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Abstract. Remotely-sensed precipitation retrievals are critical for advancing our understanding of global energy and hydro-

logic cycles in remote regions. Radar reflectivity profiles of the lower atmosphere are commonly linked to precipitation through

empirical power laws, but these relationships are tightly coupled to particle microphysical assumptions that do not general-

ize well to different regional climates. Here, we develop a robust, highly generalized precipitation retrieval algorithm from a

deep convolutional neural network (DeepPrecip) to estimate 20-minute average surface precipitation accumulation using near-5

surface radar data inputs. DeepPrecip displays high retrieval skill and can accurately model total precipitation accumulation,

with a mean square error (MSE) 160% lower, on average, than current methods. DeepPrecip also outperforms a less com-

plex machine learning retrieval algorithm, demonstrating the value of deep learning when applied to precipitation retrievals.

Predictor importance analyses suggest that a combination of both near-surface (below 1 km) and higher-altitude (1.5 - 2 km)

radar measurements are the primary features contributing to retrieval accuracy. Further, DeepPrecip closely captures total pre-10

cipitation accumulation magnitudes and variability across nine distinct locations without requiring any explicit descriptions of

particle microphysics or geospatial covariates. This research reveals the important role for deep learning in extracting relevant

information about precipitation from atmospheric radar retrievals.

1 Introduction

Accurate estimates of surface precipitation are highly sought-after as they inform flood forecasting operations, water resource15

management practices and energy planning (Buttle et al., 2016; Gergel et al., 2017). Due to the sparse nature of in situ precip-

itation measurement networks, remote sensing has become a prominent alternative source of observations for deriving surface

precipitation estimates (Liu, 2008). Ground-based scanning radars are valuable resources as they provide estimates of precip-

itation over a wider area and at a higher temporal resolution compared to traditional in situ gauges (Lemonnier et al., 2019).
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Additionally, the size and availability of both vertically pointing and space-borne remote sensing datasets have expanded20

greatly in recent decades as a result of technological instrument improvements and new satellite missions (Quirita et al., 2017).

Remotely-sensed radar observations used in empirical, power-law relationships can relate radar reflectivity (RFL) estimates

(Ze) to surface snowfall (S) or rainfall (R) rates (Eq. 1) (Matrosov et al., 2008; Kulie and Bennartz, 2009; Schoger et al., 2021).

Z = a× (S/R)b (1)

These radar-based retrievals are powerful tools for filling current observational gaps and have been applied to great effect25

in previous literature (Levizzani et al., 2011; Hiley et al., 2010). However, these relationships demonstrate an inability to

generalize well to unseen validation data as a consequence of the microphysical particle assumptions (e.g. shape, diameter,

particle size distribution (PSD), terminal fall velocity and mass) used in each relationship’s unique derivation (Jameson and

Kostinski, 2002).

Recent machine learning (ML) approaches have demonstrated improvements in estimating surface precipitation from remotely-30

sensed data compared to traditional nowcasting methods (Shi et al., 2017; Kim and Bae, 2017). Deep learning models have

benefited greatly from the increased observational sample provided by remote sensing missions and have shown skill in learning

complex spatiotemporal characteristics of the underlying datasets (Chen et al., 2020b). However, a deep learning convolutional

surface precipitation retrieval using vertical column radar data with no spatiotemporal covariates has yet to be developed to

our knowledge. Previous ML studies have typically focused on passive microwave and infrared datasets which lack a detailed35

analysis of the vertical column structure, or suffer from a limited sample for model training across multiple, distinct regional

climates (Xiao et al., 1998; Adhikari et al., 2020; Ehsani et al., 2021).

In this work, we evaluate the abilities of a novel deep learning precipitation retrieval algorithm trained on vertically pointing

radar (up to 3 km above the surface). The regression model we present (DeepPrecip) is a hybrid deep learning neural network

consisting of a feature extraction convolutional neural network (CNN) front-end and a regression feedforward multilayer per-40

ceptron (MLP) back-end. The combination of these two architectures allows DeepPrecip to recognize and learn the nonlinear

relationships between different layers in the vertical column of radar observations and produce an accurate surface precipi-

tation estimate. Through an analysis of feature input combinations, DeepPrecip performance is examined to identify regions

within the vertical column that contain the most important contributions to retrieval accuracy (Lundberg and Lee, 2017). The

relationships that exist between different layers of the vertical profile (and each atmospheric covariate) can be used to help45

inform current and future active radar retrievals of surface precipitation.

2 Data

2.1 Study Sites

In situ data was collected from 9 study sites (Fig. 1.a) from 2012-2020 (Table 1). Colored markers in Fig. 1.b indicate periods

where non-zero surface precipitation was recorded. Study sites were selected based on the required presence of a micro rain50
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radar (MRR) and collocated Pluvio2 weighted precipitation gauge. Rain, snow and mixed-phase precipitation were recorded,

with each site’s precipitation phase and intensity distribution of observations differing based on the regional climate. For in-

stance, Marquette experienced strong lake-effect snowfall while Cold Lake received mostly light, shallow snowfall. Further,

due to the warmer temperatures recorded at OLYMPEx, these sites were classified as primarily experiencing liquid precipita-

tion, while ICE-POP received only solid precipitation.55

Figure 1. Observational input data locations and temporal coverage periods. (a), Geographic study site locations. (b), timeline of

observational coverage (periods of active precipitation) for each site from 2012 to 2020.

