
The comments of Reviewer 1 are in black, and our responses are in blue. 

Reviewer 1 provided a comprehensive evaluation of our manuscript that contributed to improving its 
clarity. A large fraction of Reviewer 1's disagreement comes from our choice of using biomes instead of 
PFTs. Deciding which is best is beyond the scope of the paper, and we have adapted the introduction 
to reflect that either is a valuable candidate. We now clearly state that we chose biome estimates 
because biome data is publicly available for more regions and time intervals. The data is also simpler to 
interpret and, thus, more adapted to illustrate the advantages of the EMD. It has nothing to do with 
advertising for using biomes for such studies. 

The second major criticism was about our penalty matrix. While we acknowledged that the one 
presented here was again just an example designed to illustrate the power of the EMD, Reviewer 1 
wanted it to be more complex. Reviewer 1 offered a credible alternative combining vegetation structural 
changes (similar to what we used) with changes in climatic zones. Therefore, we implemented it instead 
of our approach (see revised Sect 2.2.2 and Fig. 4 in the manuscript). 

We believe most of Reviewer 1’s comments are due to miscomprehension. Therefore, we have 
reworked the text where we believed clarifications were necessary (see details below). We hope the 
revised manuscript clarifies the numerous points of contention highlighted by Reviewer 1 and that 
Reviewer 1 now better perceives the value of our work. 

General comments  

This paper addresses an important problem, that of the inherent limitations of reducing multivariate 
palynological data to a limited number of biomes, and then using the latter to make univariate 
comparisons between the biomes inferred from the palynological data and the biomes simulated by 
vegetation models (i.e. data–model comparisons), or between two sets of biome inferences (i.e. data–
data comparisons). Whilst the approach that the authors present does appear to be new, it is 
disappointing that they fail, in either the introduction or discussion sections of their paper, to cite 
examples of others who have addressed this issue previously, and who have developed and applied 
different approaches to overcoming the limitations of the univariate, or binary, comparison approach. 

We accept that our review of the field should have been more thorough, and we believe the revised 
version of the manuscript is now more comprehensive, thanks to the suggestions of Reviewer 1.  

For example, Huntley et al. (2003, p. 198) wrote: “Our initial results, however, exposed the principal 
weaknesses of such biome-based data–model comparisons. First, both the modeling approach and the 
biomization technique for pollen data involve classifying what are essentially continuously variable data 
into a limited number of arbitrary categories, i.e., the biomes. Furthermore, these categories are based 
upon the present vegetation and thus do not accommodate the possibility that vegetation units may 
have existed in the past, under environmental conditions without any extensive modern analog, that do 
not match directly to any contemporary biome. Second, biome mismatches between data and model 
may arise for a number of reasons that cannot easily be deduced simply by observing the mismatch. In 
addition, because categories are used, the relative degree of mismatches cannot be assessed.” 
Huntley et al. (2003) then proceeded to develop and apply an approach that compared the scores 
inferred from the palynological data for a series of plant functional types (PFTs) with the net primary 
productivity (NPP) of these PFTs simulated by the vegetation model. Although they also made 
comparisons using the inferred/simulated biomes, those using the PFT scores/NPP values were more 
informative, enabling interpretation of the mismatches observed when biomes were compared. 

We fully agree with that statement and are aware of the limitations of the biomisation methods. 
Reviewer 1 seems to believe we advocate using biomes as the only tool to compare data and models in 
the vegetation space. This is not our intention. Our goal was instead to pick a well-known, simple and 
widely available type of data to illustrate the use of the EMD in performing a range of analyses. 
Furthermore, biomes are still a common method to aggregate vegetation reconstructions. Syntheses of 
biome reconstructions are available on continental or global scales and are commonly used to evaluate 



palaeoclimate and palaeovegetation model simulations. Therefore, we see a need to improve the 
evaluation metrics for these types of studies. The EMD method can partially overcome some limitations 
of the biome method, but it is not limited to biomes. To further stress this, we have reframed the paper 
to first talk about generic data-data and data-model vegetation comparison and then to focus on biomes 
as an illustration. This removes the unnecessary focus given to biomised data. These changes 
impacted the abstract, introduction and discussion in the revised manuscript. However, the core of the 
manuscript remains focused on our biomised data as an illustration of the abilities of the EMD. 

In another example, Allen et al. (2010) compared spectra of “relative biome scores” for 11 biomes, 
derived on the one hand from palynological data, using a modification of the Prentice et al. (1996) 
biomisation approach, and on the other from the annual NPP values simulated using LPJ-GUESS for a 
set of 47 PFTs that were then assigned to the appropriate ‘pollen PFT’. The spectra of relative biome 
scores were illustrated in Figures A3.1 and A3.2 of their Supplementary Material (https://ars.els- 
cdn.com/content/image/1-s2.0-S0277379110001769-mmc1.doc). A canonical correlation analysis was 
then used to investigate the extent to which the spatio-temporal patterns of relative biome scores from 
the playnological data and the model were similar, revealing strong canonical correlations between the 
two sets of relative biome scores, leading to the conclusion that: “The strong canonical correlation 
between the two datasets supports the use of the LPJ-GUESS results to infer and discuss the structure 
and composition of last glacial vegetation, as well as the vegetation patterns across the study region 
during that time.” (Allen et al., 2010, p. 2608). 

We were unaware of this study based on canonical correlation analysis, which is a good way of 
quantifying the similarity between two datasets. However, it would probably fail to assign a statistical 
significance to the results because it cannot account for the uncertainty of the data – i.e. what would be 
the explained variance if the data were random? In a perfect world, it would be 0. But this is never the 
case, especially with data like biomes, where a few vegetation units are much more dominant than 
others and typically strong spatial- and temporal autocorrelations are present. How “good” 48% of 
explained variance is remains unknown because the chances of “correct matches” under random 
conditions should be high. 

In addition, we still need to see how canonical correlation analyses could be employed to compare two 
samples, which is the analytical level addressed by our study. As such, this canonical correlation 
approach is a good step towards an in-depth assessment of the correlation between data and model 
but probably not a panacea when comparing individual samples. It is related to our study but not 
entirely comparable either. We nevertheless referenced this study in the introduction to provide a 
broader overview of existing metrics and/or approaches. 

