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Abstract. This paper aims to study wet-cold compound events (WCCEs) over Greece for the wet and 8 
cold season November-April. WCCEs are divided in two different compound events (TX-RR) and (TN-9 
RR) and two different approaches using fixed (RR over 20 mm/day and Temperature under 0 oC) and 10 
percentile (RR over 95th and Temperature under 5th) thresholds. Observational data from the Hellenic 11 
National Meteorology Service (HNMS) and simulation data from reanalysis and EUROCORDEX 12 
models were used in the study for the historical period 1980-2004. Simulation datasets from projection 13 
models were employed for the near future period (2025-2049) to study the impact of climate change on 14 
the occurrence of WCCEs under RCP 4.5 and 8.5 scenarios. Following data processing and validation of 15 
the models, the potential changes in the distribution of WCCEs in the future were investigated based on 16 
the projected and historical simulations. WCCEs determined by fixed thresholds were mostly found over 17 
high altitudes with a future tendency to reduce particularly under RCP 8.5. On the other hand, WCCEs 18 
obtained with percentile thresholds, were distributed mostly in Eastern Greece and Crete while their 19 
changes differed significantly among models.  20 

 21 

1. Introduction 22 

Extreme weather events and their linkage to climate change is a matter of high concern for many scientific 23 
groups (Zanocco et al., 2018; Konisky et al., 2016; Curtis et al., 2017). In the last decade numerous 24 
scientific researches focused on the causes, the frequency and impacts of extreme compound events (e.g. 25 
Aghakouchak et al., 2020; Singh et al., 2021; Sadegh et al., 2018; Zscheischler et al., 2017; Zscheischler 26 
and Seneviratne, 2017; Zscheischler et al., 2018). As mentioned in IPCC SREX (Ref 7, p. 118) compound 27 
events are defined as: (1) two or more extreme events occurring simultaneously or successively, (2) 28 
combinations of extreme events with underlying conditions that amplify the impact of the events, or (3) 29 
combination of events that are not themselves extremes but lead to an extreme event or impact when 30 
combined. The contributing events can be of similar (clustered multiple events) or different type(s) 31 
(Leonard et al., 2014).   32 

The purpose of this article is the study of extreme wet-cold compound events (WCCEs) in Greece during 33 
the historical period (1980-2004) and how the occurrence of these events will be affected by climate 34 
change. using projection data from and . It has been reported that WCCEs affect the region of 35 
Mediterranean Sea, including Greece (Zhang et al., 2021). The examined events belong to the first 36 
category of the definition of compound events from IPCC since they refer to the simultaneous exceedance 37 
of precipitation and temperature thresholds.  WCCEs can have negative impact on people’s lives by 38 
causing electricity blackouts, affecting agriculture with heavy snowfall or freezing rain, blocking 39 
transportation because of closed roads, railways or even airports (Houston et al., 2006; Llasat et al., 2014; 40 
Vajda et al., 2014). On the other hand, most of the available freshwater in the country comes from melted 41 
mountain snow during spring or summer. Finally, eco-systems, especially on mountains, may be harmed 42 
by the absence of snow that climate change may cause (Demiroglu et al., 2015; Pestereva et al., 2012; 43 
Trujillo et al., 2012; García-Ruiz et al., 2011). Moreover, Athens, a city of more than 4 million 44 
inhabitants, experienced in two consecutive years snowstorms (16, 17 February 2021 and 24 January 45 
2022), which caused great problems in road traffic and electricity failures.. Historically, such events 46 
occur infrequently in the region and it is the first time that snow depth exceeds 15cm twice in a period of 47 
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eleven months in the city center At other parts of Greece such events are more frequent, and this is shown 48 
in the present study. 49 

This work  extends  further and more meticulously the study of Markantonis et al., (2021) about daily 50 
minimum temperature and accumulated precipitation WCCEs. The motivation is the absence of such 51 
similar study concerning the country, with few exceptions that used only observational data at some 52 
locations (Lazoglou and Anagnostopoulou, 2019), or modeled data mostly over the broader region of 53 
Mediterranean Sea lacking detailed analysis for Greece (Vogel et al., 2021; Hochman et al., 2021; de 54 
Luca et al., 2020). The greatest part of the study concerns the historical period between 1980 and 2004, 55 
because of the availability of quality controlled daily observational data for minimum temperature (TN), 56 
maximum temperature (TX) and accumulated precipitation (RR). Thence, for that period, we use 57 
observational data from 21 Hellenic National Meteorological Service (HNMS) stations, for the validation 58 
of EURO-CORDEX Regional Climate Models (RCMs), provided by the Climate Change Service of EUs 59 
Copernicus Program and the projection model dataset produced in-house. In addition to the models, two 60 
reanalysis products are included, as the closest to true past climate conditions in regions with no or scarce 61 
observations (Moalafhi et al., 2016). More information about the observational and model datasets is 62 
shown in Section 2. Section 3 highlights the applied methodology while Section 4 presents the 63 
comparison of model data with observations. Section 5, details the results about the WCCEs  for the 64 
historical period and the projected changes by each model for the near future period between 2025 and 65 
2049 for two greenhouse gas concentration scenarios, RCP 4.5 and RCP 8.5. 66 

