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Abstract. Reducing uncertainty and improving robustness and spatio-temporal extrapolation capabilities remain key chal-

lenges in hydrological modeling especially for flood forecasting over large areas. Parsimonious model structures and effective

optimization strategies are crucially needed to tackle the difficult issue of distributed hydrological model calibration from

sparse integrative discharge data, that is in general high dimensional inverse problems. This contribution presents the first

evaluation of Variational Data Assimilation (VDA), very well suited to this context but still rarely employed in hydrology be-5

cause of high technicality, and successfully applied here to the spatially distributed calibration of a newly taylored grid-based

parsimonious model structure and corresponding adjoint. It is based on the Variational Data Assimilation (VDA) framework

of SMASH (Spatially distributed Modelling and ASsimilation for Hydrology) platform, underlying the French national flash

flood forecasting system Vigicrues Flash. It proposes an upgraded distributed hourly rainfall-runoff model structure employing

GR-based operators, including a non-conservative flux, and its adjoint obtained by automatic differentiation for VDA. The10

performances of the approach are assessed over annual, seasonal and floods timescales via standard performance metrics and

in spatio-temporal validation. The gain of using the proposed non-conservative 6-parameters model structure is highlighted

in terms of performance and robustness, compared to a simpler 3-parameters structure. Spatially distributed calibrations lead

to a significant gain in terms of reaching high performances in calibration and temporal validation on the catchments sample,

with median efficiencies respectively of NSE = 0.88 (resp. 0.85) and NSE = 0.8 (resp. 0.79) over the total time window on15

period p2 (resp. p1). Simulated signatures in temporal validation over 1443 (resp. 1522) flood events on period p2 (resp. p1)

are quite good with median flood (NSE; KGE) of (0.63; 0.59) (resp. (0.55; 0.53)). Spatio-temporal validations, i.e. on pseudo

ungauged cases, lead to encouraging performances also. Moreover, the influence of certain catchment characteristics on model

performance and parametric sensitivity is analyzed. Best performances are obtained for Oceanic and Mediterranean basins

whereas it performs less well over Uniform basins with significant influence of multi-frequency hydrogeological processes.20

Interestingly, regional sensitivity analysis revealed that the non conservative water exchange parameter and the production

parameter, impacting the simulated runoff amount, are the most sensitive parameters along with the routing parameter espe-

cially for faster responding catchments. This study is a first step in the construction of a flexibe and versatile multi-model and

optimization framework with hydbrid methods for regional hydrological modeling with multi-source data assimilation.
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1 Introduction

In the context of climate change and potential intensification of the hydrological cycle (e.g. Shukla et al., 2019; Allan et al.,

2020), advanced high resolution modeling tools are needed to perform accurate and reliable local forecasts, in terms of location,

magnitude and timing of hydrological responses. A core ingredient of a hydrometeorological forecasting system is hydrological30

modeling (Pagano et al., 2014) which yet remains a hard task tinged with uncertainty due to the high heterogeneity and

variability of physical processes and their limited observability (e.g. Beven, 1989; Milly, 1994; Blöschl and Sivapalan, 1995;

Refsgaard, 1997; Vereecken et al., 2019). Reducing uncertainty and improving robustness and spatio-temporal extrapolation

capabilities remain key challenges in hydrological modeling (Blöschl and al., 2019) especially over large catchment samples

with contrasting physiographic properties and hydrological functioning (e.g. Lane et al., 2019; Beck et al., 2020). A trade off35

has to be made between modeling goals (quantities of interest, resolution, etc) and model complexity given data availability.

The “resolution–complexity continuum” (Clark et al., 2017) has been investigated over the past 5 decades by many studies

with various modeling approaches, ranging from point-scale processes numerically integrated at larger scales (e.g. catchment)

to spatially lumped representation of the system response (Hrachowitz and Clark, 2017). Among the variety of existing hy-

drological models, and hypothesis they rely on, their components generally describe water storage and transfer (e.g. Fenicia40

et al. (2011)) via various combinations and parameterizations of vertical and lateral storage-flux operators. Several model com-

parison experiments, aiming at analyzing the differences between various modeling approaches, tested the performances in

terms of streamflow modeling (Perrin et al., 2001; Reed et al., 2004; Duan et al., 2006; Orth et al., 2015) but also in terms of

internal state such as soil moisture (Orth et al., 2015; Bouaziz et al., 2021). Orth et al. (2015) concluded that "added complexity

does not necessarily lead to improved performance of hydrological models (...)". Note that, parsimonious conceptual models,45

lumped or semi lumped, performed efficiently in large sample studies (e.g. GR model in Perrin et al. (2001), GRSD model

in De Lavenne et al. (2019), GR and MORDOR models in Mathevet et al. (2020), FUSE models in Lane et al. (2019) and

references therein). Such large sample studies, enabling more general and statistically sound analysis of model performances

(Andréassian et al., 2009; Gupta et al., 2014), are useful to address large scale challenges with consistent methodologies across

scales and contrasted conditions and hydrological functioning. Consequently, national-scale hydrological modeling studies are50

increasingly applied and constitute appropriate benchmarks for model development as well as for identifying where models

fail over a range of catchment characteristics and functioning (Lane et al., 2019). This lattest study points the potential need to

account for groundwater exchanges as done in GR models for instance (cf. (Perrin et al., 2001; Le Moine, 2008)).

All hydrological models are to some degree conceptual and due to limitations and uncertainties (in their structure, param-

eters representativity, data availability, and even initial and boundary conditions), calibration/learning is generally required.55

Whatever their status and complexity, hydrological models are most often calibrated and validated using discharge time se-

ries at the catchment outlet(s) (Sebben et al., 2013). However, calibrating hydrological model parameters from sparse and
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integrative discharge data is a difficult inverse problem faced with equifinality issues (Bertalanffy, 1968; Beven, 1993, 2001),

especially for distributed models with larger number of cells and parameters. Calibration approaches in hydrology generally

involve regularization strategies, such as imposing spatial patterns via descriptor-to-parameter mapping laws with few tunable60

hyperparameters (cf. Pokhrel and Gupta (2010) and references therein, used in (Samaniego et al., 2010) along with descriptor

upscaling laws), relaxation strategies for semi-lumped parameter fields in multi-gauge calibration problem (e.g. (De Lavenne

et al., 2019)). Calibration from spatially sparse discharge data of spatially distributed hydrological model parameters, assuming

no a priori spatial structure, is a high dimensional ill-posed inverse problems and the variational data assimilation (VDA) ap-

proach proposed in Jay-Allemand et al. (2020) is well adapted to this context but still rarely employed in hydrology due to high65

technicality related to the obtention of an adjoint model (see Monnier et al. (2016); Larnier et al. (2020); Jay-Allemand et al.

(2020) and references therein). This approach has been tested with a simple 3-parameters continuous distributed hydrological

model, on a single flash flood prone catchment (the Gardon d’Anduze in south of France) with promising results (Jay-Allemand

et al., 2020).

This contribution presents the first evaluation over a large sample, of Variational Data Assimilation (VDA) for the spatially70

distributed calibration of a newly taylored parsimonious distributed hydrological model structure and corresponding adjoint.

An upgraded grid based model structure is proposed in the variational calibration framework proposed by Jay-Allemand et al.