2.2 Pluvio2 precipitation weighing gauge

Reference surface precipitation observations were collected by OTT Pluvio2 weighted gauges at each site. The Pluvio2 gauge

records the precipitation accumulation from falling hydrometeors with a minimum time resolution of 1 minute (Colli et al.,

2014). It includes a 200 cm2 heated surface orifice (400 cm2 at Ny-Ålesund) to prevent snow and ice buildup, along with

site-specific wind shielding implemented as described in Table 1. These fence setups include a Double Fence Intercomparison60

Reference (DFIR) shield which is a large, double fenced wooden structure which helps significantly reduce the impact of wind

on surface precipitation measurements (Rasmussen et al., 2012; Kochendorfer et al., 2022). The Alter shield system consists of

multiple freely hanging, spaced metal slats around the gauge top opening which also helps mitigate undercatch issues during

strong winds (Colli et al., 2014). Sensitivity analyses of different rolling temporal windows indicated an optimal temporal

resolution of 20-minute non-real time accumulation (measurement results 5 minutes after precipitation accumulation), with65

minimum observational thresholds of at least 0.2 mm over the course of an hour from the Pluvio2 gauge.

2.3 Micro rain radar

Vertical pointing MRRs (developed by METEK) were located nearby the Pluvio2 gauges at each site to record complementary

atmospheric observations. The MRR is a K-band (24 GHz) continuous wave Doppler radar which provides information related

to hydrometeor particle activity up to 3.1 km above the surface (or 1 km for Ny-Ålesund) as a function of spectral power70

backscatter intensity. The MRR provides 29 vertical bins (of size 100 m) spanning 300 m to 3100 m above the surface as

shown for each site in Fig. 2.a. Raw radar measurements were preprocessed using Maahn’s improved MRR processing tool
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Table 1. Summary of in situ study site locations, identifiers, and observational details.

Site ID Lat Lon Elev. Sample (N ) Shielding Source

Ny-Ålesund 0 78.92 11.92 11 19068 Alter (Schoger et al., 2021)

ICE-POP 1 37.67 128.7 789 1705 DFIR (Kim et al., 2021; Munchak et al., 2022)

GCPEx 2 44.23 -79.78 252 2314 DFIR (Skofronick-Jackson et al., 2015)

Marquette 3 46.53 -87.55 430 8369 Alter (Pettersen et al., 2020; Kulie et al., 2021)

OLYMPEx 4 4 47.39 -123.87 2155 6444 None (Houze et al., 2017)

OLYMPEx 1 5 47.5 -123.58 3340 9114 None (Houze et al., 2017)

OLYMPEx 3 6 47.68 -123.38 2100 5727 None (Houze et al., 2017)

JOYCE 7 50.9 6.4 95 43579 Alter (Lahnert et al., 2015)

Cold Lake 8 54.4 -110.26 541 1692 Alter (Boudala et al., 2021)

(IMProToo) for noise removal, dealiasing and for extending the minimum detectable dBZ to -14 which allows for improved

measurements of solid precipitation. This data was then temporally averaged to align to the same 20-minute windows generated

for the Pluvio2 observations and used as a model input (Maahn and Kollias, 2012).75

2.4 ERA5

European Centre for Medium-Range Weather Forecasts Reanalysis version 5 (ERA5) hourly temperature (TMP) and vertical

wind velocity (WVL) on pressure levels from 0 to 3 km were also included as additional input covariates to DeepPrecip

(Hersbach et al., 2020). These inputs allow the model to more accurately recognize different precipitation event structures,

large-scale atmospheric dynamics and hydrometeor phases during training. Note that WVL units (Pa/s) are defined using the80

ECMWF Integrated Forecasting System (IFS) which adopts a pressure based vertical co-ordinate system (i.e. negative values

indicate upwards air motion, since pressure decreases with height). Each of these variables were linearly interpolated to align

with the MRR data over 20 minute intervals and at 100 m vertical resolution.

2.5 Surface meteorology

Collocated surface temperature (degrees Celsius (◦ C)) and 10-meter wind speed (m/s) meteorologic observations were also85

collected from instruments installed at each site and temporally aligned to the Pluvio2 and MRR datasets. Surface wind data

acts as an additional observational constraint for mitigating the effects of undercatch on unshielded measurement gauges

(Rasmussen et al., 2012). Undercatch occurs when precipitation falling in the presence of wind can cause hydrometeors to

pass over the gauge top orifice. This effect has been shown to bias reported precipitation quantities by up to 10% (Ehsani and

Behrangi, 2022). We therefore limit the available training dataset to periods when surface wind speeds are < 5 m/s, as this90

restricts the analysis to low-medium wind speed events at each location to maintain a high gauge-catch efficiency (Yang, 2014).
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Figure 2. DeepPrecip input covariates, feature processing pipeline and model architecture. (a), Site-predictor matrix of normalized

Micro-Rain Radar (MRR) and ERA5 observational frequency histograms used in model training and testing. Note that darker colors in

the 2D heatmaps indicate a higher frequency of observations. (b), DeepPrecip convolutional neural network diagram for L inputs with N

predictors.
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This preprocessing step reduces the average size of our total observational pool by 16% across all stations, however we note

that maximum intensity precipitation events are not removed using this technique.