  67 
2. Data  68 

 69 
2.1 HNMS observations 70 

HNMS provides freely observational data from 21 stations for the purpose of scientific research. The 71 
data have been formally evaluated by HNMS and the timeseries show no missing or distorted values. In 72 
particular, the timeseries available for the historical period 1980-2004 have a 3-hour temporal resolution 73 
and from these values we have extracted the daily values of TN, TX and RR. Figure 1 shows the position 74 
of the stations while Table A1 of Appendix A provides details on the characteristics of the stations . We 75 
have used the observational data to validate the model datasets with regard to the WCCEs for the 76 
historical period.  77 

 78 

Figure 1: Map of HNMS stations. The numbers correspond to those in Table A1 (Appendix A). 79 

 80 
 81 
2.2 Reanalysis models 82 
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We have used two reanalysis models due to the lack of spatially and temporally complete direct 83 
observations, to study more consistently the WCCEs in Greece in the historical period. The first model 84 
is the latest available reanalysis product ERA 5 from ECMWF  of spatial resolution ~30km x 30km 85 
(Hersbach et al., 2020). The second reanalysis model, built in Environmental REsearch Laboratory 86 
(EREL) of National Center of Scientific Research ‘Demokritos’ (NCSRD) WRF_ERA_I, has been 87 
produced by dynamically downscaling ERA-INTERIM using the Weather Research Forecast (WRF) 88 
model (v3.6.1) from 80km x 80km to 5km x 5km (Politi et al., 2021, 2020, 2018).  89 

 90 
2.3 GCM / RCM models 91 

To observe possible alterations of wet-cold compound events occurrence probability in the future period 92 
2025-2049 compared to the historical period, we employed data from RCM simulations driven by GCMs. 93 
In this regard, we obtained data from 5 models included in the EURO-CORDEX initiative provided by 94 
the Copernicus Program. All chosen models have a spatial resolution of 0.11o x 0.11o and available daily 95 
data for both RCP scenarios. Information on the regional and parent models and their acronyms used 96 
herewith is given in Table 1. In addition to the EURO-CORDEX model data, we have used dynamically 97 
downscaled data from the EC-EARTH GCM to high spatial resolution of 5km x 5km for the area of 98 
Greece using WRF (Politi et al., 2020, 2022) 99 

 100 
Institution Reference Regional 

Model 

Forcing 

model 

Acronym Resolution (°) 

Météo-France / 

Centre National 

de Recherches 

Météorologiques 

(Spiridonov 

et al., n.d.) 

ALADIN63 CNRM-

CERFACS-

CNRM-CM5 

CNRM 0.11 

Koninklijk 

Nederlands 

Meteorologisch 

Instituut 

(van 

Meijgaard et 

al., 2008) 

KNMI-

RACMO22E 

ICHEC-EC-

EARTH 

KNMI 0.11 

Climate Limited-

Area Modelling 

Community 

(Rockel et 

al., 2008) 

CLMcom-

CLM-

CCLM4-8-

17 

MOHC-

HadGEM2-

ES 

CLMcom 0.11 

Swedish 

Meteorological 

and 

Hydrological 

Institute 

(Samuelsson 

et al., 2016) 

SMHI-

RCA4 

MPI-M-MPI-

ESM-LR 

SMHI 0.11 

Danish 

Meteorological 

Institute 

(Christensen, 

2006) 

DMI-

HIRHAM5 

NCC-

NorESM1-M 

DMI 0.11 

EREL (NCSRD) (Politi et al. 

