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Abstract. Comparing temporal and spatial vegetation changes between reconstructions or between reconstructions and model 

simulations requires carefully selecting an appropriate evaluation metric. A common way of comparing reconstructed and 

simulated vegetation changes involves measuring the agreement between pollen- or model-derived unary vegetation estimates, 

such as the biome or plant functional type (PFT) with the highest affinity scores. While this approach based on summarising 

the vegetation signal into unary vegetation estimates performs well in general, it overlooks the details of the underlying 

vegetation structure. However, this underlying data structure can influence conclusions sincewhen minor variations in pollen 

percentages modifychange which biome or PFT has the highest affinity score (i.e. modify the unary vegetation estimate).. To 

overcome this limitation, we propose using the Earth Movers’ Distance (EMD) to quantify the mismatch between vegetation 

distributions such as biome or PFT affinity scores. The available in various formats. Using the EMD circumvents the issue of 

summarising the data into a unary biome or PFT estimatesestimate by considering the entire range of biome or PFT affinity 

scores to calculate a distance between the compared entities. In addition, each type of mismatch can be given a specific weight 

to account for case-specific ecological distances or, said differently, to account for the fact that the ecological distance 

(reconstructing a temperate forest instead of a boreal forest is ecologically more coherent than reconstructing a temperate forest 

instead of a desert. We also introduce). To ease using the EMD, we developed two EMD-based statistical tests that determine 

1) if the similarity of two samples is significantly better than a random association given a particular context and 2) if the 
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pairing between two datasets is better than might be expected by chance. To illustrate the potential and the advantages of the 

EMD and the tests in vegetation comparison studies, we reproducepresent and discuss different case studies based on 

previously published simulated and reconstructed biome changes for Europe and capitalise on the advantages of the EMD to 

refine the interpretations of past vegetation changes by highlighting that flickering unary estimates, which gives an impression 

of high vegetation instability, can correspond to gradual vegetation changes with low EMD values between contiguous samples 

(case study 1). We also reproduce data-model comparisons for five specific time slices to identify those that are statistically 

more robust than a random agreement while accounting for the underlying vegetation structure of each pollen sample (case 

study 2).. The EMD and the statistical tests are included in the paleotools R package 

(https://github.com/mchevalier2/paleotools).  

1 Introduction 

Fossil pollen records are commonly used to evaluate Earth System Model (ESM) palaeosimulations in the climate space (i.e. 

pollen data are converted into climate parameters using transfer functions, Birks et al., 2010; Chevalier et al., 2020) and the 

vegetation space (i.e. vegetation features are simulated using vegetation models, e.g. Prentice et al. (1998), Tian et al. (2018), 

Wohlfahrt et al. (2008)). Both evaluations are necessary to explore the strengths and weaknesses of fossil pollen data, climate 

and vegetation models, and the modern observations that link vegetation with climate. To compare data and models in the 

vegetation space, the pollen data are commonly translated into plant functional types (PFTs) – which are defined by the plant 

species’ life forms, leaf forms, phenologies, and bioclimatic tolerances and reflect their adaptations to environments (Prentice 

et al., 1996, 2000; Prentice and Webb III, 1998) – or biomes (macro-ecosystems) – which correspond to broad vegetation 

classification units characteristic of regional- to global-scale features (e.g. Cao et al. (2019), Dallmeyer et al. (2017), Sato et 

al. (2021)). This transformation is performed by calculating an affinity score that measures the similarity of the pollen sample 

with the studied PFTs or biomes for each pollen sample based on a set of predefined rules.  

 

Transforming raw pollen percentages into biome or PFT affinity score distributions has several advantages, as (i) it reduces 

the dimensionality of the vegetation space (i.e. reducing the few hundred pollen taxa usually observed across a continent to 

about 10-30 biomes or PFTs), (ii) it summarises the main traits characterising the studied vegetation compositions (i.e. enabling 

a convergence of the traits and a spatial homogenisation of the data), and (iii) it improves the comparability of data with 

different origins (i.e. pollen data, modern observations, and simulations). The PFT or biome with the highest affinity score is 

ultimately labelled the most representative (Prentice et al., 1996, 2000). The transformed pollen data can thus be directly 

compared with model simulations of the same period (e.g. Cao et al., 2019; Prentice et al., 1998) or other pollen data of 

different periods (e.g. Allen et al., 2020) and the “agreeing” and “disagreeing” pairings (i.e. binary assessments of the compared 

biome or PFT estimates with the highest affinity score) are counted to determine the global similarity of the compared datasets. 
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Fossil pollen records are commonly used to evaluate Earth System Model (ESM) palaeosimulations in the climate space (i.e. 

pollen data are converted into climate parameters using transfer functions, Birks et al., 2010; Chevalier et al., 2020) and the 

vegetation space (i.e. vegetation features are simulated using vegetation models, e.g. Prentice et al. (1998), Tian et al. (2018), 

Wohlfahrt et al. (2008)). Both evaluations are necessary to explore the strengths and weaknesses of fossil pollen data, climate 

and vegetation models, and the modern observations that link vegetation with climate. To compare data and models in the 

vegetation space, the pollen data are commonly translated into plant functional types (PFTs) – which are defined by the plant 

species’ life forms, leaf forms, phenologies, and bioclimatic tolerances and reflect their adaptations to environments (Prentice 

et al., 1996, 2000; Prentice and Webb III, 1998) – or biomes (macro-ecosystems) – which correspond to broader vegetation 

classification units characteristic of regional- to global-scale features (e.g. Cao et al. (2019), Dallmeyer et al. (2017), Sato et 

al. (2021)). This transformation is performed by calculating an affinity score that measures the similarity of the pollen sample 

with the studied PFTs or biomes for each pollen sample based on a set of predefined rules.  

 

Transforming raw pollen percentages into biome or PFT affinity score distributions has several advantages, as (i) it reduces 

the dimensionality of the vegetation space (i.e. reducing the few hundred pollen taxa usually observed across a continent to 

about 10-30 biomes or PFTs), (ii) it summarises the main traits characterising the studied vegetation compositions (i.e. enabling 

a convergence of the traits and a spatial homogenisation of the data), and (iii) it improves the comparability of data with 

different origins (i.e. pollen data, modern observations, and simulations). The PFT or biome with the highest affinity score is 

ultimately labelled as the most representative (Prentice et al., 1996, 2000). The transformed pollen data can thus be directly 

compared with model simulations, and the “agreeing” and “disagreeing” pairings (i.e. binary assessments of the compared 

biome or PFT estimates with the highest affinity score) are counted and summarised in contingency tables to determine the 

global accuracy between the compared datasets (e.g. Binney et al., 2017; Cao et al., 2019; Prentice et al., 1998; Allen et al., 

2020). 