(2020) and its potential is demonstrated over a large sample. Compared to this initial study Jay-Allemand et al. (2020), the fol-

lowing new insights have been introduced. First, instead of one catchment from the South of France, results are here evaluated

over 312 catchments across France, representative of various hydro-climatological French conditions. To our knowledge, this75

is the first evaluation of a spatially distributed variational calibration algorithm over a large sample. Second, the present work

also proposes a more complex distributed structure (i.e. 6 parameters per cell including a non conservative "water exchange"

parameter), obtained after extended testing and differentiated to obtain its adjoint, and compares the results with the initial ver-

sion (i.e. 3 parameters per cell). Both versions are "GR-based", that is to say they are inspired by the conceptual "Génie Rural"

models (lumped or semi-distributed) developed at INRAE-Antony this last 40 years. Those parsimonious and "easy-to-apply"80

models are now recognized in various international studies to perform well over large samples outside France (see for instance

Coron et al., 2012; de Boer-Euser et al., 2017; Bouaziz et al., 2021; Astagneau et al., 2021b; Mathevet et al., 2020). Lastly, a

global sensitivity analysis of the proposed model structure to its parameters is performed considering hydrological regimes, as

well as a signature analysis over flood events over the whole sample.

The specific research questions we study are as follows:85

1. How well does a parsimonious distributed model structure perform across France when assessed over annual, seasonal

and floods timescales via standard performance metrics and in spatio-temporal validation?

2. What is the gain of using a complexified model structure including non conservative exchange, in terms of performances

and robustness?

3. What is the gain of distributed parameters calibration with a variational data assimilation algorithm in terms of perfor-90

mance and robustness, compared with an uniform calibration?
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4. What is the influence of certain catchment characteristics on model performance and parametric sensitivity?

The article is organized as follows. Section 2 details the methodology, models and calibration algorithm. The dataset and

numerical experimental design is presented in Section 3. Results are analyzed and discussed in Section 4. Conclusions and

perspectives are formulated in Section 5.95

2 Methods

This section first presents the proposed distributed hydrological model along with the variational calibration algorithm.

2.1 Parsimonious distributed hydrological models with SMASH

SMASH is a computational software framework dedicated to Spatially distributed Modeling and data ASsimilation for Hy-

drology, enabling to tackle high dimensional inverse problems with adjoint-based variational method.This modular platform100

contains conceptual representations and numerical approximations of dominant hydrological processes while aiming to main-

tain a relative parsimony. SMASH enables to work at multiple spatio-temporal resolutions, and to compare different modelling

operators and structures. All are defined on a regular grid and run continuously. For each time step they take as inputs rainfall

and potential evapotranspiration grids, and outputs a field of routed discharges following a drainage grid.

Two model structures are tested in this work, including an upgraded parsimonious one that stems from numerous numerical105

experiments that consisted in testing structures of increasing complexity. The first structure, denoted S3 in the following, has

3 components per cell: the production store and the transfer store of the GR4J model described in Perrin et al. (2003), and a

simple cell to cell routing scheme (linear reservoir) to convey the discharge downstream. This structure is equivalent to those

from Jay-Allemand et al. (2020). The second structure, denoted S6 in the following, is described Fig. 1. It is obtained by adding

to the first structure the following components: an interception store introduced by Ficchì et al. (2019) in a lumped GR model,110

a second transfer store coupled with a direct runoff branch, and the water exchange function described in Perrin et al. (2003).

This last function enables to simulate losses or gains of water, which can be required in cases of non-conservative catchments

(groundwater exchange) and/or data uncertainties.

In this study, both structures are running at a 1-km spatial grid resolution and an hourly time step.

2.2 Mathematical formulation115

Let Ω⊂ R2 be a 2D spatial domain (catchment) and t > 0 be the physical time. A regular lattice RΩ covers Ω and D(x) is

the drainage plan obtained from terrain elevation processing, with the only condition that a unique point in Ω has the highest

drainage area; the number of active cells within a catchment Ω is denoted Nx.

The hydrological model is a dynamic operatorMmapping observed input fields of rainfall and evapotranspiration P (x,t′),

E (x,t′), ∀(x,t′) ∈ Ω× (0, t) onto discharge field Q(x,t) such that:120

Q(x,t) =M [P (x,t′) ,E (x,t′) ,h(x,0) ,θ (x) , t] ∀x ∈ Ω, t′ ∈ [0, t] (1)
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with h(x,t) the Ns-dimensional vector of model states 2D fields and θ (x) the Np-dimensional vector of model parameters

2D fields. In the following, θ is also called control vector in optimization context.

In the proposed S6 model described Fig. 1, four reservoirs I, P , Tr and Tl of respective capacity ci, cp, ctr and ctl, are125

considered for simulating respectively the interception, the production of runoff and its transfer within a given cell i of coor-

dinates x ∈ Ω. Their stages are respectively denoted hi, hp htr and htl. First, part of the rainfall fills the linear interception

reservoir determining the remaining throughfall Pth. Then, the partition of Pth between an infiltration part Ps filling the pro-

duction reservoir (soil moisture accounting), and an effective rainfall Pr = Pth−Ps filling the transfer reservoirs is done with

a production operator. The interception and production reservoirs are then emptied respectively from Ei and Ep−Ei, with Ep130

the actual evaporation calculated with a GR evaporation operator. The interception and production reservoirs are then emptied

respectively from Ei and Es. The effective rainfall Pr is divided into 10% of direct runoff Q1 and 90% of runoff Q9 inflow-

ing transfer part. Then, Q9 inflows, with a fixed split (40%; 60%) inspired from GR6J routing part (Pushpalatha, 2013) and

corroborated by testing various couples, two non linear reservoirs to represent transfer within a cell. A water exchange term

F depending on ml, that is a non conservative operator, is applied to direct runoff component and to one transfer reservoir.135

The total runoff amount of a cell Qt = Ql + Qr + Qd is then routed between cells. Given known flow directions D(x), clas-

sically obtained from DEM, the cell to cell routing is done with a linear routing reservoir R of stage hr whose emptying is

parameterized by cr.

Note that the S3 model reduces to considering only 3 reservoirs for production, transfer and routing as done in Jay-Allemand

et al. (2020) yet with slightly different but as parsimonious and comparable routing operator.140

We detail in Appendix A the flow operators, mostly consisting in first order ordinary differential equations which are ana-

lytically integrated in time, enabling simple computation of the forward model. Note that the forward hydrological model (Eq.

(1)) combining those operators is differentiable with explicit dependency to parameters, which is necessary for deriving the

numerical adjoint model used in the calibration algorithm.

The state vector of SMASH model structure S6 (resp. S3) is h(x,t)≡ (hi(x,t),hp(x,t),htr(x,t),hr(x,t),htl(x,t))T (resp.145

h(x,t)≡ (hp(x,t),htr(x,t),hr(x,t))T ).

The parameter vector of SMASH model structure S6 (resp. S3) is θ(x)≡ (ci(x), cp(x), ctr(x), cr(x),ml(x), ctl(x))T (resp.

θ(x)≡ (cp(x), ctr(x), cr(x))T ). The size of state vector is Ns×Nx and the size of parameter vector that is optimized in the

following is Np×Nx. Considering tens of cells or more over a simulated catchments domain Ω, the calibration of θ is a high

dimensional inverse problem.150

2.3 Variational calibration algorithm

The adjoint-based variational calibration algorithm proposed and detailled in Jay-Allemand et al. (2020), adapted to high

dimensional hydrological inverse problems, is used in this study and summarized in the flowchart Fig. 2.
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Figure 1. Distributed hydrological modeling with SMASH platform: (left) model fields from top to bottom: meteorological inputs, parame-

ters, internal and output flux maps; (right) pixel scale and pixel-to pixel flow operators of the 6 parameters model S6.