“The approach of summarising an array of affinity scores by its PFT or biome with the highest score is 
thus insufficiently sensitive, and it can lead to a loss of accuracy when comparing datasets (contrasting 

samples can be assigned to the same category, while similar samples can be assigned to different 
categories; Fig. 1). Employing continuous metrics that consider the entire affinity score distributions (as 
opposed to binary assessments of their PFT or biome with the highest score) can thus refine the quality 

of data-data and data-model comparisons. Many distances commonly used to compare pollen data – 
such as the Manhattan/Euclidean distance (i.e. calculating the absolute/squared differences between 
the scores of the same biomes) or the squared-chord distance (e.g. Overpeck et al., 1985) – could be 

used to measure the dissimilarity of two affinity score distributions. Biome scores have also been 
directly compared to net primary productivity produced by LPJ-GUESS using canonical correlation 

analyses (Allen et al., 2010). However, these metrics give the same importance to all the differences 
without accounting for the fact that all vegetation changes are not ecologically equivalent.” 

 

More importantly, I don’t feel that the approach that the authors have adopted is the most appropriate or 
powerful. The first step in inferring biomes, whether from palynological data or from the current 
generation of dynamic global vegetation models (DGVMs), is to compute a ‘score’ for each PFT. These 
‘scores’ are derived either from the percentage values for pollen taxa assigned to this PFT, or from the 



NPP, or some other quantity (e.g. carbon mass or leaf area index (LAI)), simulated for the PFT by the 
model. It therefore makes far more sense to me, whether making data–model or data–data 
comparisons, to calculate the (dis-)similarities in terms of the spectrum of ‘scores’ for PFTs, rather than 
calculating and using biome scores to derive a distance measure, as the authors are proposing. 
Although better suited to data–model comparisons where the vegetation is simulated using a DGVM, 
this approach could in principle also be used with BIOME4, the model which the authors use to illustrate 
their approach, as this model also uses a series of PFTs and calculates their NPP and LAI.  

The authors must, at the very least, justify their use of the ‘spectrum’ of biome scores, as opposed to 
the PFT scores, because their approach seems to this reviewer to be perverse.  

PFT scores might be a more intuitive way to compare models and data, given that this avoids the 
PFT-to-Biome step. We now more directly explain why we chose biome affinity scores and 
highlight that this decision is purely driven by our will to illustrate the EMD with simple, widely-
available data and concepts. The exact same analyses could have been done using PFT scores. 
We rather opted for biome affinity scores because that’s the data we had access to, and they were 
sufficiently detailed to reach our objectives with this study. However, we acknowledge this should 
have been more directly addressed in the introduction, which is now the case. But we also want to 
highlight that biomes are still commonly used to evaluate simulations, and the data are much more 
commonly available (e.g. Binney et al. 2017 and Cao et al. 2019 for Eurasia during the last 40 kyr, 
Prentice et al. 2000 for the Northern Hemisphere and Africa during the mid-Holocene and Last 
Glacial Maximum, and Dowsett et al. 2016 for the mid-Pliocene). 

“Then, using a series of illustrative case studies based on the already-published biomised data and 
simulations of Cao et al. (2019), we show how the EMD can perform ecologically-informed comparisons 

in the vegetation space. While more and more quantitative reconstructions of PFT distributions at 
regional scales have been published in recent years (e.g. the REVEALS-based studies by Githumbi et 

al. (2022) or Marquer et al. (2017)), we preferred using biomised data because biomes are currently the 
most-widespread format of publicly available continental-to-global scale syntheses of past vegetation 
changes  (e.g. Binney et al. (2017) and Cao et al. (2019) for Eurasia during the last 40kyr, Prentice et 

al. (2000) for the Northern Hemisphere and Africa, and Marchant et al. (2009) in South America 
studying the mid-Holocene and Last Glacial Maximum, or Dowsett et al. (2016) for the mid-Pliocene). 

They also have a lower dimensionality than PFT data and provide, as such, a simpler context to explore 
the advantages of the EMD. Despite our focus on biomised data, it is important to stress that other 
categorical vegetation formats, such as pollen-based quantitative reconstructions as computed by 

REVEALS (Sugita, 2007) and Earth System Models, PFT affinity scores (e.g. Huntley et al., 2003; Allen 
et al., 2010; Henrot et al., 2017), or even the comparison of pollen percentages at the taxa level could 

have been used for our case studies.” 

Huntley, B., Alfano, M.J., Allen, J.R.M., Pollard, D., Tzedakis, P.C., de Beaulieu, J.-L., Grüger, E. & 
Watts, B. (2003) European vegetation during marine oxygen isotope Stage-3. Quaternary Research, 
59, 195- 212.  

Allen, J.R.M., Hickler, T., Singarayer, J.S., Sykes, M.T., Valdes, P.J. & Huntley, B. (2010) Last glacial 
vegetation of northern Eurasia. Quaternary Science Reviews, 29, 2604-2618.  

Specific comments and errors to correct  

1. Page 1, line 19 – Although biome reconstructions have been used in “data–model comparison 
studies to understand past vegetation dynamics”, my own experience suggests that this has been 
done much less frequently than has the use of biome reconstructions in data–model comparisons 
the aim of which has been to assess the performance of general circulation models (GCMs) and/or, 
more recently, Earth System Models (ESMs) – see e.g. many papers arising from the 
Palaeoclimate Modelling Inter- comparison Project (PMIP – see https://hal.archives-ouvertes.fr/hal-
03460457/document). I thus feel that the emphasis given here by the authors to using biome 



reconstructions in data–model comparisons to improve understanding of “past vegetation 
dynamics” is inappropriate.  

We have entirely rewritten the abstract to make our goals and assumptions more straightforward. 
Please note that we also enlarged the scope by replacing biomes with vegetation. 

2. Page 1, line 20 – It is unclear to me what is meant by the authors when they refer to a ‘dominant 
biome’. A quick check of a few definitions of ‘biome’ online confirmed my own view, that a ‘biome’ 
is by definition extensive, albeit that its geographical scale is not strictly defined, and displays a 
degree of spatial heterogeneity related both to environmental heterogeneity (e.g. varying degrees 
of soil moisture across a landscape) and vegetation regenerative processes (e.g. secondary 
succession following a stand-destroying disturbance). Thus at any given location in space and 
time, only one biome is present, whereas the use of the term ‘dominant biome’ implies that several 
biomes are present, one of which dominates over the others.  
 