 

However, simplifying affinity scores to a unary biome or PFT estimate can overly homogenise the data. When the highest 

affinity score is much larger than the second-highest score, reducing the affinity score distributions to one PFT or biome is a 

reasonable simplification. In contrast, when the difference between the highest and second-highest affinity score is minor, 

simplifying multidimensional data to one unary estimate leads to ignoring a significant part of the information conveyed by 

the affinity score distributions as a representative fraction of the fine-scale details of the vegetation structure gets lost in such 

situations. In particular, thisThis suggests that many distinct affinity score distributions can lead to the same PFT or biome 

with the highest score. In addition, this simplification disregards the natural uncertainties of biome estimates from pollen 

samples that arise from, for instance, varying pollen productivity of taxa, limited taxonomic resolution or long-distance pollen 

transport. 
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This issue is further illustrated by the two samples shown in Fig. 1A based on the biomised data of Cao et al. (2019)This issue 

can be further illustrated with the two samples shown in Fig. 1A based on the biomised data of Cao et al. (2019). The ‘Evergreen 

taiga’ biome has the highest score in both samples, rendering them indistinguishable when reduced to their biome with the 

highest affinity score. However, inspecting their affinity score distributions informs us about significant differences, where the 

top sample most likely represents a well-forested environment, while the bottom sample is closer to a mosaic of forest patches 

connected by open landscapes (characterised by more abundant Tundra and Grassland pollen taxa). In contrast, the two biome 

affinity score distributions in Fig. 1B have distinct biomes with the highest affinity scores. They are thus classified into different 

vegetation groups (one is classified as Evergreen Taiga and the other as Cool/Cold forest), even if their affinity score 

distributions only differ by minute changes between the different forest biomes. In such cases, the two distributions likely 

represent (very) similar environments despite having their highest affinity with different biomes. 

 

 
Figure 1. Illustration of the limitation of using unary biome estimates to compare samples. (A) In the two samples, the biome with 
the highest affinity score is the same (Evergreen taiga), while the affinity score distributions have notable differences. (B) The biomes 
with the highest affinity score are different (Evergreen taiga and Cool/Cold forest), but their affinity score distributions only differ 
by minor differences. The data are reproduced from the study of Cao et al. (2019). 
 

The approach of summarising an array of affinity scores by its PFT or biome with the highest score is thus insufficiently 

sensitive, asand it can lead to a loss of accuracy when comparing datasets (contrasting samples can be assigned to the same 

category, while similar samples can be assigned to different categories; Fig. 1). Employing continuous metrics that consider 

the entire affinity score distributions (as opposed to comparisonsbinary assessments of their PFT or biome with the highest 

score) can thus refine the quality of data-data and data-model comparisons. Many distances commonly used to compare pollen 

data – such as the Manhattan/Euclidean distance (i.e. calculating the absolute/squared differences between the scores of the 

same biomes) or the squared-chord distance (e.g. Overpeck et al., 1985) – could be used to measure the dissimilarity of two 
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affinity score distributions. Pollen-based biome scores have also been compared to biome scores estimated from the net primary 

productivity per PFT produced by LPJ-GUESS using canonical correlation analyses (Allen et al., 2010). In all casesBiome 

scores have also been directly compared to net primary productivity produced by LPJ-GUESS using canonical correlation 

analyses (Allen et al., 2010). However, these metrics give the same importance to all the differences without accounting for 

the fact that all vegetation changes are not ecologically equivalent. For example, replacing a cool/cold forest with a temperate 

forest represents a more minor ecological/climatic shift than replacing a forest with a desert, even if the absolute differences 

in biome scores are the same (e.g. Allen et al., 2020)(e.g. Allen et al., 2020). To account for these two limitations, we propose 

the Earth Movers’ Distance (EMD) metric as a new way to compare pollen-derived affinity score distributions with one another 

and with vegetation simulations. The advantage of this distance metric compared to standard binary assessments based on 

unary estimates is dual: 1) the EMD is a continuous metric such that vegetation differences can be quantified in finer detail, 

and 2) the inclusion of ecologically-informed weights adds a level of refinement that takes into account different types of 

mismatches between samples. 

 

This paper first introduces the EMD and describes the properties that make it well-suited to capitalise on the information 

contained in affinity score distributions. Then, using a series of illustrative case studies based on the already-published 

biomised data and simulations of Cao et al. (2019), we show how the EMD can perform ecologically-informed comparisons 

in the vegetation space. While more and more quantitative reconstructions of PFT distributions at regional scales have been 

published in recent years (e.g. the REVEALS-based studies by Githumbi et al. (2022) or Marquer et al. (2017)(e.g. the 

REVEALS-based studies by Githumbi et al. (2022) or Marquer et al. (2017)), we preferred using biomised data because biomes 

are currently the most-widespread format of publicly available continental-to-global scale syntheses of past vegetation changes  

(e.g. Binney et al. (2017)Binney et al. (2017) and Cao et al. (2019)Cao et al. (2019) for Eurasia during the last 40kyr, Prentice 

et al. (2000)Prentice et al. (2000) for the Northern Hemisphere and Africa, and Marchant et al. (2009)and Marchant et al. 

(2009) in South America studying the mid-Holocene and Last Glacial Maximum, or Dowsett et al. (2016)Dowsett et al. (2016) 

for the mid-Pliocene). They also have a lower dimensionality than PFT data and provide, as such, a simpler context to explore 

the advantages of the EMD. Despite our focus on biomised data, it is important to stress that other categorical vegetation 

formats, such as pollen-based quantitative reconstructions as computed by REVEALS (Sugita, 2007)(Sugita, 2007) and Earth 

System Models, PFT affinity scores (e.g. Huntley et al., 2003; Allen et al., 2010; Henrot et al., 2017)(e.g. Huntley et al., 2003; 

Allen et al., 2010; Henrot et al., 2017), or even the comparison of pollen percentages at the taxa level could have been used 

for our case studies. Finally, we discuss different research directions and fields where the EMD could be helpful. 
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2 The Earth Movers’ Distance (EMD) 

2.1 Concept and formalisation 

The EMD is a distance metric measuring the minimal amount of work necessary to transform one entity into another. The 

general concept of the EMD algorithm can be most simply illustrated with the following everyday-life transportation problem: 

“What is the most cost-efficient way of transporting a fixed merchandise stock from W warehouses to R retailing shops?” 

(Levina and Bickel, 2001; Rubner et al., 2000). The problem can be reframed as: “How can the distribution of merchandise in 

the warehouses be transformed into the desired distribution of merchandise in the shops?”. To solve this problem, we call di,j 

the distance between warehouse Wi and retailing shop Rj, 𝜔! the stock of merchandise at Wi and 𝜌" the stock of merchandise 

needed at Rj. The EMD algorithm searches for the optimal combination of flows fi,j of merchandise (i.e. the amounts) to be 

moved between the warehouses and shops in a way that minimises the total cost C (i.e. the sum of how much is moved between 

locations multiplied by their distance). 

𝐶 = 𝑚𝑖𝑛
!,"

())𝑓!," . 𝑑!,"

$

"%&

'

!%&

-	

( 1 ) 
with the constraints: 

1. 𝑓!," ≥ 0, 1 ≤ 𝑖 ≤ 𝑊, 1 ≤ 𝑗 ≤ 𝑅, i.e. the flow of merchandise between locations Wi and Rj is positive or null, which 

implies that the merchandise is moved from the warehouses to the shops, and not the opposite. 

2. ∑ 𝑓!,"'
"%& ≤ 𝜔! , i.e. the total amount of merchandise leaving warehouse Wi to all the shops does not exceed its stock. 

3. ∑ 𝑓!,"$
!%& ≤ 𝜌", i.e. the total amount of merchandise arriving at retailing shop Rj from all the warehouses does not 

exceed its need. 

