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Abstract. This paper aims to study wet-cold compound events (WCCEs) in Greece for the wet and 7 
cold season November-April since these events may affect directly human activities for short or longer 8 
periods as no similar research has been conducted for the country studying the past and future 9 
development of these compound events. WCCEs are divided into two different daily compound events 10 
(Maximum Temperature (TX) -Accumulated Precipitation (RR)) and (Minimum Temperature (TN) – 11 
Accumulated Precipitation (RR)) using fixed thresholds (RR over 20 mm/day and Temperature under 0 12 
oC). Observational data from the Hellenic National Meteorology Service (HNMS) and simulation data 13 
from reanalysis and EURO-CORDEX models were used in the study for the historical period 1980-14 
2004. The Ensemble mean of the simulation datasets from projection models was employed for the 15 
near future period (2025-2049) to study the impact of climate change on the occurrence of WCCEs 16 
under the Representative Concentration Pathways (RCPs) 4.5 and 8.5 scenarios. Following data 17 
processing and validation of the models, the potential changes in the distribution of WCCEs in the 18 
future were investigated based on the projected and historical simulations. WCCEs determined by fixed 19 
thresholds were mostly found over high altitudes with TN-RR events exhibiting a future tendency to 20 
reduce particularly under the RCP 8.5 scenario and TX-RR exhibiting similar reduction of probabilities 21 
for both scenarios.  22 

 23 

1. Introduction 24 

Extreme weather events and their linkage to climate change is a matter of high concern for many 25 
scientific groups (Zanocco et al., 2018; Konisky et al., 2016; Curtis et al., 2017). In the last decade, 26 
numerous scientific studies focused on the causes, frequency and impacts of extreme compound events 27 
(e.g. Aghakouchak et al., 2020; Singh et al., 2021; Sadegh et al., 2018; Zscheischler et al., 2017; 28 
Zscheischler and Seneviratne, 2017; Zscheischler et al., 2018). As mentioned in the Intergovernmental 29 
Panel on Climate Change report on “Managing the risks of extreme events and disasters to advance 30 
climate change adaptation” (IPCC SREX) (Ref 7, p. 118) compound events are defined as: (1) two or 31 
more extreme events occurring simultaneously or successively, (2) combinations of extreme events 32 
with underlying conditions that amplify the impact of the events, or (3) combination of events that are 33 
not themselves extremes but lead to an extreme event or impact when combined (Leonard et al., 2014).   34 

Recent studies have been conducted on the examination of wet-cold compound events (WCCEs) that 35 
concern daily values of temperature and precipitation and the correlation of these variables 36 
(Chukwudum and Nadarajah, 2022; Lhotka and Kyselý, 2021), while other studies focus on the 37 
occurrence of monthly WCCEs for the historical period (Wu et al., 2019; Lemus-Canovas, 2022)  38 
However, the purpose of this article is the study of fixed thresholds extreme WCCEs on daily basis in 39 
Greece during the historical period (1980-2004) and how the likelihood of these events will be affected 40 
by climate change, during the period 2025-2049. It has been reported that WCCEs affect the region of 41 
the Mediterranean Basin, including Greece (Zhang et al., 2021). Studies using only observational data 42 
at some locations (Lazoglou and Anagnostopoulou, 2019), or modeled data mostly over the broader 43 
region of the Mediterranean Sea (Vogel et al., 2021; Hochman et al., 2021; de Luca et al., 2020), 44 
concerning WCCEs have been conducted in the past, but not depicting analytically WCCEs in Greece, 45 
a country that as a part of the Mediterranean Basin is considered a “Climate change hotspot” (Ali et al., 46 
2022). This work attempts to fill this void on the effects of climate change on WCCEs in Greece. 47 
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The examined events belong to the first category of the definition of compound events from IPCC 48 
since they refer to the simultaneous exceedance of precipitation and temperature thresholds. WCCEs 49 
may have a negative impact on people’s lives by causing electricity blackouts, affecting agriculture 50 
with heavy snowfall or freezing rain and blocking transportation because of closed roads, railways or 51 
even airports (Houston et al., 2006; Llasat et al., 2014; Vajda et al., 2014). On the other hand, most of 52 
the available freshwater in the country comes from melted mountain snow during spring or summer. 53 
Finally, eco-systems, especially in mountains, may be affected by the absence of snow that climate 54 
change may cause (Demiroglu et al., 2015; Pestereva et al., 2012; Trujillo et al., 2012; García-Ruiz et 55 
al., 2011).  56 

