
1 

 

 

Assessing decadal to centennial scale nonstationary variability in 

meteorological drought trends  

Kyungmin Sung1, Max Torbenson2, James H. Stagge1, 

1Civil, Environmental and Geodetics Engineering, The Ohio State University, Columbus, Ohio 5 
2Department of Geography, Johannes Gutenberg Universität, Mainz, Germany 

Correspondence to: Kyungmin Sung (sung.229@osu.edu) 

Abstract. There are indications that the reference climatology underlying meteorological drought has shown non-stationarity 

at seasonal, decadal, and centennial time scales, impacting the calculationinterpretation of normalized drought indices and 

potentially producinghaving serious ecological and, economic, and social consequences. Analyzing these trends in the 10 

meteorological drought climatology beyond the 100-year, which exceeds available  observation data period contributes to a 

better understanding of the non-stationary changes, ultimately determining whether they are within the range of natural 

variability or outside this range. To accomplish this, our study introduces a novel approach to incorporate unevenly scaled 

tree-ring proxy data (NASPA) with instrumental precipitation datasets by first temporal downscaling the proxy data to produce 

a regular time series, and then modeling climate non-stationarity while simultaneously correcting model induced bias. This 15 

new modeling approach was applied to 14 sites across the continental United States using the 3-month Standardized 

Precipitation Index (SPI) as a basis. Findings showed locations which have experienced recent rapid shifts towards drier or 

wetter conditions during the instrumental period compared to the past 1000 years, with drying trends generally in the west and 

wetting trends in the east. This study also found that seasonal shifts have occurred in some regions recently, with seasonality 

changes most notable for southern gauges. We expect that our new approach provides a foundation for incorporating various 20 

datasets to examine non-stationary variability in long-term precipitation climatology and to confirm the spatial patterns noted 

here in greater detail. 

1 Introduction 

Understanding meteorological drought trends is important as the entangled impacts of anthropogenic climate change and 

natural climate variability have complicated patterns of precipitation change over the last century (Ault, 2020; Schubert et al., 25 

2016). Drought severity and duration has changed over time at seasonal, interannual or centennial scales, with subsequent 

impacts on human and ecological systems (Trenberth, 2011; Van Loon et al., 2016). Many studies have investigated trends or 

shifts in drought related to climate change (Marvel et al., 2021; Williams et al., 2020; Mishra et al., 2010; Marvel et al., 2019; 

Trenberth et al., 2014). Previous research has relied heavily on observed or remotely sensed precipitation records, which often 
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do not exceed 100 years. Although such observations can capture modern drought trends, 100 years of data are not sufficient 30 

for determining whether recent drought trends are a part of long-term cyclic variability, due to recent unprecedented trends, or 

a combination of the two (Easterling et al., 2000; Cook et al., 2015).  

In addition, previous studies have indicated that precipitation seasonality has changed during the observed period: those 

changes include increases in the amplitude between the wet and dry seasons, or temporal shifts in the driest/wettest period 

(Marvel et al., 2021; Weiss et al., 2009; Pal et al., 2013). Even without substantial changes in the annual mean precipitation, 35 

shifts in precipitation seasonality can have significant impact on local ecosystems or man-made water management schemes 

like reservoirs that rely on storing and releasing seasonal flow. As a result, understanding seasonal cycles and non-stationary 

shifts in seasonality are important for building adaptive and robust water management schemes (Konapala et al., 2020). For 

climate projections of the next 100 years, Marvel et al. (2021) found projected changes in annual precipitation cycles across 

the U.S. Midwest and Upper Great Plains. This region is projected to undergo a shift in peak precipitation to earlier in the year 40 

without substantial changes in precipitation. This study also projected an increase in precipitation during the wettest season 

(winter) in the Northwest and Southeast US, thereby increasing the seasonal variance in precipitation. Changes in seasonality 

or seasonal variance can be better understood when viewed in historical context using a much longer time window to determine 

whether they are within the range of natural climate variability or outside this range (Coats et al., 2015).  

Therefore, much longer time scales are needed for a comprehensive understanding of non-stationary drought trends, preferably 45 

using a multi-centennial time scale (Torbenson and Stahle, 2018; Herweijer et al., 2007; Cook et al., 2010a; Diffenbaugh et 

al., 2015). Paleoclimate reconstructions use environmental proxies, such as tree-ring chronologies or speleothem records that 

physically record some aspect of climate, and can cover a much longer period than the instrumental observations (Cook et al., 

2016). For example, this study uses a reconstruction of precipitation across North America based on tree-rings, from which 

infer the relative availability of regional precipitation or soil moisture can be inferred based on increased or decreased from 50 

the annual growth. This particular reconstruction is a gridded continental-scale reconstruction, rather than a regional or local 

reconstruction. Large-scale gridded reconstructions sacrifice some local precision, but have the benefit of generating a single, 

complete dataset based on a common methodology, which can leverage a larger catalog of chronologies. Several such gridded 

hydrometeorological reconstruction datasets using tree-ring proxies are available across North America. The North American 

Drought Atlas (NADA; Cook et al., 1999) reconstructs Palmer Drought Severity Index (PDSI; Palmer, 1965) in June to August 55 

(JJA) from 0-2006 A.D. and has been used to determine historic drought severities (Cook et al., 2010b; Cook and Krusic, 

2008). The North American Seasonal Precipitation Atlas (NASPA) is another precipitation reconstruction recently developed 

with two distinct seasons: December to April (DJFMA) and May to July (MJJ) (Stahle et al., 2020). The NASPA dataset 

provides both SPI and averaged precipitation for both the cool and warm seasons. The NASPA is used here since it covers the 

past 2,000 years and contains cool and warm season records for each year. Over 2,000 years of sub-annual scale records enable 60 

an investigation of non-stationary drought trends and seasonal shifts across multi-centennial scale if they can be combined 

with recent observed instrumental datasets (Trenberth et al., 2014; Marvel et al., 2019; Cook et al., 2016). 
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Despite the value of long reconstructions, comparing meteorological drought trends across observed and proxy-based 

reconstruction datasets is challenging as these data types are often not directly compatible (Baek et al., 2017; St. George et al., 

2010). The first challenge is that each dataset often has non-negligible biases. Biases in proxy reconstructions can be caused 65 

by indirect measurement of the target variable, e.g., precipitation, by way of tree-ring growth. For example, bias can be 

introduced during the standardization process, designed to isolate the interannual signal from the long-term geometric growth 

of a tree. Trees also have physiological responses to continuous extreme drought or pluvials, which can limit variance at the 

extremes (Franke et al., 2013; Robeson et al., 2020). Even among gridded datasets based on gauge observations, bias can be 

introduced by the use of imperfect transforming algorithms (Sun et al., 2018), due to orographic induced bias, underestimation 70 

of trace precipitation amounts (Goodison et al. 1998), or wind-related undercatch (Pollock et al., 2018).  Thereby, precipitation 

measurements for the same period can differ across datasets. These biases can cause one dataset to systematically under- or 

overestimate precipitation compared to other datasets (Robeson et al., 2020), or to modify the range of estimates. Quantifying 

and minimizing those biases is necessary to merge disparate datasets and analyze a common trend across various datasets.  