4. ∑ ∑ 𝑓!,"'
"%&

$
!%& = ∑ 𝜔!$

!%& = ∑ 𝜌"'
"%& , i.e. the total amount of merchandise transported between warehouses and shops 

is equal to the initial amount of merchandise in the warehouses and the final amount of merchandise in the retail 

shops. The overall amount of merchandise is conserved. 

Once the optimal flows are estimated, the EMD is calculated as follows (the minimal cost normalised by the sum of all flows): 

𝐸𝑀𝐷 =
∑ ∑ 𝑓!," . 𝑑!,"$

"%&
'
!%&

∑ ∑ 𝑓!,"$
"%&
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( 2 ) 
Based on this formal definition, the transportation problem can be reframed in a broader context to become equivalent to 

finding the ‘shortest’ way of transforming one probability mass/density distribution into another (Levina and Bickel, 2001). 

With its flexibility, the EMD has been employed in a wide range of contexts, including, for instance, image retrieval algorithms 

(Rubner et al., 2000), the comparison of inorganic compositions (Hargreaves et al., 2020) or biomarker expression in cells 

(Orlova et al., 2016). To our knowledge, it has never been used to compare palaeoecological datasets. 
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2.2 The EMD applied to biomised data 

2.2.1 Terminology 

In this study, we propose to use the EMD to compare biome affinity score distributions from vegetation simulations and 

reconstructions. The transportation of merchandise becomes a transport of affinity scores between samples (i.e. a 

transformation of the vegetation composition of one sample into another). The concept of physical distance between entities 

(e.g. warehouses and shops) can be reframed as the ecological ‘cost’ of replacing a type of biome with another one. To ensure 

compatibility with constraint 4 of the previous section (the amount of ‘merchandise’ or ‘affinity scores’ is the same between 

the two entities compared), the affinity scores are normalised to sum to 1. This step is essential because the most commonly 

used biomisation techniques do not ensure biome scores sum to a common target.  

2.2.2 Definition of the weighting scheme (ecological distance) 

We also use two different weighting schemes (i.e. the cost of replacing a biome with another one, the “dij” from Eq. 1 ) to 

illustrate how ecological knowledge can be introduced in such studies (Fig. 2). We use a “uniform” scheme where all the 

biome changes are given the same weight (EMDuni) and an “ecologically informed” scheme (EMDw), where differences are 

weighted based on vegetation structural differences (forest vs open landscape vs desert) and climate zone preferences (boreal 

vs temperate vs warm-temperate / subtropical). This dual definition of biome distance follows the work of Allen et al. 

(2020)Allen et al. (2020), in which each biome is assigned to one vegetation structure and one climate zone. In this study, we 

assume that theThe basal distance between two biomes with the same vegetation structure and climate zone is set to 0.5. Then, 

each difference in structure or climate zone adds an extra cost of 1 (e.g. moving affinity scores from a temperate forest to a 

warm desert costsmakes a cost of 2.5; moving affinity scores from temperate forest to boreal forest costsmakes a cost of 1.5). 

This simple weighting scheme illustrates how an ecologically-informed strategy can refine interpretations compared to the 

uniform scheme. Different research questions or settings could lead to using schemes with more detailed structural and climatic 

zone categories (e.g. Allen et al., 2020) or alternative weighting schemes based on, for instance, trait differences (e.g. Sato et 

al., 2021)(e.g. Sato et al., 2021). 

2.2.3 Rescaling the EMD to values between 0 and 1 

The EMD calculated with normalised biome scores and a weighting scheme is a dissimilarity metric that varies between 0 (the 

two distributions are identical, and nothing needs to be moved) and the highest cost of that weighting scheme (here defined as 

𝑚𝑎𝑥
!,"

	𝑑!,"𝑚𝑎𝑥	!,"
𝑑!," ). The highest distance can be reached when all the scores are transferred between the most different macro-

environments and climate categories. In our ecologically-informed weighting scheme, this would correspond, for instance, to 

the transformation of a pure boreal forest composition into a warm temperate desert, or vice-versa, and would be given a 

weight of 4.5 (Fig. 4).. The EMD can be normalised by the highest possible cost for a given weighting scheme: 
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Unlike other metrics for which expert-elicited quality thresholds have been proposed (e.g. kappa statistics, Altman (1990) or 

Landis and Koch (1977)), no expert-based quality assessment exists for the EMDn.Altman (1990) or Landis and Koch (1977)), 

no expert-based quality assessment exists for the EMDn. In fact, defining such a quality scale could be counter-productive, as 

many study-dependent factors influence the range of values the EMDn will take in each study. These include: 1) the number 

of biomes to compare (more biomes usually lead to higher distances), 2) the definition of the weighting schemes (the EMDn 

is inversely proportional to the highest cost), or 3) the data structure of the entities being compared (compare the EMDn ranges 

in the data-data (same structure) and data-model (unary data compared to multidimensional data) comparison applications 

below for concrete examples). Comparing EMD values between studies should, therefore, always be done carefully. 

 

 
Figure 2. Calculation of the EMDn for three different scenarios in which 0.20 units of normalised biome affinity scores are 
transported: (A) all changes are within the same macro-environments, (B) changes are both within and between macro-
environments, and (C) all changes are between macro-environments. The use of ecologically-informed costs (here only two costs: 1 
or 2) leads to three distinct values for EMDn,w (0.1, 0.15, 0.2), while the uniform approach considers that all three changes are 
equivalent (EMDn,uni = 0.2). 

2.3 Implementation of the EMD in the ‘paleotools’ R package 

To facilitate access to the EMD, we developed an R package called paleotools using R (R Core Team, 2022) and the devtools 

package (Wickham et al., 2020).(R Core Team, 2022) and the devtools package (Wickham et al., 2020). To calculate the EMD, 
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paleotools includes a wrapper function of the emd() function from the emdist R package (Urbanek and Rubner, 2022).(Urbanek 

and Rubner, 2022). In addition, we also developed two statistical tests, signif_threshold() and signif_struct(), to overcome the 

absence of ‘quality’ thresholds. The package is accessible from https://github.com/mchevalier2/paleotools. 

 

Test 1: Considering the parameters of a study, can two samples be considered similar? This test is inspired by the Monte 

Carlo simulation designed by Sawada et al. (2004) to identify analogue samples from a large and heterogeneous collection of 

modern pollen samples.Sawada et al. (2004) to identify analogue samples from a large and heterogeneous collection of pollen 

samples. The underlying idea is to determine a distance threshold that is unlikely to have occurred by chance (Simpson, 

2007).(Simpson, 2007). To do so, a large number of pairs of biome score distributions are randomly drawn from a data 

collection, and their EMD is calculated. This results in a distribution of EMD values derived from the randomised comparison 

of biome score distributions. The EMD value corresponding to a certain percentile of that distribution (e.g. the 5th percentile) 

can be used as an empirical estimate of a similarity threshold. EMD values below/above that threshold correspond to 

comparisons of similar/different samples. Importantly, this test cannot determine if two samples represent the same biome. 

Because biomes are, by definition, broad vegetation units, two samples can be statistically different and be characteristic of 

the same biome. In such cases, the statistical difference suggests they likely occupy a different position in that biome's 

vegetation and/or climate spaces. For instance, vegetation samples taken from the cold and warm ends of the temperature range 

experienced by the temperate forest biome are likely to be statistically different while still being representative of temperate 

forests. This test can only be used if hundreds of affinity score distributions representative of various environments are 

available to estimate the randomisation distribution. In addition, this type of threshold is only valid for a given study area 

and/or research question. The test is called signif_threshold() in paleotools, and its use and interpretation are illustrated in 

Section 4. 