The first part of the study concerns the historical period between 1980 and 2004, because of the 57 
availability of quality-controlled daily observational data for minimum temperature (TN), maximum 58 
temperature (TX) and accumulated precipitation (RR). Hence, for that period, we use observational 59 
data from 21 Hellenic National Meteorological Service (HNMS) stations, to validate EURO-CORDEX 60 
Regional Climate Models (RCMs), provided by the Copernicus Climate Change Service and the 61 
projection model dataset produced in-house. In addition to the models, two reanalysis products are 62 
included, as the closest to “true” past climate conditions in regions with no or scarce observations 63 
(Moalafhi et al., 2016). More information about the observational and model datasets is presented in 64 
Section 2. Section 3 highlights the applied methodology while Section 4 displays WCCEs observed in 65 
stations and station cells of the models and Section 5 discusses the reanalysis and projections Ensemble 66 
mean WCCEs probabilities spatial distribution for the historical period. Section 6 details the results of 67 
the difference in WCCEs probabilities between the historical and the near future period between 2025 68 
and 2049 for two greenhouse gas concentration scenarios, RCP 4.5 and RCP 8.5.  69 

2. Data 70 

In this Section, we present the datasets that provide the observational and simulation data produced by 71 
projection and reanalysis models.  72 

2.1. HNMS observations 73 

HNMS provides freely observational data from 21 stations for the purpose of scientific research 74 
(http://www.emy.gr/emy/el/services/paroxi-ipiresion-elefthera-dedomena). The data have been 75 
formally evaluated by HNMS and the timeseries show no missing or distorted values. In particular, the 76 
timeseries available for the historical period 1980-2004 have a 3-hour temporal resolution and from 77 
these values, we have extracted the daily values of TN, TX and RR.  Moreover, stations 22-30 which 78 
also belong to the network of HNMS stations contain observations in the period 1980-2004, although 79 
none of the stations covers all observational days in the period. The datasets of these stations were 80 
extracted by the National Centers for Environmental Information of National Oceanic and Atmospheric 81 
Administration. We selected stations that contain at least 20 years of observations. Figure 1 shows the 82 
position of the stations on the orography of ERA5 and WRF, while Table A1 of the Appendix provides 83 
details on the characteristics of the stations. We have used observational data to validate the model 84 
datasets regarding the WCCEs for the historical period. 85 

 86 
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 87 

Figure 1: Map of HNMS stations on orography of (A) ERA5 and (B) WRF-ERAinterim. The 88 
numbers correspond to those in Table A1 (Appendix). 89 

2.2. Reanalysis models 90 

We have used two reanalysis models due to the lack of spatially and temporally complete direct 91 
observations, to study consistently the WCCEs in Greece in the historical period. The first model is the 92 
latest available reanalysis product ERA 5 from the European Centre for Medium-Range Weather 93 
Forecasts (ECMWF) of spatial resolution ~30km x 30km (Hersbach et al., 2020). The second 94 
reanalysis model, built in the Environmental Research Laboratory (EREL) of the National Center of 95 
Scientific Research ‘Demokritos’ (NCSRD) WRF_ERA_I, has been produced by dynamically 96 
downscaling ERA-INTERIM using the Weather Research Forecast (WRF) model (v3.6.1) from 80km 97 
x 80km to 5km x 5km (Politi et al., 2021, 2020, 2018).  98 

2.3. GCM / RCM models 99 

To observe possible alterations of WCCEs occurrence probability in the future period 2025-2049 100 
compared to the historical period, we employed data from RCM simulations driven by GCMs. In this 101 
regard, we obtained data from 5 models included in the EURO-CORDEX initiative provided by the 102 
Copernicus Program. All chosen EURO-CORDEX models with available daily data for both RCP 103 
scenarios were selected because they have the finest spatial resolution of 0.11o x 0.11o, and have also 104 
been tested in Cardoso et al, (2019). Information on the regional and parent models and their acronyms 105 
used herewith is given in Table 1. In addition to the EURO-CORDEX model data, we have used 106 
dynamically downscaled data from the EC-EARTH GCM to a high spatial resolution of 5km x 5km for 107 
the area of Greece using the WRF model (Politi et al., 2020, 2022). 108 

Institution Reference Regional 

Model 

Forcing model Acronym Resolution (°) 

Météo-France / 

Centre National de 

Recherches 

Météorologiques 

(Spiridonov et 

al., n.d.) 