A second challenge for merging reconstructions and observations is their heterogeneous spatial and temporal scales (Cook and 75 

Krusic, 2008). For example, the NASPA reconstructions provide only two time series per year with different precipitation 

periods: May-July and December – April. For example, the NASPA reconstructions are made up of two values per year, but 

the seasonal windows of the time series are of different length and do not span the entire year (Fig. 1). Instrumental datasets 

can have sub-daily, daily, or monthly temporal scales (Howard et al., 2021). Therefore, time scale must be unified if one is to 

merge instrumental and reconstructed datasets to observe common non-stationary seasonal trends. In addition, the spatial 80 

resolution of gridded datasets varies, and centers of those grid cells are not always matched. Thus, matching co-located grid 

cells through creating a common spatial resolution is an important aspect in representing common characteristics in 

precipitation (Abatzoglou, 2013).   

This study is designed to address the challenge of constructing 2000 years of precipitation climatology by merging 

multipleprecipitation datasets with varied biases and temporal scales to calculate a common Standardized Precipitation Index 85 

(SPI; Guttman, 1999) meteorological drought series that incorporates non-stationarity. The objectives of this study are 

therefore to (1) construct downscaled the NASPA precipitation time series from bi-annual into monthly scale with 3 months 

average resolution times resolution with 3month averaged productcale, (2) identify unique biases inherent in different 

precipitation data and remove those biases, and ultimately (3) construct a 2000 years continuous climatology model that can 

capture century scale shifts in the 3-month precipitation. This approach mimics the underlying distribution methodology of the 90 

Standard Precipitation Index.  The continuous climatology derived from proxy reconstructions and modern observations is the 

true goal, with the first two objectives functioning as necessary intermediate steps towards this ultimate goal.time series of 

modeled trend in 3-month averaged precipitation over 2000 years using multiple datasets.  analyze non-stationary long-term 

trends varying by season. 

 Here, we first temporally downscale NASPA data using a statistical downscaling technique, K-nearest neighbors (KNN). 95 

Then, we develop a model to simultaneously capture non-linear trends while accounting for unique biases across proxy and 
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instrumental datasets by decomposing information from all datasets into their shared long-term trends, seasonality, and data-

specific bias. Ultimately, our approach allows us to simultaneously model long-term trends in different seasons.  

Here, we downscale NASPA data to a monthly scale using K-nearest neighbors (KNN). KNN is a statistical downscaling 

technique widely used in hydrologic time series (Raje and Mujumdar, 2011; Gangopadhyay et al., 2005; Gutmann et al., 2012) 100 

such as reconstructing annual streamflow from tree-ring chronology data or producing local-scale precipitation or temperature 

time series using neighboring climate stations (Gangopadhyay et al., 2005, 2009). Our study adopts this method to temporally 

downscale NASPA data from bi-annual to a monthly scale. Second, we develop a model to simultaneously analyze unique 

biases in proxy and instrumental datasets by decompose signals from all datasets into the shared long-term trend and unique 

seasonality components, account difference as a biasfor them, and then analyze a non-linear trend common across the datasets.  105 

Ultimately, our approach allows us to simultaneously model long-term trends in different seasons.  

2 Methodology 

This study seeks to merge 3-month averaged precipitation data from two datasets derived from observations (GridMET and 

CRU) with the North American Seasonal Precipitation Atlas (NASPA) reconstructions by accounting for underlying biases 

before identifying a common long-term signal. The overall approach is to first temporally downscale reconstructed NASPA 110 

precipitation data into a monthly resolution.  

 

For  the first step, the temporal downscaling of NASPA precipitation, we applied the statistical downscaling technique, K-

nearest neighbors (KNN). KNN is a statistical downscaling technique widely used in hydrologic time series (Raje and 

Mujumdar, 2011; Gangopadhyay et al., 2005; Gutmann et al., 2012) such as reconstructing annual streamflow from tree-ring 115 

chronology data or producing local-scale precipitation or temperature time series using neighboring climate stations 

(Gangopadhyay et al., 2005, 2009). A hierarchical Generalized Additive Model (GAM) model is then developed and applied 

to merge the datasets and analyze trends. This approach is tested at 14 sites across the continental US. Section 2.1 presents 

precipitation datasets used in this study, while Section 2.2 provides background on SPI calculation. Section 2.3 introduces the 

K-nearest neighbor (KNN) novel approach for temporal downscaling of the reconstructed precipitation and Section 2.4 120 

describes the GAM model for merging disparate datasets and analyzing meteorological drought trends using the SPI 

framework. 
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2.1. Data 125 

An additional precipitation dataset, from tThe Global Precipitation Climatology Center (GPCC; Becker et al., 2013), was used 

to temporally downscale/disaggregate the NASPA into monthly values as this was the instrumental target for the NASPA 

reconstructions. The underlying precipitation datasets used in the analyses presented here are as follows: 

NASPA: The North American Seasonal Precipitation Atlas is a dataset of gridded reconstructions of precipitation, based on a 

network of 986 tree-ring chronologies from across the North American continent (Stahle et al., 2020). Precipitation totals and 130 

SPI are reconstructed for December–April (DJFMA) and May-July (MJJ) across a 0.5° x 0.5° grid, resulting in a total of 6812 

grid cells (Stahle et al., 2020). The length of the reconstructions varies across space and between seasons but have a maximum 

of over 2,000 years at many locations, particularly in the western US.  

The NASPA reconstructions target Global Precipitation Climatology Center data (GPCC), applied at each GPCC grid point 

using 16 ensembles of tree-ring chronology-based regressions of differing weights (Stahle et al., 2020). An additional NASPA 135 

reconstruction dataset for MJJ exists for the period 1400-2016, in which shared variance between DJFMA andthe MJJ 

precipitation estimates are removedwere re-processed to remove any persistent signal from the DJFMA reconstruction from 

the following MJJ reconstruction (Torbenson et al., 2021).  Our model uses the DJFMA and original, non-processed MJJ 

reconstructions from the 16-ensemble mean as to maximize the period of study and because the GAM model accounts for 

some level of persistence.   140 

CRU TS: Climate Research Unit TS4.01 (CRU) is a 0.5° x 0.5° gridded dataset of monthly climate. It is based on individual 

station observations which are directly interpolated to a gridded scale (New et al., 2000; Harris et al., 2020). This study used 

version 4.01 which covers the period 1901-2018 (Harris et al., 2020). The CRU dataset was used because it is a well validated 

dataset that provides a long temporal coverage based on ground stations.  