Although it does become clear to the reader, upon further reading, that what the authors are 
referring to is the biome that achieves the highest biome affinity score when using the widely used 
approach of Prentice et al. (1996) to infer the biome from palynological data, the term that the 
authors have chosen to use seems to me to be both inappropriate and misleading. I suggest that 
they delete ‘dominant’ throughout, and refer simply to ‘biome(s)’. 
 
Prentice, I.C., Guiot, J., Huntley, B., Jolly, D. & Cheddadi, R. (1996) Reconstructing biomes from 
palaeoecological data: a general method and its application to European pollen data at 0 and 6 ka. 
Climate Dynamics, 12, 185-194.  

We acknowledge that the term ‘dominant biome’ is not ideal, and in line with a similar comment from 
Reviewer 2, we have changed it to “biome with the highest affinity score”.  

Page 1, lines 27–28 – Following on from the preceding comment, the first listed advantage of using the 
EMD, and comparing the pattern of ‘scores’ (i.e. affinity scores), needs to be re-worded. I suggest 
something along the lines of: “1. the affinity scores for all biomes are taken into account, rather than 
focusing upon the single highest scoring biome”.  

See response to comment #2. 

“To overcome this limitation, we propose using the Earth Movers’ Distance (EMD) to quantify the 
mismatch between vegetation distributions available in various formats. Using the EMD circumvents 

summarising the data into a unary biome or PFT estimate by considering the entire range of biome or 
PFT affinity scores to calculate a distance between the compared entities.” 

3. Page 2, line 49 – Delete spurious ‘usually’ (emboldened and underlined for emphasis), i.e. replace 
“Biomes are usually estimated from pollen data usually using a two-step algorithm” by “Biomes are 
usually estimated from pollen data using a two-step algorithm”. 

Corrected. 

4. Page 2, line 51 – For clarity and ease of reading, delete the third of the four occurrences of ‘one’ in 
this line, i.e. replace “and a second one to assign” by “and a second to assign”.  

Corrected. 

5. Page 2, lines 54–55 – A reference is required to support the statement about the practice of using 
scaling factors, and specifically to support the suggestion that “Larix percentages are commonly 
multiplied by 15...”. This is not a practice that I have come across, and is certainly not one that I 
would consider to be commonly applied.  



This procedure has been used to perform climate quantification to maximise the impact of this taxon 
with a strong climatic significance (see, for instance, Mauri et al. 2015). Unfortunately, we extrapolated 
this “trick” to the field of vegetation reconstruction, which was a mistake. This discussion has become, 
however, irrelevant because the sentence has been removed while reworking the introduction. 

Mauri, A., Davis, B.A.S., Collins, P.M., Kaplan, J.O., 2015. The climate of Europe during the Holocene: 
A gridded pollen-based reconstruction and its multi-proxy evaluation. Quaternary Science Reviews 112, 
109–127. https://doi.org/10.1016/j.quascirev.2015.01.013  

6. Page 2, lines 55–57 – See my earlier comment about what is generally understood by ecologists 
and biogeographers when referring to a ‘biome’. A biome does not “dominate the immediate 
landscape at and around the sampling location”, because a biome is, by definition, extensive and 
internally spatially and temporally heterogeneous. When inferring from pollen data the biome that is 
represented, the inference is that the location from which the pollen data are derived falls within 
such an extensive area occupied at that time by that biome. Once again, the concept of a 
‘dominant biome’ is in my view spurious and inappropriate.  
 
It is also important for the authors to clarify what they mean when they refer to “the immediate 
landscape at and around the sampling location”. How extensive is the ‘immediate landscape’ to 
which they refer? This is extremely important, because the majority of pollen data used to infer past 
biomes are derived from the sediments of either lakes or mires of such an extent that the pollen 
record reflects the vegetation not principally of the immediate surroundings of the sampled location, 
but of the overall region within which the site sampled falls (see e.g. Jacobson & Bradshaw, 1981; 
Prentice, 1988).  
 
Jacobson, G.L., Jr. & Bradshaw, R.H.W. (1981) The selection of sites for paleovegetational 
studies. Quaternary Research, 16, 80-996.  
 
Prentice, I.C. (1988) Records of vegetation in time and space: The principles of pollen analysis. 
Vegetation History (ed. by B. Huntley and T. Webb, Iii), pp. 17-42. Kluwer Academic Publishers, 
Dordrecht.  

Our explanation was probably an oversimplified, rushed definition of what a biome is and how it can be 
inferred from pollen data. Similarly to comment #6, this sentence has been removed from the reworked 
introduction, as we opted for a slightly different approach to introducing the topic. We refer Reviewer 1 
to the revised introduction to see how these changes were implemented. 

8. Page 5, lines 144 et seq. – The weighting scheme proposed by the authors takes account of 
vegetation structure, albeit that it only recognises three categories, but does not take into account 
climatic zones. Thus, the ‘cost’ of transforming Evergreen Taiga (TAIG) into Deciduous 
taiga/Boreal Woodland (BORW) is the same as that of transforming TAIG into Warm Forest 
(WARF), yet the latter pair fall at least two climatic zones apart and almost certainly will in most 
cases share far fewer pollen taxa/plant functional types (PFTs) than will the former pair. This, it 
seems to me, renders this weighting scheme of very limited value.  
 
I suggest that the authors might find it useful to look at the climatic zone and structural type 
matrices used by Allen et al. (2020) for their computation of change matrices, and mapping of 
changes, when comparing biome patterns simulated for different time slices (see the 
Supplementary Online Material associated with their paper, p. 26 of jbi13930-sup-0001-
Appendix.pdf). The approach of Allen et al. (2020) could provide a useful model for the refinement 
of the present authors’ ‘cost’ weighting scheme. Whilst I recognise that the authors’ paper is 
principally about describing and presenting a new approach, such a refinement of the weighting 
scheme would render the approach more attractive to many readers.  
 