2020, 2022)  

ARW-WRF EC-EARTH WRF_EC 0.05 

 101 

Table 1: EURO-CORDEX and EREL-NCSRD simulation models information. 102 

 103 

3 Methodology   104 

The process we followed in this work is briefly presented in the flowchart of Figure 2. The light blue 105 
steps form the main flow of the approach that mainly include the selection of the compound events based 106 
on threshold criteria, validation of the obtained compounds against observational data, and calculation 107 
of their occurrence probabilities. The models’ validation part is a previous step to the exhibition of 108 
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modeled data and is added on the data processing step. At the validation step we also compare univariate 109 
20-year return levels using two different approaches, Peaks Over Threshold (POT) and Block Maxima 110 
or Minima (BM), further described in section 4.2.2. The calculated probabilities of WCCEs using all 111 
models in the historical period have been validated against observations. The yellow boxes describe the 112 
results displayed at each step.   113 

 114 

Figure 2: WCCEs methodology process flowchart.  115 

In the later sections, we use box-plots to depict the ability of the models to simulate observational data 116 
for the historical period at the cells that include meteorological stations. The box-plots consist of the 117 
colored box, where in the band near the middle of the box is the median, the bottom and top of each color 118 
box are the 25th and 75th percentile (BL) and the ends of the whiskers are the 1.5 times the difference 119 
between the 25th and 75th percentiles (WL). 120 

3.1 Compound event selection 121 

According to HNMS the meteorological year can be split into two climate periods 122 
(http://emy.gr/emy/el/climatology/climatology). The cold and wet period extends on average from mid-123 
October to the end of March, and the warm-dry period occurs during the rest of the year. Since the study 124 
is focused on the extreme WCCEs, we examine the period between November and April, since according 125 
to HNMS observations, April exhibits lower temperatures than October and more rainy days. Moreover, 126 
it is not uncommon for the northern parts of Greece, and especially mountainous areas, to be affected by 127 
snowfalls during April. This leads to the creation of a timeseries of 4532 daily values for the historical 128 
period and 4531 for the future period. The only exception is CLMcom which considers that each month 129 
is consisted by 30 days, thus leading to 4500 values for each period. The near-neighbour approach 130 
revealed the nearest to the station grid cell.  131 

The WCCEs, which are examined on daily basis, are divided in two types of synchronous events, TX-132 
RR and TN-RR and studied using two different approaches, (1) the percentile threshold and (2) the fixed 133 
threshold (Table 2). For the first method the thresholds are the 95th percentile of RR distribution and the 134 
5th percentile of TN and TX distribution. This approach examines the threshold for each variable at each 135 
station or grid point. The second approach considers the fixed threshold of 20 mm/day for RR and 0 °C 136 
for TN and TX for all stations or grid points. TN equal to or under 0 °C indicates Frost Days (FD), while 137 
TX equal or under 0 °C Iced Days (ID) (Fonseca et al., 2016). Firstly, we compare the univariate 138 
exceedance probabilities and then the bivariate ones. The difference between the two methods is that the 139 
percentile approach calculates the probability that an event considered extreme for the study area occurs, 140 
while the second that an event considered already extreme occurs. The thresholds examined have been 141 
proposed in various studies for both univariate and bivariate cases (Raziei et al., 2014; Tošić and 142 
Unkašević, 2013; Anagnostopoulou and Tolika, 2012; Pongrácz et al., 2009; Kundzewicz et al., 2006; 143 
Moberg et al., 2006) 144 

THRESHOLDS RR TN TX WCCE 
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FIXED >= 20 mm/day 

(RR20) 

<= 0 oC (FD) <= 0 oC (ID) 1. (RR20-FD) 

2. (RR20-ID) 

  

 

PERCENTILE >= 95th 

(RR95p) 

<= 5th (TN5p) <= 5th (TX5p) 1. (RR95p-TN5p) 

2. (RR95p-TX5p) 

 145 

Table 2: Univariate thresholds and the compound events examined in the study.  146 

3.2 WCCEs probability calculation 147 

The WCCEs probabilities are calculated applying two different methods. The first is the empirical 148 
approach counting the events from the timeseries and dividing by the total number of days to find the 149 
percentage (%) of the occurrence probability. For the second method, we use the copula approach for the 150 
HNMS observations and models comparison and to map the differences of the two methods for the 151 
reanalysis model data. Compared to copula, an empirical method has a higher uncertainty when 152 
calculating the probability of extreme events (Hao et al., 2018; Tavakol et al., 2020; Zscheischler and 153 
Seneviratne, 2017). The purpose of using two different methods is to examine whether the copula method 154 
underestimates or overestimates the WCCEs.  155 

The best fitting copula selection for each timeseries is done using the R programming language function 156 
BiCopSelect, included in the package VineCopula (Schepsmeier et al., 2013). The appropriate bivariate 157 
copula for each dataset is chosen, by the function, from a multitude of 40 different copula families using 158 
the Akaike Information Criterion (AIC) (Akaike, 1974), and the copula chosen for each station and model 159 
dataset is shown in Appendix B (Tables B1 and B2). Copulas are used in plenty of studies that investigate 160 
the dependence between two different climate variables and the joint probability of compound events 161 
(Tavakol et al., 2020; Dzupire et al., 2020; Pandey et al., 2018; Cong and Brady, 2012; Abraj and 162 
Hewaarachchi, 2021). 163 