GridMET: The Gridded Observed Meteorological data (GridMET) is a gridded (1/24° x 1/24°) dataset of daily resolution 145 

available from 1950–2020, for the US (Maurer et al., 2002). GridMET is constructed by combining direct daily gauge 

observations with regional scale reanalysis to fill gaps (Abatzoglou, 2013). In this study, we assume the GridMET as a “ground 

truth” and use it to correct biases in CRU and NASPA because the GridMET incorporates satellite data, making it highly 

accurate and spatially well-distributed with high resolution.   

GPCC v7: The Global Precipitation Climatology Project (GPCC) is a gridded precipitation product built on gauge-based 150 

precipitation. The monthly-resolved GPCC v7 covers the period 1901 to 2013 at a 0.5° x 0.5° spatial resolution (Becker et al., 

2013). Since the NASPA reconstructions were originally developed at a gridded scale via regression using GPCC data, and 

further validated and calibrated based on GPCC data, we assumed that the GPCC and NASPA datasets shares regional and 

temporal characteristics. Since the NASPA reconstructions were originally calibrated based on GPCC data, we assumed that 

precipitation time series of GPCC and NASPA share the same probability distribution function at the same grid cell. Thus, this 155 

study uses monthly GPCC data to best mimic the intra-annual characteristics for temporally downscaling and disaggregating 
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NASPA estimates to monthly time series. GPCC is only used for temporal disaggregation of NASPA data and is not included 

in the hierarchical GAM model.   

2.2 Drought Measurement 

Drought is defined as a lack of water within the hydrologic cycle relative to the given climatology of a location. Meteorological 160 

drought refers to a deficit of precipitation relative to typical conditions for a location and period. The severity of meteorological 

drought is often measured by the Standard Precipitation Index (SPI). The SPI is calculated by fitting n-days accumulated 

precipitation time series to a set of probability distributions for each period’s climatology and then using these distributions to 

convert accumulated precipitation into the standard normal distribution (Lloyd‐Hughes and Saunders, 2002; Stagge et al., 

2017, 2015; Guttman, 1999). SPI values therefore represent the number of standard deviations from typical conditions for a 165 

site and time of the year. The SPI is widely used for studying or monitoring meteorological drought, particularly by the U.S 

Drought Monitor and World Meteorological Organization (WMO). It has unique strengths of using precipitation only: a simple 

data requirement and calculation process, and straightforward interpretation between averaged precipitation and drought 

severity (Dai, 2011; Ukkola et al., 2020; Svoboda et al., 2002).  

In this study, we use a 3-month moving average of precipitation (SPI-3) to provide seasonal characteristics of drought (Patel 170 

et al., 2007). We present SPI-3 values of -1.5, 0, and 1.5, which are equivalent to the 6th percentile, mean, and 94th percentile 

thresholds of a fitted two-parameter Gamma distribution. These thresholds represent the precipitation associated with severe 

dry anomaly, typical, and wet conditions anomaly for each location.  

2.3 Temporal downscaling using K nearest neighbor resampling 

K-nearest neighbor (KNN) is a downscaling technique designed to estimate some target information by searching a set of 175 

historical catalogs of the target vector and finding the k most similar analogs, where k can be any number of the user’s choice 

(Gangopadhyay et al., 2005). In this study, monthly GPCC time series were used as sampling catalogs for selecting target 

vectors (annual precipitation sequences) based on NASPA values. More specifically, the goal is to insert K historical 13-month 

precipitation sequences from the GPCC library into a given year of the NASPA reconstruction based on similarity to the 

recorded SPI values during the prior and current year. Because this is a resampling approachTo do this, multiple (k = 10) 180 

annual historical sequences are inserted for each year of the reconstruction to approximate plausible monthly precipitation 

patterns that most closely match the three NASPA reconstructed known periods.   
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 185 

Figure 1. Framework for the temporal downscaling process. Monthly scale NASPA (3-months averaged precipitation) time series is 

constructed using this process. This method is applied for every year of reconstruction.  
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Figure 1 outlines the temporal downscaling process using KNN. For each year, NASPA values were constructed as the target 

vector using three data points: SPI-3 during the previous year’s MJJ period, SPI-5 in this year’s DJFMA period, and SPI-3 in 

this year’s MJJ period. SPI-3 and SPI-5 values calculated from the GPCC instrumental period (1901-2013) for the same 190 

location were constructed as the data library.  GPCC was used because it formed the basis for the original NASPA 

reconstruction (Stahle et al., 2020).  Second, for each year, we calculated the Euclidean distances between the target vector 

from NASPA and the available GPCC library to select 10 sequences (k=10) from the GPCC SPI time series which have the 

closest Euclidean distance to the target NASPA SPI values. Note that resampled sequences are permitted to be any historical 

13-months SPI series, regardless of whether the months align, increasing the number of available sequences from 113 (years 195 

in the GPCC dataset) to 1356 (years × months). This is possible because SPI is agnostic to season, each month follows a 

standard normal distribution. Then, the ten monthly resampled SPI-3 time series were converted back to the 3-months   

precipitation using 2-parameter Gamma distributions derived from the GPCC dataset. Lastly, the 10 sets of precipitation 

timeseries were averaged and inserted into the targeted year of the NASPA.  averaged and inserted into the targeted year of 

the NASPA. Lastly, the substituted SPI-3 time series were converted back to the 3-months averaged precipitation using the 2-200 

parameter Gamma distributions from each month of GPCC dataset. 

Overall, our downscaling approach provides a few advantages: first, it reflects the compatibility of the climate field as it 

searches analogs from the same location. Second, direct resampling based on similarity from the GPCC sample field 

incorporates realistic seasonal progression and the 3-month structural persistence of the SPI.  Third, the K neighbors create an 

ensemble of equally likely time series, identifying an envelope of feasible time series when there is no information between 205 

the 3 points from the NASPA reconstruction. incorporating uncertainty (Gangopadhyay et al., 2005).  

Downscaling skill was measured by normalized mean absolute error (nMAE) using the following equations: 

𝑛𝑀𝐴𝐸 =  
∑ |𝐺𝑃𝐶𝐶 − 𝑁𝐴𝑆𝑃𝐴|𝑀𝑜𝑛𝑡ℎ,𝑦𝑒𝑎𝑟

∑ 𝐺𝑃𝐶𝐶 𝑀𝑜𝑛𝑡ℎ,𝑦𝑒𝑎𝑟

 
(1) 

where GPCC represents the observed precipitation during the instrumental period and NASPA represents the ensemble mean 

of the reconstructed precipitation after applying the KNN downscaling to the NASPA reconstruction. 