ALADIN63 CNRM-

CERFACS-

CNRM-CM5 

CNRM 0.11 

Koninklijk 

Nederlands 

Meteorologisch 

Instituut 

(van Meijgaard 

et al., 2008) 

KNMI-

RACMO22E 

ICHEC-EC-

EARTH 

KNMI 0.11 
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Climate Limited-

Area Modelling 

Community 

(Rockel et al., 

2008) 

CLMcom-

CLM-

CCLM4-8-17 

MOHC-

HadGEM2-ES 

CLMcom 0.11 

Swedish 

Meteorological and 

Hydrological 

Institute 

(Samuelsson et 

al., 2016) 

SMHI-RCA4 MPI-M-MPI-

ESM-LR 

SMHI 0.11 

Danish 

Meteorological 

Institute 

(Christensen, 

2006) 

DMI-

HIRHAM5 

NCC-NorESM1-

M 

DMI 0.11 

EREL (NCSRD) (Politi et al. 

2020, 2022)  

ARW-WRF EC-EARTH WRF_EC 0.05 

 109 

Table 1: EURO-CORDEX and EREL-NCSRD simulation models information. 110 

 111 

3. Methodology   112 

The first step in this study is the validation of the projection and reanalysis models against 113 
observations. Moreover, the ensemble of the 6 projection models is also exhibited. We choose as the 114 
Ensemble resolution of the CORDEX models since 5 of them share the same spatial resolution. The 115 
only model in need of regridding is WRF_EC. We follow the nearest neighbor method to upscale 116 
WRF_EC from 5 km to 11 km. In addition, we use box-plots to depict the ability of the models to 117 
simulate observational data WCCEs probabilities for the historical period at the cells that include 118 
meteorological stations. The box plots consist of the colored box, where in the band near the middle of 119 
the box is the median, bottom and top of each color box are the 25th (Q1) and 75th (Q3) percentiles (BL) 120 
percentile. The lower limit of the whisker (LLW) is calculated by LW= Q1-1.5*BL and the upper limit 121 
(ULW) by UW= Q3+1.5*BL. The length of the whiskers (WL) is calculated as the difference between 122 
ULW and LLW. Any value out of this range is marked by a black point in the plot. The validation is 123 
conducted after the elevation bias correction of temperature at the cells of the models containing the 124 
stations. The cells of the stations are found using the nearest neighbor approach and the temperature 125 
bias correction temperature is the following:  126 

Ts = Tm + 0.006*(Hm-Hs)                                                                                                                       (1)  127 

In equation (1), Ts is the temperature of the cell after the elevation bias correction, Tm is the 128 
temperature provided by the model, Hm is the cell elevation and Hs is the elevation of the HNMS 129 
station.   130 

3.1. Compound event selection 131 

According to HNMS, the meteorological year can be split into two climate periods 132 
(http://emy.gr/emy/el/climatology/climatology). The cold and wet period extends on average from mid-133 
October to the end of March, and the warm-dry period occurs during the rest of the year. Since the 134 
study is focused on the extreme WCCEs, we examine the period between November and April, since 135 
according to the HNMS observations, April exhibits lower temperatures than October and more rainy 136 
days. Moreover, it is not uncommon for the northern parts of Greece, especially mountainous areas, to 137 
be affected by snowfalls during April. This leads to the creation of a timeseries of 4532 daily values for 138 
the historical period and 4531 for the future period. CLMcom considers that each month is consisted of 139 
30 days, thus leading to 4500 values for each period. Also, DMI considers that a calendar year has 365 140 
days, thus each period examined has 4525 values.  141 

The WCCEs, which are examined on daily basis, are divided into two types of synchronous events, 142 
TX-RR and TN-RR and studied using the fixed threshold approach (Table 2). This approach considers 143 
the fixed threshold of 20 mm/day for RR and 0 °C for TN and TX for all stations or grid points, as 144 
recommended by the Commission for Climatology (CCl), the World Climate Research Programme 145 

https://en.wikipedia.org/wiki/Percentile
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(WCRP) of the Climate Variability and Predictability Component (CLIVAR) project and the Expert 146 
Team for Climate Change Detection and Indices (ETCCDI). TN equal to or under 0 °C indicates Frost 147 
Days (FD), while TX equal to or under 0 °C indicates Iced Days (ID) (Fonseca et al., 2016). The 148 
thresholds examined have been proposed in various works for studying extreme events (Raziei et al., 149 
2014; Tošić and Unkašević, 2013; Anagnostopoulou and Tolika, 2012; Pongrácz et al., 2009; 150 
Kundzewicz et al., 2006; Moberg et al., 2006). 151 