 

Test 2: Considering the parameters of a study, are the data and the simulation (or modern observations) displaying 

similar spatial patterns? This second test aims to determine if the mean EMD value obtained when comparing a simulated 

(or observed) vegetation map with a large collection of pollen-basedbiome affinity score distributions is smaller than expected 

when comparing two datasets with different spatial patterns. This test is performed in two steps. First, the data are shuffled 

(each biome affinity score distribution is randomly assigned to one of the modelled values corresponding to a sample location), 

and the resulting mean EMD across all locations (i.e. spatial mean) is calculated. This is repeated several times to estimate the 

distribution of spatial mean EMD values under the assumption that the spatial structure in the data differs from the spatial 

structure of the simulation (null hypothesis). The 5th percentile of that distribution (any other significance threshold could be 

used depending on the research question) represents the threshold to reject the null hypothesis (alternative hypothesis: the data 

and the simulation have similar spatial structures). Then, the uncertainty of the observed EMD value iscan be estimated by 

measuring the intra-sample variability. To do so, a second EMD distribution is estimated by bootstrapping, i.e. randomly 

sampling the same number of biome samples with replacement (some samples are selected many times and others excluded) 
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and calculating the EMD of this bootstrapped dataset with the observed/simulated vegetation map. To determine if the data 

and the simulation display the same spatial pattern, the 95th percentile of the bootstrapped distribution is compared with the 5th 

percentile of the distribution of the null hypothesis (one-sided test). If the former is larger than the latter, the null hypothesis 

is rejected, and the spatial structure of the simulated and reconstructed biomes is considered similar. Efron and Tibshirani 

(1994)Efron and Tibshirani (1994) recommend performing at least 200 repetitions to estimate the bootstrapped and null 

hypothesis distributions. This test is called signif_struct() in paleotools, and its use and interpretation are illustrated in Section 

5. 

3 Data 

3.1 Pollen and biome reconstructions 

To illustrate the use and strength of the EMD for palaeoecological studies, we use the pollen-based biome reconstructions 

presented by Cao et al. (2019). The dataset covers the entire Northern Hemisphere extratropics. Here, we restrict it to the Euro-

Mediterranean Basin, where the quality and quantity of pollen records are ideal for testing the EMD in various conditions (Fig. 

3). The pollen data were extracted from the European Pollen Database in June 2017, and a total of 1347 records fall within our 

study area. The biomisation strategy employed by Cao et al. (2019) follows the biomisation tables presented by Binney et al. 

(2009) and Bigelow et al. (2003), and the algorithm of Prentice et al. (1996). 13 distinct biomes can be theoretically 

reconstructed across the study area (Table 1). 

 
Macro-

environments 
Climatic zone Mega-biome (Dallmeyer 

et al., 2017) 
Biomes from BIOME4 Euro-Mediterranean biomes from 

pollen (Cao et al., 2019) 
Forests Temperate Temperate forest / 

Woodland (TEDE) 
Temperate deciduous forest Temperate deciduous forest 

Temperate conifer forest 
Temperate sclerophyll woodland 

Warm temperate 
/ Subtropical 

Warm forest (WARF) Warm mixed forest  

Boreal Cold/Cool forest (COCO) Cool mixed forest Cool evergreen needle-leaved forest 
Cool conifer forest Cool-temperate evergreen needle-leaved 

forest 
Cold mixed forests Cool mixed forest 

Boreal Evergreen Taiga (TAIG) Evergreen taiga / montane forest Cold evergreen needle-leaved forest 
Boreal Deciduous Taiga / Boreal 

woodland (BORW) 
Deciduous taiga / Montane forest Cold deciduous forest 

Open conifer woodland 
Boreal parkland 

Herbaceous / 
 Open 

landscapes 

Temperate Shrubland (SHRU) Temperate xerophytic shrubland Temperate xerophytic shrubland 
Tropical xerophytic shrubland 

Temperate Grassland (GRAS) Tropical grassland Temperate grassland 
Temperate grassland 

Boreal Tundra (TUND) Steppe tundra Graminoid and forb tundra 
Shrub tundra Low and high shrub 

Dwarf shrub tundra Erect dwarf-shrub tundra 
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Prostrate shrub tundra Prostrate dwarf-shrub tundra 
Cushion forb lichen moss tundra Cushion-forb tundra 

Deserts Warm temperate 
/ Subtropical 

Desert (DESE) Desert Desert 

Table 1. Biome to mega-biome to macro-environments assignments following Dallmeyer et al. (2017) for the simulated biomes and 
Cao et al. (2019) for the reconstructed biomes.  

3.2 Climate and vegetation simulations 

We use the vegetation simulations presented by Cao et al. (2019). These simulations were derived from the biome model 

BIOME4 (Kaplan et al., 2003)(Kaplan et al., 2003) in the version adapted by Dallmeyer et al. (2017)Dallmeyer et al. (2017). 

BIOME4 calculates the equilibrium biome distribution for 28 potential biomes using a prescribed climate and taking 

biogeographical and biogeochemical processes into account (Kaplan, 2001; Kaplan et al., 2003)(Kaplan, 2001; Kaplan et al., 

2003). Of these 28 biomes, 21 were observed in our study area for at least one time interval of the available simulations (Table 

1). Input variables are climatological monthly mean temperature, cloud cover and precipitation, the climatological mean 

absolute minimum temperature of the year, atmospheric CO2 concentration, and physical properties of the soil such as water-

holding capacity and percolation rates. The results are provided as one single biome per grid cell, hereafter called ‘unary biome 

estimate’. 

 



12 
 

 
Figure 3. Distribution of the simulated mega-biomes at 0, 6, 9, 14 and 21 ka. Each pollen-based biome estimate is represented as a 
white dot and corresponds to a distribution of biome affinity scores, as illustrated in Fig. 1. 
 

In the simulations used here, BIOME4 has been forced by climate simulations conducted in the coupled general circulation 

model Community Earth System Models (COSMOS) in the spatial resolution T31 (~4°x4° on a gaussian grid). COSMOS was 

developed at the Max Planck Institute for Meteorology. It consists of the general circulation model for the atmosphere 

ECHAM5 (Roeckner et al., 2003) coupled with the land-surface model JSBACH (Brovkin et al., 2009) and the ocean model 

MPIOM (Marsland et al., 2003). An anomaly approach has been used to prepare the climate input data for the biome model 

and reduce systematic model biases, for instance, due to the coarse spatial resolution of the model in which the orography is 

strongly smoothed. For this purpose, the difference between the climate simulated for a particular time slice and the pre-
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industrial reference climate has been calculated, bilinearly interpolated to a regular 0.5°x0.5°grid and added to observations 

(here: CRU-TS3.10 data, Harris et al., 2014). Five timeslices are available, i.e. 21ka and 14ka (Zhang et al., 2013), 9ka and 

6ka (Wei and Lohmann, 2012), and 0ka (Wei et al., 2012). Further details and global boundary conditions of the climate 

simulations are described in Dallmeyer et al. (2017) and Tian et al. (2018). 