2.4 Bias correction using Hierarchical GAM  210 

Generalized additive models (GAM) are statistical models that permit regression using non-linear smooth functions instead 

of, or in addition to, linear covariates. GAMsS are a subset of Generalized Linear Models (GLM), meaning their regression 

terms can represent parameters for data with distributions other than Normal. However, where most GLMs apply linear 

regression principles to model a distribution’s parameters, GAMs can include non-linear terms (Simpson, 2018; Wood, 2008; 

Pedersen et al., 2019). When non-linear terms are applied to time series data, GAMs also permit spanning irregularly sampled 215 

data to model complex and non-linear drought trends. This method was applied to create a single, common estimate of the 

temporally varying Gamma distribution parameters representing precipitation climatology by incorporating information from 
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multiple biased data products. We refer to the process of accounting for seasonal bias in the mean and shape parameters from 

different data sets as “bias correction” for the remainder of this paper because it mirrors the process of bias correction by 

moment matching. However, unlike a separate bias correction step, this is performed within the GAM model, permitting 220 

confidence intervals around each of the bias correction terms.  

 

 

GAM models have been previously applied to accumulated precipitation data to estimate the parameters of the 2-parameter 

gamma distribution SPI under non-stationary climate conditions (Stagge and Sung, 2022; Shiau, 2020; Sung and Stagge, 2022). 225 

This study relies on the non-stationary SPI approach introduced in Stagge and Sung (2022) and applied in Sung and Stagge 

(2022). In this approach, the two parameters (mean and shape) of Gamma probability distribution are modeled as slowly 

change througha function of two covariates of time: year (to capture multi-decadal trends in certain month) and month (to 

capture recurring seasonality). Here, we expand this approach, by adding a hierarchical grouping variable to simultaneously 

model common seasonal-specific long-term trends across datasets, while also incorporating variability at the group level 230 

following the approach of Pederson et al. (2019). When applied, to our model, this involvesthis model decomposes information 

from all datasets a smoothed long-term trend that is common to all datasets (CRU, GridMET, and NASPA) into a smoothed 

long-term trend that is common to all datasets and also an additional annual seasonality smoother that varies slightly by dataset 

to account for bias relative to GridMET. In this way, there is a single common trend, with an adjustment added to shift the 

mean and shape parameters up or down seasonally based on the data source. and differences for the seasonal terms that repeat 235 

annually at the group-level (climate dataset) (Pedersen et al., 2019). This model estimates the mean and shape parameters of 

2-parameter Gamma distribution.  

The detailed model framework is shown below in Equations 1 and 2.  

 

𝑃3 𝑚𝑜𝑛𝑡ℎ,𝑚,𝑦 = 𝑔𝑎𝑚𝑚𝑎(µ, 𝛼)   (
𝑚: 𝑚𝑜𝑛𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑦𝑒𝑎𝑟,

 𝑦: 𝑦𝑒𝑎𝑟 
) 

𝑃3𝑚𝑜𝑛𝑡ℎ = 𝑔𝑎𝑚𝑚𝑎(𝜇, 𝛼) 

 

𝜇 = 𝛽0𝜇,𝑚𝑜𝑑𝑒𝑙 (
𝐶𝑅𝑈

𝑁𝐴𝑆𝑃𝐴
𝐺𝑟𝑖𝑑𝑚𝑒𝑡

) +  𝛽𝑠1𝜇𝑓𝑠_𝜇𝑓 (𝑋𝑚𝑜𝑛𝑡ℎ, by = 
𝐶𝑅𝑈

𝑁𝐴𝑆𝑃𝐴
𝐺𝑟𝑖𝑑𝑚𝑒𝑡

model) + 𝛽𝑠2µ2𝑓𝑓𝑡𝑒_µ(𝑋𝑦𝑒𝑎𝑟 , 𝑋𝑚𝑜𝑛𝑡ℎ ) 

(1) 

 

1

log (𝛼)
=  𝛽0𝛼 (

𝐶𝑅𝑈
𝑁𝐴𝑆𝑃𝐴

𝐺𝑟𝑖𝑑𝑚𝑒𝑡
) + 𝛽1𝛼 𝑓𝑠_𝛼 (𝑋𝑚𝑜𝑛𝑡ℎ, 𝑏𝑦 =

𝐶𝑅𝑈
𝑁𝐴𝑆𝑃𝐴

𝐺𝑟𝑖𝑑𝑚𝑒𝑡
) + 𝛽2𝛼 𝑓𝑡𝑒_𝛼(𝑋𝑦𝑒𝑎𝑟, 𝑋𝑚𝑜𝑛𝑡ℎ ) 

(2) 
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where P3 month,m.y represents the 3-month moving average precipitation at year y and month m. ,The precipitation is fitted in 240 

Gamma probability distribution, where have  µ represents the (mean), and α (shape parameter). The 𝛽s are different parameters 

of each spline function, 𝑓𝑠 and 𝑓𝑡𝑒, which denote cyclic and tensor spline, respectively.  represents the shape parameter of the 

gamma distribution. The gamma distribution scale parameter is calculated as β=µ/α where β represents the scale parameter. 

The underlying principle of the model is that there exists a single best estimate of the precipitation distribution at any given 

time, described by the mean and shape parameters of the gamma distribution that changes seasonally 𝛽1𝑓𝑠(𝑋𝑚𝑜𝑛𝑡ℎ,𝑏𝑦 =245 

𝑑𝑎𝑡𝑎𝑠𝑒𝑡)  and can also change slowly on a multi-decadal scale, fte (Xyear, Xmonth) with constant y intercept,  𝛽0(𝑑𝑎𝑡𝑎𝑠𝑒𝑡). 

Similar to quantile mapping bias correction (Lanzante et al., 2018; Ho et al., 2012), the 𝛽0,𝑚𝑜𝑑𝑒𝑙 + 𝛽1𝑓(𝑋𝑚𝑜𝑛𝑡ℎ,𝑏𝑦 =

𝑑𝑎𝑡𝑎𝑠𝑒𝑡)B0, model+B1 f (Xmonth, model) terms in both shape and mean parameters allow for adjustments in mean and shape based 

on the month and the model. The model is therefore capable of modeling trends and correcting data-induced bias 

simultaneously. 250 

The single common tensor product spline smoother (fte(Xyear, Xmonth)) is shared across all datasets to model the interaction of 

long-term trends (Xyear) relative to season (Xmonth) using smoothly changing parameters for the two dimensions (year and month). 