Given simulated and observed discharge at Ng gauged cells xk ∈ Ω, k ∈ 1, ..,Ng, respectively denoted Qk(t) and Q∗k(t) we

define the objective function as:155

J(θ) = Jobs(θ) +αJreg(θ) (2)

where the observation cost function is Jobs = 1
Ng

∑Ng

k=1 j∗k . In this study, Ng = 1, that is for single gauge optimization, and j∗k is

classically set as 1−NSE, with NSE the Nash-Sutcliffe efficiency (this quadratic metric is recalled in Appendix Eq. (A20)),

and measures the misfit between simulated and observed discharge. Note that simulated discharge depends on the control

vector θ via the hydrological model (Eq. (1)) such that Qk(t) =M [P (x,t′) ,E (x,t′) ,h(x,0) ,θ (x) , t] ,∀x ∈ Ωk, t′ ∈ [0, t].160

Ωk ⊂ Ω denotes the spatial domain including all upstream cells of a gauge at xk. The second term in Eq. (2) is weighted by α

and set as a classical Thikhonov regularization: Jreg =
∥∥∥B−1/2 (θ−θ∗)

∥∥∥
2

L2
with B the background error covariance, and θ∗

the first guess on θ. For the optimizations presented in this study, we set α = 10−4 and B is simply defined from σθ the vector

of mean deviations of θ, as done in Jay-Allemand et al. (2020).

An additional constraint is introduced for parameter optimization such that:165

θmin ≤ θ ≤ θmax (3)
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Given the hydrological model (Eq. (1)) and the constraint (Eq. (3)), an optimal estimate θ̂ of model parameter set is obtained

from the condition:

θ̂ = argmin
θ

J (θ) (4)

The minimisation is performed with the L-BFGS-B algorithm (limited-memory Broyden–Fletcher–Goldfarb–Shanno bound-170

constrained (Zhu et al., 1997)) adapted to high dimension. This algorithm requires the gradient of the cost function with

respect to the sought parameters, ∇θJ , that is obtained by solving the adjoint model. This model has been generated with the

the automatic differentiation engine TAPENADE (Hascoet and Pascual, 2013) applied to the SMASH source code including

the new model structures and validated with standard gradient test. The background value θ∗, used as a starting point for

the optmization and in the regularization term, is set as in Jay-Allemand et al. (2020), i.e. as θ̄, a spatially uniform global175

optimum determined with a simple global-minimization algorithm from a uniform first guess θ̄∗, the steepest descent method

summarized in (Edijatno, 1991). Given mildly non linear hydrological models as those considered in this study, this calibration

approach is pertinent and the sensitivity to uniform prior is relatively limited as shown in Jay-Allemand et al. (2020).

Figure 2. Distributed hydrological calibration with SMASH data assimilation platform: inverse algorithm flowchart. We denote by θ̃ a

parameter vector estimate during the optimization process.
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3 Data and numerical experiments

The following section presents the large sample of 312 "natural" gauged catchments across contiguous France territory and the180

numerical experiments design.

3.1 Data

3.1.1 Catchment selection and hydroclimatic data

Our catchment sample includes 312 catchments which is a subset from Hashemi et al. (2021), subset of a larger dataset of 4190

French catchments from INRAE-HYCAR research unit (Delaigue et al., 2020; Brigode et al., 2020). Based on a sample of 740185

catchments, catchments were removed if (i) regime is Nival and Nival-Pluvial, (ii) or if area is greater than 3000 km2, (iii) or

if more than 20% gaps exist in discharge data on one of the two periods (p1, p2) defined after.

Concerning the hydrological model input, 14 years of hourly distributed rainfall, PET and locally observed discharges,

covering the period 1 August 2006 to 31 July 2020, were used:

– Discharge data are collected by the French Ministry of Environment covering the period of the forcing data and have190

been extracted from the (Hydro) platform (http://www.hydro.eaufrance.fr/).

– Rainfall: We use rainfall data from the radar observation reanalysis ANTILOPE J+1, which merges radar and insitu

gauge observations. This data is provided by Météo-France at a grid resolution of 1 km2 exactly corresponding to rasters

defining model grids.

– Potential evapotranspiration (PET): The interannual temperature data is provided by the SAFRAN (Système d’Analyse195

Fournissant des Renseignements Atmosphériques à la Neige) reanalysis that is run by Météo France at a resolution of

8×8 [km2] (Quintana-Seguí et al., 2008; Vidal et al., 2010) reanalysis and then used to calculate the potential evapotran-

spiration using the Oudin formula (Oudin et al., 2005). PET are at the same resolution as the rainfall data. This data is

specific to the continuous models (GR5H and SMASH).

3.1.2 Catchment classification200

The classification used here is derived from Hashemi et al. (2021) inspired by Blache (1933) and Sauquet (2006) and is

based on two interannual monthly variables namely runoff (QM [mm per year]) and total areal precipitation (PM [mm

per year]). From these variables, the two classification indices IQ [-] and IP [-] are defined as follows for each catchment.

IQ = (QMmax−QMmin)/QM , with QM the temporal average of monthly discharges. IP = (PMmax−PMmin)/PM ,

with PM the temporal average of monthly areal rainfall. In this definition, the positive IQ and IP indices give information205

on runoff variability and precipitation variability over the year, respectively. Low values of IQ and IP indicate a uniform

distribution of them over the year, while a high value indicates the presence of contrasted dry and humid seasons. A low IQ

can also imply the presence of ground water effects or reservoirs (natural or artificial) tending to attenuate runoff fluctuations
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at catchment outlet. Based on the defined indices (IQ,IP ), the following classification criteria are applied to all catchments

in the sample to determine their hydrological regime:210

– Mediterranean: IP > 1

– Uniform: IP ≤ 1 and IQ < 1

– Oceanic: IP ≤ 1 and IQ≥ 1

Figure 3. Catchments sample distribution across France. 312 gauges including 235 downstream gauges and 77 upstream gauges. The values

in brackets represent the number of catchments in each regime for the downstream gauges on the left and upstream gauges on the right
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Variable Mediterranean Oceanic Uniform

Catchment area (km2) 406 [609] 480 [603] 442 [561]

Baseflow index (-) 0.42 [0.116] 0.482 [0.117] 0.754 [0.118]

Runoff coefficient (-) 0.468 [0.228] 0.394 [0.283] 0.289 [0.126]

Wetness index (-) 1.422 [0.525] 1.352 [0.293] 1.254 [0.289]

Median elevation (m) 586 [342] 307 [245] 223 [180]

Variable Mediterranean Oceanic Uniform

Catchment area (km2) 412 [413] 335 [410] 185 [182]

Baseflow index (-) 0.474 [0.106] 0.504 [0.078] 0.764 [0.102]

Runoff coefficient (-) 0.498 [0.25] 0.422 [0.227] 0.342 [0.189]

Wetness index (-) 1.544 [0.525] 1.415 [0.203] 1.389 [0.381]

Median elevation (m) 581 [314] 476 [382] 284 [226]
Table 1. Catchments characteristics for downstream gauges (top) and upstream gauges (bottom). Each value represents the mean with the

standard deviation in square brackets.