As mentioned in Nelsen, (2007), a bivariate copula is a bivariate distribution function where margins are 164 
uniform on the unit interval [0, 1]. A bivariate copula is a map C:[0,1]2→[0,1] with C(u,1)=u and 165 
C(1,v)=v. Let X and Y be random variables with a joint distribution function F(x,y)=Pr(X≤x, Y≤y) and 166 
continuous marginal distribution functions F1(x)=Pr(X≤x) and F2(y)=Pr(Y≤y), respectively. By Sklar’s 167 
theorem (Sklar, 1959), one obtains a unique representation 168 

F(x,y) = C{F1(x),F2(y)}                                                                                                                           (1) 169 

For the two random variables of X (e.g., precipitation) and Y (e.g., temperature) with cumulative 170 
distribution functions (CDFs) F1(x)=Pr(X>=x) and F2(y)=Pr(Y<=y), the bivariate joint distribution 171 
function or copula (C) can be written as: 172 

F(x,y) =Pr(X>=x,Y<=y) = C(u,v)                                                                                                           (2) 173 

Besides copula probabilities, we also show the Kendall rank correlation and tail dependence (χ) between 174 
the variables (RR–TN) and (RR-TX) to examine the dependence between the variables over all the range 175 
and tails of the distribution.  176 

The Kendall rank correlation coefficient evaluates the degree of similarity between two sets of ranks 177 
given to a same set of objects (Abdi, 2007) and we prefer it from other correlation types because it 178 
provides a distribution free test of independence and a measure of the strength of dependence between 179 
two variables. Kendall’s tau (τ) is given by Eq. 3, and has a range [-1, 1]: 180 

τ= (Νc–Nd) /(n*(n-1) / 2                                                                                                                         (3) 181 

where, Nc is the number of concordant pairs and Nd the number of discordant pairs.  182 

Tail dependence describes the limiting proportion that one margin exceeds a certain threshold given that 183 
the other margin has already exceeded that threshold that has a range [0, 1]. In R, we use the function 184 
taildep from package extRemes (Gilleland and Katz, 2016) for the threshold u=0.95 to calculate Chi (χ). 185 
Chi is calculated by: 186 
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chi(u) = Pr[Y > G-1(u) | X > F-1(u)] = Pr[V > u | U > u],                                                                    (4) 187 

where (U, V) = (F(X), G(Y))--i.e., the copula.   188 

 189 

4 Results in observation locations 190 

In this section, we firstly examine the dependence between the variables based on the HNMS data and 191 
using these data we calculate the probability of WCCEs applying both empirical and copula approaches. 192 
Then, we use the HNMS data to validate both reanalysis and projection models during the historical 193 
period. 194 

4.3 HNMS WCCE climatology 195 

Figure 3 presents the tail dependence for the two different types of compound events examined. Only 196 
two stations in Crete show minor dependence between the variables at the tails of the distributions. Figure 197 
4 shows that (RR20-FD) events are located mostly in the mainland, while RR95p-TN5p in the Aegean 198 
Sea area. At several stations, there is a difference between the empirical and the copula approach, which 199 
usually overestimates the total number of WCCEs. In Figure 5a only two stations show a significant 200 
number of RR20-ID events. At the percentile threshold approach (Figure 5b), we observe few WCCEs 201 
using the empirical method, while all stations show a significant number of WCCEs using the copula 202 
method.  203 

 204 

Figure 3: Tail dependence (χ) for TN-RR (squares) and TX-RR (circles). 205 

  

Figure 4: Total number of WCCEs (1980-2004) for (a) RR20-FD and (b) RR95p-TN5p. 206 
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Figure 5: Total number of WCCEs (1980-2004) for (a) RR20-ID and (b )RR95p-TX5p. 207 

 208 

4.4 Univariate validation  209 

Both reanalysis and projections models are compared to observational data for each variable and for the 210 
WCCEs probabilities. Figures 6-8 present the mean values and the standard deviation for stations and 211 
the respective models’ grid points. The corresponding values for each station are shown in Tables S1-S3 212 
and S5-S7 from Supplementary material. 213 

 214 

4.2.1 Thresholds & Probabilities 215 

  