A tensor product spline is an anisotropic multi-dimensional smoother, meaning it can model the interaction of variables with 

different units and can assign different degrees of smoothing for each direction, as is necessary for dimensions of month and 

year.  Estimating 𝛽2𝜇and 𝛽2𝛼 in terms of year and month allows for non-linear annual trends for each month while constraining 255 

these trends to be smooth through time. We constrain the smoother with control points (knots) every 70 years for mean and 

shape parameters to approximate climate variability on decadal scales while preventing excessive sensitivity/volatility.  As 

such, the tensor product can simultaneously model typical wet or dry seasonalityseasonal precipitation regime, shifts of those 

periods to earlier or later in the year, and non-stationary changes in the long-term. The tensor spline approach to model trends 

in two time dimensions follows the methodology of Stagge and Sung (2022).  260 

The first two terms derive intercept and seasonality distinctive to each dataset. Group level smoothersThe first term 

(𝛽0 (𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑠)) accounts for dataset specific intercept and the second term (𝛽1𝑓𝑠(𝑋𝑚𝑜𝑛𝑡ℎ , by = 𝑑𝑎𝑡𝑎𝑠𝑒𝑡)) accounts for model 

dataset specific seasonality. corrections.  and a modeldataset specific intercept. Cyclic spline functions (𝑓𝑠) were applied for 

modeling the seasonality bias term, fs(Xmonth by=modeldataset). A assuming a cyclic function for the recurrent monthly term 

constrains the model so that late December and early January have similar values, matching up to their second derivative. This 265 

term is stationary, i.e., does not change year to year. The f(Xmonth by=modedatasetl) term uses group level smoothers for this 

seasonal bias spline, so that each dataset applies unique seasonal adjustments to the common tensor product spline. A 

datasetmodel-specific intercept, β0,model (dataset) was also included to capture consistent biases between datasets. The variations 

of smoothing functions and parameter βs are modeled using ‘mgcv’ packages in R (Wood, 2008).  
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Bias correction was conducted based on three assumptions: (1) the GridMET dataset is not systematically biased (Yang et al., 270 

2017), (2) the magnitude of bias can differ by season, and (3) biases are stationary in the long-term, i.e. biases during 

overlapped periods are representative of biases throughout the rest of the data. Following the first assumption, when plotting 

results, we adjust CRU and NASPA parameters to match the GridMET dataset. The second and third assumptions are addressed 

by the 𝛽0,𝑚𝑜𝑑𝑒𝑙 +  𝛽1𝑓(𝑋𝑚𝑜𝑛𝑡ℎ,𝑏𝑦 = 𝑑𝑎𝑡𝑎𝑠𝑒𝑡)B0,Model+B1 f(Xmonth, by=model) permitting different bias corrections by month 

and model, which are estimated during overlapping periods and fixed outside this period. 275 

 

The significance of the modeled trend is tested using the instantaneous first derivative method. This method calculates the first 

derivative of modeled trend with 1000 randomly drawn estimates of the modeled mean and shape parameters through time (by 

year). Then, we calculate 95% confidence interval around the first derivatives to indicate periods where the trend is 

significantly different from zero, i.e., the trend is increasing or decreasing. The non-linear trend analysis approach overcomes 280 

the limitation of simple linear significant tests which only capture monotonic changes. In doing so, it is not possible to discuss 

a single “trend”, but once can discuss whether the distribution mean is significantly increasing or decreasing at a given time, 

represented by the instantaneous first derivative. As such, this method has the benefit of preserving all non-linear and non-

stationery characteristics in modeled trends, while providing estimates of significant changes. The results of this analysis are 

shown in Fig. S5.  285 

 

 

 

Figure 2. Gauge site locations. The abbreviation of each locations are as follows.1: Aber,WA. 2. Grd,MT. 3. Mor,MN. 4. Nyc,NY. 5. 

Den,CO. 6. Mrv, OH. 7. Los, CA. 8 Mtn, CO. 9. Okc,OK. 10.Sbw, NC. 11. Phx, AZ. 12. Roe, NM. 13. Wax, TX. 14. Alb, GA 290 

 

The developed model was applied to 14 locations across the continental United States (Figure 2; Table 1). These sites were 

chosen based on relatively long instrumental records, adequate NASPA reconstruction skill, and to represent a wide range of 
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climate regions. NASPA reconstruction skills are investigated via calibration and validation statistics, measured by the 

coefficients of multiple determination (R2), is by data creators ((Stahle et al., 2020). We show One of the calibration statistics, 295 

the coefficient of multiple determination (R2), are presented in table 1.  calculated for NASPA calibration period,1928-1978 

based on GPCC data  shown in Table 1. We avoid determining whether the datasets are acceptable or not through these 

statistics, rather to clarify which seasons or regions have better skills.    

 

 300 

Table 1. List of sites considered in this study. The number for each site refers to the location in Fig. 1. NASPA reconstruction skill 

for the cool (DJFMA) and warm (MJJ) seasons are presented as R2. 

 

3 Results 

3.1 Temporally downscaled monthly NASPA time series 305 

In order to merge the NASPA data with CRU and GridMET, the irregularly spaced NASPA must first be temporally 

downscaled, or disaggregated, to a regular monthly time step and 3-month duration. The downscaled NASPA (dsNASPA) 3-

months averaged time series was constructed at a monthly scale and given the ds- prefix to distinguish it from the original 

NASPA reconstruction. Figure 3 shows three example years for two sites with very different climatology, showing the 

ensemble of 10 selected nearest neighbors (pink), the resultant dsNASPA estimate (black), and the true value from the GPCC 310 

for those years when data is available (1950 and 2010, blue). Each figure displays 13 months, or one unit of the KNN 
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downscaling process, from the previous year’s July to the current July. The downscaling results at all study sites are shown in 

Figure S1 and S3.  

 

Figure 3.Comparing downscaled NASPA (Black), 10 Nearest Neighbors (pink) and GPCC (blue dashed) at Aberdeen, WA (upper) 315 
and Oklahoma City, OK (lower). The marked month in X-axis refers the last month of 3months-rolling average. 

 The dsNASPA generally agrees with the GPCC, especially in capturing seasonality (Fig. 3 and Fig. S1). Downscaling skill is 

generally good in the season between DJF-MJJ where the NASPA reconstruction covers all three months (Fig. 3 and Fig.4). 

July SPI-3 (MJJ) often produces the smallest nMAE, which is logical given that the July SPI-3 period exactly overlaps with 

the warm season MJJ from the NASPA.  Thus, the downscaling process has good information during this period and is not 320 

required to do as much.  