3.2 Numerical experiments design

In order to test the proposed grid based hydrological model S6, with the variational calibration algorithm, the following experi-215

mental design is proposed on the large dataset presented above. The predictive performances of calibrated-models are evaluated

on data not used in calibration.

– The models considered are (i) the S3 and S6 structures in SMASH (Section 2.2) with the variational calibration algorithm

(Section 2.3) with parameter bounds from Table 2, and (ii) the lumped GR5H model with its calibration algorithm, used

as reference given some of its operators are applied at cell scale in SMASH. Recall SMASH S3 is equivalent to the220

structure in Jay-Allemand et al. (2020) with slightly simplified routing - found not sensitive with the considered model-

inversion settings.

– A split sample spatio-temporal validation procedure (Klemeš, 1983) is used to assess the predictive performance of the

calibrated models. The time window covered by hydrometric data is split into two complementary subsets over sub-

periods of 7 years: p1 (from 1 August 2006 to 31 July 2013) and p2 (from 1 August 2013 to 31 July 2020) are both225

used for calibration and validation. For all models, the NSE is used as calibration cost function Jobs, not accounting

for discharge data over the first year of a calibration period that is left as "warm-up" for a forward model not to be too

sensitive to its initial condition h(x,0) (as recommended for GR4 in (Perrin et al., 2003)). Indeed 1 year is supposedly

greater than the characteristic relaxation time of the model.
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– Calibrations of the considered S3 and S6 model structures are systematically performed on the 235 downstream gauges230

with the temporal split sample procedure. In the following, the suffix -U (resp. -D) denotes spatially uniform (resp.

distributed) calibration with the algorithm presented in Section 2.3.

– Model performance is also depicted at the scale of flood events, in terms of peak discharge shape, magnitude and

timing restitution. This analysis relies on an automatic hydrograph segmentation algorithm (Huynh and Garambois,

2022) applied to simulated and observed discharge time series over the whole dataset.235

– A spatio-temporal validation procedure, aiming to assess the capabilities at ungauged locations of downstream calibrated

SMASH, consists in applying it at 77 upstream gauges not seen in calibration. Local calibrations are also performed at

those upstream gauges to assess the loss of efficiency.

– A global parametric sensitivity analysis over the whole catchment sample is performed to better understand model

response surface. A classical regional sensitivity analysis method is used Saltelli et al. (2008).240

Parameter name Parameter description Lower bound θmin Upper bound θmax Uniform first guess θ̄∗

ci Interception parameter (mm) 1 100 1

cp Production parameter (mm) 1 2000 200

ctr First transfer parameter (mm) 1 1000 100

ctl Second transfer parameter (mm) 1 10000 100

ml Water exchange parameter (mm/h) -20 5 0

cr Linear routing parameter (min) 1 200 5
Table 2. Parameters, ranges and uniform first guess used for calibration and sensitivity analysis for the model SMASH.

4 Results and discussion

4.1 Downstream gauges: global performances

Our first goal was to assess how well a parsimonious distributed model structure performs across France when assessed over

annual timescales via standard performance metrics. The second goal was to study the benefits of performing distributed

calibration with the variational algorithm. The distribution of model performance obtained with the split sample procedure245

across all 235 downstream catchments, in terms of calibration and validation, is presented for period p2 in Fig. 4 and for period

p1 in Fig. B1.

First, concerning spatially uniform calibrations, the proposed model S6-U clearly outperforms the simple S3-U configuration

with median NSE of 0.85 (resp. 0.81) compared to 0.73 (resp. 0.67) in calibration on period p2 (resp. p1) as shown on the

left panel of Fig. 4 (resp. B1). In temporal validation, S6-U also outperforms S3-U with median NSE of 0.78 (resp. 0.76)250
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Figure 4. Performances comparison between the two SMASH distributed model structures (S3 and S6) for each calibration settings (U and

D). GR5H performances are plotted as a reference. Calibration and validation on p2 (see Fig. B1 for performances on p1).

compared to 0.66 (resp. 0.63) in temporal validation on period p2 (resp. p1) as shown on the right panel of Fig. 4 (resp. B1).

This shows a clear improvement of performances over a large sample obtained by increasing the model complexity in SMASH,

from the 3 parameters structure of Jay-Allemand et al. (2020) to the present one with 6 parameters, with good robustness in

time. Note the slightly better performances of S6-U compared to the 5 parameters GR5H model only shown here as a reference

- benchmark is not the scope of this work.255

Next, concerning spatially distributed calibration, similar trends as in uniform calibration are observed but with higher

performances. The proposed model S6-D clearly outperforms the simple S3-D configuration with median NSE of 0.88 (resp.

0.85) compared to 0.80 (resp. 0.77) in calibration on period p2 (resp. p1) as shown on the left panel of Fig. 4 (resp. B1).

In temporal validation, S6-D also outperforms S3-D with median NSE of 0.8 (resp. 0.79) compared to 0.74 (resp. 0.7) in

temporal validation on period p2 (resp. p1) as shown on the right panel of Fig. 4 (resp. B1). A relatively narrower interquantile260

range is obtained with S6-D both in calibration and validation, with better performances than the 5 parameters GR5H model

only shown here as a reference - recall benchmark is not the scope of this work. This will be further discussed after.

Those good NSE performances show an improved capability of the proposed 6 parameters SMASH structure, which was

expected with this increased model complexity compared to a 3 parameters model, to fit observed streamflows in calibration

and a good temporal robustness on this dataset. Using distributed calibration increases the model performances in terms of265

NSE for calibration period and even for validation period, with higher performances and temporal robustness for S6-D. The

rest of the paper therefore focuses on the analysis of the SMASH structure S6.
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Our NSE in validation p2 (S6-U and S6-D) are represented on a map on Fig. 5 which points low performances especially

localized in northern basins. These basins are mainly characterized as Uniform (Fig. 3), that is a hydrological regime mainly270

influenced by groundwater flows (high BFI value in Table 1). This type of catchment, even by considering a non-conservative

exchange function F (Perrin et al., 2003) in the model structure, is not properly simulated.

Figure 5. Performances maps in temporal validation on period p2 (see in Fig. B2 for p1) in terms of NSE criterion for (left) lumped GR5H,

spatially distributed 6 parameters SMASH model in (middle) spatially uniform S6-U and (right) distributed S6-D calibration.

To deepen the analysis by catchment regime, the model performance are represented in function of the regime (Section 3.1.2)

in Fig. 6 for calibration and validation on p2 (Fig. B3 for p1). Similar trends as before in terms of performances and robustness

on the whole sample are obtained for each of the three hydrological regimes. The 6 parameters model with spatially distributed275

calibration S6-D is the best, compared to uniform calibration S6-U, both in calibration and validation for the three groups. The

best performances with S6-D, in calibration and validation on p2 Fig. 6 (resp. p1 Fig. B3), are obtained for Oceanic basins:

median NSE of 0.92 and 0.87 (resp. 0.89 and 0.84). High performances are also obtained on Mediterranean basins: median

NSE of 0.89 and 0.78 (resp. 0.82 and 0.68). Lower performances are obtained on Uniform basins as concluded on the maps

above Fig. 5 with median NSE of 0.79 and 0.67 (resp. 0.76 and 0.57).280
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Figure 6. Performances comparison between the two SMASH distributed model structures (S3 and S6) for each calibration settings (U and

D) and catchment regime (Mediterranean, Oceanic and Uniform). GR5H performances are plotted as a reference. Calibration and validation

on p2 (see Fig. B3 for performances on p1)

The difference of hydrological information, contained in observed signal for each downstream gauge, and learnt in calibra-

tion, is briefly analyzed in Fig. 7. It shows the difference between p1 and p2 of runoff coefficients (Eq. (A22)) against the

wetness index (Eq. (A23)), computed for each period and calibration gauge. The most important spread for each group is on

the wetness index difference between periods. The highest spread on runoff coefficient is for Mediterranean basins, which

can be apportioned to more inter period variability especially in relation to strong flood occurrence on such basins. Therefore,285

in addition to input and modeling errors, this disparity of learnt hydrological signals can partly explain the slight variability

of model performance in split sample, for all regimes and in particular Mediterranean regime. This is corroborated by the

reference GR5H lumped model, well-known to be robust, but affected the same way in split-sample test on the present dataset.