Figure 6: Boxplots of (a) FD probability and (b)TN5p threshold. 216 

 217 
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Figure 7: Boxplots of (a) ID probability and (b)TX5p threshold. 218 

 219 

  

Figure 8: Boxplots of (a) RR20 probability and (b)RR95p threshold. 220 

For TN and TX (Figures 6 and 7, respectively) seems to be a good concordance of most models mean 221 
values with the HNMS data, although there are differences in the range of BL and WL between the 222 
models. The model that mostly overestimates TX5p and TN5p thresholds is DMI. For RR (Figure 8), all 223 
models underestimate extreme values compared to HNMS with ERA5 being closer to observations. 224 

 225 

4.2.2 Return levels 226 

 Another way to compare extreme values  is the calculation of return levels. As mentioned in 227 
methodology we use two approaches, (BM) and (POT). For BM we use the annual maximum or 228 
minimum value of the variable that results in the loss of information, because there is available only one 229 
value per year. BM samples tend to follow the GEV distribution, according to The Fisher–Tippett–230 
Gnedenko theorem (Fisher and Tippett, 1928; Gnedenko, 1943). For BM we fit the GEV by applying the 231 
method ‘Lmoments’ using the function fevd from R package extRemes. 232 

On the other hand, POT has the advantage of examining more values per year with the chosen condition 233 
that the values above the right threshold are considered as extreme (Balkema and Haan, 1974; James 234 
Pickands, 1975). The approach is to select as threshold the 90th percentile of the variable distribution 235 
(Bommier, 2014). Also, in order to achieve that each extreme value is independent from another, we use 236 
a conservative 5-day threshold declustering (Coles, 2001), securing that there are no extreme values 237 
affected by the same synoptic system. For POT we fit the Generalized Pareto (GP) distribution, which 238 
corresponds to the tail distribution of the GEV (Goda, 2018). As suggested in Poschlod, (2021), we use 239 
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Maximum Likelihood Estimation (MLE) as an optimization algorithm to fit the GP to the declustered 240 
timeseries, using again the extRemes package.      241 

  

Figure 9: Taylor diagram for TN 20 years return level using (a) POT and (c) BM approach.  242 
RMSE-BIAS plots for (b) POT and (d) BM.  243 

  

Figure 10: Taylor diagram for TX 20 years return level using (a) POT and (c) BM approach.  244 
RMSE-BIAS plots for (b) POT and (d) BM. 245 

  

Figure 11: Taylor diagram for RR 20 years return level using (a) POT and (c) BM approach.  246 
RMSE-BIAS plots for (b) POT and (d) BM. 247 

Figures 9 and 10 show that the CNRM is the model closer to HNMS TN and TX 20 years return level. 248 
Figure 11 yields that WRF_ERA_I has the highest correlation to observations, while WRF_EC the best 249 
RMSE-BIAS relation to observations. The values used to produce Figures 9-11 can be found in Tables 250 
S11-S16 from Supplementary material. 251 

 252 

4.5 Bivariate validation 253 
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The bivariate validation of the models is conducted by the empirical and copula methods for the WCCEs 254 
at the stations. Figures 12 and 13 summarize the results from Supplementary material Tables S4, S5 and 255 
S9, S10, respectively.  256 

 257 

4.5.1 Empirical approach 258 

 259 

  

Figure 12: Boxplots of probabilities for (a) RR20-FD and (b) RR95p-TN5p WCCEs. 260 

  

Figure 13: Boxplots of probabilities for (a) RR20-ID and (b) RR95p-TX5p WCCEs. 261 

In Figure 12a, HNMS BL is greater than all models, although a number of models show values greater 262 
than the WL of observations, with CNRM yielding the most extreme values, with 3 cases of more than 263 
1% probability. RR95p-TN5p events probabilities from models are close or over the mean values and 264 
BL of HNMS except for the case of SMHI which shows smaller values (Figure 12b). From Figure 13a 265 
we find that RR20-ID events are extremely rare at the locations of the stations with few exceptions. DMI 266 
exhibits zero events, while the largest probabilities are exhibited by CLMcom with four non-zero 267 
probabilities points . In Figure 13b, we see that all models overestimate the probabilities of RR95p-TX5p 268 
events with DMI showing the highest probabilities and SMHI the closer to HNMS agreement. 269 
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Figure 14: Bar-plots of total number of WCCEs for (a) fixed and (b) percentile thresholds for the 270 
1980-2004 period. 271 