More fundamentally, because the weighting scheme defines the ‘distances’, and hence the ‘costs’ 



of moving between biomes, the paper needs to consider in some detail how such a weighting 
scheme, that is more sophisticated and nuanced than the simplistic illustrative example used by 
the authors, might be developed.  
 
Allen, J.R.M., Forrest, M., Hickler, T., Singarayer, J.S., Valdes, P.J. & Huntley, B. (2020) Global 
vegetation patterns of the past 140,000 years. Journal of Biogeography, 47, 2073-2090.  

We found the penalty matrix developed by Allen and colleagues very creative and effective. As such, 
we have adapted it to our more restricted set of mega biomes, as explained in sections 2.2.2 and 3.3. 
The structural decomposition remains the same (forest, open landscapes, deserts), to which we added 
3 climatic levels (boreal, temperate, subtropical/warm temperate), making now 9 possible combinations 
(see new penalty matrix below). Our number of categories are lower than those of Allen et al. (2020) 
because we study vegetation at the mesa biome level, which isn’t as well resolved. This new matrix 
does not change the main results of our illustrative examples. 

“We also use two different weighting schemes (the cost of replacing a biome with another one, the “dij” 
from Eq. 1 ) to illustrate how ecological knowledge can be introduced in such studies (Fig. 2). We use a 

“uniform” scheme where all the biome changes are given the same weight (EMDuni) and an 
“ecologically informed” scheme (EMDw), where differences are weighted based on vegetation structural 
differences (forest vs open landscape vs desert) and climate zone preferences (boreal vs temperate vs 

warm-temperate / subtropical). This dual definition of biome distance follows the work of Allen et al. 
(2020), in which each biome is assigned to one vegetation structure and one climate zone. The basal 

distance between two biomes with the same vegetation structure and climate zone is set to 0.5. Then, 
each difference in structure or climate zone adds an extra cost of 1 (e.g. moving affinity scores from a 

forest to a desert makes a cost of 2.5; moving affinity scores from temperate to boreal makes a cost of 
1.5). This simple weighting scheme illustrates how an ecologically-informed strategy can refine 

interpretations compared to the uniform scheme. Different research questions or settings could lead to 
using schemes with more detailed structural and climatic zone categories (e.g. Allen et al., 2020) or 

alternative weighting schemes based on, for instance, trait differences (e.g. Sato et al., 2021).” 

New penalty matrix. 

9. Page 7, lines 186 et seq. – The argument for using the fifth percentile (or any other percentile for 
that matter) from a large set of EMD values calculated for randomly drawn pairs of sets of biome 
scores as the basis for establishing a ‘threshold’ value is completely opaque as far as I am 
concerned.  
 



The EMD values obtained will be strongly influenced by the (un)evenness of the ‘true’ 
representation of different biomes in the dataset being used. A dataset dominated by samples from 
one biome, with only small numbers of samples representing three other biomes, will result in EMD 
values that are generally smaller than those for a dataset in which the four biomes are evenly 
represented amongst the samples. In the first case, thresholding at the 5th percentile will result in 
rejecting as different many pairwise comparisons where the two samples do in fact represent the 
same biome.  

Reviewer 1 misunderstood the goal of the test. As explicitly stated in the original manuscript, it is not a 
test to determine if two samples represent the same biome, but rather if two samples’ score 
distributions are structurally similar, which is thus very different from what Reviewer 1 
understood/expected. We fully explain in the paragraph introducing the test: 

“Importantly, this test cannot determine if two samples represent the same biome. Because biomes are, 
by definition, broad vegetation units, two samples can be statistically different and be characteristic of 

the same biome. In such cases, the statistical difference suggests they likely occupy a different position 
in that biome's vegetation and/or climate spaces. For instance, vegetation samples taken from the cold 

and warm ends of the temperature range experienced by the temperate forest biome are likely to be 
statistically different while still being representative of temperate forests.” 

The next sentence then explicitly states what Reviewer 1 raised as a second concern regarding the 
need for a more or less balanced representation of the dataset: 

“This test can only be used if hundreds of affinity score distributions representative of various 
environments are available to estimate the randomisation distribution. In addition, this type of threshold 

is only valid for a given study area and/or research question.” 

Additionally, biomes vary in the degree and spatial extent of their internal spatial and temporal 
heterogeneity, especially as this is reflected by palynological data. Thus, sample pairs representing 
the same biome, but one that is characterised by spatially and temporally extensive heterogeneity 
(e.g. taiga that has extensive patches at different stages of recovery from stand-destroying fires) 
will potentially give larger EMD values than will sample pairs representing different biomes, each of 
which displays only fine-scale heterogeneity and which share a large proportion of pollen taxa.  

The test does not aim to determine if two samples are from the same biome (or any vegetation unit) but 
if their affinity score distributions can be considered statistically similar. So yes, if the two environments 
are different, the test will not be significant, and the samples will be labelled as “different”, irrespective 
of which biome they have the highest affinity with. Similarly, two samples from different biomes can be 
very similar in their composition. There is nothing contradictory about that (cf. Fig. 1 and 5C), and our 
test addresses this specifically. 

Whilst the authors do state that “this type of threshold is only valid for a given study area and/or 
research question”, I find it difficult to envisage any study in which such an approach to determining 
a threshold value will be valid, given that in any set of biomes there will be considerable variation 
between biomes in their degree of spatial and temporal variability.  

The threshold will depend on the data selected for the study. The notion of “similarity” is also strongly 
scale-dependent. For example, one can imagine two extreme cases, with one study focusing on a small 
patch of forest in a very restricted region and another study studying European vegetation. The notion 
of “similar vegetation” will, of course, be very different between the two studies. As such, a specific 
EMD similarity threshold will be determined by the scale of the study and the research question 
addressed, i.e. scale-dependent and user/research-dependent. 

