10

15

DeepPrecip: A deep neural network for precipitation retrievals
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Abstract. Remotely-sensed precipitation retrievals are critical for advancing our understanding of global energy and hydrologic
cycles in remote regions. Radar reflectivity profiles of the lower atmosphere are commonly linked to precipitation through em-
pirical power laws, but these relationships are tightly coupled to particle microphysical assumptions that do not generalize well
to different regional climates. Here, we develop a robust, highly generalized precipitation retrieval from a deep convolutional
neural network (DeepPrecip) to estimate 20-minute average surface precipitation accumulation using near-surface radar data
inputs. DeepPrecip displays high retrieval skill and can accurately model total precipitation accumulation, with a mean square
error (MSE) 99160% lower, on average, than current methods. DeepPrecip also outperforms a less complex machine learning
retrieval algorithm, demonstrating the value of deep learning when applied to precipitation retrievals. Predictor importance
analyses suggest that a combination of both near-surface (below 1 km) and higher-altitude (1.5 - 2 km) radar measurements are
the primary features contributing to retrieval accuracy. Further, DeepPrecip closely captures total precipitation accumulation
magnitudes and variability across nine distinct locations without requiring any explicit descriptions of particle microphysics
or geospatial covariates. This research reveals the important role for deep learning in extracting relevant information about

precipitation from atmospheric radar retrievals.

1 Introduction

Accurate estimates of surface precipitation are highly sought-after as they inform flood forecasting operations, water resource
management practices and energy planning Buttle-et-al+(2016);-Gergeletal(20617)(Buttle et al., 2016; Gergel et al., 2017).
Due to the sparse nature of in situ precipitation measurement networks, remote sensing has become a prominent alterna-
tive source of observations for deriving surface precipitation estimates Eitu-(2668)(Liu, 2008). Ground-based scanning radars

are valuable resources as they provide estimates of precipitation over a wider area and at a higher temporal resolution compared
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to traditional in situ gauges Lemennieret-al-(2049)(Lemonnier et al., 2019). Additionally, the size and availability of both ver-

tically pointing and space-borne remote sensing datasets have expanded greatly in recent decades as a result of technological
instrument improvements and new satellite missions (Quirita et al., 2017).
Remotely-sensed radar observations used in empirical, power-law relationships can relate radar reflectivity (RFL) estimates

(Ze) to surface snowfall (S) or rainfall (R) rates (Eq. 1)

Z=a (S=R)’ (1)

These radar-based retrievals are powerful tools for filling current observational gaps and have been applied to great effect

in previous literature Levizzani-et-al-(204H; Hileyetal-(2010)(Levizzani et al., 2011; Hiley et al., 2010). However, these re-

lationships demonstrate an inability to generalize well to unseen validation data as a consequence of the microphysical particle

assumptions (e.g. shape, diameter, particle size distribution (PSD), terminal fall velocity and mass) used in each relationship’s

unique derivation Jamesen-and-Kestinski-(2002)(Jameson and Kostinski, 2002).

Recent machine learning (ML) approaches have demonstrated improvements in estimating surface precipitation from remotely-

sensed data compared to traditional nowcasting methods Shi-et-al+2017); Kim-and-Bae-(204+7)(Shi et al., 2017; Kim and Bae, 2017).

Deep learning models have benefited greatly from the increased observational sample provided by remote sensing missions and

have shown skill in learning complex spatiotemporal characteristics of the underlying datasets Chen-et-al-2020b)(Chen et al., 2020b).

However, a deep learning convolutional surface precipitation retrieval using vertical column radar data with no spatiotemporal
covariates has yet to be developed to our knowledge. Previous ML studies have typically focused on passive microwave and in-

frared datasets which lack a detailed analysis of the vertical column structure, or suffer from a limited sample for model training

across multiple, distinct regional climates Adhikari-et-al(2020); Ehsant-et-al(2021H)(Xiao et al., 1998; Adhikari et al., 2020; Ehsani et al.,

In this work, we evaluate the abilities of a novel deep learning precipitation retrieval algorithm trained on vertically point-
ing radar (up to 3 km above the surface). The regression model we present (DeepPrecip) is a hybrid deep learning neu-
ral network consisting of a feature extraction convolutional neural network (CNN) front-end and a regression feedforward
multilayer perceptron (MLP) back-end. The combination of these two architectures allows DeepPrecip to recognize and
learn the nonlinear relationships between different layers in the vertical column of radar observations and produce an ac-
curate surface precipitation estimate. Through an analysis of feature input combinations, DeepPrecip performance is ex-
amined to identify regions within the vertical column that contain the most important contributions to retrieval accuracy