In Figure 14, we present a quantitative comparison of the total number of compound events that are 272 
counted for all stations and the corresponding grid points for each model. For fixed thresholds, most 273 
models show good agreement with the HNMS data except of CNRM which overestimates the amount of 274 
total WCCEs for the RR-TN case. Also, SMHI and DMI and to a lesser extent WRF_EC underestimate 275 
significantly the number of total events for both types. With the percentile threshold approach all models 276 
overestimate the number of WCCEs for the RR-TX case, while for the RR-TN case most models are 277 
close to the HNMS total number of WCCEs, except of SMHI which underestimates it.  278 

 279 
4.5.2 Copula approach 280 

The best-fitted copulas fixed and percentiles probabilities for each model dataset are compared to the 281 
respective HNMS station best-fitted copula in Figures 15 and 16, respectively. We use Taylor diagrams 282 
and RMSE-BIAS plots to observe which models are closer to the WCCEs probabilities calculated for the 283 
HNMS data.  284 

 
 

Figure 15: Taylor diagram of WCCEs copula probabilities for (a) RR20-FD and (c) RR95p-TN5p. 285 
RMSE-BIAS plots of WCCEs copula probabilities for (b) RR20-FD and (d) RR95p-TN5p. 286 
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Figure 16: Taylor diagram of WCCEs copula probabilities for (a) RR20-ID and (c) RR95p-TX5p. 287 
RMSE-BIAS plots of WCCEs copula probabilities for (b) RR20-ID and (d) RR95p-TX5p. 288 

Figures 15 and 16 show that models agree more with observations on fixed thresholds WCCEs than the 289 
percentiles ones, where there is a broader deviation of correlation to observations. Probabilities for 290 
WCCEs are generally close to zero for observations and models, therefore RMSE and BIAS values are 291 
also almost zero. The values for each station are presented analytically in Tables S19-S22  from the 292 
Supplementary material. 293 

 294 
5 Models  295 

 296 
5.1 Reanalysis 297 

Data from reanalysis models provide us with information on the WCCEs for the historical period, at 298 
places with no available observational data. Thus, we will examine the probability of WCCEs using three 299 
different methods for the reanalysis data. (1) The empirical probability method, (2) the probability 300 
calculated by the most common copula from the total of the 21 HNMS stations and (3) the best-fitted 301 
copula at each grid point of the model. For comparison, we show the differences between each pair of 302 
methods. The reason to show the second method is to examine its ability to resemble the empirical 303 
method, since it is computationally much faster than method (3). In Tables B1 and B2 of Appendix B it 304 
is shown that the best fitted copula for HNMS timeseries is the Rotated BB8 270 degrees for (-TN, RR) 305 
bivariate distribution and the Survival BB8 for (-TX, RR) bivariate distribution. In both cases, the copulas 306 
are chosen for 10 out of the 21 stations. In the appendix, the univariate probabilities and thresholds are 307 
also shown. Firstly, we show the Kendall rank correlation (τ) (Figure 17) and then the tail dependence 308 
(χ) (Figure 18) between the variables. For the sake of brevity, we refer to the three methods as (A), (B) 309 
and (C). 310 

 311 
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Figure 17: Kendall rank correlation (τ) between (a, c) TN-RR and (b, d) TX-RR and (a, b) ERA 5 312 
and (c, d) WRF_ERA_I. 313 

  314 

Figure 18: Tail dependence (χ) at 95% between (a, c) TN-RR and (b, d) TX-RR and (a, b) ERA 5 315 
and (c, d) WRF_ERA_I. 316 

Figure 17 shows that there is little correlation between the variables with TN-RR having mostly slight 317 
positive correlation (17a, 17c), while more negative correlation reaching to -0.5 is calculated for TX-RR 318 
(17b, 17d). From tail dependence for the 5 % of the distributions in Figure 18, we see that TX-RR (18a, 319 
18c) are more dependent from TN-RR (18b, 18d) in more regions of the map. Values reach up to 0.3 320 
mainly for TX-RR in eastern Greece and Crete. Also, Figures S1-S3 in th supplementary material present 321 
the univariate thresholds and probabilities for RR, TN and TX using the reanalysis datasets (ERA5 and 322 
WRF_ERA_I). 323 

5.1.1 TN-RR WCCEs 324 
 325 

  

Figure 19: (a, b) RR20-FD and (c, d) RR95p-TN5p WCCEs probabilities. (a, c) ERA 5 and (b, d) 326 
WRF_ERA_I. Column (1) is method A, (2) method B and (3) = (2) – (1). 327 
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Figure 20: (a, b) RR20-FD and (c, d) RR95p-TN5p WCCEs probabilities. (a, c) ERA 5 and (b, d) 328 
WRF_ERA_I. Column (1) is method B, (2) method C and (3) = (2) – (1). 329 

