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Abstract 1 

Process-based ecological models are essential tools to quantify and predict forest growth and carbon cycle 2 

under the background of climate change. The accurate description of phenology and tree growth processes 3 

enables an improved understanding and predictive modeling of forest dynamics. An individual tree-based 4 

carbon model, FORCCHN2 (FORest ecosystem Carbon budget model for CHiNa Version 2.0), used the 5 

non-structural carbohydrates (NSC) pools to couple tree growth and phenology. This model performed 6 

well in reducing uncertainty in predicting forest carbon fluxes. Here, we describe the framework in detail 7 

and provide the source code of FORCCHN2. We also present a Dynamic Link Library (DLL) package 8 

containing the latest version of the FORCCHN2 model. This package has the advantage of using Fortran 9 

as an interface to make the model runs fast on a daily step, the package also allows the users to call it with 10 

their preferred computer tools (e.g., Matlab, R, Python, etc.). FORCCHN2 model can be used directly to 11 

predict the spring and autumn phenological dates as well as the daily carbon fluxes (including 12 

photosynthesis, above- and belowground autotrophic respiration, and soil heterotrophic respiration) and 13 

biomass on plot, regional, and hemispheric scales. As case studies, we provide an example of the 14 

FORCCHN2 running, model validations in 78 forest sites, and an example model application for the 15 

carbon dynamics of Northern Hemisphere forests. We demonstrate the FORCCHN2 model can produce 16 

a reasonable agreement with flux observations. Given the potential importance of the application of this 17 

ecological model in many studies, there is substantial scope for using the FORCCHN2 model in fields as 18 
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diverse as forest ecology, climate change, and carbon estimations.  19 

 20 

Keywords: ecological models, forest ecosystems, carbon cycle, non-structural carbohydrates, individual 21 

tree, leaf phenology22 
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1. Introduction 23 

Forests contribute an enormous carbon flux to terrestrial ecosystems (Pan et al. 2011, Keenan and 24 

Williams 2018). Thus, accurate estimation and prediction of forest dynamics play an important role in 25 

understanding the carbon cycle in the background of global change (Beer et al. 2010, Harris et al. 2021). 26 

Over past decades, process-based ecological models have often been considered as effective tools for 27 

evaluating forest dynamics at multiple scales (Friedlingstein et al. 2020).  28 

Even though the ecological models are widely used in the prediction of forest dynamics, large 29 

uncertainties remain (Huntzinger et al. 2012, Friedlingstein et al. 2020). Some of these uncertainties can 30 

be attributed to the lack of effective phenological parameterization in the models and the neglect of 31 

autumn phenology modeling (Raczka et al. 2013), both of which need to be based on an improved 32 

understanding and coupling of mechanisms regulating forest phenology (Piao et al. 2019). Furthermore, 33 

the previous models assumed that the reserve carbon of trees acts merely as a carbon buffer pool between 34 

sink and source (Schiestl-Aalto et al. 2015). Recent studies considered the stored carbon as the non-35 

structural carbohydrates (NSC), which may have an active role on tree growth and carbon dynamics 36 

(Martínez-Vilalta et al. 2016, Piper 2020). For example, trees rely on NSC to resume growth after the 37 

non-growing season (Furze et al. 2019). The individual tree-based model, FORCCHN version 2.0 38 

(FORCCHN2), has been developed to treat these considerations by integrating two NSC pools (NSC 39 

active and slow pool) and optimizing phenological parameters (Fang et al. 2020a, Fang et al. 2021). 40 
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FORCCHN2 has improved performance for predicting forest carbon sinks compared to other models in 41 

North American forests (Fang et al. 2020b).  42 

This model provides the temporal predictions of individual tree growth processes as well as the 43 

spatially explicit estimations of carbon dynamics on biomass, photosynthesis, autotrophic respiration, and 44 

heterotrophic respiration (Fang et al. 2020b). The latest version can capture forest carbon dynamics, but 45 

current runs of FORCCHN2 have limitations that prevent a seamless integration of the model into the 46 

data-oriented software environment (e.g., Matlab, R, Python, etc.). FORCCHN2 and its previous versions 47 

are designed originally for the daily calculation of individual trees in a given plot and implemented in 48 