There are a few exceptions showing large nMAE in this period (Figure 4). This occurs in Los, CA, Phx, AZ and Roe, NM 

which have very low precipitation during the warm season. This large error is related to not capturing occasional large 

precipitation events using SPI based on the GPCC library and, more importantly, was further exacerbated by extremely small 

values in the denominator of the nMAE. The Figures in S3 illustrate a few large precipitations in these regions drive large 325 

nMAE (scatter plot), however, dsNASPA still well matches with GPCC (time series).Those occasional large discrepancies 

that drive large nMAE values in above-mentioned low precipitation regions can be seen in Fig S2, compared to other regions.  

Despite the limitation, downscaling accurately predicts the general precipitation pattern in terms of seasonal and long-term 

average precipitation, with nMAE values generally between 0.1 - 0.5. We compared performance of the dsNASPA with a 

highly naive alternative (assuming the mean of GPCC climatology) and found that dsNASPA provides a clear signal in the 330 

period with NASPA information (blue shaded period in Fig 4). As expected, the dsNASPA provides less information in the 

interpolation period where NASPA estimates are not available. However, during the gap seasons, the dsNASPA still produces 
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positive correlation with observations, useful for measuring climatological shfits, and greatly reduces extreme errors created 

by the naive estimator in the semi-arid West. For regions other than the semi-arid locations described above, errors during 

periods of good NASPA coverage occur primarily due to the errors between sampled GPCC and NASPA (Figure S3). For 335 

example, the dry bias shown in July (MJJ) between dsNASPA and GPCC in 1950 at Oklahoma City (Figure 3, center) is 

caused by uncertainty in the original NASPA dataset, which caused the converged point of nearest neighbors (black) to 

underestimate precipitation relative to the GPCC observation (blue). May and June (MAM and AMJ, respectively) are 

reproduced nearly as well, given that these periods share coverage from the cool (DJFMA) and warm (MJJ) reconstructions.  

Later periods of the 5-month cool season reconstruction, March (JFM) and April (FMA), show reasonably good accuracy. 340 

Error increases through fall and winter as the downscaling approach much interpolate across a temporal gap between NASPA 

reconstructions (Fig. 4 and Fig. S3). This is indicated by much broader resampled estimate ranges (Fig. 3 and Fig. S3) during 

the late fall and early winter.   

 

Figure 4. nMAE to indicate downscaling skills at each location and its median. 345 

3.2 Investigating Model bias 

Here we investigate how dataset bias is quantified in the model. As mentioned, our model accounts for two types of bias: a 

consistent bias for a given dataset across the entire year and seasonal specific bias. These bias terms were estimated for both 

the mean and shape parameters.   

Typical results for the Monte Vista, CO gauge show how these biases are captured in a single model (Fig. 5). Fig. 5 shows the 350 

non-stationary mean estimate for each dataset, represented by colored lines, and the range from SPI = -1.5 to +1.5 as grey 

shaded regions. Note that the non-stationary mean lines all follow the same trend, simply adjusted up or down based on bias. 

At this station, dsNASPA and CRU tend to underestimate precipitation relative to the GridMET benchmark across all four 

seasons. This consistent offset may be due to the significantly coarser resolution of NASPA and CRU, which may not capture 

elevation effects, particularly in this mountainous region. The magnitude of bias also differed by season in this example, with 355 
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the greatest differences visible during the ASO season (Fig. 5). Note that the four periods we highlight in this study were 

purposefully chosen to mimic NASPA availability, anchored by the MJJ 3-month period, rather than the more commonly used 

seasons (DJF, MAM, JJA, SON). 

In addition to bias in the mean parameter, it is possible to detect model bias in the shape parameter, which controls variance, 

and thus the range between SPI = -1.5 and +1.5.  The most notable bias in the shape parameter for the Monte Vista, CO 360 

example is for the dsNASPA, particularly during ASO, where the shape parameter is significantly overestimated, thereby 

decreasing the variance for the same mean (Fig. 5). This is logical, as the ensemble resampling approach likely decreased 

extremes for the ASO period where there is no direct NASPA information. The shape parameter bias is negligible for the FMA 

and MJJ periods, which have full NASPA coverage. Shape parameter bias results for Monte Vista, CO is typical of other 

gauges studied here, with largest bias during the interpolated ASO period and little bias in periods with good NASPA 365 

information.  

 

Figure 5. Long-term trends of each dataset for 4 periods at Monte Vista, CO. Mean parameter estimates for each dataset are 

represented as differently colored lines, while the SPI -1.5 to 1.5 range for each dataset is indicated by grey regions. 

We present the results for all other regions in Fig. S4. The results indicate that the shape biases are largely dependent on the 370 

season, whereas mean biases are more dependent on the gauge. Notably, the ASO season shows large biases in the shape 

parameter. This is primarily because the dsNASPA in this season can’t represent occasional extreme precipitation values, 

inducing an underestimation of its variance. In contrast, the MJJ season shows considerably less bias since the dsNASPA was 

developed from complete precipitation estimate in NASPA. A few exceptions exist in Mtv, CO and Grd, MT, where have 
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large biases in the mean parameters across all seasons, possibly due to topographic effects between the gauge locations in these 375 

mountainous regions.  

3.3 Constructing long-term trends 

By accounting for the model-induced bias described in Section 3.2 and adjusting all datasets to match GridMET, we were able 

to generate a 2000-year model of non-stationary precipitation trends for each gauge. The modeled long-term trends 

incorporating bias correction across all instrumental and proxy datasets in Albany, GA and Monte Vista, CO are presented in 380 

Figure 6 as examples to illustrate the results of this approach. Figure 6 represents the long-term mean for each season as a line 

with a shaded range between SPI of -1.5 and +1.5, similar to Figure 5. The solid black line shows the common, long-term 

trend of the mean. Fig. 5 focuses on the period 1400 – 2020 year when the original NASPA dataset has the best reconstruction 

skills (Stahle et al., 2020).  

It is noteworthy that all seasons in Albany, GA have experienced abrupt trend changes in recent years, but the direction of 385 

change differs by season. Figure 6a shows the warm season (MJJ) has undergone a long-lasting wetting trend from the 1800s 

to 1900, followed by an abrupt drying trend during the 20th century. Those recent rapid drying trends are manifested in both 

the mean (SPI = 0) and wet anomalies condition (SPI = 1.5). NDJ shows a wetting trend beginning in the mid-1800s and 

continuing to the present for both wet and dry anomalies conditions. The current NDJ mean in current years  (2000-2020) is 

the wettest condition of the last 1000 years (Figure 6a). This agrees with previous findings using the NASPA dataset which 390 

have identified the southeast US including Albany, GA as experiencing the greatest positive precipitation trend during the 

DJFMA cool season (Stahle et al., 2020). 
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Figure 6. Long-term trends in 3 months NSPI (black line) and averaged precipitations in four periods. The yellow shaded area 

represents the 95% percentile for the Gamma distribution, so that the upper and lower boundary represents SPI 1.5 and -1.5, 395 
respectively. The red line in MJJ highlights the 3 months average precipitation of 2020 as a modern benchmark for comparison. 

