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Abstract. Remotely-sensed precipitation retrievals are critical for advancing our understanding of global energy and hydrologic

cycles in remote regions. Radar reflectivity profiles of the lower atmosphere are commonly linked to precipitation through em-

pirical power laws, but these relationships are tightly coupled to particle microphysical assumptions that do not generalize well

to different regional climates. Here, we develop a robust, highly generalized precipitation retrieval from a deep convolutional

neural network (DeepPrecip) to estimate 20-minute average surface precipitation accumulation using near-surface radar data5

inputs. DeepPrecip displays high retrieval skill and can accurately model total precipitation accumulation, with a mean square

error (MSE) 99
:::
160% lower, on average, than current methods. DeepPrecip also outperforms a less complex machine learning

retrieval algorithm, demonstrating the value of deep learning when applied to precipitation retrievals. Predictor importance

analyses suggest that a combination of both near-surface (below 1 km) and higher-altitude (1.5 - 2 km) radar measurements are

the primary features contributing to retrieval accuracy. Further, DeepPrecip closely captures total precipitation accumulation10

magnitudes and variability across nine distinct locations without requiring any explicit descriptions of particle microphysics

or geospatial covariates. This research reveals the important role for deep learning in extracting relevant information about

precipitation from atmospheric radar retrievals.

1 Introduction

Accurate estimates of surface precipitation are highly sought-after as they inform flood forecasting operations, water resource15

management practices and energy planning Buttle et al. (2016); Gergel et al. (2017)
:::::::::::::::::::::::::::::::
(Buttle et al., 2016; Gergel et al., 2017).

Due to the sparse nature of in situ precipitation measurement networks, remote sensing has become a prominent alterna-

tive source of observations for deriving surface precipitation estimates Liu (2008)
:::::::::
(Liu, 2008). Ground-based scanning radars

are valuable resources as they provide estimates of precipitation over a wider area and at a higher temporal resolution compared
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to traditional in situ gauges Lemonnier et al. (2019)
:::::::::::::::::::
(Lemonnier et al., 2019). Additionally, the size and availability of both ver-20

tically pointing and space-borne remote sensing datasets have expanded greatly in recent decades as a result of technological

instrument improvements and new satellite missions (Quirita et al., 2017).

Remotely-sensed radar observations used in empirical, power-law relationships can relate radar reflectivity (RFL) estimates

(Ze) to surface snowfall (S) or rainfall (R) rates (Eq. 1) Matrosov et al. (2008); Kulie and Bennartz (2009); Schoger et al. (2021)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Matrosov et al., 2008; Kulie and Bennartz, 2009; Schoger et al., 2021).

Z = a� (S=R)b (1)25

These radar-based retrievals are powerful tools for filling current observational gaps and have been applied to great effect

in previous literature Levizzani et al. (2011); Hiley et al. (2010)
::::::::::::::::::::::::::::::::::
(Levizzani et al., 2011; Hiley et al., 2010). However, these re-

lationships demonstrate an inability to generalize well to unseen validation data as a consequence of the microphysical particle

assumptions (e.g. shape, diameter, particle size distribution (PSD), terminal fall velocity and mass) used in each relationship’s

unique derivation Jameson and Kostinski (2002)
::::::::::::::::::::::::
(Jameson and Kostinski, 2002).30

Recent machine learning (ML) approaches have demonstrated improvements in estimating surface precipitation from remotely-

sensed data compared to traditional nowcasting methods Shi et al. (2017); Kim and Bae (2017)
::::::::::::::::::::::::::::::
(Shi et al., 2017; Kim and Bae, 2017).

Deep learning models have benefited greatly from the increased observational sample provided by remote sensing missions and

have shown skill in learning complex spatiotemporal characteristics of the underlying datasets Chen et al. (2020b)
::::::::::::::::
(Chen et al., 2020b).

However, a deep learning
:::::::::::
convolutional surface precipitation retrieval using vertical column radar data with no spatiotemporal35

covariates has yet to be developed to our knowledge. Previous ML studies have typically focused on passive microwave and in-

frared datasets which lack a detailed analysis of the vertical column structure, or suffer from a limited sample for model training

across multiple, distinct regional climates Adhikari et al. (2020); Ehsani et al. (2021)
::::::::::::::::::::::::::::::::::::::::::::::::
(Xiao et al., 1998; Adhikari et al., 2020; Ehsani et al., 2021).