Fortran (Ma et al. 2017, Zhao et al. 2019, Fang et al. 2020a). Fortran ensures the calculation efficiency 49 

and shortens the model runtime, but the model code and the implementation are not designed for the end-50 

users with appropriate help and instruction files. Moreover, until now, the FORCCHN2 model has only 51 

been validated and applied in North America, and there has been no comprehensive publication describing 52 

the model itself and no hemispheric-scale validation using this model. 53 

Here, we present a DLL package aimed to provide a flexible and user-friendly interface for 54 

implementing the newest FORCCHN2 model. Meanwhile, we provide the source code and the detailed 55 

description of this model and demonstrates that FORCCHN2 model can predict a realistic and stable 56 

carbon dynamics in the hemispheric-scale forests. With the package, users can conveniently run model 57 

predictions on the individual, plot, regional, continental, and hemispheric scales according to their 58 
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computer tools. This package is compiled by Fortran 95 and thus can keep the high calculation efficiency. 59 

We also demonstrate the functionality and example of FORCCHN2 model, perform the model validation 60 

at the carbon flux sites, apply the model on a hemispheric scale (i.e. Northern Hemisphere), and provide 61 

an open-access dataset of carbon outputs across the Northern Hemisphere. 62 

 63 

2. FORCCHN2 description 64 

FORCCHN2, an individual tree-based carbon dynamic model, predicts the daily processes of NSC, 65 

photosynthesis, growth, phenophase, vegetation (autotrophic) respiration, and soil dynamics in forests 66 

(Fig. 1 and Method S1-S2). This model is driven by the daily climate data and uses the leaf area index 67 

(LAI) to initialize the vegetation information (i.e., trees’ number, DBH, height, and biomass) on a fixed 68 

area (Method S3).  69 

For an individual tree, the NSC produced by photosynthesis is considered as the substrate supply for 70 

vital activities, such as participating in the autotrophic respiration and forming the structural carbon pools 71 

(i.e., leaves, wood, and fine roots) through growth (Sala et al. 2012, Richardson et al. 2013). The NSC 72 

production is limited by external environmental factors (e.g., water, temperature, CO2, etc.), and the NSC 73 

consumption for the growth of each structural carbon pool (i.e., leaves, wood, and fine roots) is regulated 74 

by phenology factors and daily climate (Schiestl-Aalto et al. 2015, Delpierre et al. 2019). The phenophase 75 

of spring and autumn in FORCCHN2 is controlled by heat and chilling requirements, respectively (Fang 76 
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et al. 2022). The spring phenophase is decided by the effective temperature with the Thermal Time model 77 

(Eqn 39-40), and the autumn phenophase is decided by the effective temperature and photoperiod with 78 

the Cold Degree-Day model (Eqn 41-42). The model divides NSC into an active NSC pool and a slow 79 

NSC pool. The active pool provides the essential NSC consumption for daily activities; the slow pool is 80 

an NSC storage pool providing the necessary NSC for requirements when the contemporaneous active 81 

pool is insufficient, such as maintaining vegetation respiration during the non- and early-growing seasons. 82 

These NSC pools allow trees to be dead if the NSC storage drops below zero.  83 

Dynamic changes of NSC production, allocation and consumption drive change in the NSC active 84 

pool (NSCactive, kg C) at a daily time step. The NSC slow pool (NSCslow, kg C) is defined as the NSC 85 

storage pool. The changes in the daily active pool and yearly slow pool are: 86 
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𝑁𝑆𝐶௦௟௢௪ሺ𝑦ሻ ൌ  𝑁𝑆𝐶௔௖௧௜௩௘,௬ (2) 

Where t is the day of the year; y is the yth year; j is each part of the tree (i.e. leaf, fine roots, and wood); 87 

GPP is gross primary productivity (kg C); R is the maintenance respiration (kg C); RG is the growth 88 

respiration (kg C); G is the carbon demand of growth (kg C); NSCactive,y is the size of NSC active pool at 89 

the end of yth year (kg C). The NSC active pool is initialized to zero on the first day of the next year. The 90 

calculation of GPP, maintenance respiration, growth respiration, and growth processes can be found in 91 