THRESHOLDS RR TN TX WCCE 

FIXED >= 20 mm/day 

(RR20) 

<= 0 oC (FD) <= 0 oC (ID) 1. (RR20-FD) 

2. (RR20-ID) 

  

 

 152 

Table 2: Univariate thresholds and the compound events examined in the study.  153 

3.2. WCCEs probability calculation 154 

The WCCEs probabilities are calculated by applying two different methods. The first is the empirical 155 
approach counting the events from the timeseries and dividing by the total number of days to find the 156 
percentage (%) of the occurrence probability. For the second method, we use the copula approach for 157 
the HNMS observations and model comparison and to map the differences between the two methods 158 
for the reanalysis and projection of model data. Compared to copula, an empirical method has a higher 159 
uncertainty when calculating the probability of extreme events (Hao et al., 2018; Tavakol et al., 2020; 160 
Zscheischler and Seneviratne, 2017). The purpose of using two different methods is to investigate 161 
whether the copula method underestimates or overestimates the WCCEs.  162 

The best fitting copula selection for each timeseries is examined using the R programming language 163 
function BiCopSelect as suggested in (Zhou et al., 2019) package VineCopula (Schepsmeier et al., 164 
2013). The appropriate bivariate copula for each dataset is chosen by the function, from a multitude of 165 
40 different copula families using the Akaike Information Criterion (AIC) (Akaike, 1974) and 166 
Bayesian Information Criterion (BIC)      , and the copula chosen for each station and model dataset is 167 
shown in Appendix B (Tables B1 and B2). Copulas are used in plenty of studies that investigate the 168 
dependence between two different climate variables and the joint probability of compound events 169 
(Tavakol et al., 2020; Dzupire et al., 2020; Pandey et al., 2018; Cong and Brady, 2012; Abraj and 170 
Hewaarachchi, 2021). 171 

As mentioned in Nelsen, (2007), a bivariate copula is a bivariate distribution function where margins 172 
are uniform on the unit interval [0, 1]. A bivariate copula is a map C:[0,1]2→[0,1] with C(u,1)=u and 173 
C(1,v)=v. Let X and Y be random variables with a joint distribution function F(x,y)=Pr(X≤x, Y≤y) and 174 
continuous marginal distribution functions F1(x)=Pr(X≤x) and F2(y)=Pr(Y≤y), respectively. By Sklar’s 175 
theorem (Sklar, 1959), one obtains a unique representation as follows: 176 

F(x,y) = C{F1(x),F2(y)}                                                                                                                           (2) 177 

For the two random variables of X (e.g., precipitation) and Y (e.g., temperature) with cumulative 178 
distribution functions (CDFs) F1(x)=Pr(X>=x) and F2(y)=Pr(Y<=y), the bivariate joint distribution 179 
function or copula (C) can be written as: 180 

F(x,y) =Pr(X>=x,Y<=y) = C(u,v)                                                                                                           (3) 181 

4. WCCEs assessment in HNMS stations 182 

In this section, the models are validated against observations both for the empirical and the copula 183 
method. WCCEs probabilities for each station and model are presented in the supplementary material. 184 
BIAS and RMSE along with the Critical Success Index (CSI) are used for the validation. CSI is 185 
calculated as CSI=A/(A+B+C). A, B and C symbolize elements from the contingency table (Table 2) 186 
that occur from comparing zero and non-zero probabilities in stations with the corresponding model 187 
cells. Also, the total number of events calculated for both methods from observational data is presented 188 
for each station. 189 
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“EVENT”=POSITIVE PROBABILITY OBSERVATION EVENT 

YES NO 

MODEL  

EVENT 

YES Α Β 

NO C D 

Table 2: Contingency table where “A” is the number of event forecasts that correspond to event 190 
observations or the number of hits. Entry "B" is the number of event forecasts that do not 191 
correspond to observed events or the number of false alarms. Entry "C" is the number of no-192 
event forecasts corresponding to observed events or the number of misses. Entry "D" is the 193 
number of no-event forecasts corresponding to no events observed or the number of correct 194 
rejections. 195 