  

Figure 21: (a, b) RR20-FD and (c, d) RR95p-TN5p WCCEs probabilities. (a, c) ERA 5 and (b, d) 330 
WRF_ERA_I. Column (1) is method A, (2) method C and (3) = (2) – (1). 331 

From Figures 19 and 20 we observe that method B underestimates the extreme value probabilities 332 
compared to methods A and C. On the other hand, method B exhibits less non-zero values compared to 333 
method A. In Figure 21, we see that method C mostly overestimates WCCEs compared to method A, 334 
especially for RR95p-TN5p and WRF_ERA_I. RR20-FD events reach at most extreme probabilities of 335 
14%, while for RR95p-TN5p the highest probabilities range between 1.2% and 1.5%.    336 

 337 

5.1.2 TX-RR WCCEs 338 
 339 

  

Figure 22: (a, b) RR20-ID and (c, d) RR95p-TX5p WCCEs probabilities. (a, c) ERA 5 and (b, d) 340 
WRF_ERA_I. Column (1) is method A, (2) method B and (3) = (2) – (1). 341 
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Figure 23: (a, b) RR20-ID and (c, d) RR95p-TX5p WCCEs probabilities. (a, c) ERA 5 and (b, d) 342 
WRF_ERA_I. Column (1) is method B, (2) method C and (3) = (2) – (1). 343 

  

Figure 24: (a, b) RR20-ID and (c, d) RR95p-TX5p WCCEs probabilities. (a, c) ERA 5 and (b, d) 344 
WRF_ERA_I. Column (1) is method A, (2) method C and (3) = (2) – (1). 345 

Figures 22-24 show that RR20-ID events exhibit lower probabilities than RR20-FD events reaching 10% 346 
to 12%. RR95p-TX5p reach 1.5% at the most extreme values, which are distributed at a greater area than 347 
RR95p-TN5p. On the other hand, method C exhibits the highest probabilities for both approaches events. 348 

 349 
5.2 Past-Future Projections comparison 350 

The six projection models we previously evaluated, are used here to study their behavior in the 351 
calculation of the probabilities of WCCEs. We compare the historical period probabilities with the 352 
probabilities determined for the future scenarios RCP 4.5 and RCP 8.5 for the 2025-2049 period by 353 
applying both fixed thresholds and percentiles. The differences mapped are statistically significant at 354 
95% level using the Student’s t-test (Goulden, 1939) comparing 25 annual values of the timeseries. We 355 
have applied the empirical method to calculate the probabilities of the WCCEs. Univariate thresholds 356 
and probabilities are shown in Figures S4-S6 of  the supplementary material.  357 
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Figure 25: (a-c) RR20-FD and (d-f) RR95p-TN5p probabilities. Models 1: CNRM, 2: KNMI, 3: 358 
CLMcom, 4: SMHI, 5: DMI, 6: WRF_EC. (a, d) 1980-2004, (b, e) (2025-2049 RCP 4.5) – (1980-359 
2004) and (c, f) (2025-2049 RCP 8.5) – (1980-2004). 360 

We see from Figure 25a that RR20-FD events probabilities may reach 25% particularly for CNRM, 361 
which also exhibits the greatest changes in the future, being mostly positive for RCP4.5 and extremely 362 
negative (up to -20%) for RCP8.5. Other models calculate fewer extreme probabilities for RR20-FD 363 
events and less extreme changes in the future being mostly negative and found in mountainous areas. 364 
RR95P-TN5p events displayed in Figure 25d reach up to 1.5% only for WRF_EC. The rest of the models 365 
reach most extreme values in the range of 0.4% to 1%. Most models do not display significant changes 366 
in the future, except of CNRM which shows positive changes that spread extensively over Greece. 367 
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Figure 26: (a-c) RR20-ID and (d-f) RR95p-TX5p probabilities. Models 1: CNRM, 2: KNMI, 3: 368 
CLMcom, 4: SMHI, 5: DMI, 6: WRF_EC. (a, d) 1980-2004, (b, e) (2025-2049 RCP 4.5) – (1980-369 
2004) and (c, f) (2025-2049 RCP 8.5) – (1980-2004). 370 

Figure 26a shows that RR20-ID events are limited to mountainous areas. Again, CNRM exhibits in few 371 
areas the most extreme values ranged between 10% to 20%. Similar values are, also exhibited by 372 
WRF_EC. These models display the most extreme reduction of the probabilities in the future, reaching 373 
10% to 15 % in the case of CNRM and RCP8.5. WRF_EC, DMI and to a lesser degree KNMI in Figure 374 
26d, yield the most extreme probabilities for RR95p-TX5p events that reach 1%. The most notable 375 
changes are displayed by CNRM under RCP4.5, which shows increases in western and northern parts of 376 
the country and significant decreases in eastern areas and Crete.  377 