Method S1 and S2. 92 
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For the relationship between an individual tree with its neighbors, the model uses a distance-93 

independent gap model to describe the light competition. To simplify the physiological and ecological 94 

parameters, each individual tree is assumed to belong to the plant functional types (PFTs) instead of 95 

specific tree species (Table S2). The PFT of one tree is decided by tree species when using the inventory 96 

data or it is estimated by forest types and random function when using the satellite data. The phenological 97 

parameters are parameterized by the local climate and observed phenological time in the first year (Eqn 98 

S43-S45). A part of structural carbon pools is then transferred into the soil pools by litter-fall. The main 99 

soil processes in the FORCCHN2 model are soil organic matter (SOM) decomposition, N mineralization, 100 

and water dynamics. According to the attribute, soil pools include above- and belowground metabolic and 101 

structural pools; fine and coarse woody litter pools; active, slow, and resistant SOM pools (Table S4). 102 

Except for these pools, the soil nitrogen pool also includes the inorganic nitrogen pool. 103 

After each time step, the predicted vegetation and soil statements are converted into output variables 104 

such as biomass and carbon fluxes. The carbon fluxes of plot scale include GPP (kg C m-2), net primary 105 

productivity (NPP, kg C m-2), and net ecosystem productivity (NEP, kg C m-2). The NPP of a given plot 106 

at the daily step is determined by the GPP, R (kg C m-2), RG (kg C m-2). The NEP of a given plot at the 107 

daily step is determined by the GPP, R, RG, and soil respiration (RS, kg C m-2): 108 
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Where n is the nth tree of the plot. 109 

The more detailed description, including inputs, outputs, calculation processes, and parameter sets 110 

of FORCCHN2, can be found in Table 1, Method S1-S3, and Table S2-S5. 111 

 112 

3. Example runs 113 

Here, we provide an integrated DLL package (‘FORCCHN2.dll’) to simplify the usage of the 114 

FORCCHN2 model. This file is highly flexible and it allows users to adapt model runs to their own 115 

computer language (e.g., Matlab, R, Fortran, Python, etc.). Except for the model inputs, using only one 116 

command can call the calculation of the model. We provide users with 32- and 64-bit DLL packages to 117 

choose the most suitable version.  118 

We take the Harvard Forest (a deciduous broadleaf forest in the eastern United States) and use Matlab 119 

as an example run to demonstrate the functionality of the FORCCHN2 model (the code of example also 120 

can be accessed via https://github.com/JingF1/FORCCHN2_model.git). First, we install and load the 121 

package: 122 

>>name1=('XXX');%load path of the FORCCHN2 DLL package 123 

>>name2=[name1,'FORCCHN2_64.dll']; %input 64-bit or 32-bit DLL file 124 

>>name3=[name1,'FORCCHN2.h'];%input header file 125 

>>loadlibrary(name2,name3);%load the DLL package 126 
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Then, we input the data of Harvard Forest during 1991-2012. The inputs include the year information, 127 

the initialization data (i.e., geography, vegetation, and soil data), and the driven data (i.e., climate data). 128 

The more detailed information and format of these input data can be found in the example code 129 

(‘FORCCHN2_run_example.m’). 130 

After inputting all data, we predict the dynamics of this forest for a period of 22 years. We can choose 131 

four output results of the FORCCHN2: 132 

>>[fj,yxc,dayout,yearout]=calllib('FORCCHN2_64','forcchn2',fj,yxc,dayout,yearout,ntrees,ny0,ny,nday133 

s,lat,lon,ele,tmax,tmin,tmean,pho,prec,ra,rh,wind,sfc,pwp,vw,sc0,sn0,silt,sand,class1,evergr0,deci0,lai0,134 

co2);% run model with DLL file 135 

>>unloadlibrary FORCCHN2; %unload the DLL package 136 

Where the four outputs include: ‘fj’ is the phenology dates, which included the start time of leaf 137 

growth (SOS) and the end time of leaf growth (EOS); ‘yxc’ is the allocation parameter of each soil pool, 138 

which can be used as input instead of the initial soil allocation parameters; ‘dayout’ is the daily carbon 139 

dynamics, which included above- and belowground biomass, gross primary productivity (GPP), above- 140 

and belowground respiration, soil heterotrophic respiration, litter-fall biomass, and soil carbon; ‘yearout’ 141 

is the yearly carbon dynamics. 142 

 143 

4. External validation 144 
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The comparison between model simulations and external observations is considered as the rigorous model 145 

test (Houlahan et al. 2017). Among the various observation methods, the eddy-covariance (EC) technique 146 

can provide high-frequency and accurate measurements of relevant data (Keenan and Williams 2018). 147 