4.1. RR20FD 196 

Probability values for each station are presented in Supplementary (Tables S1-S4) as well as the 197 
contingency tables (Tables S7-S10) from which CSI is calculated. ERA5 and WRF_ERA_I are 198 
reanalysis products and exhibited for comparison reasons. The copulas selected by Bicopselect for each 199 
observational and modeled timeseries are also presented in Supplementary (Tables S5-S6). 200 

 201 

 202 

Figure 2: Box-plot presenting RR20FD empirical method probabilities for observations and 203 
models.  204 

 
HNMS CNRM KNMI CLMcom SMHI DMI WRF_EC ENSEMBLE ERA5 WRF_ERA_I 

MEAN 0.1382 0.2361 0.1168 0.1116 0.0267 0.0208 0.1143 0.1044 0.0625 0.1535 

SD 0.2211 0.4821 0.1590 0.1781 0.0581 0.0600 0.2216 0.1813 0.1311 0.3935 

BIAS  -0.0979 0.0214 0.0266 0.1115 0.1174 0.0239 0.0338 0.0756 -0.0154 

RMSE  0.3234 0.1298 0.0922 0.2003 0.2148 0.1222 0.0975 0.1536 0.2319 

COR  0.8583 0.8138 0.9211 0.9194 0.7177 0.8484 0.9118 0.8210 0.8523 

CSI  0.6071 0.6667 0.6296 0.3214 0.1667 0.3793 0.7692 0.2667 0.4483 

Table 3: Table exhibiting mean (MEAN) station RR20FD empirical probabilities (%) for 205 
observations and models, standard deviation (SD), bias (BIAS), rmse (RMSE), Pearson 206 
correlation (COR) and CSI of models against observations. 207 
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 208 

Figure 3: Box-plot presenting RR20FD copula method probabilities for observations and models.  209 
 

HNMS CNRM KNMI CLMcom SMHI DMI WRF_EC ENSEMBLE ERA5 WRF_ERA_I 

MEAN 0.2016 0.2974 0.1291 0.2129 0.0448 0.0528 0.1338 0.1451 0.0699 0.1455 

SD 0.2864 0.5802 0.1715 0.3031 0.1042 0.1237 0.2580 0.2310 0.1368 0.2939 

BIAS  -0.0959 0.0725 -0.0113 0.1568 0.1488 0.0678 0.0565 0.1317 0.0561 

RMSE  0.3334 0.1720 0.2264 0.2646 0.2530 0.1458 0.1139 0.2165 0.1788 

COR  0.9422 0.8782 0.6968 0.7688 0.7620 0.8888 0.9467 0.8955 0.8233 

CSI  0.9259 0.9629 1 0.9643 0.7333 0.8276 1 0.6333 0.7931 

Table 4: Table exhibiting mean (MEAN) RR20FD copula station probabilities (%) for 210 
observations and models, standard deviation (SD), bias (BIAS), rmse (RMSE), Pearson 211 
correlation (COR) and CSI of models against observations. 212 

 213 

4.2. RR20ID 214 

RR20ID events yield, as expected, lower probabilities than RR20FD events as observed in Figures 4 215 
and 5. Most observations and models yield zero probabilities, hence validation of models for these 216 
events is limited. The empirical method exhibits eight stations with non-zero probabilities in the 217 
historical period (Supplementary). 218 

 219 

 220 

Figure 4: Box-plot presenting RR20ID empirical method probabilities for observations and 221 
models.  222 

 
HNMS CNRM KNMI CLMcom SMHI DMI WRF_EC ENSEMBLE ERA5 WRF_ERA_I 
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MEAN 0.0331 0.0430 0.0240 0.0397 0.0104 0.0029 0.0388 0.0265 0.0167 0.0493 

SD 0.0669 0.0933 0.0440 0.0725 0.0320 0.0098 0.0876 0.0524 0.0413 0.1441 

BIAS  -0.0099 0.0091 -0.0065 0.0228 0.0303 -0.0057 0.0067 0.0164 -0.0161 

RMSE  0.0568 0.0466 0.0556 0.0522 0.0682 0.0636 0.0419 0.0438 0.1084 

COR  0.7961 0.7212 0.6780 0.7506 0.5380 0.6829 0.7776 0.8101 0.6928 

CSI  0.1071 0.2000 0.1923 0.0333 0.0333 0.1481 0.2400 0.1034 0.1538 

Table 5: Table exhibiting mean (MEAN) RR20ID empirical probabilities station probabilities 223 
(%) for observations and models, standard deviation (SD), bias (BIAS), rmse (RMSE), Pearson 224 
correlation (COR) and CSI of models against observations. 225 