Surely the appropriate approach to determining such a threshold is to compute EDM values firstly 
for multiple pairs of (surface) samples randomly drawn from those representing a single biome, and 
secondly from multiple pairs of samples where the two members of the pair are randomly drawn 
from those representing different biomes. The distributions of the EDM values for ‘like’ and ‘unlike’ 



comparisons will then provide a basis for assessing a threshold that can be used to distinguish 
these two classes of comparison, as well as providing a basis for assessing the uncertainties when 
making such distinctions. Such an approach was applied by Overpeck et al. (1985) and Huntley 
(1990) to determine threshold values of the chord distance dissimilarity measure when seeking to 
establish whether or not pairs of samples being compared were analogous (i.e. represented the 
same vegetation unit or biome).  

If this was our goal with the test, this method would surely be the solution. But as explained above, our 
goal was different. 

Huntley, B. (1990) Dissimilarity mapping between fossil and contemporary pollen spectra in Europe 
for the past 13,000 years. Quaternary Research, 33, 360-376.  
 
Overpeck, J.T., Webb, T., III & Prentice, I.C. (1985) Quantitative interpretation of fossil pollen 
spectra: Dissimilarity coefficients and the method of modern analogs. Quaternary Research, 23, 
87-108.  

10. Page 10, lines 248–250 – In describing the anomaly approach used, the authors state that 
‘differences’ were calculated between palaeoclimate and pre-industrial climate values, and then 
‘added’ to observations. The climatic variables being used, however, include precipitation, for 
which it is conventional to use multiplicative, rather than additive, anomalies, thus at least partially 
overcoming systematic biases in the amounts of precipitation simulated by climate models. 
Hopefully, the authors have simply failed to make clear that the anomaly procedure used for 
precipitation differed from that used for temperature; if not, then this, in my view, represents a 
serious deficiency in the work described (albeit that the primary purpose of the paper is to 
demonstrate the application of EMD). Incidentally, the authors also need to make clear what type 
(additive or multiplicative) of anomaly was used for cloud cover.  

The data used in this paper are reproductions from a published paper (Cao et al., 2019, mentioned 
across the entire manuscript). In the “Climate and Vegetation simulation” section, we refer to the 
appropriate source papers for the readers interested in knowing more about the details. We believe 
providing too many details about these data would not add anything to the paper. In fact, the intrinsic 
quality of the data could even be considered irrelevant to the present study, as we only use them to 
illustrate theoretical concepts in relation to the EMD. We do not interpret the results or draw conclusions 
about vegetation changes or models’ skills, etc., anywhere in the manuscript. We only discuss the skill 
of the EMD. Therefore, we do not describe the data in more detail in the revised manuscript. 

11. Page 14, Figure 6 – The figure caption (lines 340–341) refers to “(blue dashed lines)”, but I cannot 
see any such lines on the figure.  

The caption has been corrected. We understand the confusion; the blue line had become a blue band 
during one of the figure iterations. 

12. Page 15, lines 349–352 – I feel that the statement made here (“As opposed to the representation 
based on dominant mega-biomes that suggests a constant vegetation variability across the record, 
the EMDn,w trends suggest that vegetation changes were rather slow before ~7,000 BP and since 
~2000 BP, and more intense in between.”) is not fully supported by the figure presented and upon 
which it is apparently based. Figure 6A1 does not indicate “a constant vegetation variability across 
the record”, as the authors claim, but rather shows periods of relatively little variation and periods 
of greater variability, with some relatively rapid changes in the character of the vegetation. In 
particular, Figure6A1 shows rapid oscillations in the inferred biome between ca. 2 and 3 ka BP, 
with a proportion of samples inferred to represent Tundra (TUND) as opposed to Temperate 
Deciduous Forest (TEDE). Figure 6A3 reflects essentially the same pattern, with a marked trough 
in the EDMn,w values relative to the top sample, but with some marked variability that seems, 
unsurprisingly, to reflect the temporal distribution of the samples for which TUND is inferred. 
Similarly, there is considerable ‘noise’ in the EDMn,w values relative to the top sample (Figure 



6A3) between 3 and 8 ka BP, corresponding to the inference of Cold/Cool Forest (COCO) for some 
samples, as opposed to TEDE that is inferred for the majority of the samples. Furthermore, the 
‘noise’ is greatest around 6 ka BP when the ‘flickering’ in the biome inference is greatest.  

It seems that Reviewer 1 might have misunderstood the information that is represented on fig. 6A1, as 
his/her explanations are a bit confusing. The vertical amplitude of change is not a quantification of the 
change, as each vertical line, long or small, represents the same information, i.e. one biome being 
replaced by another one. With that definition, the period between 2 and 3 ka, is only marginally more 
variable than the rest of the record (see fig below). It just happens to be a period of oscillation between 
two biomes that were randomly assigned to the top and bottom levels of the figure. 

Fig 6A3 shows very different information with much higher short-term variability, i.e. the EMD changes 
of each sample against the top sample between ~3 to ~6/7 ka compared to the period 2-3 ka. This is 
coherent with what we see in fig. 6A2, but not what we see on Fig. 6A1. If anything, this period 
corresponds to the period where the flickering between dominant biomes is the least frequent. This 
highlights that the EMD can pick up a different form of information from the same input data, which 
might be used to refine interpretation derived from estimates of the biomes with the highest affinity 
scores. 

Perhaps most importantly, we show that the EMD differences between samples that trigger a change in 
the biome with the highest affinities are not significantly larger than the differences that do not, such as 
the changes between 9 and 12 ka. We observe many flickering between TEDE and TUND during that 
time interval on Fig. 6A1. However, the only significantly different pairs of samples are actually pairs 
that do not correspond to a change in biomes with the highest affinity score. At the very least, this figure 
demonstrates that focusing purely on the biome with the highest affinity score can lead to spurious 
interpretations. Between 9 to 12 ka, vegetation was changing, but it was slowly transitioning from TUND 
to TEDE. This can be derived by interpreting the flickering observed in fig. 6A1, or by using the EMD to 
can quantify it (Fig. 6A3). In addition, the EMD indicates two major vegetation changes occurring 
around 2 and 3 ka (6A3), which corresponds to the flickering between 2 and 3 ka in 6A1. However, 
between the two transitions, the short-term variability in the EMD differences from the top sample is not 
higher than in other periods without substantial flickering between biomes with the highest affinity 
scores. 