The FLUXNET2015 dataset (Pastorello et al. 2020, https://fluxnet.org/) from the EC tower is an ideal 148 

dataset to validate the FORCCHN2 model in predicting carbon flux dynamics. This dataset is developed 149 

by using the EC (Eddy Correlation) technique to measure the net ecosystem CO2 exchange (NEE, which 150 

equaled to the negative of NEP) directly in the footprint of the EC tower. The Variable Ustar Threshold 151 

(VUT) Mean values of FLUXNET2015 are used in this work. We extracted the flux data from the mean 152 

value of the nighttime and the daytime method. The nighttime method uses nighttime NEE data to 153 

parameterize a respiration-temperature model that is then applied to the whole dataset to estimate 154 

Ecosystem Respiration (ER). The vegetation GPP is then calculated as the difference between ER and 155 

NEE (Lasslop et al. 2010). The daytime method uses daytime and nighttime NEE data to parameterize a 156 

model with one component based on a light-response curve and vapor pressure deficit for GPP, and a 157 

second component using a respiration-temperature relationship similar to the nighttime method 158 

(Pastorello et al. 2020). Due to the different phenological phasing in the Northern and Southern 159 

Hemisphere, our predictions focus on the Northern Hemisphere. We chose the 78 active forest sites with 160 

continuous daily observations in the Northern Hemisphere (i.e., a total of 232664 observations). These 161 

sites cover the most forest types, including the evergreen broadleaf forest (EBF), evergreen needleleaf 162 
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forest (ENF), deciduous broadleaf forest (DBF), and mixed forest (MF). The distribution and information 163 

of all sites are shown in Fig. S1 and Table S1. We also extract the climate data from the FLUXNET2015 164 

dataset to drive the model. Soil data are taken from the Harmonized World Soil Database (HWSD) V1.2 165 

(http://www.fao.org/soils-porta l/soil-survey/soil-mapsand-datab ases/). 166 

We predict the daily carbon flux in the 78 forest sites and then validate the predictions with the 167 

observations. As the overall performance, Fig. 2 shows the direct daily comparison between predictions 168 

and observations. Overall, the model had the best performance in capturing GPP dynamics, followed by 169 

ER and NEP (i.e. the predicted GPP has the highest R). In the FORCCHN2 model, we use the phenology 170 

model and the optimized phenological parameters to predict the leaf growth, which could improve the 171 

predicted performance of GPP (Fang et al. 2020b). We did the statistics for the results in all sites. The 172 

validation statistics include the correlation coefficient (R), model efficiency (E, calculated by Eqn S60), 173 

root mean square error (RMSE), mean absolute error (MAE), and bias (Bias, calculated by Eqn S61). The 174 

calculation of each statistic can be found in Methods S4. Each site had one group of statistics. Fig. 3 175 

shows that the FORCCHN2 model could reproduce the daily dynamics of the carbon flux in all sites, 176 

particularly for predicting daily GPP (median of all sites: R= 0.86, E=0.62, RMSE=2.29 g C m-2 d-1, 177 

MAE=1.61 g C m-2 d-1). The predicted ER performs lower than GPP (i.e. the median of R and E from the 178 

predicted ER is less than GPP) but shows a high correlation with the observed ER (median: R=0.83, 179 