Surface meteorologic station temperature data is used for precipitation-phase partitioning at 5◦ C to allow for Ze −S/R

comparisons with DeepPrecip. Additional dry surface air temperature thresholds of 0◦, 1◦ and 2◦ C were also examined, but95

Ze −S/R performance for both rain and snow appeared optimal when classified using a 5◦ C threshold (where temperatures

< 5◦ C are considered as solid precipitation and temperatures >= 5◦ C are considered as rainfall). This simple temperature

threshold is an additional source of uncertainty in our comparisons with the Ze −S/R relationships due to the influence of

mixed-phase precipitation on power law accuracy, along with uncertainties in the location of the active melting layer (Jen-

nings et al., 2018). A more sophisticated phase partitioning system (e.g. using wet-bulb temperature as described in Sims and100

Liu (2015)) could also be linked to DeepPrecip as an additional predictor to further improve classification of mixed-phase

precipitation in future work.

3 Methods

3.1 Radar-precipitation power laws

Relating radar reflectivity observations to surface accumulation has been done extensively in past surface and spaceborne105

radar missions through Ze −S/R power law relationships (Skofronick-Jackson et al., 2017; Liu, 2008). These power law

relationships are empirically defined by relating reflectivity values in a near surface bin to observed surface accumulation

under a set of assumed particle microphysics (e.g. size, shape, density and fallspeed) (Matrosov et al., 2008). While these

techniques have been used to great success in previous studies from Schoger et al. (2021) and Levizzani et al. (2011), the

assumptions about snowfall and rainfall particle microphysics makes the generalization of these power laws less robust, which110

contributes to high uncertainty when applied across large areas with unique regional climates (Jameson and Kostinski, 2002).

We examine an ensemble of 12 Ka- and K-band Ze −S/R relationships in this work to compare with model output from

DeepPrecip (Table 2). As a consequence of the short temporal period (20 minutes) used in this analysis, MSE values are

typically small (< 0.1 mm2). Each Ze−S/R relationship was applied to a near-surface bin in the reflectivity profile (bin 5 for

DPfull and DPnear, and bin 11 for DPfar) to derive a corresponding surface precipitation estimate. These bins were selected115

based on a sensitivity analysis where we examined the performance of multiple near-surface high-importance regions of the

vertical column (not shown). The best performing regions were identified as the above bins (5 and 11) based on the respective

region of the vertical column being considered (near or far). More information regarding the derivation of each Ze −S/R

relationship can be found in Table 2.

To further evaluate the performance of DeepPrecip, we also include model comparisons to a set of six site-derived Ze −P120

(reflectivity precipitation) power law relations. Each Ze −P relationship is empirically derived from the collocated MRR

and Pluvio data at each each observational site examined in this work (excluding Cold Lake and Ny-Ålesund due to the

limited available sample and vertical extent of each site, respectively). Each Ze−P relation is fit via a non-linear least-squares

approach for finding optimal a and b coefficients in Eq. 1 using SciPy’s curve_fit optimization algorithm (Virtanen et al.,
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Table 2. Details for each multi-phase precipitation power law relationship.

Phase Name Source Power Law Reference

Solid AVE_K K Ze = 77.61×S1.22 (Schoger et al., 2021)

KB09sp Ka Ze = 19.66×S1.47 (Kulie and Bennartz, 2009)

KB09ag Ka Ze = 313.29×S1.85 (Kulie and Bennartz, 2009)

KB09br Ka Ze = 24.04×S1.51 (Kulie and Bennartz, 2009)

M07 Ka Ze = 56.00×S1.20 (Matrosov, 2007)

S17 K Ze = 18.00×S1.10 (Souverijns et al., 2017)

Liquid BP09h K Ze = 32.00×R3.30 (Van Baelen et al., 2009)

BP09m K Ze = 324.00×R2.40 (Van Baelen et al., 2009)

MP48 – Ze = 200.00×R1.60 (Marshall and Palmer, 1948)

J19bb K Ze = 367.00×R1.37 (Jash et al., 2019)

J19nbb K Ze = 211.00×R1.44 (Jash et al., 2019)

J19hr K Ze = 168.00×R1.40 (Jash et al., 2019)

2020). Each Ze −P relationship was then applied to bin 5 reflectivities at each site (i.e. the same process as is used for125

Ze −S/R relationships) and compared with in situ observations to assess their general accuracy.

3.2 Neural network architecture

DeepPrecip is a feedforward convolutional neural network that takes as input a vector of 115 atmospheric covariates (Table 3),

performs a feature extraction of the vertical column and outputs a single surface precipitation estimate using a fully connected

multilayer perceptron. While the structure of this final version of DeepPrecip is complex, the retrieval evolved from a much130

simpler initial state based on a multiple linear regression (MLR) model. Due to clear nonlinearities between observed reflectiv-

ity data and surface precipitation accumulation, the MLR model was unable to capture in situ variability and provided estimates

near the mean accumulation value. Similar radar-based precipitation retrieval studies by Chen et al. (2020a) and Choubin et al.