4.2 Downstream gauges: flood signatures

In complement to the previous analysis of model performance on multi-years time periods, a detailed analysis at the scale of290

flood events is presented to provide an assessment of model performance and signatures at shorter time scale and in a flood

forecasting perspective.

For each catchment b ∈ [1,NB ], are extracted NE,b flood events by applying an automatic segmentation algorithm (Huynh

and Garambois, 2022) to discharge time series at downstream gages. Considering peaks that exceed the 0.999-quantile of

the sorted hourly discharge values, starting dates are determined based on a “rainfall gradient criterion” and “rainfall energy295

criterion”, ending dates based on discharge base flow obtained by a classical baseflow separation method (see details Huynh

and Garambois, 2022). The segmentation applied on period p2 (resp. p1) to time series of 235 downstream gauges results in a
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Figure 7. Representing for the 235 downstream gauges the difference between p1 and p2 of the wetness index and the runoff coefficient for

each catchment regime.

total sample of respectively 1443 (resp. 1522) flood events as summarized in Table 3. Flood events repartition between p1 and

p2 is rather balanced, as well as between hydrological groups.

Variable Total Mediterranean Oceanic Uniform

Number of events 1443 (1522) 363 (356) 572 (613) 508 (553)

Median specific discharge (mm/h) 0.625 (0.513) 2.982 (2.138) 0.660 (0.564) 0.160 (0.134)
Table 3. Flood events characteristics in terms of number of events and median specific discharge for p2 (p1 between brackets).

For each flood events of the list FE,b = {e ∈ [1,NE,b]} obtained with the segmentation algorithm for a given catchment300

b ∈ [1,NB ] the following metrics are computed:

– The classical Nash-Sutcliff NSE and Kling-Gupta KGE metrics (Eq. (A20), (A21))

– The relative error on the peak discharge RPD = Qmax
Q∗

max
− 1, where Qmax = Q(tmax) and Q∗

max = Q∗(t∗max) are the

predicted and the observed maximum discharges, respectively. These maximum values are achieved at different time

instants tmax and t∗max, within the chosen time period.305
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– The synchronous relative error on the peak discharge SRPD = Qmax(t∗max)
Q∗

max
− 1

Those metrics are computed on temporal validation runs for the 1443 (resp. 1522) flood events of period p2 (resp. p1) at

the 235 downstream gauges and plotted in Fig. 8 (resp. Fig. B4). First, the median flood (NSE; KGE) over all events and

catchment groups is of (0.55; 0.54) (resp. (0.41; 0.46)) for uniform calibration S6-U and is better with a (0.63; 0.59) (resp.

(0.55, 0.53)) for spatially distributed calibration S6-D which is also true for floods in each catchment groups. Best performances310

are obtained with S6-D for Oceanic (0.76; 0.71) (resp. (0.67; 0.62)) and Mediterranean basins (0.71; 0.63) (resp. (0.65; 0.53)),

while lowest performances (0.31; 0.43) (resp. (0.31; 0.45)) are again for Uniform catchment where modeling but also events

segmentation is the most difficult. Regarding peak discharge estimation for S6-D, the median relative error on peak flows RPD

is of -0.23 (resp. -0.3), that is a slight global underestimation of Qp in validation, flood timing is quite accurate as shown by

SRPD compared to RPD bias. Note that this slight bais is found both in calibration and validation over each time period315

which could be improved via a calibration strategy giving more weight to flood events.

4.3 Model performances at upstream un-calibrated gauges

An important feature sought in distributed hydrological modeling is consistent spatialized modeling of discharge, especially at

ungauged locations. Un-shown results indicates that the 6 parameters structure clearly improves the results of the 3 parameters

structure also at upstream gauges, when calibration is done only on the downstream station, confirming the robustness of the320

new structure. For the sake of clarity the results at upstream gauges are detailed only for the 6 parameters structure.

Spatial validation of SMASH S6 is shown for the 77 upstream gauges not used in calibration in Fig. 9 for period p2 (resp.

Fig. B5 for period p1). The spatial validations (’sp v’, in solid color) on calibration period (left panel) results for spatially

distributed and uniform calibrations, in median NSE respectively of 0.73 and 0.72 (resp. 0.67 and 0.62). This represents good

performances compared to local calibrations (’c’, in hatched color) performed at those upstream gauges just for comparison:325

decrease on median NSE of 0.16 (resp. 0.17) in distributed calibration (S6-D ’c’ to ’sp v’) and 0.14 (resp. 0.16) in uniform

calibration (S6-U ’c’ to ’sp v’). One can remark that part of these upstream information has been seen in calibration since it is

performed on downstream gauges.

The right panel of Fig. 9 (resp. Fig. B5 shows the even more challenging spatio-temporal validation (’sp-tp v’, in solid

color) that is validation on upstream gauges and on validation period, that is totally unseen data. Spatially distributed and330

uniform parameter sets in spatio-temporal validation gives median NSE respectively of 0.7 and 0.62 (resp. 0.62 and 0.6). This

represents good performances compared to temporal validations of local calibrations (’tp v’, in hatched color) performed at

those upstream gauges just for comparison: decrease on median NSE of 0.1 (resp. 0.15) in distributed calibration (S6-D ’sp-tp

v’ to ’tp v’) and 0.17 (resp. 0.14) (S6-U ’sp-tp v’ to ’tp v’) in uniform calibration.

Remark that the performance decrease is on the same order in temporal or spatial validation which might stem from the335

relatively short calibration periods (7 years) considered in split sample.

This spatial and spatio-temporal validations on upstream gauges are depicted for the three catchment groups in function of

hydrological regime in Fig. 10 for p2 (resp. Fig. B6). Similar trends as above are found for spatial ’sp v’ and spatio-temporal
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Figure 8. Boxplot of flood event performances and signatures on 235 downstream gauges on validation period p2, i.e. 1443 flood events.

(See period p1 in Fig B4).

’sp-st v’ validations, with again the best performances for Oceanic followed by Mediterranean catchments. Unsurprisingly,

lower performances are obtained on Uniform catchments. The introduction of spatial regularizations could improve the spatial340

constrain on the sought parameter fields and hopefully model performance in regionalization which is a research subject in

itself that is left for further work. Nevertheless a rigorous analysis of calibrated parameter fields is provided after.
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Figure 9. Boxplot of NSE performances on 77 upstream gauges on period p2. Spatial validation ’sp v’ (left) and spatio-temporal validation

’sp-st v’ (right) ; label ’c’ and hatched boxes stand for local calibrations performed at those upstream gauges for sake of comparison. (see

Fig. B5 in appendix for p1).