E=0.25, RMSE=1.46 g C m-2 d-1, MAE=1.04 g C m-2 d-1). NEP results had the lowest performance in all 180 
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flux variables (median: R=0.61, E=-0.16, RMSE=1.91 g C m-2 d-1, MAE=1.43 g C m-2 d-1). The highest 181 

uncertainty in predicting NEP maybe because of the compounding effect of GPP and ER errors (Balzarolo 182 

et al. 2014). In terms of bias, FORCCHN2 overestimates the GPP and ER (median: Bias=0.49 and 0.56 183 

g C m-2 d-1, respectively) but slightly underestimates the NEP (median: Bias=−0.14 g C m-2 d-1). For the 184 

different forest types, the predictions present well in DBF and MF (R=0.84 and 0.57, E=0.53 and 0.64, 185 

respectively), whereas the lowest performance is found in EBF (R=0.61, E=0.31). These results are 186 

consistent with the previous studies: EBF reveals subtle changes in the leaf phenology and thus increases 187 

the difficulty in modeling photosynthesis (i.e., GPP) (Raczka et al. 2013, Yuan et al. 2014, Piao et al. 188 

2019). 189 

 190 

5. Applications in the Northern Hemisphere 191 

As a case application on large scale, we predict the carbon dynamics in the Northern Hemisphere forests 192 

during 1980-2016 (spatial resolution: 0.5×0.5 degree). For the Hemisphere, we use the Simple Biosphere 193 

(SiB) model of the International Satellite Land Surface Climatology Project (ISLSCP II) to represent 194 

forest types (Fig. S1, https://daac.ornl.gov/ISLSCP_II) (Friedl et al. 2010). The LAI data are extracted 195 

from the Global Land Surface Satellite (GLASS) Product (http://www.glass.umd.edu/Download.html). 196 

The climate data are from the daily analysis of ERA-Interim in the European Centre for Medium-range 197 

Weather Forecasts (ECMWF) dataset (Hersbach et al. 2020). Soil data are taken from the HWSD V1.2. 198 
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Fig. 4 reported the spatial distribution of 37-year averaged GPP, above- and belowground autotrophic 199 

respiration, soil heterotrophic respiration, net primary productivity (NPP), and net ecosystem productivity 200 

(NEP) for forest area. All results show a similar spatial pattern with the largest fluxes occurring around 201 

the equator, such as the northern part of the Amazon and Central African tropical rainforests; secondly, 202 

the monsoonal subtropical regions such as South Asia and eastern North America show the large fluxes; 203 

the northern forests near the Arctic Circle had the smallest fluxes. Overall, our predictions demonstrate 204 

that the forests in Northern Hemisphere had a huge carbon sink potential by the vegetation (i.e., 205 

NPP=16.76 Pg C year-1 or 61.45 Gt CO2 year-1) and the total ecosystem (NEP=3.19 Pg C year-1 or 11.70 206 

Gt CO2 year-1) during 1980-2016, which is within the range of the newest estimation of forest carbon 207 

sinks (Harris et al. 2021). As the comparisons, we use the aboveground biomass (AGB) from the GLASS 208 

product (a satellite-derived product, http://www.glass.umd.edu/Download.html) and the carbon fluxes 209 

from the FluxCom dataset (https://www.bgc-jena.mpg.de/geodb/projects/Data.php) to test our predictions 210 

(Fig. S2 and Fig. S3). Both predictions and GLASS observations present the tropical forests own the 211 

highest AGB and the boreal forests had the smallest AGB (Fig. S2). In terms of carbon fluxes (i.e. GPP, 212 

ER, and NEP), the resulting spatial pattern is consistent with the FluxCom dataset (Fig. S3). However, 213 

the GPP and ER derived from FORCCHN2 for some boreal forests are approximately 0.5 kg C m-2 year-214 

1 smaller and for parts of eastern North America are approximately 0.5 kg C m-2 year-1 larger than those 215 

of FluxCom GPP and ER, respectively. Compared to the FluxCom NEP, the model overestimates NEP in 216 
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some tropical forests and underestimates NEP in some boreal forests. 217 

The predicted carbon results including the variables of ‘dayout’ and ‘yearout’ in this case (i.e., 218 

Northern Hemisphere forests) are deposited at an open-access repository (Fang 2022: 219 

https://doi.org/10.6084/m9.figshare.18318722.v1). 220 

 221 

6. Conclusions 222 

We develop the FORCCHN2 model and design the corresponding DLL package with the intention to 223 

simplify the input and processing of the model and make it more accessible to ecologists interested in the 224 

forest ecosystem, climate change, carbon cycle, and modeling. This package provides convenient access 225 

and allows high computational efficiency with the Fortran-language-based model predicting the daily 226 

dynamics of individual trees. With this new package, we have demonstrated the workflow, functions, and 227 

applications of the FORCCHN2 model.  228 

In addition, the FORCCHN2 model is tested at 78 flux sites, and then it is applied in predicting the 229 

carbon dynamics in the whole Northern Hemisphere forests (1980-2016). Our assessment indicated that 230 