In this work, we evaluate the abilities of a novel deep learning precipitation retrieval algorithm trained on vertically point-

ing radar (up to 3 km above the surface). The regression model we present (DeepPrecip) is a hybrid deep learning neu-40

ral network consisting of a feature extraction convolutional neural network (CNN) front-end and a regression feedforward

multilayer perceptron (MLP) back-end. The combination of these two architectures allows DeepPrecip to recognize and

learn the nonlinear relationships between different layers in the vertical column of radar observations and produce an ac-

curate surface precipitation estimate. Through an analysis of feature input combinations, DeepPrecip performance is ex-

amined to identify regions within the vertical column that contain the most important contributions to retrieval accuracy45

Lundberg and Lee (2017)
:::::::::::::::::::::
(Lundberg and Lee, 2017). The relationships that exist between different layers of the vertical profile

(and each atmospheric covariate) can be used to help inform current and future active radar retrievals of surface precipitation.

2



2 Data

2.1 Study Sites

In situ data was collected from 9 study sites (Fig. 1.a) from 2012-2020Schoger et al. (2021); Kim et al. (2021); Munchak et al. (2022); Skofronick-Jackson et al. (2015); Pettersen et al. (2020); Kulie et al. (2021); Houze et al. (2017); Lahnert et al. (2015); Boudala et al. (2021)
:::::
(Table50

::
1). Colored markers in Fig. 1.b indicate periods where non-zero surface precipitation was recorded. Study sites were selected

based on the required presence ofan MRR
:
a
::::::
micro

:::
rain

:::::
radar

:::::::
(MRR) and collocated Pluvio2 weighted precipitation gauge.

Rain, snow and mixed-phase precipitation were recorded, with each site's precipitation phase and intensity distribution of ob-

servations differing based on the regional climate. For instance, Marquette experienced strong lake-effect snowfall while Cold

Lake received mostly light, shallow snowfall. Further, due to theabovezero
::::::
warmer

:
temperatures recorded at OLYMPEx, these55

sites were classi�ed asonly
:::::::
primarily

:
experiencing liquid precipitation, while ICE-POP received only solid precipitation.

Figure 1. Observational input data locations and temporal coverage periods. (a),Geographic study site locations.(b), timeline of

observational coverage (periods of active precipitation) for each site from 2012 to 2020.

2.2 Pluvio2 precipitation weighing gauge

Reference surface precipitation observations were collected by OTT Pluvio2 weighted gauges at each site. The Pluvio2

gauge records theliquid watercontentof
::::::::::
precipitation

:::::::::::
accumulation

:::::
from

:
falling hydrometeors with a

::::::::
minimum time res-

olution of 1 minuteColli et al. (2014)
:::::::::::::::
(Colli et al., 2014). It includes a200cm2

:::
200

::::
cm2

:
heated surface ori�ce (400cm2

:::
40060

:::
cm2

:
at Ny-Ãlesund) to prevent snow and ice buildup, along with site-speci�c wind shielding implemented as described

in Table 1. These fence setups include a Double Fence Intercomparison Reference (DFIR) shield which is a large, dou-

ble fenced wooden structure which helps signi�cantly reduce the impact of wind on surface precipitation measurements

Rasmussen et al. (2012); Kochendorfer et al. (2022)
:::::::::::::::::::::::::::::::::::::::::
(Rasmussen et al., 2012; Kochendorfer et al., 2022). The Alter shield sys-

tem consists of multiple freely hanging, spaced metal slats around the gauge top opening which also helps mitigate undercatch65

issues during strong windsColli et al. (2014)
:::::::::::::::
(Colli et al., 2014). Sensitivity analyses of different rolling temporal windows in-

dicated an optimal temporal resolution of 20-minute non-real time(NRT) accumulation
::::::::::
accumulation

::::::::::::
(measurement

::::::
results

::
5

::::::
minutes

:::::
after

::::::::::
precipitation

:::::::::::::
accumulation), with minimum observational thresholds of at least 0.2 mm over the course of an

hour from the Pluvio2 gauge.
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Table 1.Summary of in situ study site locations, identi�ers, and observational details.