Conclusions 378 

This work presents for the first time to our knowledge an extensive study of wet-cold compound events 379 
in Greece for the historical and future periods of 1980-2004 and 2025-2049, respectively. Models’ data 380 
from EUROCORDEX initiative of 0.11° resolution and reanalysis data (ERA5 and ERA-Interim 381 
dynamically downscaled to 5km2) were used and validated for the determined WCCEs against the 382 
formally available observational datasets by HNMS for the country. The number of events and their 383 
probabilities of occurrence were determined by applying two different approaches, fixed thresholds and 384 
percentiles. Then, the validation of the models’ datasets against observations was performed for the 385 
determined thresholds (univariate and bivariate) and the 20-years return levels using blog-maxima and 386 
POT methods. The probability of WCCEs was computed using the empirical method and the best-fitted 387 
copula for the bivariate timeseries. Moreover, for the reanalysis data, we applied the approach of the 388 
most common copula of the 21 observational stations.   389 

Even though reanalysis and projection models seemed to underestimate extreme precipitation, thus 390 
leading to less extreme events, both helped to map the geographical distribution of WCCEs over Greece. 391 
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All models agreed that for the historical period, more events by the fixed threshold approach were found 392 
over mountainous regions while the percentile approach yielded more WCCEs over the eastern parts of 393 
the country and Crete.  394 

Furthermore, the projected changes in the number of WCCEs were investigated under RCP 4.5 and RCP 395 
8.5. Significant changes were obtained using the fixed threshold method over mountainous areas which 396 
showed a potential reduction of the number of compound events particularly under RCP 8.5. The 397 
application of the percentile method yielded reduced changes in the probabilities of wet-cold compounds 398 
than the fixed threshold approach while the models showcased higher disagreement among them 399 
concerning the changes.  400 

The reduction of RR20-FD and RR20-ID WCCEs on mountains that most models predicted for the 401 
future, might mean less heavy snowfall events and possibly less accumulated snow depth. If such a 402 
scenario will be verified, Greece faces the threat of losing main sources of fresh water that come from 403 
melted mountain snow during spring or early summer. The change of WCCEs for RR95p-(TN5p or 404 
TX5p) does not necessarily translate to a corresponding change of snowfall events, since the temperature 405 
percentile thresholds are for several occasions higher than 0 °C. Snow events may occur at higher 406 
temperatures, however in this study we examined the amount of precipitation and not its type. Next future 407 
steps could focus on the investigation of the synoptic systems that cause wet-cold compound events in 408 
the area of interest. The higher resolution reanalysis and projection simulations used in the study, 409 
WRF_ERA_I and WRF_EC, exhibited with greater detail the distribution of WCCEs, highlighting the 410 
need for high resolution model data for areas with diverse topography like Greece.  411 
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Appendix A 582 

NUMBER LOCATION ID LATITUDE LONGITUDE ELEVATION (m) 

1 Alexandroupoli 16627 40.85 25.917 4 

2 Elliniko 16716 37.8877 23.7333 10 

3 Ioannina 16642 39.7 20.817 483 

4 Irakleio 16754 35.339 25.174 39 

5 Kalamata 16726 37.067 22.017 6 

6 Kastoria 16614 40.45 21.28 660.95 

7 Kerkira 16641 39.603 19.912 1 

8 Kithira 16743 36.2833 23.0167 167 

9 Larisa 16648 39.65 22.417 73 

10 Limnos 16650 39.9167 25.2333 4 

11 Methoni 16734 36.8333 21.7 34 

12 Milos 16738 36.7167 24.45 183 

13 Mitilini 16667 39.059 26.596 4 

14 Naxos 16732 37.1 25.383 9 

15 Rhodes 16749 36.42896 28.21661 95 

16 Samos 16723 37.79368 26.68199 10 

17 Skyros 16684 38.9676 24.4872 12 

18 Souda 16746 35.4833 24.1167 151 

19 Thessaloniki 16622 40.517 22.967 2 

20 Tripoli 16710 37.527 22.401 651 

21 Zakinthos 16719 37.751 20.887 5 
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Table A1: HNMS stations information.  584 
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Appendix B 588 

 589 

Table B1: (-TN, RR) best-fitted Copula for each station timeseries. 590 
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Table B2: (-TX, RR) best-fitted Copula for each station timeseries. 593 
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