FORCCHN2 is able to predict the satisfactory carbon dynamics. While we provided publicly available 231 

data in the Northern Hemisphere with 0.5 degrees, our hope is that end-users can offer a wide range of 232 

applications and analyses of the FORCCHN2 model, such as providing the new dataset with finer 233 

resolution and estimating future changes of forest carbon fluxes. We are also open to further suggestions 234 
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on enhanced functions that ecologists may find helpful in the subsequent model versions. 235 
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Table 1. Description of functions and variables in the FORCCHN2 model. A detailed explanation of 

functions and variables can be found in the FORCCHN2 DLL package documentation. SOS: the start 

time of leaf growth; EOS: the end time of leaf growth; DOY: day of the year; GPP: gross primary 

productivity. 

Model functions and variables Description 

Time step Daily and yearly 

Initialization data (inputs) 

Vegetation: maximum LAI (m2 m-2), forest types, SOS 

dates (DOY), EOS dates (DOY) 

Soil: field capacity (cm), permanent wilting point (cm), 

soil volume weight (kg m-3), total organic carbon (kg C 

m-2), total nitrogen (kg C m-2), silt percent (%), sand 

percent (%) 

Geography: latitude (o), longitude (o), elevation (m) 

Driven data (inputs) 

Daily climate: Mean temperature (oC), maximum 

temperature (oC), minimum temperature (oC), air pressure 

(hPa), wind (m s-1), relative humidity (%), precipitation 

(mm), shortwave radiation (W m-2), CO2 concentration 

(ppm) 
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Outputs 

Daily: aboveground vegetation biomass (kg C m-2), 

belowground vegetation biomass (kg C m-2), GPP (kg C 

m-2), aboveground autotrophic respiration (kg C m-2), 

belowground autotrophic respiration (kg C m-2), soil 

heterotrophic respiration (kg C m-2), litter-fall (kg C m-2), 

soil total organic carbon (kg C m-2) 

Yearly: same as the daily outputs, with the SOS dates 

(DOY) and EOS dates (DOY) 
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Fig. 1. Schematic representation of the FORCCHN2 model. LAI: leaf area index; NSC: non-structural 
carbohydrates; C: carbon; N: nitrogen.
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Fig.2. Heat plots showing the relationship between predictions and observations of daily gross primary 
productivity (GPP), ecosystem respiration (ER), and net ecosystem productivity (NEP) of the studied EC 
sites. N: the total days of all sites; R: correlation coefficient; RMSE: root mean square error (unit: g C m-

2 day-1). EBF: evergreen broadleaf forest; ENF: evergreen needleleaf forest; DBF: deciduous broadleaf 
forest; MF: mixed forest. Diagonal lines are 1:1 lines, indicating perfect agreement between predicted 
and observed fluxes. Black lines represent the linear regression. Colors indicate the percentage of pixels 
in each bin area (yellow is the densest). 
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Fig. 3. The statistical results of daily gross primary productivity (GPP, green), ecosystem respiration (ER, 
blue), and net ecosystem productivity (NEP, tan) observations versus predictions in the studied EC sites. 
R: correlation coefficient; E: model efficiency; RMSE: root mean square error; MAE: mean absolute error; 
Bias: bias. EBF: evergreen broadleaf forest; ENF: evergreen needleleaf forest; DBF: deciduous broadleaf 
forest; MF: mixed forest. 
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Fig. 4. The spatial distribution of mean GPP (Gross Primary Productivity), above- and belowground 
autotrophic respiration, soil heterotrophic respiration, NPP (Net Primary Productivity), and NEP (Net 
Ecosystem Productivity) predicted by the FORCCHN2 model for forest ecosystems of the Northern 
Hemisphere during 1980–2016. The spatial resolution is 0.5o×0.5o. 
 