Figure 10. Boxplot of NSE performances on 77 upstream gauges on period p2. Spatial validation (left) and spatio-temporal validation (right).

(see Fig. B6 in appendix for p1).

4.4 Model parameters analysis

The parameter sets calibrated for SMASH S6, over the large sample of French catchments, are summarized for spatially uniform

setup S6-U in terms of average and standard deviation over the dataset in Table 4 and for spatially distributed calibration setup345

S6-D in Table 5
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First concerning spatially uniform calibrations S6-U, it is interesting to see similar trends, in terms of parameter means and

standard deviations for each regime and between regimes over the two periods. For each regime, parameter values are rather

stable between the two periods with higher differences for Mediterranean catchments, especially for second transfer parameter

ctl and water exchange parameter ml; a lower negative ml being obtained on p1. This can arise from (i) hydrometric data350

errors (both forcings and discharge, especially for high intensity events), (ii) modeling errors, (iii) hydrological information

contained in calibration data (e.g. analysis in last section Section 4.1 and scatter plot in Fig. 7).

The variability of calibrated parameters over the dataset has some "physical" coherence: Median routing parameter cr is

smallest, that is more rapid routing, on fastly responding Mediterranean catchments; median second (slow) transfer parameter

ctl and its dispersion are highest on Uniform catchments. For those Uniform catchments, highest mean values and dispersion355

of reservoir capacities cp, ctr, ctl and routing parameter cr (whose high value induces a slower emptying of the reservoir)

are found for both periods in calibration. Reaching such values and dispersion may testify of the relative difficulty that a

parsimonious hydrological model structure has to reproduce such hydrological behaviours including complex multi-frequency

and non linear hydrogeological processes (Schuite et al., 2019, and references therein).

Higher production capacity cp with higher dispersion are obtained on Mediterranean and Uniform regimes. Again, the360

difference of hydrological information between calibration periods pointed out in Section 4.1 and in Fig. 7 can partly explain

the differences obtained in calibrated parameter values, especially on the exchange parameter ml on Mediterranean catchments.

This could also be linked to the complexity of physical processes integrated in catchment responses. Indeed, even for high

frequency processes such as floods, few studies showed some relation of drainage-storage capacity with bedrock type as in

Vannier et al. (2014); Garambois et al. (2015) in the context of distributed modeling of French Mediterranean catchments and365

more recently in Le Mesnil et al. (2021) focusing on flood signatures in several French karstic areas.

Regarding spatially distributed calibration S6-D, spatial averages of each calibrated parameter field is computed for each

catchment and period, next statistics are computed over the dataset for each parameter and presented in Table 5. Note that

these simple spatial statistics are computed on catchments of various surfaces. Analogously to uniform calibrations one can

observe similar trends over the catchment set, in terms of calibrated parameter means and standard deviations, between the370

two periods, per regime and between regimes. In terms of within catchment spatial variability, interestingly, the lower ones

are those of the routing parameter cr and of the interception capacity ci. This indicates those parameters are relatively well

constrained in the current model-optimization setup, which corroborates this finding for routing parameter with the present

optimization algorithm and a 3 parameters version on one catchment in Jay-Allemand et al. (2020) (see also therein an analysis

of sensitivity to first guess). For the other four parameters, controlling runoff production and transfer within each pixel, higher375

but relatively moderate spatial variability within catchments are found, which indicates there is room for progress in terms

of spatial constrains. Again, the introduction of spatially distributed information and spatial regularizations on the sought

parameter fields is a research subject in itself that is left for further work. Nevertheless, recall that with the present setup,

high performances are reached in calibration with good robustness in temporal and spatio-temporal validations as found and

analyzed above on each period.380
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Parameter Mediterranean Oceanic Uniform

ci 24 [29] 21 [19] 10 [20]

cp 345 [513] 200 [137] 828 [748]

ctr 325 [352] 309 [334] 637 [428]

ctl 715 [1809] 412 [1189] 4350 [4240]

cr 39 [17] 95 [44] 117 [59]

ml -1.949 [3.989] -0.669 [2.52] -3.472 [6.448]

Parameter Mediterranean Oceanic Uniform

ci 15 [24] 16 [15] 8 [18]

cp 401 [625] 170 [110] 607 [650]

ctr 281 [341] 340 [357] 484 [437]

ctl 1208 [2716] 682 [1969] 4479 [3760]

cr 51 [48] 93 [41] 114 [59]

ml -4.510 [7.597] -0.433 [2.184] -3.920 [7.364]
Table 4. SU-3.6 mean and standard deviation between square brackets over the 235 downstream calibration catchments of spatially uniform

parameter sets θ̂, for p2 (left) and p1 (right).

Parameter Mediterranean Oceanic Uniform

ci 26 [28] 24 [18] 15 [20]

σci 3 [5] 4 [5] 7 [9]

cp 367 [515] 204 [132] 834 [722]

σcp 95 [111] 59 [44] 116 [133]

ctr 330 [334] 311 [322] 655 [407]

σctr 54 [54] 35 [38] 43 [75]

ctl 748 [1697] 440 [1140] 4476 [3879]

σctl 282 [259] 220 [243] 619 [892]

cr 40 [18] 96 [44] 115 [54]

σcr 9 [9] 7 [7] 16 [14]

ml -1.877 [3.953] -0.631 [2.508] -3.709 [6.318]

σml 0.145 [0.215] 0.117 [0.137] 0.765 [1.347]

Parameter Mediterranean Oceanic Uniform

ci 17 [24] 19 [15] 14 [19]

σci 3 [4] 4 [5] 8 [9]

cp 414 [604] 182 [103] 638 [633]

σcp 86 [62] 64 [48] 111 [129]

ctr 305 [314] 342 [351] 511 [420]

σctr 69 [75] 27 [27] 42 [59]

ctl 1403 [2630] 699 [1832] 4387 [3487]

σctl 600 [897] 260 [327] 461 [585]

cr 52 [46] 94 [41] 112 [55]

σcr 12 [11] 8 [8] 15 [14]

ml -4.361 [7.646] -0.371 [2.181] -4.133

σml 0.200 [0.340] 0.118 [0.142] 0.688 [1.286]
Table 5. Analysis of spatially distributed parameter sets of S6 calibration by catchment: first, spatial average and standard deviation for

each parameter field are calculated for each catchments, then their mean and standard deviation between brackets over the 235 downstream

calibration catchments of areal statistics of spatially distributed parameter sets θ̂, p2 (left) and p1 (right)
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4.5 Parameters sensitivity

The parametric sensitivity of model variant S6 is studied here based on a regional sensitivity analysis (RSA) method applied

on each catchment (for details see Saltelli et al., 2008; Song et al., 2015, and the references therein).

RSA was performed for each catchment as follows. We considered 10000 spatially uniform sets of the 6 model parameters,

randomly sampled using Sobol quasi-random sequences within calibration ranges (Table 2). Each parameter set is used to385

perform a discharge simulation with the forward model and compute the resulting NSE value on the 235 downstream gauges,

over period p2 only since it provides sufficient information for a summary parametric sensitivity analysis over this large sample.

For each basin, a threshold NSE is chosen such as obtaining a partition of model simulations into: 10% best ones called

"behavioural" and 90% non behavioral. Next, the magnitude of the Kolmogorov-Smirnoff (KS) statistics D, representing the

maximum difference between the cumulative density functions (CDF) of the two classes is used to rank the parameters based390

on their sensitivity. As noted by Beven (2011), the KS test can be very sensitive to small differences, and will thus report

significant differences between the two classes.