 226 

Figure 5: Box-plot presenting RR20ID copula method probabilities for observations and models.  227 
 

HNMS CNRM KNMI CLMcom SMHI DMI WRF_EC ENSEMBLE ERA5 WRF_ERA_I 

MEAN 0.0282 0.0378 0.0169 0.0344 0.0066 0.0017 0.0249 0.0204 0.0138 0.0274 

SD 0.0663 0.0811 0.0303 0.0676 0.0166 0.0046 0.0473 0.0364 0.0377 0.0524 

BIAS  -0.0097 0.0112 -0.0062 0.0215 0.0264 0.0032 0.0078 0.0144 0.0008 

RMSE  0.0532 0.0493 0.0598 0.0565 0.0691 0.0489 0.0443 0.0420 0.0339 

COR  0.7534 0.7228 0.5861 0.8202 0.2291 0.6594 0.7712 0.8370 0.8540 

CSI  0.5000 0.4333 0.8095 0.5357 0.2667 0.5000 0.8095 0.2667 0.4286 

Table 6: Table exhibiting mean (MEAN) RR20ID copula probabilities station probabilities (%) 228 
for observations and models, standard deviation (SD), bias (BIAS), rmse (RMSE), Pearson 229 
correlation (COR) and CSI of models against observations. 230 

4.3. Observations-models comparison conclusions 231 

The events examined are rare among the available stations for the historical period. Copulas 232 
considering the dependence between the variables yield greater probabilities than the empirical method. 233 
More stations with non-zero probabilities enable more accurate validation of the models. To minimize 234 
uncertainties, smooth extreme underestimations or overestimations of WCCE probabilities that each 235 
model yields, and because ENSEMBLE shows better consistency among the projection models’ 236 
statistical indices, we use it for further analysis in the study. 237 

5. Historical period models WCCEs on maps 238 

In this section, WCCEs spatial distribution probabilities are compared between empirical and copula 239 
methods. This procedure is conducted separately for the two reanalysis products and the Ensemble 240 
mean of the projection models. 241 
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5.1. Reanalysis 242 

ERA5 and WRF_ERA_I WCCEs spatial distribution probabilities in Greece are displayed in this 243 
section. We display both reanalysis products, although ERA5 is the most recently developed reanalysis 244 
product, we exhibit also WRF_ERA_I since its much finer spatial resolution is more appropriate for the 245 
complex topography of Greece with many mountains and islands. 246 

 247 

 248 

Figure 6: RR20FD probabilities for (A, B, C) ERA5 and (D, E, F) WRF_ERA_I produced by (A, 249 
D) Empirical and (B, E) Copula and © = (B) –(A) and (F)=(E)-(D).   250 

 251 

 252 

Figure 7: RR20ID probabilities for (A, B, C) ERA5 and (D, E, F) WRF_ERA_I produced by (A, 253 
D) Empirical and (B. E) Copula a©(C) = (B)–(A) and (F) = (E)-(D).   254 

Both reanalysis products yield greater WCCEs probabilities in the Pindus mountains, although due to 255 
its finer spatial resolution, WRF_ERA_I display high probabilities at other mountainous regions 256 
located in Crete, Peloponnese, Evia Island and others. Also, in both WCCEs copula method yields 257 
higher probabilities, especially for WRF_ERA_I and the RR20FD case. Moreover, WRF_ERA_I 258 
displays a greater range than ERA5 with RR20FD probabilities reaching 14% and RR20ID 12% 259 
compared to 6% and 2% of ERA5 respectively. 260 

5.2. Projections Ensemble 261 

Figures 8 and 9yield that the Ensemble mean displays similar to the WRF_ERA_I spatial distributions 262 
of WCCEs. RR20FD and RR20ID probabilities reach 10.8% and 5.4% respectively. The copula 263 
method yields higher probabilities for both methods in mountainous regions with greater differences 264 
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displayed for RR20ID events in the Pindos mountain range and RR20FD exhibiting greater spatial 265 
distribution in differences between the two methods.  266 

 267 

 268 

Figure 8: RR20FD Ensemble probabilities for (A) Empirical and (B) Copula method. (C)=(B)-269 
(A). 270 

 271 

 272 

Figure 9: RR20ID Ensemble probabilities for (A) Empirical and (B) Copula method. (C)=(B)-(A). 273 