As to the authors’ inferences about the rates of vegetation change, based on Figure 6A3, no fully 
convincing assessment is possible (by them or this reviewer) without first plotting (smoothed values 
of) the first derivative of the data illustrated in Figure 6A3, i.e. making a plot that shows the rate of 
change. Nonetheless, as far as one can tell from Figure 6A3, whilst the variability of the vegetation 
was greater between 7 and 3 ka BP than it was prior to 7 ka BP, the overall rate of change was 
greater prior to 7 ka BP, and also since 2 ka BP; this is the opposite of what the authors state, but 
more consistent with what is shown in Figure 6A1.  

The rate of vegetation change cannot be inferred from Fig. 6A3, indeed. And it certainly cannot be 

inferred from its first derivative either because that would assume that the EMD behaves linearly. 
Knowing the EMD of two samples from a common reference does not inform about their distance 
except for the particular case when one of the samples is very similar to the reference. Fig. 6A3 shows 
the distance relative to the top sample, not the sample-to-sample variability that is discussed in the text. 
This variability is shown on Fig. 6A2. And the higher spread of the sample-to-sample EMD distance 
between 3 to ~6/7 ka does suggest that the pollen composition was varying more during that period. 

13. Page 15, line 365 – A word or words appears to be missing: “In such cases, the number of 
agreeing and is used to measure the accuracy, and...” just does not make sense.  

Corrected. “… the number of agreeing and disagreeing pairings is used to …” 

14. Page 17, Table 2 – The kappa values tabulated here are so low that they indicate a lack of any 
significant matches; Monserud (1990) suggests that kappa values <0·4 represent only poor or very 



poor matches, and that only kappa values >0·55 indicate good or better than good matches – the 
maximum value shown in this table is 0·08. Such low values, consistent with the ‘accuracy’ values 
shown, led me seriously to question both the authors’ results and the original publication. I thus 
obtained a .pdf of the Cao et al. (2019) paper cited by the authors. My reading through of this 
paper revealed no kappa values; I therefore searched the .pdf, using Acrobat, both for kappa, with 
no results, and for Cohen, likewise with no results. It is essential that the authors accurately cite 
the source of the data portrayed in this table, thus enabling readers to locate and examine their 
original source.  
 
Monserud, R.A. (1990) Methods for comparing global vegetation maps. Working Paper, WP-90-40. 
International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria.  

Reviewer 1 identified a very major error in this paper. We cited the wrong Cao et al. (2019) reference. 
The correct reference is: “Cao, X., Tian, F., Dallmeyer, A., Herzschuh, U., 2019. Northern Hemisphere 
biome changes (>30N) since 40 cal ka BP and their driving factors inferred from model-data 
comparisons. Quaternary Science Reviews 220, 291–309”. 

In addition, we agree with Reviewer 1 that the Kappa values are extremely low. However, the meaning 
of these values will not be discussed in this paper, as they were already presented by Cao and 
colleagues. We highlight that the EMD can reproduce the same patterns and can identify which values 
are statistically significant (as opposed to the “expert-based” kappa thresholds that always contain a lot 
of subjectivity and ignore the structure of the data (e.g. if the same raw data are separated into 20 
categories more misclassifications than if they are separated into 3 classes). Our data-model example 

in the manuscript (Table 2 and Fig. 7) shows that using a predefined expert-based threshold could lead 
to different interpretations of the same data, as we obtained an EMD value of 0.853, which is significant 
(comparison at 0 BP with EMDuni), and another value of 0.417, which is not (comparison at 0 BP with 
EMDw). That is because we account for the structure of the data, while pre-defined, generic thresholds 
do not. 

15. Page 18, line 438 – Once again, something is missing/superfluous here; the clause “The EMD 
could be introduced as metric toa to support the definition of analogues,” does not make sense.  

Except for the typo “toa” in the middle of the sentence, the rest of the sentence makes sense. We have 
expanded on this idea to clarify what we mean by that. 

“Penalty matrices on the level of taxa resolved in pollen records could also be developed to integrate 
the EMD into pollen-based climate reconstruction algorithms since many of the existing techniques, 

such as the Modern Analogue Technique (Overpeck et al., 1985), are based on the direct comparison 
of pollen samples (Chevalier et al., 2020). In addition to measuring their statistical differences as is 

currently done, an EMD-based definition of pollen analogues would also include the ecology of the taxa 
so that a well-designed penalty matrix could refine the climate reconstructions.” 

16. Page 19, line 452 – ...different types of disagreements” or “...different types of mismatches”, 
but NOT “...different types of errors”. ’Errors’ implies that one biome assignment is correct and the 
other incorrect, whereas in reality it may often be the case that neither the data nor the model is 
correct!  

Agreed. Replaced by “mismatches”. 



The comments of Reviewer 2 are in black, and our responses are in blue. 

We really appreciate the positive feedback provided by Reviewer 2, and the reviewer’s suggestions 

allowed us to clarify some important elements regarding what the EMD can and cannot do. We hope 

Reviewer 2 will find our responses accordingly adequate. 

 

Review of “Refining data-data and data-model biome comparisons using the Earth Movers’ 
Distance (EMD)” by Chevalier et al.  

Does the paper address relevant scientific questions within the scope of CP?  

Yes, this contribution looks promising as a new method to analyse pollen data for the past and compare 
them with vegetation model reconstructions. It is thus directly connected with key aspects of 
paleoclimate reconstruction and, hence, falls fully within the scope of CP.  

Does the paper present novel concepts, ideas, tools, or data?  

Yes. To my knowledge, the application of the EMD to the analysis of pollen data is completely new. 
This concept is quite interesting.  

Are substantial conclusions reached?  

Yes. The authors prove the applicability of the EMD for analysing/comparing pollen data/vegetation 
model reconstructions. In particular, they show that the EMD has the advantage of conserving more 
information from the original pollen data. Reconstructions look to be more stable through time 
compared to classical methods based on the biome with highest affinity score, because these latter 
methods do not offer a continuous measure of vegetation state (i.e., they are discrete classes).  

Are the scientific methods and assumptions valid and clearly outlined?  

Yes, the main method used, the EMD, is well explained and references are provided. Other methods 
are statistical analyses, which relatively well explained.  

Are the results sufficient to support the interpretations and conclusions?  