 

 

 
Figure 3. Distribution of the simulated mega-biomes at 0, 6, 9, 14 and 21 ka. Each pollen-based biome estimate is represented as a 
white dot and corresponds to a distribution of biome affinity scores, as illustrated in Fig. 1. 
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In the simulations used here, BIOME4 has been forced by climate simulations conducted in the coupled general circulation 

model Community Earth System Models (COSMOS) in the spatial resolution T31 (~4°x4° on a gaussian grid). COSMOS was 

developed at the Max Planck Institute for Meteorology. It consists of the general circulation model for the atmosphere 

ECHAM5 (Roeckner et al., 2003) coupled with the land-surface model JSBACH (Brovkin et al., 2009) and the ocean model 

MPIOM (Marsland et al., 2003). An anomaly approach has been used to prepare the climate input data for the biome model 

and reduce systematic model biases, for instance, due to the coarse spatial resolution of the model in which the orography is 

strongly smoothed. For this purpose, the difference between the climate simulated for a particular time slice and the pre-

industrial reference climate has been calculated, bilinearly interpolated to a regular 0.5°x0.5°grid and added to observations 

(here: CRU-TS3.10 data, Harris et al., 2014). Five timeslices are available, i.e. 21ka and 14ka (Zhang et al., 2013), 9ka and 

6ka (Wei and Lohmann, 2012), and 0ka (Wei et al., 2012). Further details and global boundary conditions of the climate 

simulations are described in Dallmeyer et al. (2017) and Tian et al. (2018). 

3.3 Harmonisation of the biome reconstructions and simulations 

Since the definition of biomes was slightly different in the two datasets, the biome reconstructions and simulations were 

harmonised with the ‘mega-biome’ scheme of Dallmeyer et al. (2017) to enable direct comparison. This scheme is a global 

classification tool composed of 12 levels, which allows the grouping of biomes into higher-order vegetation classes. Nine 

mega-biomes were observed across the study area (Fig. 3 and Table 1). The harmonisation ofBecause the model results at the 

mega-biome level was straightforward because they were only available as unary biome estimates for each grid cell, the 

harmonisation at the mega-biome level was straightforward. Each grid cell was assigned to the mega-biome corresponding to 

its biome (Table 1). Harmonising the pollen data was more challenging because the data were only available as arrays of biome 

scores. Since many taxa are part of multiple biomes, adding the scores of the different biomes belonging to the same mega-

biomes would lead to overestimating the mega-biome scores (i.e. the weight of some taxa would be accounted for several 

times). Re-running the biomisation algorithm would have thus been necessary to obtain exact mega-biome scores (replacing 

the ‘plant functional type to biome’ table with a ‘plant functional type to mega-biome’ table in the biomisation algorithm). 

However, not all the required data were available. For simplicity, we assumed the mega-biome scores could be defined by the 

highest score of all their composing biomes (see Table 1 for the detailed biome composition of each mega-biome). This solution 

is imperfect and underestimates the actual scores. Still, we believe this simplification is sufficient for the purpose of this study, 

which is to illustrate how the EMD can be used in data-data and data-model comparison studies and not generate/evaluate new 

data. Finally, the mega-biomes were grouped into three macro-environments (‘forested environments’, ‘herbaceous/open 

landscapes’, or ‘deserts’) and three climatic zones (‘boreal’, ‘temperate’, or ‘Warm temperate/subtropical’) to define the 

weights used to calculate the EMDn,w (Table 1; Fig. 4). 
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Figure 4. The two penalty matrices used in this study. The lower (upper) triangle in blue (purple to yellow colour gradient) represents 
the uniform (ecologically-informed) weighting, respectively. In both cases, the diagonal of the matrix contains 0s. The biome 
acronyms are defined in Table 1. 

4 Data-data comparison: EMD vs mega-biomes with the highest affinity score 

4.1 Discrimination between mega-biomes 

We perform a series of data-data comparison case studies to evaluate the performance of the EMDn,w compared to analyses 

based on reconstructions of mega-biomes with the highest affinity score only. First, we analyse the EMDn,w values calculated 

between 2000 randomly selected mega-biome samples, irrespective of their ages (past and modern samples were pooled 

together). The resulting ~2 million unique1 999 000 pairwise comparisons are grouped according to the agreeing or disagreeing 

status of their mega-biome with the highest affinity score. If two samples have the same mega-biome with the highest affinity 

score X, as in Fig. 1A, the pair is labelled as ‘Mega-biome X’. If they differ (Mega-biome X and Mega-biome Y, as in Fig. 

1B), the pair is labelled as ‘Mega-biome X with other biomes’ and ‘Mega-biome Y with other biomes’. Note that this labelling 

does not imply that the vegetation necessarily belongs to the mega-biome X but only that mega-biome X has the highest affinity 

score. The two resulting EMDn,w collections for Mega-biome X (i.e. ‘Mega-biome X’ and ‘Mega-biome X with other mega-

biomes’) are interpreted as the intra-mega-biome and inter-mega-biome EMDn,w variability distribution of samples with Mega-

biome X as the mega-biome with the highest affinity score. The results for the five most abundant mega-biomes across the 

study area and the EMDn,w are summarised in Fig. 5 (see Appendix 1 for the same analysis with the EMDn,uni). 
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Figure 5. (A) Distribution of intra- (coloured) and inter- (black) mega-biome EMDn,w distributions. For all mega-biomes, the 
top/coloured boxplot represents the distribution of the pairwise distances of all the samples with the same mega-biome with the 
highest affinity score, and the bottom/black boxplot represents the EMDn,w distributions of these samples with different mega-biomes 
with the highest affinity score. The box of the boxplot represents the 25-75% interval (interquartile range), and the whiskers 
represent the 2.5-97.5% interval. The percentages indicate the proportion of samples where the EMDn,w of the inter-mega-biome 
distribution is lower than the intra-mega-biome distribution (estimated from 10,000 bootstrapped pairs of samples drawn from the 
intra- and inter-mega-biome EMDn,w distributions). The higher the percentage, the higher the overlap between the two distributions. 
(B) Evolution of the estimation of the EMDn,w threshold as a function of the number of samples selected. Note the log scale of the x-
axis. (C) Distribution on the intra- (white) and inter- (black) mega-biome EMDn,w (all mega-biomes pooled together). The blue band 
in (A) and (C) represents the range of EMDn,w values that characterise statistically similar samples based on our first statistical test 
(estimated in (B)). 
 
These data are also used to explore how the proposed statistical similarity test performs (Test 1, Section 2.3). We test the 

‘stability’ of the significance threshold as a function of the number of EMDn,w values available. At the scale of Europe, the 

EMDn,w threshold for a significant similarity at 5% is ~0.0182 (Fig. 5B). While this value can be correctly estimated on average 

from a few samples, its variability is, however, high when only a limited number of samples are selected. Undersampling the 

data (or small-sized datasets) can thus lead to an increased risk of mistakenly rejecting or accepting the null hypothesis (H0: 

The two samples are dissimilar). Here, our results suggest that considering about 10,000 EMDn,w values, which corresponds 

to all the pairwise comparisons between about 140-150 independent samples, is necessary to obtain stable thresholds. The 

results of this similarity test are always relative to the size of the study area, wherein small-scale studies will have smaller 

EMD thresholds because the samples will be more similar on average. Each threshold is thus study-specific and should not be 

employed in a different context. 

