force the global and regional wave models, we verified that CNRM-CM6-1-HR was consistent with other CMIP6 global climate models in particular in terms of extreme winds and their projections. A comparison of extreme winds (99th percentile) between CNRM-CM6-1-HR, some other CMIP6 global climate models, the atmospheric reanalysis ERA5 (Hersbach et al., 2020) and wind observations from wave buoys (Wehde et al., 2021) is performed at different locations in the IBI region (Fig. A2a). The three different locations considered (shown in Fig. 1) are chosen along storm trajectories in the northeastern Atlantic and North Sea (Lozano et al., 2004). Figure A2a shows that CNRM-CM6-1-HR is representative of an ensemble of 21 CMIP6 models over the historical period. In general, CNRM-CM6-1-HR also agree with ERA5 which is the reference here. However, wave buoys observations seem to be significantly different from...
both the global climate models and ERA5, except in the North Sea. Figure A2b shows the projected changes for the extreme wind speed at the three locations. Projected changes in extreme wind speed are quite small in all models and rather uncertain (large interquartile range). Projected changes are of the same sign for 7, 9 and 10 models out of twelve for the three boxes respectively. In the English Channel and North Sea, CNRM-CM6.1-HR shows an increase in extreme wind speed which is representative of the other CMIP6 models. In the North Atlantic, CNRM-CM6.1-HR exhibits a large decrease in extreme wind speed which is in the high range (or absolute value) of CMIP6 models but still of the same sign as most models.

Figure A2: (a) Extreme winds (99th percentile) for CNRM-CM6.1-HR (dark red dot), 21 different CMIP6 global climate models (black box), the atmospheric reanalysis ERA5 (dark red cross) and wind observations from wave buoys (red cross) at the three locations in the IBI region marked on Fig. 2a for the 1993-2014 period. The 2011-2021 period was chosen for the wave buoy in the North Sea as it was the only period available. (b) Projected changes in extreme wind speed for CNRM-CM6.1-HR and 12 different CMIP6 climate models at the three locations marked on Fig. 2a under the SSP5-8.5 scenario (2081-2100 vs 1986-2005). The selected CMIP6 climate models are those with three-hourly atmospheric output. In (a) and (b), the purple line represents the median, the black box represents the interquartile range and the whiskers represent the last model under or above 1.5 times the interquartile range. The black circles represent the outlier models i.e. models outside 1.5 times the interquartile range. Units are in m s⁻¹.

3 Ocean forcing from IBI-CCS regional ocean model

IBI-CCS-WAV regional wave projections are also forced by hourly surface current (and hourly sea level variations in the dedicated simulation IBI-CCS-WAV SSH) of IBI-CCS, a 3D regional ocean model at a 1/12° horizontal resolution, itself forced by CNRM-CM6.1-HR global climate model. IBI-CCS was implemented in Chaigneau et al., 2022 to refine sea level projections of CNRM-CM6.1-HR over the northeastern Atlantic region through a dynamical downscaling. For a more complete representation of processes driving coastal sea level changes, tides and atmospheric surface pressure forcing are explicitly resolved in IBI-CCS in addition to the mean sea level (including ocean general circulation (dynamic sea level)).

References

ECWMF. IFS Documentation CY40r1, ECMWF, https://doi.org/10.21957/f56vvey1x, 2014.