FundbergandJee (2047 (Lundberg and Lee, 2017). The relationships that exist between different layers of the vertical profile

(and each atmospheric covariate) can be used to help inform current and future active radar retrievals of surface precipitation.
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2 Data

2.1 Study Sites

In situ data was collected from 9 study sites (Fig. 1.a) from 2012-2@2@geret-al{(2021)Kim-etal{2021);- Munchak-etal{2022);

1). Colored markers in Fig. 1.b indicate periods where non-zero surface precipitation was recorded. Study sites were selectec
based on the required presenceaefitRRa micro rain radar(MRR) and collocated Pluvio2 weighted precipitation gauge.

Rain, snow and mixed-phase precipitation were recorded, with each site's precipitation phase and intensity distribution of ob-
servations differing based on the regional climate. For instance, Marquette experienced strong lake-effect snowfall while Cold

Figure 1. Observational input data locations and temporal coverage periods. (aJzeographic study site locationg), timeline of
observational coverage (periods of active precipitation) for each site from 2012 to 2020.

2.2 Pluvio2 precipitation weighing gauge

Reference surface precipitation observations were collected by OTT Pluvio2 weighted gauges at each site. The Pluvio2

ch12 at Ny-Alesund) to prevent snow and ice buildup, along with site-speci ¢ wind shielding implemented as described
in Table 1. These fence setups include a Double Fence Intercomparison Reference (DFIR) shield which is a large, dou-

ble fenced wooden structure which helps signi cantly reduce the impact of wind on surface precipitation measurements

Rasmussen-etal{2012)Kechendorferetal{2(Ra3mussen et al., 2012; Kochendorfer et al., 2022). The Alter shield sys-

hour from the Pluvio2 gauge.



70

75

80

85

Table 1. Summary of in situ study site locations, identi ers, and observational details.

Site ID Lat Lon Elev. SampleN) Shielding Source

Ny-Alesund 0 7892 11.92 11 19068 Alter Sehogeretat(2624Bchoger et al., 2021)
ICE-POP 1 3767 1287 789 1705 DFIR  Kim-etal«{2021); Munchak-etal—(202% 2021; Munchak et
GCPEx 2 4423 -79.78 252 2314 DFIR Ske#emele&aeksene%al#@%@k g:k-Jackson etal., 20
Marquette 3 4653 -87.55 430 8369 Alter Petiersen-et-al{(2020)Kulie-etak-{(20f sen.et al., 2020; Kulie «
OLYMPEx4 4 4739 -123.87 2155 6444 None Heuz&e%al—éze}'( ze et al., 2017)
OLYMPEx1 5 475 -123.58 3340 9114 None Houze etak(203{Houze et al., 2017)
OLYMPEx3 6 47.68 -123.38 2100 5727 None Hea%&e%al—@@%‘(h—louze etal., 2017)

JOYCE 7 509 64 95 43579 Alter Lahnertetal-(2015.ahnert et al., 2015)

Cold Lake 8 54.4 -110.26 541 1692 Alter Beudalaetalk{20624(Boudala et al., 2021)

2.3 Micro rain radar

Vertical pointing MRRs (developed by METEK) were located nearby the Pluvio2 gauges at each site to record complementary
atmospheric observations. The MRR is a K-ba?é£324 GHz) continuous wave Doppler radar which provides information
related to hydrometeor particle activity up to 3.1 km above the surface (or 1 km for Ny-Alesund) as a function of spectral
power backscatter intensity. The MRR provides 29 vertical bins (of size 100 m) spanning 300 m to 3100 m above the surface
as shown for each site in Fig. 2.a. Raw radar measurements were preprocessed using Maahn's improved MRR processing toc
(IMProToo) for noise removal, dealiasing and for extending the minimum detectable dBZ to -14 which allows for improved
measurements of solid precipitation. This data was then temporally averaged to align to the same 20-minute windows generatec
for the Pluvio2 observatiorigiaahn-ane-Kelias(20+andusedasa mode n.and Kollias, 2012).
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