 

For the five biomes selected here, the mean EMDn,w of the intra-mega-biome distributions are smaller than the mean EMDn,w 

of the corresponding inter-mega-biome distributions and large intra-mega-biome EMDn,w values are not observed for most 

mega-biomes, except for tundra (TUND). This result is coherent and expected, as the mega-biome with the highest affinity 



17 
 

score estimate is a summary measure that extracts the dominantmain signal offrom the data. However, comparisons of the 

intra-mega-biome EMDn,w distribution with the inter-mega-biome EMDn,w distribution highlight a substantial overlap. Many 

pairs of samples from the inter-biome distributions have very low EMDn,w, suggesting strong similarities in their relative mega-

biome compositions despite having different mega-biomes with the highest affinity scores (comparisons similar to the example 

in Fig. 1B). In the ‘extreme’ case of temperate deciduous forests (TEDE), about one-third of the pairs from TEDE’s inter-

mega-biome EMDn,w distribution has a smaller EMDn,w than pairs from TEDE’s intra-mega-biome EMDn,w distribution 

(estimated frombased on a random drawing from each group; Fig. 5). This considerable overlap between the inter- and intra-

mega-biome distributions can be further illustrated with the statistical test we designed to determine if two samples can be 

considered similar (Test 1). Of all the significant pairwise comparisons (all mega-biomes included), only one-half corresponds 

to comparisons of samples with identical mega-biome with the highest affinity score estimates (Fig. 5C). Therefore, these 

results demonstrate that while the highest affinity score approach produces good results on average, fine-scale details of the 

vegetation structure are missed in some comparisons when samples are solely labelled by the mega-biome with the highest 

affinity score.  

4.2 Characterising mega-biome changes in space and time 

With the second data-data comparison study, we show how the more gradual response of the EMDn,w to changes in mega-

biome affinity score distributions can refine vegetation change interpretations through time and space (Fig. 6). When mega-

biome reconstructions are represented by the mega-biome with the highest affinity score only, oscillations between different 

mega-biome unary estimates can happen, as a result of minor changes in the affinity scores that cause an apparent oscillation 

between unary estimates when the multidimensional data are reduced to univariate estimates (as could happen between the 

two samples on Fig. 1B). This is further illustrated by the mega-biome reconstruction of Cao et al. (2019) from the pollen 

record Lago Piccolo di Avigliana (Finsinger et al., 2011; Finsinger and Tinner, 2006; Fig. 6A-C). For this record, we calculate 

1) the EMDn,w of all the samples with the top sample to measure the broad trends of mega-biome divergence over time relative 

to modern-day and 2) the sample-to-sample EMDn,w to measure the variability of vegetation between temporally contiguous 

samples. We also used the similarity significance threshold (EMD = 0.0182) defined in the previous sectionThis is further 

illustrated by the mega-biome reconstruction from the pollen record Lago Piccolo di Avigliana (Finsinger et al., 2011; 

Finsinger and Tinner, 2006; Fig. 6A-C). For this record, we calculate 1) the EMDn,w of all the samples with the top sample to 

measure the broad trends of mega-biome divergence over time relative to modern-day and 2) the sample-to-sample EMDn,w to 

measure the variability of vegetation between temporally contiguous samples. We also used the similarity significance 

threshold (EMD = 0.0182) defined in the previous section from the 2000 EMDn,w values since the settings of the two analyses 

are the same. 

 

Significant vegetation changes are evident in the record, with all the samples older than 1000 BP being dissimilar to the top 

sample. Representing the data by the mega-biomes with the highest affinity score suggests high vegetation instability over 
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time (52 changes for 321 samples). However, if these mega-biome shifts are analysed with the EMD, most sample-to-sample 

changes are associated with statistically similar samples. In particular, the mean differences between contiguous samples that 

trigger a change in the mega-biome with the highest affinity score (𝐸𝑀𝐷(,) = 0.026, sigma = 0.016, n = 51) are not statistically 

different from the mean changes between samples that do not (𝐸𝑀𝐷(,) = 0.024, sigma = 0.015, n = 269; t-test p-value = 0.39). 

As opposed to the representation based on mega-biomes with the highest affinity score that suggests a similar sample-to-

sample vegetation variability across the record, the sample-to-sample EMDn,w values (Fig. 6B) suggest that vegetation changes 

were relatively slower before ~7,000 BP (𝐸𝑀𝐷(,)= 0.020, sigma = 0.010, n = 121) and since ~1500 BP (𝐸𝑀𝐷(,) = 0.024, 

sigma = 0.018, n = 16) and more intense in between (𝐸𝑀𝐷(,) = 0.027, sigma = 0.017, n = 184). This example illustrates how 

the type of representation chosen for the data can influence interpretations. In this case, the oscillations visible in the unary 

biome estimates are mainly a visual artefact resulting from simplifying the data to single estimates instead of looking at the 

entire distribution of mega-biome scores. In contrast, the statistical test provides a more robust way to select time steps with 

significant biome composition changes. 
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Figure 6. Comparison of the EMDn,w and the corresponding mega-biomes with the highest affinity scores (A–C) in time and (D–E) 
in space. (A) ‘mega-biome with the highest affinity score’ reconstruction for a pollen record from northern Italy (Cao et al., 2019; 
Finsinger et al., 2011; Finsinger and Tinner, 2006). (B) EMDn,w calculated between contiguous pairs of samples, highlighting that 
vegetation changes that trigger a change in the mega-biome with the highest affinity score are not different from the changes that 
do not. (C) EMDn,w of the biome scores compared to the top sample, highlighting significant vegetation changes across time. The 
significance threshold at 5% (blue band) was derived from the random sampling of 2000 pairs of Holocene samples across Europe. 
(D–E) Mapping of the EMDn,w of all the regional samples compared to the mega-biome reconstruction at the location indicated with 
a red diamond at 0 BP (D) and 6000 BP (E). 
 
Similar smooth transitions can be observed for the variability across space, where the spatial granularity of the data is much 

lower than what is suggested by considering only mega-biomes with the highest affinity scores (Fig. 6D and E). Many 

neighbouring samples characterised by distinct mega biomes with the highest affinity scores are, in fact, similar according to 

the EMDn,w (e.g. the small dots of different colours near the target sample in Fig. 6D and E). In general, the size of the dots 

(i.e. the EMDn,w) increases with distance to the target sample or with a higher elevation, such as in the Alpine and Carpathian 

regions. The mean EMDn,w values at 6,000 BP (𝐸𝑀𝐷(,) = 0.056, sigma = 0.042, n = 307) is much lower than the mean EMDn,w 
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modern values (𝐸𝑀𝐷(,) = 0.104, sigma = 0.068, n = 268), and their distribution in space is much more regular. Determining 

why these differences exist is beyond the scope of this paper. However, it could be related to the influence of humans on 

modern environments (e.g. deforestation and opening of the landscapes) or different climate conditions. 