6. Past-Future Ensemble differences 274 

This section displays the differences of the Ensemble mean WCCEs probabilities, calculated for the 275 
empirical and the copula method, compared to the past probabilities presented in the previous section. 276 
The differences mapped are statistically significant at a 95% level using the Student’s t-test (Goulden, 277 
1939) comparing 25 annual values of the timeseries.  278 

6.1. RR20FD 279 

 280 
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Figure 10: RR20FD empirical method probability differences of future-past periods for (A) 281 
RCP4.5 and (B) RCP8.5 scenarios.  282 

 283 

Figure 11: RR20FD copula method probability differences of future-past periods for (A) RCP4.5 284 
and (B) RCP8.5 scenarios. 285 

 
Empirical RCP4.5 Empirical RCP8.5 Copula RCP4.5 Copula RCP8.5 

0<=Nc>-0.1 34 31 64 57 

-0.1<=Nc>-0.3 112 154 112 131 

-0.3<=Nc>-0.5 63 65 53 81 

-0.5<=Nc>-0.7 31 48 16 47 

-0.7<=Nc>-1 12 34 6 24 

-1<=Nc>-1.5 5 18 3 11 

Nc<=-1.5 2 5 3 4 

MAX D -1.8063 % -2.4988 % -1.9500 % -2.1392 % 

Table 7: ENSEMBLE Number of cells (Nc) in each category of probability difference (%) for 286 
RR20FD for empirical and copula method. MAX D denotes the maximum negative difference 287 
between future and past periods. Nv concerns only cells with statistically significant difference. 288 

From the results displayed in Figures 10 and 11 and in Table 7 RCP4.5 and RCP8.5 scenarios for the 289 
probabilities of the RR20FD events, we observe that in all cases future scenarios yield only negative 290 
values, meaning the reduction of RR20FD events in the 2025-2049 period compared to 1980-2004 291 
period in all mountainous regions of Greece. RCP8.5 yields a greater reduction of RR20FD 292 
probabilities than the RCP4.5 scenario both in spatial distribution and extreme values. The empirical 293 
method exhibits a greater reduction for the RCP8.5 scenario, although for the RCP4.5 scenario both 294 
methods yield similar results. 295 

6.2. RR20ID 296 
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 297 

Figure 12: RR20ID empirical method probability differences of future-past periods for (A) 298 
RCP4.5 and (B) RCP8.5 scenarios. 299 

 300 

Figure 13: RR20ID copula method probability differences of future-past periods for (A) RCP4.5 301 
and (B) RCP8.5 scenarios. 302 

 
Empirical RCP4.5 Empirical RCP8.5 Copula RCP4.5 Copula RCP8.5 

0<=Nc>-0.1 
193 229 166 210 

-0.1<=Nc>-0.3 
81 71 96 109 

-0.3<=Nc>-0.5 
23 20 33 37 

-0.5<=Nc>-0.7 
9 5 9 7 

-0.7<=Nc>-1 
1 0 1 3 

Nc<=-1 
1 1 1 1 

MAX D 
-1.5536 -1.0593 -1.3425 -1.1362 

Table 8: ENSEMBLE Number of cells (Nc) in each category of probability difference (%) for 303 
RR20ID for empirical and copula method. MAX D denotes the maximum negative difference 304 
between future and past periods. Nv concerns only cells with statistically significant difference. 305 

Similarly, to RR20FD, RR20ID events probabilities yield only zero or negative differences compared 306 
to the past for both scenarios. Empirical and copula methods yield similar results in distribution and 307 
extreme values. For both methods, the RCP4.5 scenario tends to higher reduction of RR20ID 308 
probabilities than RCP8.5, as observed in Table 8. 309 

The results for both scenarios and events show that independently from the choice of scenario, the 310 
probabilities of the events are expected to reduce almost equally in the near future (2025-2049) 311 
compared to the past period (1980-2004).   312 
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7. Discussion and Conclusions 313 

This work presents for the first time to our knowledge an extensive study of wet-cold compound events 314 
in Greece for the historical and future periods of 1980-2004 and 2025-2049, respectively. Models’ data 315 
from the EUROCORDEX initiative of 0.11° resolution and reanalysis data (ERA5 and ERA-Interim 316 
dynamically downscaled to 5km2) were used and validated for the determined WCCEs against the 317 
formally available observational datasets by HNMS for the country. The number of events and their 318 
probabilities of occurrence were determined by applying a fixed thresholds approach. Then, the 319 
bivariate validation of the models’ datasets against observations was performed for the determined 320 
bivariate thresholds. The probabilities of WCCEs were computed using the empirical method and the 321 
best-fitted copula for the bivariate timeseries for observational data, reanalysis, projection models and 322 
the Ensemble of the projection models. Copulas yield higher extreme events probabilities for most of 323 
the cases considering the dependence between temperature and precipitation.  324 