Yes.  

Is the description of experiments and calculations sufficiently complete and precise to allow their 

reproduction by fellow scientists (traceability of results)?  

Yes, probably. The authors have even developed a R package that certainly helps for such a 
reproduction of their results, as well for analysis of other pollen data.  

Do the authors give proper credit to related work and clearly indicate their own new/original 

contribution?  

Yes.  

Does the title clearly reflect the contents of the paper?  

Yes.  

Does the abstract provide a concise and complete summary?  

Yes.  

Is the overall presentation well structured and clear?  



Yes, it is very well-organised and generally clear.  

Is the language fluent and precise?  

I am not native English-speaker, but language looks fine to me.  

Are mathematical formulae, symbols, abbreviations, and units correctly defined and used?  

Yes.  

Should any parts of the paper (text, formulae, figures, tables) be clarified, reduced, combined, or 

eliminated?  

The paper has a reasonable length. All parts look necessary. Description of Test 2 (lines 201-216) 

could be improved. It is difficult to read, especially the method used to establish the second EMD 

distribution.  

We fully agree with Reviewer 2 that the second part of the second test was not as clear as it should 

have been. We have changed the description to the following, and we believe this makes the test more 

intelligible. 

Test 2: Considering the parameters of a study, are the data and the simulation (or modern 
observations) displaying similar spatial patterns? This second test aims to determine if the mean EMD 

obtained when comparing a simulated (or observed) vegetation map with a large collection of biome 
affinity score distributions is smaller than expected when comparing two datasets with different spatial 

patterns. This test is performed in two steps. First, the data are shuffled (each biome affinity score 
distribution is randomly assigned to one of the modelled values corresponding to a sample location), 

and the resulting mean EMD across all locations (i.e. spatial mean) is calculated. This is repeated 
several times to estimate the distribution of spatial mean EMD values under the assumption that the 

spatial structure in the data differs from the spatial structure of the simulation (null hypothesis). The 5th 
percentile of that distribution (any other significance threshold could be used) represents the threshold 

to reject the null hypothesis (alternative hypothesis: the data and the simulation have similar spatial 
structures). Then, the uncertainty of the observed EMD value can be estimated by measuring the intra-

sample variability. To do so, a second EMD distribution is estimated by bootstrapping, i.e. randomly 
sampling the same number of biome samples with replacement (some samples are selected many 

times and others excluded) and calculating the EMD of this bootstrapped dataset with the 
observed/simulated vegetation map. To determine if the data and the simulation display the same 

spatial pattern, the 95th percentile of the bootstrapped distribution is compared with the 5th percentile 
of the distribution of the null hypothesis (one-sided test). If the former is larger than the latter, the null 

hypothesis is rejected, and the spatial structure of the simulated and reconstructed biomes is 
considered similar. Efron and Tibshirani (1994) recommend performing at least 200 repetitions to 

estimate the bootstrapped and null hypothesis distributions. This test is called signif_struct() in 
paleotools, and its use and interpretation are illustrated in Section 5. 

Are the number and quality of references appropriate?  

Yes.  

Is the amount and quality of supplementary material appropriate?  

Yes.  

Comments  

In their paper, Chevalier et al. establish a new method based on the EMD to analyse pollen data 

(change in space and time) or compare them to model vegetation reconstructions. This method is 

novel, quite interesting and promise to be of broad applicability. The paper is well structured and very 



well written. It can be published after very minor revision. I have only a few remarks and suggestions 

that the authors could consider in their revision:  

The concept of biome is integrative, i.e., it is used to represent (within classes) the overall vegetation 

present at a given location. So, only one biome should exist at a given location. Thus, the words 

“dominant biome” should be avoided, and replaced by something like “biome with the highest affinity 

score” (with the pollen data). 

We originally opted for “dominant biome” because we wanted to avoid repeating “biome with the 

highest affinity score” multiple times across the paper. However, since both reviewers find this term 

inappropriate, we now follow their recommendation and opt for “biome with the highest affinity score”. 

The authors claim that the biomes are discrete quantities, and for that reason, the methods based on 

the biome with highest affinity score is presented as less robust than the use of the EMD, which is more 

continuous. However, with the EMD, the authors use the biome concept and their affinity scores. So, 

some of the “discontinuities” associated to the discrete definition of biomes still remain, especially when 

mega-biomes are used as done here. Actually, the EMD method developed here could equivalently be 

applied using plant functional types (PFTs) and PFT scores rather than biomes/biome scores. For 

instance, Henrot et al. (2017) (Palaeogeogr . Palaeoclim. Palaeoecol. 467, 95-119, 2017) compared 

model reconstructions with vegetation data at the level of PFT, i.e., using PFT scores. This allows to 

keep more information from the original pollen data, that are provided at the genus level. In this case, 

biome maps are just created to illustrate/capture vegetation distribution in a single map.  

We believe Reviewer 2 conflated two ideas here: the description of biomes (or mega biomes) as 

categorical data with the continuity of the metric used to compare them. Usual comparisons assess 

whether the biomes with the highest affinity scores are the same or not; hence the result is 1 or 0 (i.e. 
discrete). In contrast, comparing distributions of biome scores with the EMD leads to a real number (i.e. 
continuous). The EMD does not aim to fix the problems associated with the categorical data 

themselves. 

We agree that other types of data could be used for the comparison. As discussed in our response to 

Reviewer 1, we selected biomes because they are simple data that – we believe – are great for 

illustrating the concepts we are presenting regarding how to use the EMD. Our goal is not to say that 

biomes are the best way to compare data and models; they probably are not, at least not for all types of 

applications. While already present in the discussion, we have tried to make this point clearer earlier in 

the manuscript. 

Then, using a series of illustrative case studies based on the already-published biomised data and 
simulations of Cao et al. (2019), we show how the EMD can perform ecologically-informed comparisons 

in the vegetation space. While more and more quantitative reconstructions of PFT distributions at 
regional scales have been published in recent years (e.g. the REVEALS-based studies by Githumbi et 

al. (2022) or Marquer et al. (2017)), we preferred using biomised data because biomes are currently the 
most-widespread format of publicly available continental-to-global scale syntheses of past vegetation 
changes  (e.g. Binney et al. (2017) and Cao et al. (2019) for Eurasia during the last 40kyr, Prentice et 

al. (2000) for the Northern Hemisphere and Africa, and Marchant et al. (2009) in South America 
studying the mid-Holocene and Last Glacial Maximum, or Dowsett et al. (2016) for the mid-Pliocene). 