5 Data-Model comparison: Evaluation of vegetation simulations 

Data-model biome comparisons are commonly based on comparisons of unary biome estimates from models, pollen 

assemblages or modern observations. In such cases, the number of agreeing and disagreeing pairings is used to measure the 

accuracy, and the results are reported in contingency tables. These tables are ultimately analysed using different indices (e.g. 

the Kappa statistics, Cohen (1960)).the Kappa statistics, Cohen (1960)). As shown in the previous section, this type of data 

simplification is suboptimal because the information on the distribution of biome affinity scores cannot be accounted for. For 

example, if the matching biome is the biome with the second-highest affinity score, the strength of the mismatch should not 

be the same as if it were the biome with the lowest affinity score. To illustrate the advantage of the EMD coupled with 

ecologically-informed weights, we reproduced the data-model comparison of Cao et al. (2019), who used the Kappa statistic 

(among other metrics) to evaluate the similarity of the patterns displayed by the data and models. The main results are 

summarised in Table 2 and represented in Fig. 7. 

 

Time 
interval 

Accuracy 
(correct/total) 

Kappa 
statistic 

EMDn,uni EMDn,w 

0 BP 77 / 368 0.04 0.853 0.254 (NS) 
6000 BP 106 / 422 0.06 0.817 0.227 (NS) 
9000 BP 85 / 292 0.08 0.790 0.199 
14000 BP 21 / 100 0.00 0.929 (NS) 0.647 (NS) 
21000 BP 4 / 28 0.00 0.908 (NS) 0.593 (NS) 

Table 2: Summary statistics of the data-model comparison. The accuracy and Kappa statistics are reported by Cao et al. (2019), and 
the EMD values result from our statistical tests. Both are reported as the mean of all values across the study area. The Kappa 
statistics and the EMD are similarity and dissimilarity measures, respectively. A value of 1 (0) is the best (worst) score for the Kappa 
statistics and the worst (best) score for the EMD. Non-significant tests are labelled with (NS). 
 

One limitation of this study is that we compare pollen-derived multidimensional biome score distributions with model-derived 

unary biome distributions, where  (all the mass is concentrated on one single biome.). This fundamental difference in the data 

structure of the two entities being compared means that reaching an EMD of 0 is highly unlikely because obtaining such a 

concentrated distribution of biome scores from pollen data is nearly impossible. In our example dataset, the highest biome 

affinity score for a sample is generally in the range of 0.20-0.35 (Fig. 1). These values imply that even if the biome with the 

highest affinity score of a pollen sample matches the simulated biome of the corresponding grid cell, the EMDn,uni will have, 

in general, a value of about 0.65-0.80 because all the other biome affinity scores will have to be “moved” to the biome category 

with the highest affinity score. The same principle applies to the EMDn,w, but calculations of a ‘best case scenario’ range are 

less direct due to the penalty matrix. This explains why the absolute EMD values of this data-model comparison are much 
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higher than the EMD values calculated in the previous data-data comparison based on the comparisons of datasets with similar 

distribution structures. Nevertheless, this technical limitation does not impede using the EMD for data-model comparisons. 

 

Among all timeslices, models and data are most consistent at 9 ka according to the three evaluation indices (Table 2). The 

overall ranking of the five data-model comparisons based on the EMDn,w and EMDn,uni is also consistent with the Kappa 

statistics and accuracy of Cao et al. (2019) (Table 2). We used the statistical test defined in Section 2.3 (Test 2) with both the 

EMDn,w and EMDn,uni to determine if the spatial patterns of the simulated and reconstructed biomes for the five timeslices (0, 

6, 9, 14 and 21 ka) were similar. The results indicate that the data-model comparisons for the 9 ka timeslice are significant in 

both cases, while those for timeslices at 14 ka and 21 ka are not. Interestingly, the comparisons at 0 ka and 6 ka are significant 

with the EMDn,uni and not significant with the EMDn,w. These contrasting results can be explained by two types of differences. 

First, macro-environmental differences are observed, mainly at 0 ka, when many mismatches correspond to pollen samples 

with tundra as their biome with the highest affinity score (TUND, Fig. 7) and when the model instead simulates cold forest 

environments (either TEDE or COCO). The mismatches at 0 ka and 6 ka are also caused by climatic differences between the 

type of forests simulated (warm forests) and reconstructed (temperate forests) in western Europe. By definition of the penalty 

matrix and the ‘ecologically-informed’ ranking of mismatches (Fig. 4), replacingthe replacement of forests with more open 

landscapes or changes in the climate types are more penalised in EMDn,w. This difference tips the test result from significant 

without the weights (the two datasets have a similar spatial structure if all biome differences are considered equal) to non-

significant when the weights are included (their spatial structure is different if we assumeconsider that replacing a forest with 

more open landscapes or a temperate forest with a warm forest is a large ecological change). 

 

 While identifying the reasons underlying these mismatches is beyond the scope of this paper, we can hypothesise that the 

difference in landscape openness at 0 ka could be related to human land use. In addition, the assignment of biomes in the biome 

model is primarily controlled by climatic conditions, while other environmental conditions, such as soil conditions, also 

influence natural vegetation. For instance, wetlands or peatlands may result in open landscapes, even if the climate conditions 

could support forests. In contrast, the spatially and temporally consistent forest mismatch in Westernwestern Europe during 

the Holocene rather points towards a different definition of warm and temperate forests in the simulated and reconstructed 

data. The model explicitly excludes the temperate broadleaved tree PFT in the temperate forest biome, while it is included in 

the temperate and warm temperate forest biome in the reconstructions. 
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Figure 7. Data-model comparisons for the five simulated timeslices using either EMDw,uni (left) or EMDn,w (right). (centre) The mega-
biomes with the highest affinity scores derived from the pollen data are plotted over the simulated unary mega-biome estimates. 
(left/right) Statistical test evaluating the degree of similarity between the reconstructed and simulated mega-biomes. The black 
histogram represents the distribution of EMDs under the null hypothesis (the spatial distributions of the two datasets are different). 
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The coloured histogram represents the uncertainty distribution of the observed EMD. The null hypothesis is rejected when the black 
and coloured rectangles do not overlap (the rectangles are defined based on a 5% significance threshold and 500 repetitions). 
Green/Orange means the null hypothesis is rejected/accepted, and the two datasets have a similar/different spatial structure. 
 

These results also demonstrate that propagating significance thresholds across studies should be avoided since significance 

levels are directly determined by the data and the parameters of the study. For example, the EMDn,uni value of 0.853 is 

significant for the data-model comparison at 0 ka with the uniform penalty matrix, while the EMDn,w value of 0.254 is not 

when using our ecologically-informed matrix for the same time interval. As explained earlier, this behaviour is expected and 

precludes defining a global significance threshold for the EMD.  

6 Perspectives 

The case studies presented in the previous sections illustrate how using a continuous metric, as opposed to a binary assessment 

of similarity, can help refine interpretations of data-data comparisons and facilitate a better understanding of vegetation 

dynamics through time (Fig. 6A-C) and space (Fig. 6D-E). The EMD also proved to be a powerful tool for performing 

statistically robust data-model comparisons, despite using unary distributions for the simulated data (Fig. 7). Our case studies 

demonstrated that 1) while interpretations only based on mega-biomes with the highest affinity scores tend to be correct on 

average, they miss fine-scale details of the data (Fig. 5), and 2) the simplification to unary estimates can add noise to vegetation 

reconstructions (e.g. temporal oscillation of the mega-biomes with the highest affinity scores, Fig. 6) that may be difficult to 

interpret because the underlying data changes smoothly. However, these examples represent only a fraction of the applications 

where using the EMD could be helpful. For example, the bootstrapping approach used to estimate the uncertainties of the 

observed EMD value could be used to compare if the data-model agreement of one time slice is more robust than another (e.g., 

is the data-model agreement at 9K statistically better than the data-model agreement at 6K?), or similarly, if the data agree 

more with the simulation of one specific model rather than another one.  