Site ID Lat Lon Elev. Sample (N ) Shielding Source

Ny-Ãlesund 0 78.92 11.92 11 19068 Alter Schoger et al. (2021)
::::::::::::::::
(Schoger et al., 2021)

ICE-POP 1 37.67 128.7 789 1705 DFIR Kim et al. (2021); Munchak et al. (2022)
:::::::::::::::::::::::::::::
(Kim et al., 2021; Munchak et al., 2022)

GCPEx 2 44.23 -79.78 252 2314 DFIR Skofronick-Jackson et al. (2015)
::::::::::::::::::::::::
(Skofronick-Jackson et al., 2015)

Marquette 3 46.53 -87.55 430 8369 Alter Pettersen et al. (2020); Kulie et al. (2021)
::::::::::::::::::::::::::::::
(Pettersen et al., 2020; Kulie et al., 2021)

OLYMPEx 4 4 47.39 -123.87 2155 6444 None Houze et al. (2017)
::::::::::::::
(Houze et al., 2017)

OLYMPEx 1 5 47.5 -123.58 3340 9114 None Houze et al. (2017)
::::::::::::::
(Houze et al., 2017)

OLYMPEx 3 6 47.68 -123.38 2100 5727 None Houze et al. (2017)
::::::::::::::
(Houze et al., 2017)

JOYCE 7 50.9 6.4 95 43579 Alter Lahnert et al. (2015)
:::::::::::::::
(Lahnert et al., 2015)

Cold Lake 8 54.4 -110.26 541 1692 Alter Boudala et al. (2021)
::::::::::::::::
(Boudala et al., 2021)

2.3 Micro rain radar70

Vertical pointing MRRs (developed by METEK) were located nearby the Pluvio2 gauges at each site to record complementary

atmospheric observations. The MRR is a K-band (24.23
::
24

:
GHz) continuous wave Doppler radar which provides information

related to hydrometeor particle activity up to 3.1 km above the surface (or 1 km for Ny-Ãlesund) as a function of spectral

power backscatter intensity. The MRR provides 29 vertical bins (of size 100 m) spanning 300 m to 3100 m above the surface

as shown for each site in Fig. 2.a. Raw radar measurements were preprocessed using Maahn's improved MRR processing tool75

(IMProToo) for noise removal, dealiasing and for extending the minimum detectable dBZ to -14 which allows for improved

measurements of solid precipitation. This data was then temporally averaged to align to the same 20-minute windows generated

for the Pluvio2 observationsMaahn and Kollias (2012)
:::
and

::::
used

::
as

::
a

:::::
model

:::::
input

::::::::::::::::::::::
(Maahn and Kollias, 2012).

Ny-ÃlesundMRR observationswere recordedwith a maximal vertical extentof 1 km and are thereforeonly included

in near surfacemodels(additional details in Sect.4.2). Model skill when including/excludingNy-Ãlesund training data80

(19;000samples)wasexaminedto determinewhetherit wasconfoundingcomparisonsbetweentheDeepPrecipsubsetmodels

presentedin Sect.4.2. We found that the impacton overall performanceis negligibleacrossboth precipitationphaseswhen

Ny-Ãlesundis includedor excludedin thetrainingset.

2.4 ERA5

European Centre for Medium-Range Weather Forecasts Reanalysis version 5 (ERA5) hourlyTMP and WVL
::::::::::
temperature85

:::::
(TMP)

::::
and

::::::
vertical

:::::
wind

::::::
velocity

:::::::
(WVL) on pressure levels from 0 to 3 km were

:::
also

:
included as additionalatmosphericinputs

to DeepPrecipHersbach et al. (2020).Thesevariableswere linearly interpolatedto align with the 20-minutePluvio2/MRR

datasetswith 100 m vertical bin resolutions.ERA5 datawas includedas a model input to provide additionalatmospheric
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