Although uncertainties may rise on the impact of WCCEs on mountainous areas due to the absence of 325 
observations on altitudes higher than 1000 meters, we trust the results yielded by the Ensemble. 326 
Besides the satisfying results from the bivariate validation, this trust is enhanced by the fact that winter 327 
period systems affect large areas crossing the country from north to south or from west to east (Cartalis 328 
et al., 2010) and therefore recorded by available stations. Also, in the cold period of the year, 329 
convective precipitation forced by orography is limited hence the doubt that the models do not simulate 330 
extreme rainfall in winter is reduced.  Moreover, the use of the Ensemble mean of the models reduces 331 
the uncertainties in models’ ability to simulate the probability of the occurrence of extreme events. The 332 
reduction of RR20-FD and RR20-ID WCCEs on mountains that the Ensemble of projection models 333 
predict in the future, might contribute to less heavy snowfall events and possibly less accumulated 334 
snow depth. If such a scenario will be verified, Greece faces the threat of losing the main sources of 335 
fresh water that come from melted mountain snow during spring or early summer in the near future 336 
period. The rise of temperature due to global warming is the main factor for the reduction of WCCEs 337 
(Supplementary Figures S5-S7), while also possible changes in patterns of teleconnections may affect 338 
winter conditions in Greek mountains, similar to NAO (North Atlantic Oscillation) pattern affecting 339 
Pindos mountains (López-Moreno et al., 2011) or the positive phase of EAWR (East Atlantic-Western 340 
Russia) pattern that leads to cold air advection from the north towards the southern part of Europe and 341 
the eastern Mediterranean region (Ionita, 2014). Still, understanding extreme events on complex 342 
terrains demands greater effort from the scientific community to enable solid predictions on the impact 343 
of climate change on the occurrence of these events.    344 
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Appendix  554 

NUMBER LOCATION ID LATITUDE LONGITUDE ELEVATION (m) YEARS 

1 Alexandroupoli 16627 40.85 25.917 4 1980-2004 

2 Elliniko 16716 37.8877 23.7333 10 1980-2004 

3 Ioannina 16642 39.7 20.817 483 1980-2004 

4 Irakleio 16754 35.339 25.174 39 1980-2004 

5 Kalamata 16726 37.067 22.017 6 1980-2004 
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6 Kastoria 16614 40.45 21.28 660.95 1980-2004 

7 Kerkira 16641 39.603 19.912 1 1980-2004 

8 Kithira 16743 36.2833 23.0167 167 1980-2004 

9 Larisa 16648 39.65 22.417 73 1980-2004 

10 Limnos 16650 39.9167 25.2333 4 1980-2004 

11 Methoni 16734 36.8333 21.7 34 1980-2004 

12 Milos 16738 36.7167 24.45 183 1980-2004 

13 Mitilini 16667 39.059 26.596 4 1980-2004 

14 Naxos 16732 37.1 25.383 9 1980-2004 

15 Rhodes 16749 36.42896 28.21661 95 1980-2004 

16 Samos 16723 37.79368 26.68199 10 1980-2004 

17 Skyros 16684 38.9676 24.4872 12 1980-2004 

18 Souda 16746 35.4833 24.1167 151 1980-2004 

19 Thessaloniki 16622 40.517 22.967 2 1980-2004 

20 Tripoli 16710 37.527 22.401 651 1980-2004 

21 Zakinthos 16719 37.751 20.887 5  1980-2004 

22 Florina 16613  40.78 21.43 619 1980-2002 

23 Aktio 16643 38.919 20.772 2 1980-2004 

24  Anchialos 16665 39.217 22.8 19 1980-2000 

25 Lamia 16675 38.883 22,433 12 1980-2004 

26 Andravida 16682 37.92 21.293 10 1980-2004 

27 Patras 16689 38.25 21.733 2 1980-1999 

28 Tanagra 16699 38.317 23.533 140 1980-2000 

29 Chios 16706 38.333 26.133 5 1980-2000 

30  Elefsis 16718 38.064 23.556 20  1980-2000 
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