(2016) have demonstrated much better performance using an ML-based approach which led to the development of a random

forest (RF) model, an MLP and finally the CNN.135

The 1D convolutional layers perform a feature extraction of the vertical column of inputs to reduce the total number of

parameters being fed into DeepPrecip’s fully connected dense layers. This 1D-CNN structure can identify relationships within

the vertical column, save on memory and lower computational training time requirements. To perform a 1D feature extraction,

the forward propagation step between the previous convolutional layer (l− 1) to the input neurons of the current layer (l) are

expressed in Eq. 2 (Abdeljaber et al., 2017).140
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Table 3. Summary of DeepPrecip full vertical column model input covariates.

Predictor Abbreviation Count Units Source Type

Reflectivity RFL 29 dBZ MRR float64

Doppler velocity DOV 29 m/s MRR float64

Spectral width SPW 29 m/s MRR float64

Temperature TMP 12 K ERA5 float64

Wind velocity WVL 12 Pa/s ERA5 float64

Profile group PG 4 Indicator K-mean Boolean

xl
k = f(blk +

Nl−1∑
i=1

Conv1d (wl−1
ik ,sl−1

i )) (2)

Where k and l refer to the kth neuron for layer l with x as the resulting input and b as the scalar bias. s and w terms represent

the neuron output and kernel weight matrix respectively, from the ith neuron of layer l−1 (and to the kth neuron of layer l for

w). The function ’f()’ represents the activation function used to transform the weighted sum into an output to be used in the

following network layer.145

The RF model tested in this study was based on previous work from King et al. (2022) where a RF was used to retrieve

surface snow accumulation from a collocated X-band and Pluvio2 instrument at a single experiment site (GCPEx). The RF

developed in said study demonstrated good skill in estimating surface accumulation, and so we incorporate the same model

here (retrained on the MRR and ERA5 data from this study) as a baseline comparison to other ML retrieval methods (i.e.

DeepPrecip).150

The final DeepPrecip model structure is outlined in Fig. 2.b. It includes two 1d-convolutional layers, a 1d max pooling layer,

dropout layer, flattening layer and concludes in a dense MLP regressor with 3 hidden layers. The total number of trainable

model parameters in DeepPrecip is 3,937,793. Model training and testing was performed using a 90/10 (non-shuffled) split on

each site to generate training and testing datasets for each location. As an additional preprocessing step, we standardize all input

covariates to remove the mean and by scaling inputs to unit variance. The non-shuffled nature of this splitting process allows for155

DeepPrecip estimates to be validated against unseen data and prevents overfitting from training on temporally autocorrelated

vertical column inputs. Additionally, this stratified selection process guarantees that an equal percentage of data is included

from each site during training.

Retrieval accuracy is primarily assessed using a mean squared error (MSE) skill metric calculated between each model’s

estimated surface accumulation values and the total Pluvio2 non-real-time reference accumulation observations over 20 min-160

utes. Performance statistics are reported from the average skill of the test portion of a non-shuffled 90/10 train/test CV split

(i.e. DeepPrecip trained and tested 10 times on different contiguous portions of the full available sample). Note that each
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split is stratified to include 10% of each station’s sample in every test split. Uncertainty estimates are calculated from running

each CV split 50 times using dropout to gain additional insight into model variability (resulting in 500 total model instances).

The dropout layers simulate training a large number of models with differing architectures in a highly parallelized manner165

by randomly deactivating (or dropping) a certain fraction of nodes within the network to provide a distribution of retrieval

estimates.

3.3 Hyperparameter optimization

DeepPrecip was developed, trained and optimized on Graphcore intelligence processing units (IPUs) MK2 Classic IPU-POD4

(Louw and McIntosh-Smith, 2021), which significantly sped up the training time by a factor of 6.5 compared to a state-of-the-170

art NVIDIA Tesla V100 GPU. Additional training throughput comparisons are included in Table 4. Training was completed

using a combination of open-source Python packages including Keras, Tensorflow and scikit-learn. An extension of stochastic

gradient descent known as Adam optimization (adaptive moment estimation) is used to continually update internal network

weights in the model during training to minimize a standard MSE loss function (Eq. 3) and track model learning over time.

L=

D∑
i=1

(xi − yi)
2 (3)175

Table 4. DeepPrecip model training throughput comparisons running on Tensorflow (v2.4.3) using a batch size of 128 samples on different

hardware. Note that 2 IPUs were used in comparison to 1 GPU/TPU to equalize average computation costs when training DeepPrecip using

each piece of hardware.

Hardware Processors Samples/second

Graphcore Intelligence Processing Unit (IPU) 2 500

NVIDIA Tesla V100 Tensor Core GPU 1 77

Google Tensor Processing Unit (TPU) 1 56

NVIDIA Tesla K80 GPU 1 23

Hyperparameters do not change value during training (in contrast to model parameters like internal node weights), but they

play a critical role in the neural network learning process to map input features to an output. Selecting optimal hyperparameter

values is an important part in constructing a model which minimizes loss, improves model efficiency and quality, and mitigates

overfitting. Multiple steps were taken to address concerns of model overfitting. In addition to the use of non-shuffled training,

we employ multiple regularization methods including early stopping, dropout, the application of layer weight constraints and180

L2 regularization (details in Table 5). L2 regularization (or ridge regression) adds an additional penalty term to the MSE loss

function which helps to create less complex models when dealing with many input features to improve model generalization.
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Table 5. DeepPrecip hyperparameters optimization details.