Trends in the mean and SPI = -1.5 to +1.5 range are shown using Gridmet as baseline to illustrate bias correction, while the raw 

data is shown without bias correction for context. 

We note that the Albany, GA, site has also experienced changes in the magnitude of variability between dry and wet extremes. 

The variance between SPI = 1.5 and SPI = -1.5 during the MJJ season became much larger during the recent period, particularly 400 

for the ASO season, implying both wet and dry anomaliesconditions have become more extreme in both directions than during 

prior centuries. The significant strong drying trend in MJJ coupled with a wetting trend during the NDJ season indicates a 

seasonal shift of the driest season. While NDJ has historically been the driest period among the 4 seasons, during the modern 

period, MJJ now has similar dry conditions to the NDJ period.    

Monte Vista, CO had very stable SPI trends until the 19th century before undergoing a rapid drying trend during the 20th 405 

century, particularly during the MJJ and ASO periods (Fig. 56b). The modeled MJJ precipitation at normal climatology (SPI 

= 0) mean parameter is currently at its driest value in approximately 500 years after a long stable period between 1500 and 
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1900. A red line is shown as a baseline in Fig. 5b to indicate the modern MJJ mean for comparison against the reconstructed 

mean. ASO also shows drying trends within the last 300 years.   

We can see that the modeled mean of dsNASPA in Monte Vista, CO is shifted upwards from its original average value because 410 

of bias correction adjustment to match slightly drier dsNASPA climatology with the slightly wetter GridMET climatology for 

this site (Fig. 5b). The dsNASPA contains negative bias which tends to underestimate the drought severity compared to 

GridMET dataset. Our modeling process detected those biases and calibrated to shift upwards while maintaining a common 

gradual trend. 

 415 

 

 

Figure 7. Long-term trends of averaged 3 months precipitation(mm/month) for 4 seasons. The periods before 1400 CE are shaded 

to represent the period with less prediction skills in original NASPA.  

Figure 7 provides long-term trends the four seasons previously discussed across all 14 study sites. The statistical significance 420 

of those changes are observed in Fig. S4. The plots show natural seasonality as differences between seasonal lines and long-

term climate non-stationarity as changes in each line. This separation allows for an evaluation of recent precipitation trends by 

comparing the past 100-year trend with the longer 2000 year time window. While results from the entire non-stationary GAM 
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model are presented in Figure 7, extending back to the earliest NASPA reconstructions, our primary focus is on the period 

after 1400, shown in white. Prior to 1400 CE the NASPA reconstruction has greater uncertainty, and so is provided here for 425 

full context, but shaded in grey to emphasize this greater uncertainty.  Within the GAM model, this uncertainty manifests as 

generally less stable estimates.  

Figure 7 shows that the 14 demonstration sites generally follow a spatial climate pattern found in previous studies: with 

industrial era drying trends in the southwestern US, and wetting trends in eastern US (Lehner et al., 2018; Prein et al., 2016; 

Ellis and Marston, 2020).  Figure 7 implies a general spatial pattern of recent drying in the western US, and wetting in the 430 

eastern US. The drying trend in the west is most prevalent during each sites’ wet seasons, with smaller or negligble trends 

during the driest part of the year. For example, the wet season drying trend is visible in Aber, WA, where after several centuries 

of stable precipitation there has been a decrease during the cool, wet seasons (NDJ and FMA). The wet season (FMA) in Grd, 

MT and Los, CA , also show clear drier trends during the most recent century or more.  The drier trend in Los, CA during, is 

especially severe: FMA precipitation has declined since 1500 CE but this trend has becomewas exacerbated and became more 435 

rapid severe during the 20th century, effectively shortening the winter wet period prior to the region’s dry summer. The 20th 

century drying trend in Mtv, CO, has occurred across all seasons, not only for the wettest period like the other western stations. 

The most severe drying trend occurred in MJJ as mentioned in previous section (Fig. 6). The most severe western sites illustrate 

the value of comparing 20th century drying trends to longer reconstructed records to identify rapid and exceptional 

precipitation changes. Unlike these western sites, Den, CO, shows negligible long-term trends, while the desert southwest 440 

(Phx, AZ and Roe, NM) exhibit minor wetting trends which are largely within the pre-industrial historical range.   

The eastern part of the US generally has experienced rapid wetting trends during the most recent century as observed in 

previous research (Bishop et al., 2021). Those wetting trends are especially drastic in Nyc, NY, Mor, MN, and Mrv, OH, each 

currently experiencing the wettest conditions of the last 500 years of pre-industial, presumed near natural cyclic variability. 

This pattern is particularly visible for the warm, wet summer season (MJJ). Sbw, NC also indicates a wetting trend in all 445 

seasons since 1700 CE, but those trends are not as rapid as the more northern sites. Warm season (MJJ) precipitaiton has also 

increased in the southern plains (Okc,OK and Wax,TX). Precipitation during the summer season has been gradually increasing 

since 1400 CE, but has undergone far more rapid increases since 1900 CE. Note that non-stationarity in the eastern US is less 

stable, which may be related to greater uncertainty in the NASPA reconstructions for this region with generally poorer 

reconstruction skill (Table 1, Stahle et al., 2020).  450 

Some locations have experienced different direction of changes based on seasons. Those changes mostly occur in southern 

part of the US as shown in Figure 7 (11 – 14). For example, FMA precipitation in Phx, AZ has become slightly wetter during 

the last 500 years, while the other three seasons have been slightly drier during the 20th century. Alb, GA shows recent drying 

trends during the spring and early summer (FMA and MJJ) but wetter trends during fall and winter (ASO and NDJ). Those 

seasonal specific changes ultimately shift the timing of the wettest or driest season. For example, while the NDJ season has 455 

been the driest season during the past 500 years, slightly drier than the preceding ASO season, this has changed during the 

20th century. In addition, the difference between the wet seasons (Feb-Jun) and dry seasons (Aug-Jan) is decreasing as the wet 
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seasons become drier and dry seasons become wetter. Seasonal shifts also appeared in Wax, TX, stemming from a constant 

wetting trend of MJJ season since 1000 CE while other seasons have experienced what is presumed to be the natural variability 

with no abrupt 20th century changes, although further analysis is required to quantify the impact of natural variability. Though 460 

not the focus of this study, our results do capture past drought events such as the prolonged dry period in 1200 -1300s in Okc, 

OK and Wax, TX, consistent with previous studies regarding the so-called Medieval mega drought (Stahle, 2020; Cook et al., 

2016).   