They also have a lower dimensionality than PFT data and provide, as such, a simpler context to explore 
the advantages of the EMD. Despite our focus on biomised data, it is important to stress that other 
categorical vegetation formats, such as pollen-based quantitative reconstructions as computed by 

REVEALS (Sugita, 2007) and Earth System Models, PFT affinity scores (e.g. Huntley et al., 2003; Allen 
et al., 2010; Henrot et al., 2017), or even the comparison of pollen percentages at the taxa level could 

have been used for our case studies.  

The EMD method allows to measure a (continuous) distance in the multidimensional space phase with 

the scores of the different biomes. You can thus show for instance (as in Figure 6) how the distance to 

a present-day biome has varied in the past. However, the biome phase space is multidimensional and 



the distance does not tell you in which direction you move. Are you moving towards more forests (and if 

yes towards which type of forests) or towards more grasslands or deserts? This information is quite 

important to characterize past vegetation. So, the EMD alone is not sufficient to reconstruct precisely 

past vegetations. It must be combined with a measure of directions in the phase space. In the method 

presented here, this role is played by the change in the biome with highest affinity score (so the 

classical method). But could it be improved to achieve a continuous method to evaluate such 

directions?  

It is true that the EMD only measures how dissimilar two samples are and does not say anything about 

the types of differences. This is similar to the binary evaluations of biomes with the highest affinity score 

(they only assess if the biomes are the same or not), which is the metric we aim to replace. Both 

metrics are insufficient to characterise the direction of past vegetation change. Additional analyses, 

interpretations and/or external knowledge are necessary to characterise the types of changes. We do 

not foresee any obvious way to include a direction of change into the EMD itself since mathematical 

metrics by definition do not contain information on the direction of change. Such direction could be 

determined “a posteriori” by closely looking at the biome affinity score distributions and EMDs, using the 

biome with the highest affinity score only or the overall amount of affinity scores with forested biomes, 

for instance. 

However, the computation of the EMD could offer some additional insights into the direction of changes 

through the “optimal flows” that “transport” the affinity scores of sample A to the affinity scores of 

sample B (see Sect. 2.1.). The optimal flows, which minimise the transport cost, can be written as a 

transport matrix. As this matrix contains information on how much affinity score needs to minimally be 

transported to transform the affinity score distribution from sample A to sample B, it does also contain 

information on the direction of the mismatch between samples. However, quantifying and interpreting 

this information is not trivial, because (a) the optimal flows are not necessarily unique (in fact, they will 

rarely be unique in the case of uniform weights since in this case all flows share the same costs), and 

(b) the form of the transport matrix depends on the weighting scheme. In principle, the directions of the 

mismatch will be ecologically more meaningful, the more meaningful the weighting scheme is. 

Incorporating methods to interpret the transport metrics should be explored in future research and the 

ecological interpretability of transport matrices could be another major advantage of the EMD compared 

to other metrics that do not contain information on the direction of change. However, it is beyond the 

scope of this paper where we are not aiming at a metric for the “vegetation phase shift”. Here we only 

introduce a continuous and ecologically-informed metric to replace a binary one. In addition, and as 

discussed in length in our response to Reviewer 1, we only used biomes as an illustration of the 

potential of the EMD to compare multivariate datasets. We do not want to “over-specialise” the metric to 

biomised data, and we prefer to keep it more generic and usable with other datasets, including PFT 

scores, as suggested above. This element of discussion is nevertheless very interesting, and we have 

expanded on it in the discussion of the manuscript as well as a discussion on using the optimal flows in 

the EMD computation to quantify the direction of vegetation changes/mismatches. 

“As with most distance metrics, the EMD only measures how dissimilar two samples are and does not 
provide direct information on the type of (multidimensional) direction of differences. For example, the 
EMD cannot tell whether sample A is more forested than sample B. It can only quantify how different 

samples A and B are. This is similar to the binary evaluations of biomes with the highest affinity score. 
While it is common practice to characterise the direction of change by analysing the properties of the 

compared datasets separately, the computation of the EMD could offer more direct insights through the 
“optimal flows” that “transport” the affinity score distribution of sample A to the affinity score distribution 
of sample B (see Sect. 2.1). The optimal flows, which minimise the transport cost, could be written as a 

transport matrix. Therefore, this transport matrix would contain information on the (multidimensional) 
direction of the mismatch between samples. However, quantifying and interpreting these flows is 

challenging because (a) the optimal flows are not necessarily unique (in fact, they will rarely be unique 
in the case of uniform weights since, in this case, all flows have the same cost), and (b) the form of the 

transport matrix depends on the penalty matrix and thus the level of ecological complexity implemented 
in the penalty matrix. As such, the ecological interpretability of transport matrices could be another 



advantage of the EMD compared to other metrics. Therefore, we believe that methods to interpret the 
“optimal flows” should be explored in future research.” 

“Finally, it is essential to emphasise that the EMD, as presented in this study, is not limited to vegetation 
studies. It can be used with any form of discrete palaeodata (i.e. ordinal and categorical) from different 

disciplines, including but without being limited to, all palaeoecological datasets (e.g. chironomids, 
foraminifera, rodents, etc.), geochemical datasets (e.g. n-alkane distribution from terrestrial or marine 

sediments), or archaeological datasets (e.g. lithics and tools from archaeological deposits). More 
generally, while raw data counts with a different total number of fossils/artefacts cannot be directly 

compared with the EMD, their percentages always can because they sum to 100. Said differently, any 
two samples can be compared with the EMD, provided they have the same total mass.” 

 

I have not found many typos. Only on line 436, “toa” does not make sense. I guess the authors want to 

say: “... as a metric to support ...”  

Typo corrected. 

The authors may want to discuss topics (2) and (3) in the discussion section.  

We absolutely agree. See our responses to topics (2) and (3) above and our improved discussion in the 

manuscript. 