Hyperparameter Value Parameter Space

Activation ReLU [’relu’, ’tanh’, ’sigmoid’]

Batch Size 128 [64, 128, 256, 512]

Dropout Rate 0.1 [0.001, 0.01, 0.1, 0.25, 0.5, 0.75]

Early Stop Patience 8 [4, 8, 16, 32]

Epochs 512 [64, 128, 256, 512, 1024]

Filters 256 [4, 16, 64, 128, 256]

Hidden Layers 3 [1, ..., 20]

Kernel Size 16 [2, 4, 8, 16, 32]

L2 Regularization 0.5 [0.001, 0.01, 0.1, 0.5]

Learning Rate 1e-7 [0.001, 0.0001, 1e-5, 1e-7]

Loss Function MSE [’MSE’]

Neurons 256 [64, 128, 256, 512, 1024]

Optimizer Adam [’Adam’]

Pool Size 2 [2]

To select the optimal values for the aforementioned hyperparameters, and to optimize DeepPrecip’s general structure, we

use a form of hyperparameterization known as hyperband optimization (Li et al., 2017). Hyperband is a variation of Bayesian

optimization which intelligently samples the parameter space to find hyperparameter values that minimize loss while learning185

from previous selections. Hyperband adds an additional component to the analysis by also slowly increasing the number of

epochs run during each phase of the optimization process to sample in a more efficient manner. DeepPrecip hyperparameters

were derived by running a 10-fold CV hyperband optimization continuously on a single Graphcore IPU for approximately two

weeks. The final hyperparameter values (and their respective parameter search spaces) can be found in Table 5.

3.4 Unsupervised classification layer190

An unsupervised k-means clustering preprocessing step is also applied using MRR reflectivity profiles as input to provide

DeepPrecip with insights into distinct profile group (PG) vertical column structures (Fig. 2.b). Minimizing within-cluster sum

of squares between each vertical column radar estimate results in k = 4 PGs being selected using the within-cluster-sum of

squared errors elbow criterion method (Fig. 3). The elbow method is a clustering heuristic which allows for an optimal number

of clusters to be selected as a function of diminishing returns of explained variation (i.e. finding the elbow or "knee of the195

curve"). K-means clustering was applied using Python’s scikit-learn package on all input reflectivity data to generate four

profile clusters which were included as additional input parameters to DeepPrecip. These clusters are useful for partitioning

the precipitation data into groups based on different precipitation intensity-classes (trace, low, medium and high intensity) to
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identify where DeepPrecip finds the most important contributors to high retrieval accuracy for each category of storm intensity.

Derived cluster groups are useful for interpreting feature importances from model output (Section 4.2).200

Figure 3. K-means cluster reflectivity intensity-classes of vertical profiles from the MRR instruments at all sites. A total of 2452038

vertical profiles are organized by reflectivity intensity (dBZ) into k = 4 precipitation intensity subsets. The four groups were selected using

the within-cluster sum of square elbow method.

4 Results

4.1 DeepPrecip retrieval performance

We first examine the differences in performance between DeepPrecip and an RF that has demonstrated good performance in

our previous work (not shown) to assess the capabilities of a less-sophisticated ML-based approach over a CNN. DeepPrecip

demonstrates improved skill in capturing most of the peaks and troughs in observed precipitation variability (Fig. 4.a). These205

differences are most clearly demonstrated in Fig. 4.a at OLYMPEx and JOYCE, where DP more accurately predicts Pluvio2

precipitation extremes compared to the RF. Both models appear to struggle in capturing accumulation intensities during periods

of mixed-phase precipitation when temperatures are near zero degrees C (i.e. Marquette, JOYCE and the tail end of OLYMPEx

1) due to a lack of training data with similar climate conditions and the complex nature of such events. DP does demonstrate

improved skill at capturing light intensity precipitation at the beginning of the JOYCE period (compared to the RF), however210

this is with some uncertainty as noted by the wider shaded region (1 standard deviation). Performance statistics (Fig. 4.b)

summarize these improvements with DeepPrecip showing MSE values 21% lower and r2 values 34% higher (significant at

α < 0.05) compared to the RF.

Total cumulative surface accumulation comparisons between DeepPrecip and each Ze−S/R relationship are then examined

in Fig. 4.c for both rain and snow. To examine model skill across different precipitation phases, a simple temperature thresh-215

old is imposed where retrievals recorded during periods with temperatures below five degrees C are classified as snow and

periods equal to or warmer than five degrees C as rain. DeepPrecip more accurately captures surface precipitation quantities

when compared to the Ze −S/R estimates, with a total accumulation curve similar in shape to that of in situ indicating that
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DeepPrecip more closely captures the observed precipitation variability and magnitude. Log-scale MSE statistics are calcu-

lated between each model and in situ records in Fig. 4.d and indicate that DeepPrecip consistently outperforms traditional220

Ze −S/R power-law methods by 200% on average. As a general precipitation retrieval algorithm, we do not explicitly train a

DeepPrecipsnow and DeepPreciprain model for different precipitation phases with unique regional atmospheric microphysical

conditions. While the Ze −S/R models shown in Fig. 4.c/d are bespoke for rain or snow, DeepPrecip is trained on all data

with no a priori knowledge of the underlying physical precipitating particle state.