 

The EMD could also be used to optimise the biomisation schemes themselves. Creating such schemes often requires tuning 

multiple parameters in parallel while evaluating the results with modern vegetation maps. Due to the sensitive nature of unary 

mega-biome estimates, small parameterisation changes can easily change one mega-biome with the highest affinity score into 

another (Fig. 1B), which can strongly impact Kappa statistics and other binary indices. Using the EMD would allow for a 

smoother evaluation of the impact of changing some parameters. The penalty matrix could also become a 

parameterisabletunable variable for biomisation studies. The one used in this study is based on simple ecological considerations 

based on structural and climatic zone changes, but more complex, data-informed distance matrices could be designed by, for 

instance, calculating (some form of) inter-mega-biome distance in the climate and/or vegetation spaces, integrating plant traits 

ecological distance (e.g. Sato et al., 2022) or modelling the probability of mistaking one biome for another using independent 
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calibration data. Developing such alternative matrices is, however, complex as their stability in time and space should also be 

assessed before being used. 

 

Despite its simplicity, our categorical penalty matrix already adds a level of refinement that is absent from most other biome 

comparison techniques. Similar “temporally-stable” matrices could also be defined to study pollen data at different 

taxonomical resolutions. For example, recent and ongoing work on vegetation cover reconstructions with the REVEALS model 

or the use of PFT affinity scores provides new avenues comparing the resulting PFT distributions with simulated PFT 

distributions based on coverage fraction, net primary production or leaf area index (e.g. Huntley et al., 2003; Allen et al., 2010; 

Marquer et al., 2017; Henrot et al., 2017). Penalty matrices on the level of taxa resolved in pollen records could also be 

developed to integrate the EMD into pollen-based climate reconstruction algorithms since many of the existing techniques, 

such as the Modern Analogue Technique (Overpeck et al., 1985), are based on the direct comparison of pollen samples 

(Chevalier et al., 2020). In addition to measuring their statistical differences as is currently done, an EMD-based definition of 

pollen analogues would also include the ecology of the taxa so that a well-designed penalty matrix could refine the climate 

reconstructions. 

 

As with most distance metrics, the EMD only measures how dissimilar two samples are and does not provide direct information 

on the type of (multidimensional) direction of differences. For example, the EMD cannot tell whether sample A is more 

forested than sample B. It can only quantify how different samples A and B are. This is similar to the binary evaluations of 

biomes with the highest affinity score. However, while it is common practice to characterise the direction of change by 

analysing the properties of the compared datasets separately, the computation of the EMD could offer more direct insights 

through the “optimal flows” that “transport” the affinity score distribution of sample A to the affinity score distribution of 

sample B (see Sect. 2.1). The optimal flows, which minimise the transport cost, could be written as a transport matrix. 

Therefore, this transport matrix would contain information on the (multidimensional) direction of the mismatch between 

samples. However, quantifying and interpreting these flows is challenging because (a) the optimal flows are not necessarily 

unique (in fact, they will rarely be unique in the case of uniform weights since, in this case, all flows have the same cost), and 

(b) the form of the transport matrix depends on the penalty matrix and thus the level of ecological complexity implemented in 

the penalty matrix. As such, the ecological interpretability of transport matrices could be another advantage of the EMD 

compared to other metrics. Therefore, we believe that methods to interpret the “optimal flows” should be explored in future 

research. 

 

Finally, it is essential to emphasise that the EMD, as presented in this study, is not limited to vegetation studies. It can be used 

with any form of discrete palaeodata (i.e. ordinal and categorical) from different disciplines, including but without being 

limited to, all palaeoecological datasets (e.g. chironomids, foraminifera, rodents, etc.), geochemical datasets (e.g. n-alkane 

distribution from terrestrial or marine sediments), or archaeological datasets (e.g. lithics and tools from archaeological 
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deposits). More generally, while raw data counts with a different total number of fossils/artefacts cannot be directly compared 

with the EMD, their percentages always can because they sum to 100. Said differently, any two samples can be compared with 

the EMD, provided they have the same total mass.  

7 Conclusion 

Comparisons of discrete palaeoclimatic vegetation data are often based on the co-evaluation of their best estimates. While 

based on sound principles, this approach has limitations, particularly regarding the impossibility of accounting for the 

multidimensionality of the data. This paper proposes to replace the binary metrics commonly used to perform data-data or 

model-data vegetation comparisons with the Earth Movers’ Distance (EMD). The EMD is a valuable alternative to the standard 

metrics because it considers the complete distributions of vegetation distributions and can assign specific weights to different 

types of mismatches. Since the EMD integrates more information, EMD-based studies allow for more refined interpretations, 

as illustrated through a series of case studies based on biome estimates from pollen samples and simulations. The versatility 

of the EMD enables performing various types of data-data and data-model comparisons with biome data (as presented here) 

and with other palaeoenvironmental, palaeoclimatic or archaeological proxies. To complement the use of the EMD, we propose 

a statistical framework to test the robustness of comparisons (i.e. testing if the different elements being compared share similar 

features). Finally, the EMD and the EMD-related significance tests have been integrated into an R package paleotools, 

‘paleotools’, to facilitate access and reuse.  

 

Code and data availability. The ‘paleotools’ R package is available from https://github.com/mchevalier2/paleotools. 
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8 Appendix 1 

 
Figure A1. Distribution of intra- (coloured) and inter- (black) mega-biome EMDn,uni distributions across the study area. In all five 
panels, the top/coloured boxplot represents the distribution of the pairwise distances of all the samples with the same mega-biome 
with the highest affinity score, and the bottom/black boxplot represents the EMDn,uni distributions of these samples with different 
mega-biomes with the highest affinity score. The box of the boxplot represents the 25-75% interval (interquartile range), and the 
whiskers represent the 2.5-97.5% interval. The percentages indicate the proportion of samples where the EMDn,uni of the inter-biome 
distribution is lower (estimated from 10,000 bootstrapped pairs of samples drawn from the intra- and inter-mega-biome EMDn,uni 
distributions). The higher the percentage, the higher the overlap of the two distributions. 
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Figure A26. Comparison of the EMDn,uni and the corresponding mega-biomes with the highest affinity scores (A–C) in time and (D–
E) in space. (A) ‘mega-biome with the highest affinity score’ reconstruction for a pollen record from northern Italy (Cao et al., 2019; 
Finsinger et al., 2011; Finsinger and Tinner, 2006). (B) EMDn,uni calculated between contiguous pairs of samples, highlighting that 
vegetation changes that trigger a change in the mega-biome with the highest affinity score are not different from the changes that 
do not. (C) EMDn,uni of the biome scores compared to the top sample, highlighting significant vegetation changes across time. The 
significance threshold at 5% (blue band) was derived from the random sampling of 2000 pairs of Holocene samples across Europe. 
(D–E) Mapping of the EMDn,uni of all the regional samples compared to the mega-biome reconstruction at the location indicated 
with a red diamond at 0 BP (D) and 6000 BP (E). 
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