The parametric sensitivities of SMASH model variant S6 are depicted by catchment group, in terms of density plot in Fig.

11, and in terms of rankings of parameters sensitivities in Table 6 and clearly show:

– For all regimes, the least sensitive parameters are in order the interception ci and next transfer ctl, ctr parameters. Despite395

this low sensitivity to interception, this component is found to critically improve modeling performances. That is why

interception parameter could be fixed a priori which would potentially reduce the complexity of calibration problem.

– For Uniform and Oceanic catchments, the most sensitive parameters are the non conservative water exchange parameter

ml followed by the routing cr or production cp parameters respectively.

– For fast responding Mediterranean catchments, the routing parameter cr is the most sensitive followed by the non conser-400

vative water exchange parameter ml. Note that the bimodal shape of density function of cp on Mediterranean catchments

may indicate one group very sensitive to this parameter while another one is less sensitive to this parameter. Besides, the

spatial distribution of sensitivities to cp on Mediterranean catchments looks correlated to soil and bedrock types (maps

not shown), which has been highlighted in previous analysis in similar context (e.g. Vannier et al., 2014; Garambois

et al., 2015).405

Recall that such a simple sensitivity analysis is itself sensitive to parameter ranges, sampling method and performance

threshold definition. Nevertheless, the highest sensitivities highlight that modeling efforts could focus on improving the repre-

sentation of runoff production and the exchanges function.
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Figure 11. Parametric sensitivity of SMASH model variant S6 over period p2 with spatially uniform parameters sampled in previous cali-

bration ranges, 10 000 parameter sets by catchment and NSE threshold determined by catchment such as partinoning simulations into 10 %

and 90 % behavioural and non behavioural simulations denoted B and B̄. Density of Kolmogorov-Smirnoff sensitivity (D) measure between

the cumulative distribution curves of B and B̄ of each catchment, over catchment groups.

Regime ci cp ctr ctl cr ml

Mediterranean 6 3 4 5 1 2

Oceanic 6 2 5 4 3 1

Uniform 5 4 3 6 2 1
Table 6. Parameters sensitivity ranking for each catchment group for SMASH model variant S6 over period p2. For each parameters sensitiv-

ity distribution the rank has been calculated by sorting in ascending order the distribution mean value. Rank 1 is the most sensitive parameter

and rank 6 the less in terms of distribution mean value.

5 Conclusions

This article has presented the first evaluation over a large sample of Variational Data Assimilation (VDA) applied to the410

spatially distributed calibration of a newly taylored parsimonious hydrological model. This improved parsimonious grid GR-

based model has been implemented in SMASH platform and its adjoint generated as requeted by VDA algorithm. The spatially

distributed calibration of this single model structure over a large sample of French catchments spanning different hydrological

regimes results in high performances. From the obtained results and analysis at annual, seasonal and floods timescales and in

spatio-temporal validation, as well as from parametric sensitivity analysis, the following conclusions can be raised:415

– The complexified model structure with 6 parameters, including one non conservative component, leads to higher perfor-

mances, both in calibration and spatio-temporal validation over this large sample, compared to the 3 parameters model

structure and to the reference GR5H lumped model.
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– Spatially distributed calibration, despite inverse problem overparameterization, leads to a significant gain in terms of

performances in calibration and temporal validation on this large sample with median efficiencies respectively of NSE420

= 0.88 (resp. 0.85) and NSE = 0.8 (resp. 0.79) over the total time window on period p2 (resp. p1).

– Simulated signatures over 1443 (resp. 1522) flood events on period p2 (resp. p1) are also quite good with median flood

(NSE; KGE) of (0.63; 0.59) (resp. (0.55; 0.53)), peak flow restitution RPD = -0.23 (resp. -0.3) and timing SRPD

= -0.28 (resp. -0.35). This slight bias over flood peaks could be reduced by giving more weight to them via a dedicated

event metric in addition to the global one over the relatively long calibration time window.425

– Best modeling performances are obtained for Oceanic and Mediterranean basins with this 6 parameters model structure

whereas it performs less well over Uniform basins where influence of groundwater processes can be significant - multi-

frequency hydrogeological processes with stream aquifer coupling (e.g. Schuite et al., 2019; Flipo et al., 2014, 2022, and

references therein).

– Those results obtained on temporal validation at downstream gauges are also confirmed in spatio-temporal validation,430

using un-calibrated upstream gauges.

– Finally, a sensitivity analysis revealed that the non conservative water exchange parameter and the production parameter

to be the most sensitive parameters, along with the routing parameter especially for faster responding catchments. Hence,

modeling efforts could focus on improving the representation of runoff production and water exchanges and ultimately

model versatility. Interception is the least sensitive while improving significantly model performance which indicates it435

should be fixed.

Those encouraging performances obtained for a wide range of catchment and hydrological conditions over the french terri-

tory, with the proposed distributed model in the variational framework, represents a solid base for further research. Immediate

to mid-term work perspectives are as follows.

– Forward model improvements: improve and test multiple hydrological model structures, in state-space formulation en-440

abling adaptative time stepping and flexible model structure definition in the variational framework (with possibility

to combine multiple operators within a catchment and enhance model versatility for various flow conditions and sub-

catchments functionning).

– High dimensional inverse algorithm improvements: (i) multicriteria variational calibration strategy adapted to floods

or low flows; (ii) descriptor upscaling and mapping into model parameter space for regionalization (Samaniego et al.,445

2010), along with taylored regularizations ; (iii) multi site and multi-source data constrains with "relaxation strategies";

(iv) global-local optimization strategies with high dimensional distributed controls in equifinality context.

– Coupling to hydraulic models of the DassFlow variational data assimilation platform (Monnier et al., 2016) also re-

cently wrapped in python, adapted to use satellite datasets either with 1D network model (Brisset et al., 2018; Larnier
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et al., 2020; Pujol et al., 2020; Malou et al., 2021) or a multi-D model with fine 2D zooms (Pujol et al., 2022) with450

regularizations taylored for hydrological-hydraulic inverse problems.

– Massive use of multi-source datasets including regional and worldwide datasets gained from satellite remote sensing.

Note that SMASH platform has recently been interfaced in python (Jay-Allemand et al., 2022) enabling to use powerful

libraries such as for signal processing and machine learning for building hybrid deterministic-ML methods in the powerful

VDA framework.455
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Appendix A: SMASH Model operators

The state equations of SMASH models used in this study and summarized in section 2.2 are provided here. We use GR oper-

ators for interception (Ficchì et al., 2019), production (Edijatno and Michel, 1989; Edijatno, 1991) and transfer (Perrin et al.,

2003). See also in Astagneau et al. (2021a) and references therein, details on the lumped model GR5H-I (Ficchì et al., 2019)465

that is used in the present study via airGR package (Coron et al., 2017, 2022). The operators of the computational model

are obtained from analytical integration in time of state-space equations consisting mostly in first order ordinary differential

equations (see details in (Perrin et al., 2003) and (Jay-Allemand et al., 2020)). Finally both SMASH model structures in this

study include conceptual GR-based operators for runoff production and water exchange at pixel scale (Edijatno and Michel,

1989; Perrin et al., 2003; Ficchì et al., 2019) on top of a within cell transfer part and a cell to cell routing scheme.470

For a given cell x ∈ Ω and time step t > 0, fluxes and states are computed as folows, with P (t) and E(t) denoting the local

total rainfall and evapotranspiration. Free parameters are written in red.