DeepPrecip estimates of accumulated rain display a lower MSE than that of snow (Fig. 4.d). We believe these differences to225

be twofold: 1) the larger sample of rainfall events in the training data (3 times that of snowfall); and 2) the more complex nature

of snow particle microphysics. Unlike the uniform properties of a rain droplet, the shape, size and fallspeed of solid precipitation

is much more dynamic and challenging to model (Wood et al., 2013). Continued issues with interference from wind may have

also impacted the accuracy of in situ measurements of snow accumulation leading to higher uncertainty and error (further

discussions on these uncertainties in Sect. 5) (Kochendorfer et al., 2017). To visualize the range in uncertainty from the230

CNN model estimates, we display confidence intervals showing 1 standard deviation in Fig. 4.b/d from 50 DeepPrecip model

realizations using dropout. Both ML-based models exhibit the highest uncertainty during periods of mixed-phase precipitation

at GCPEx and Marquette along with high intensity precipitation at OLYMPEx.

To further evaluate DeepPrecip’s retrieval skill over traditional methods, we compare model performance to a set of six

custom Ze−P site-derived power laws (derivation details in Sect. 3). While Ze−P relationships typically perform well in the235

regional climate under which they were derived, they do not generalize well outside of said climate. This lack of robustness is

visible in the differences between in situ and Ze−P estimates of accumulation in Fig. 5.a, where each Ze−P (light gray line)

displays consistent positive or negative biases and no single power law captures the high variability in accumulation across

multiple sites. For instance, OLYMPEx 1 and OLYMPEx 3-derived relationships produce a strong positive bias at JOYCE,

and the JOYCE-derived Ze −P power law is quite negatively biased when applied at OLYMPEx. The mean of all six custom240

power laws is shown in bold gray, and while it closely captures total mean accumulation across all sites, it is unable to model

the high variability in precipitation intensity.

The resulting MSE from the application of each custom Ze −P relationship to each site (along with DeepPrecip) further

demonstrates DeepPrecip’s improved robustness (Fig. 5.b). In all other cases, DeepPrecip either outperforms all Ze−P power

laws or is only slightly worse than the power law derived for the site in which it is being tested. On average, DeepPrecip245

retrievals result in 160% lower MSE values than all Ze−P site-derived power laws estimates when applied to the testing data

across the full spatiotemporal domain (Table 6). Figure 5.b also displays a model intercomparison of each Ze −P relation,

where we can clearly see how Ze−P relations like those derived at OLYMPEx 1 and 3 are clearly unable to capture the vastly

different snowfall regimes at sites like ICE-POP, GCPEx and JOYCE with their much larger MSE values for these sites.

The robustness of DeepPrecip was further evaluated using a leave-one-out cross validation (CV) for each site of training250

observations. This approach tests the skill of DeepPrecip at predicting precipitation for a location that was not included in the

training data, which is a strong indicator of the generalizability of the model. Log-scale MSE results of this test for each site

are shown in Fig. 6 for each precipitation-phase subset, along with the corresponding average Ze −P/S/R estimate when
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Table 6. MSE values (in e−3 mm2) for all vertical extent experiments across all models for both solid and liquid precipitation.

Phase Model
Mean Squared Error (e−3 mm2)

Full Column < 1 km 1− 3 km

All DeepPrecip 0.7 0.94 1.2

RF 1.1 0.92 1.5

Ze −P 20.3 20.3 21.4

Solid DeepPrecip 1.2 1.5 2.2

RF 2.9 1.5 4.2

Ze −S 31 31 85

Liquid DeepPrecip 0.43 0.47 0.85

RF 0.5 0.53 0.6

Ze −R 16.9 16.9 19.7

applied at that site. These findings demonstrate similar performance to the baseline DeepPrecip model skill, which continues to

outperform all traditional power law techniques on average. The large range in skill in the power law relationships at most sites255

(wide error bars) further demonstrates the relative lack of generalizabiltiy of Ze −P/S/R relationships to different regional

climates. Further, the site-derived power law fits (gray dots) perform worse on average than DeepPrecip for locations that are

close in proximity (i.e. the OLYMPEx sites).

Predictably, DeepPrecip performance degrades compared to the baseline model when the testing site is left out since the

model is no longer trained using data representing the regional climate of the site being tested. This difference in performance is260

most notable at the set of OLYMPEx sites, and while DeepPrecip performance is still improved over the Ze−S/R relationships,

we note a substantial percentage increase in MSE (375% on average) at these locations. OLYMPEx measurements were the

only observational datasets without any gauge shielding and which is a likely source of uncertainty further contributing to this

increase in error when the site is removed from the training set (Kochendorfer et al., 2022).