A1 Interception (from Ficchì et al. (2019)

Evapotranspiration from the interception store :475

Ei (t) = min[E (t) , P (t) +hi (t− 1)] (A1)

Remaining rainfall after interception:

Pth (t) = max[0, P (t)− (ci−hi (t− 1))−Ei (t)] (A2)

Update of the interception reservoir state:

hi (t) = hi (t− 1) +P (t)−Ei (t)−Pth (t) (A3)480

A2 Production (from Perrin et al. (2003))

Net rainfall filling the production reservoir:

Ps (t) = cp

(
1−

(
hp (t− 1)

cp

)2
)

tanh
(

Pth(t)
cp

)

1 +
(

hp(t−1)
cp

)
tanh

(
Pth(t)

cp

) (A4)

If E(t)−E(i) > 0 the evapotranspiration from the production reservoir is :

Es (t) = hp (t− 1)
(

2− hp (t− 1)
cp

) tanh
(

E(t)−Ei(t)
cp

)

1 +
(
1− hp(t−1)

cp

)
tanh

(
E(t)−Ei(t)

cp

) (A5)485

Direct runoff amount:

Pr (t) = Pth (t)−Ps (t) (A6)
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Update of the production reservoir state:

hp (t) = hp (t− 1) +Ps (t)−Es (t) (A7)

A3 Transfer within pixel x (adapted from Perrin et al. (2003))490

Let ϕ1,ϕ2,ϕ3 ∈ [0,1] be flux partitioning weights such that ϕ1 +ϕ2 +ϕ3 = 1. For model structure S-3.6, ϕ1 = 0.54, ϕ2 = 0.36

and ϕ3 = 0.1

water exchange:

F (t) = ml

(
htr (t− 1)

ctr

)7/2

(A8)

Update of the "fast" transfer reservoir state 0≤ ϕ1 ≤ 1:495

htr (t′) = max[ϵ, htr (t− 1) +ϕ1Pr (t) +F (t)] (A9)

Outflow from the "fast" transfer reservoir:

Qr (t′) = htr (t′)−
[
htr (t′)−4 + ctr

−4
]−1/4

(A10)

Update of the "fast" transfer reservoir state:

htr (t) = htr (t′)−Qr (t′) (A11)500

Update of the "slow" transfer reservoir state 0≤ ϕ2 ≤ 1: :

htl (t′) = htl (t− 1) +ϕ2Pr (t) (A12)

Outflow from the "slow" transfer reservoir:

Ql (t′) = htl (t′)−
[
htl (t′)

−4 + ctl
−4
]−1/4

(A13)

Update of the "fast" transfer reservoir state:505

htl (t) = htl (t′)−Ql (t′) (A14)

Outflow from direct runoff with 0≤ ϕ3 ≤ 1:

Qd (t) = max[0, ϕ3Pr (t) +F (t)] (A15)

Total cell outflow :

Qt (t) = Qr (t) +Ql (t) +Qd (t) (A16)510
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A4 Routing between pixels

Given Nup adjacent upstream cells within Ω flowing into cell x as imposed by flow direction map, the upstream runoff is:

Qup (x,t) =
Nup∑

kup=1

Q(kup, t) (A17)

with for a given upstream cell kup:

Q(kup, t) = hr (kup, t)
(

1− exp
(
− ∆t

60 cr

))
+ Qt (kup, t) (A18)515

Update of local routing state:

hr (t) = hr (t− 1) +Qup (x,t) (A19)

A5 Notations

– Inputs

P : Precipitation, mm/h520

E: Potential evapotranspiration, mm/h

– States

hi: Interception reservoir state, mm

hp: Production reservoir state, mm

htr: First transfer reservoir state, mm525

htl: Second transfer reservoir state, mm

hr: Routing reservoir state, mm

– Parameters

ci: Interception parameter, mm

cp: Production parameter, mm530

ctr: First transfer parameter, mm

ctl: Second transfer parameter, mm

ml: Water exchange parameter, mm/h

cr: Linear routing parameter, min

– Fluxes535

Ei: Evapotranspiration from the interception reservoir, mm/h

Pth: Remaining rainfall after interception, mm/h
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Ps: Net rainfall filling the production reservoir, mm/h

Es: Evapotranspiration from the production reservoir, mm/h

Pr: Direct runoff, mm/h540

F : water exchange, mm/h

Qr: Outflow from the first transfer reservoir, mm/h

Ql: Outflow from the second transfer reservoir, mm/h

Qd: Outflow from direct runoff, mm/h

Qt: Total cell outflow, mm/h545

Qup: Upstream inflow, mm/h

Qc: Total outflow, mm/h

– Other

ϕ: Direct runoff partitioning weights, with
∑3

i=1 ϕi = 1

kup: Index denoting the adjacent upstream cells of a given cell x ∈ Ω, kup =1,...,Nup550

A6 Metrics

– NSE

j∗k =
∑T

t=0 [Qk(t)−Q∗k(t)]2
∑T

t=0

[
Q∗k(t)−Q∗k(t)

]2 (A20)

– KGE

j∗k =
√

(r− 1)2 + (α− 1)2 + (β− 1)2

r =
Cov[Qk,Q∗k]√

Var[Qk]
√

Var[Q∗k]

α =
Qk

Q∗k

β =

√
Var[Qk]√
Var[Q∗k]

(A21)555

where Qk and Q∗k are simulated and observed discharges at gauge xk ∈ Ω.

A7 Indices

RC =
∑T

t=0 Q(xk, t)
∑T

t=0

(
1

Nx

∑
x∈Ω P (x,t)

) (A22)

WI =
∑T

t=0

(∑
x∈Ω P (x,t)

)
∑T

t=0

(∑
x∈Ω E (x,t)

) (A23)
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Appendix B: Results560

B1 Downstream gauges: global performances

Figure B1. Performances comparison between the two SMASH distributed model structures (S3 and S6) for each calibration settings (U and

D). GR5H performances are plotted as a reference. Calibration and validation on p1. (See in Fig. 4 for period p2).

Figure B2. Performances maps in temporal validation on period p1 period in terms of NSE criterion for (left) lumped GR5H, spatially

distributed 6 parameters SMASH model in (middle) spatially uniform S6-U and (right) distributed S6-D calibration. (See in Fig. 5 for period

p2).
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Figure B3. Boxplot by class NSE performances on 235 downstream gauges on period p1. (See in Fig. 6 for period p2).

B2 Downstream gauges: flood signatures
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Figure B4. Boxplot of flood event performances and signatures on 235 downstream gauges on validation period p1, i.e. 1522 flood events.

(See in Fig. 8 for period p2).

B3 Model performances at upstream un-calibrated gauges

31

https://doi.org/10.5194/egusphere-2022-506
Preprint. Discussion started: 14 July 2022
c© Author(s) 2022. CC BY 4.0 License.



Figure B5. Boxplot of NSE performances on 77 upstream gauges on period p1. Spatial validation ’sp v’ (left) and spatio-temporal validation

’sp-st v’ (right) ; label ’c’ and hatched boxes stand for local calibrations performed at those upstream gauges for sake of comparison. (See in

Fig. 9 for period p2).

Figure B6. Boxplot of NSE performances on 77 upstream gauges on period p1. Spatial validation (left) and spatio-temporal validation

(right). (See in Fig. 6 for period p2).
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