4.2 Quantifying sources of retrieval accuracy265

Identifying regions within the vertical column that are the most important contributors towards retrieval accuracy is critical

for informing future satellite-based radar precipitation retrievals. The ground-based radar instruments used in this work do not

suffer from the same ground clutter contamination issues typical of satellite-based radar observations and we are therefore able

to quantify the contributions to model skill arising from the included boundary layer reflectivity measurements in DeepPrecip.

Separating the training data into three subsets based on vertical extent and generating new models with this data, allows us to270

examine changes in performance as a function of information availability. These subsets include: DPfull (all 29 vertical bins,

i.e. the baseline model), DPnear (the lowest 1 km; 8 bins), and DPfar (1-3 km; 21 bins). DeepPrecip MSE results (Table 6)
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Figure 4. Performance comparisons between DeepPrecip (DP), an RF and an ensemble of power law-derived retrievals of surface

precipitation. (a), Running mean (window size 500 time steps) of accumulation for all sites with Pluvio2 measurements in black, RF

estimates in green and DeepPrecip in yellow. Data is sorted by station and then time, with each station separated by a dashed vertical line.

1 standard deviation from 50 dropout runs per cross-validated instance is shown in the shaded regions (most notable in DP estimates at

the start of JOYCE). (b), performance statistics for RF/DeepPrecip accuracy including MSE, Pearson correlation (r) and r2 with error bars

showing 1 standard deviation. (c), Timeseries of total accumulation estimates over the full observation period for all Ze −S relationships

(individual light red lines) and DeepPrecip. The mean of the Ze −S relationships is shown in bold. (d), The same as in (c) but for Ze −R.

(e), Phase-partitioned log-scale MSE values between each model and in situ observations from 50 model realizations. Note that S17 MSE

values extend beyond the top of the graph to 101 mm2.
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Figure 5. Site-derived empirical Ze −P power law performance comparisons. (a), The same as Fig. 4.a, except now using Ze −P

relationships derived at each study site. (b), MSE values for DeepPrecip and each Ze −P relationship when tested on each site.

Figure 6. Leave-site-out full column DeepPrecip performance robustness analysis. Each bar represents a DeepPrecip full column log-

scale MSE value when trained on all precipitation data excluding the noted site, and then validated against said excluded site (dashed line

is the default DeepPrecip model with all sites). Each red and blue dot represents the average Ze −S/R relationship estimate tested in the

same manner (error bars represent the min and max ensemble values). Gray dots represent the mean, min and max ensemble values from all

site-derived Ze −P relationships (excluding the relationship derived from site being tested), when applied to each site.
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for each subset suggest that the information provided by a combination of both near-surface and far-profile data results in the

highest accuracy.

Since Ny-Ålesund MRR observations were recorded with a maximal vertical extent of 1 km, they are only included275

in DPnear. Model skill when including/excluding Ny-Ålesund training data (19,000 samples) was examined to determine

whether it was confounding comparisons between the aforementioned vertical profile subset models. The results of these tests

suggested that the impact on overall performance is negligible across both precipitation phases when Ny-Ålesund is included

or excluded in the training set.

Distributions of surface precipitation anomalies appear distinct for rain and snow (Fig. 7), with the full column model280

more closely capturing accumulation recorded by in situ gauges. Anomaly frequencies are derived by removing the mean

accumulation estimate for each phase at each site. We attribute the structural differences between the anomaly distributions of

of snow and rain to the more complex particle size distributions (PSDs) of snowfall coupled with the more variable particle

water content of snow compared to that of rain (Yu et al., 2020). Additional uncertainties in the surface Pluvio2 measurement

gauge observational records of snowfall due to gauge undercatch is another likely contributor of increased error (Kochendorfer285

et al., 2022). In Fig. 7.a, both DPfar and DPnear exhibit higher anomaly values with a flattened curve top and heavy tails.

Using a combination of information from both near and far bins reduce these biases and tightens each accumulation anomaly

distribution around zero. A similar trend is also present for rain in 7.b, where we again most closely capture the in situ anomaly

distribution using DPfull.

Figure 7. Phase-partitioned surface precipitation accumulation anomaly frequency distributions. DeepPrecip is trained and tested on

three subsets of bins from the vertical column: DPnear (< 1 km), DPfar (1− 3 km) and DPfull (the entire vertical column) for (a), solid

and (b), liquid precipitation.
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A major challenge in deep learning is interpreting model output. SHapley Additive exPlanations (SHAP) (Lundberg and290

Lee, 2017), is a game theory approach to artificial intelligence model interpretability based on Shapley values that has previ-

ously been used to great effect in the Geosciences (Maxwell and Shobe, 2022; Li et al., 2022). Shapley values quantify the

contributions from all permutations of input features on retrieval accuracy to identify which are the most meaningful. While

computationally expensive (with exponential time complexity), this process provides local interpretability within the model by

examining how each possible combination of all input features impacts model accuracy (Jia et al., 2020). Here, the calculated295

Shapley values give insight into the regions of the vertical column that are contributing the most useful radar information in

the precipitation retrieval.

Shapley values for the entire dataset used in DPfull indicate that the most important model predictors comprise a combina-

tion of both near-surface and far profile bins (Fig. 8). Reanalysis variable model inputs are generally the least influential, except

for the trace precipitation case where low-mid level TMP and WVL bins appear highly important (Fig. 8). In all cases, TMP300

and WVL decrease in importance as a function of height above the surface. DeepPrecip typically considers MRR-derived bins

in the 1.5-2.5 km range as the most important predictors. In non-trace intensity profiles, it is the 2 km region Doppler velocity

(DOV) observations which are the dominant contributing predictor. When we consider all profiles, reflectivity (the input to

Ze −S/R relationships) is not necessarily the dominant feature, and it is a combination of 1.5-2 km profile information from

reflectivity, Doppler velocity and spectral width (SPW) that results in the highest model skill. Combinations of these regions305

within the vertical column appear to allow DeepPrecip to better understand precipitation events with complex cloud structures

which would not necessarily be recognized by conventional Ze−S/R relations that primarily rely on information from a small

subset of near-surface bins.

Figure 8. Normalized vertical column Shapley global feature importance values (i.e. |SHAPDP |). Shapley output values are calculated

for different subsets of vertical column reflectivities separated into all profiles, trace intensity, low intensity, medium intensity, and high

intensity precipitation events based on a k-means clustering of input data (more in Sect. 3.2). Areas of dark color indicate a high feature

importance at that location within the vertical column.
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5 Discussion and Conclusions

DeepPrecip not only demonstrates considerable retrieval accuracy without the need for physical assumptions about hydrome-310

teors or spatio-temporal information, but also provides insight into the regions of the vertical column which are most important

for improving predictive accuracy. The results from Sect. 4.2 suggest that while the exact altitudes providing predictive in-

formation from the vertical column may shift up or down under different precipitation intensities, there exists a consistent

combination of both near-surface and far profile bins that always appear as highly important contributors to model skill. Fur-

thermore, while RFL is typically considered as the most important predictor in radar-based precipitation retrievals (Stephens315

et al., 2008; Skofronick-Jackson et al., 2015), we find that contributions from RFL, DOV and SPW provide a near-equal level

of importance, with respective average percent contributions to model output of 30%, 31% and 28%, while ERA5 TMP and

WVL variables have a total combined importance of 10%.

The combined insights from DeepPrecip’s multi-model vertical extent evaluations and feature importance analyses demon-

strate a potential to influence current and future remote sensing precipitation retrievals using deep learning. Instruments like320

CloudSat’s Cloud Profiling Radar (CPR), or the Global Precipitation Measurement (GPM) mission’s Dual-frequency Precip-

itation Radar (DPR) also use active radar systems to perform similar, radar-based precipitation retrievals based on data from

vertical column reflectivities (Stephens et al., 2008). While CPR and GPM-derived products use a more sophisticated Bayesian

retrieval to the Ze −S/R relationships evaluated here, the resulting precipitation estimates are still tightly coupled to a priori

physical assumptions of particle shape, size and fallspeed which is a substantial source of uncertainty (Hiley et al., 2010; Wood325

et al., 2013). Additionally, the results of this study further support prior inference regarding the existence of regions of high

importance in the < 1 km (near-surface) region of the vertical column relating to shallow-cumuliform precipitation strongly

influencing retrieval accuracy. This is an area that is typically masked in satellite-based products (i.e. the radar "blind-zone")

due to surface clutter contamination, and has been shown in previous work to likely be a major source of underestimation from

missing shallow cumuliform precipitation (Maahn et al., 2014; Bennartz et al., 2019). This work motivates the importance of330

continued research towards obtaining high-quality, non-cluttered near surface radar data to use as additional model inputs in

future space-based retrievals of precipitation.

DeepPrecip is not without uncertainty and error which will reduce its accuracy when tested against new data. Uncertainties

present in the training data (stemming from the MRR, ERA5 or Pluvio2 observations), will propagate through the model and

bias the output estimates (Kochendorfer et al., 2022; Jakubovitz et al., 2019). We have taken steps to mitigate the impact of335

these uncertainties through multiple data alignment and preprocessing decisions (details in Sect. 3), however precipitation

gauge undercatch, wind shielding configurations, MRR attenuation and differences in site-specific vertical extent cannot be

eliminated as contributors of retrieval error. While 60% of the power laws examined in this work were MRR-derived K-band

relationships, the remaining 40% where either Ka-band or the Marshall-Palmer (MP) Rayleigh relationship. While K and Ka

are similar radar frequencies, the differences between the two can bias the resulting precipitation estimate when a Ka-derived340

power law is applied to K-band data (especially during periods of intense precipitation). Furthermore, while the collection of

data from multiple sites provides us with a robust training set under multiple regional climates, due to the unique experimental
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setups at each site, calibration biases between study locations may further reduce DeepPrecip’s skill when applied to new data.

As the MRR instrument has a limited 3 km maximum vertical range, we also miss possible precipitation events occurring

outside of this region, which may contribute to further surface precipitation underestimation. Internal CNN model uncertainty345

is likely driven, in part, by a combination of the high variability that is typical of precipitation and the limited sample from

nine measurement sites over 8 years, which does not fully capture all different forms of possible precipitation structure and

occurrence.
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