4 Discussion 

Our novel approach for temporal downscaling, combined bias correction, and non-linear trend modeling enables analyses of 465 

meteorological drought changes at a multi-centennial scale. Our downscaling approach allows irregular historical 

reconstruction to be included with instrumental records in a single long-term trend model using the same temporal scale, and 

ultimately to compare non-stationary drought trends across seasons. The KNN downscaling approach preserves greater 

certainty during seasons with NASPA reconstructions and wider uncertainty during seasons that must be interpolated. 

Simultaneous temporal trend fitting and bias correction, constrained with a GAM spline model, appears to provide a stable 470 

framework to merge these disparate datasets.  

When developing the KNN approach, we chose to consider 13-month time segments regardless of seasonality, which may not 

capture some higher order characteristics like seasonal correlation. This design decision was a trade-off between the benefits 

of a larger sampling library of feasible SPI traces and the risk of overlooking some seasonally-specific time series behavior. 

We chose the former, with an additional assumption that anchoring the time series behavior at three seasonal points would 475 

likely oversample segments with similar seasonal behaviors. Also, our process of selecting SPI sequences and converting back 

to precipitation based on the seasonal probability distribution reflects the region’s seasonal characteristics. This is demonstrated 

in Fig. S1 showing that our dsNASPA captures the general seasonality well. Still, future research might explore the magnitude 

of seasonality effects and persistence on SPI sequences in the downscaling process.  

We also acknowledge the uncertainties over whole modelling process. The uncertainties in dsNASPA stemming from the 480 

downscaling process in addition to the original reconstruction process vary by region and season. As shown in our results, the 

downscaling skills are much higher in the period where the original NASPA provides information (Fig. S1 and S4). 

Reconstruction skills in the original NASPA vary depending on the region. This can be investigated in previous study and data 

source (Stahle et al., 2020).  In addition, stationarity in bias is an assumption of this method, however, it is a necessity that 

underlies most proxy reconstructions. Based on prior NASPA validation, we are most confident that bias remains consistent 485 

during the period with consistent tree-ring coverage (1400-present, shaded while in Fig. 7), but may begin to change as 

chronology coverage and reconstruction skill decreases (beyond 1400, shaded grey in Fig. 7). 

 

Nonetheless, our primary objective is a realization of the best possible estimate of the changes in precipitation distributions 

(climatology) of the past, rather than to replicate specific events in the time series. If one was interested in predicting 490 
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precipitation in a given year, we recommend using the original NASPA dataset, rather than our dsNASPA interpolation. 

Overall, our derived Gamma distribution can be used to understand the most likely climatology of the past, and potentially, 

the future based on available data.  

In this context, our KNN approach creates a plausible estimate for periods lacking NASPA estimates (e.g., ASO) and is apt 

for estimating smooth changes in distribution of historical climatology. As further support, we found that taking the mean of 495 

neighbors ensembles did not artificially and dramatically decrease the variance (Fig. S1).  

In particular, this approach appears successful at generating a continuous sequence of bias-corrected precipitation distributions 

while addressing some of nuances of the NASPA reconstruction. The NASPA contains internal bias in reconstructing 

precipitation for the cool and warm seasons, with skill varying across the continent. Further, within the cool or warm period, 

the reconstruction can be dominated by one or two months. For example, the DJFMA reconstruction in California displays 500 

significantly higher correlations with December, January, or February precipitation totals than for March or April. However, 

DJFMA was used as a compromise to ensure a common cool period across the US. It appears that hierarchical GAM bias 

correction combined with KNN downscaling mitigates some of this effect by creating a local model for each site. Further, by 

using a seasonally varying bias correction, the model adjusts to the months, for example within the DJFMA, that are best 

captured. 505 

We found a general drying trend for the wettest seasons in the western US and wet trends across most seasons in the eastern 

US. For some of these sites, 20th century trends appear to be rapid and outside the range of the long-term reconstructed record, 

whereas for other sites these patterns could be considered within the pre-industrial range and perhaps part of natural climate 

variability. Our results also pointed out some study sites where precipitation trends differ by season, leading to slightly altered 

seasonality.  510 

Results for the case study at western USLos Angeles, CA agrees with previous general findings that showed extraordinary 

drying trends in the western US during the last century following a prolonged period of stable precipitation patterns since the 

1500s (Stahle, 2020) The previously documented Medieval era megadroughts in the Great Plain region (Cook et al., 2016) 

also appear in our results. This consistency of results indicates that incorporating NASPA reconstructions data using our new 

method is feasible and can be useful to identify low frequency droughts trends and variability during the past 2000 years.  515 

By contrasting the severity of precipitation changes during the past century with 2000 years of data, this model provides a 

potential to analyze the magnitude of recent trends during the modern increase in greenhouse gases with pre-Industrial natural 

variability. For example, Figures 5, 6b and 7 each present subfigures showing the same meteorological drought trend model 

results at Monte Vista, CO. each progressive figure takes a wider temporal viewpoint, from the last 120 years (Fig. 5), the last 

600 years including the pre-Industrial period (Fig. 6b), the longest possible view beginning in 0 CE. As can be seen, the drying 520 

trends in Figure 5 are rather steadily decreasing, but do not capture its extraordinary changes shown in Figure 6b. Taking a 

longer perspective implies that the modern 120-year data period is outside of the ‘pre-industrial levels’ defined by UN Paris 

agreement (IPCC, 2014), with the modern MJJ mean at its driest in 600 years  . Our results agree with other findings that have 

identified recent or projected future shifts in seasonal precipitation (Marvel et al., 2021) or enhanced precipitation variability 
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(Williams et al., 2020) due to anthropogenic climate change. For example, for several western sites, this study observed rapid 525 

drying trends during the wettest seasons (Aber, Mtv, Grd, Los). These wet seasons are particularly critical in the western US, 

which relies on seasonal precipitation to fill reservoirs for later use during dry seasons. We therefore believe that modeling 

these smooth seasonal shifts over multiple centuries can inform water management plans to adapt to a changing climate. In 

addition, we believe understanding the seasonal specific changes in meteorological drought can help to analyze seasonal shifts 

in other types of droughts, such as anticipated summer soil moisture drought southwest US due to declining spring precipitation 530 

(Williams et al., 2020).  

We expect that our approach described here as a model validation for several case study sites could be applied across a denser 

network of sites to determine how meteorological drought has changed during the modern instrumental period and to put these 

trends into a much longer, pre-Industrial context. A unique benefit of this approach is that it models non-linear changes in 

typical precipitation (SPI=0), dry anomaliesoughts (SPI < 0), and pluvials wet anomalies (SPI > 0) simultaneously across all 535 

seasons. 

5 Conclusion 

This study introduced a novel method designed to apply the recently non-stationary SPI approach (Stagge and Sung, 2022) to 

a multi-century temporal scale by merging disparate datasets with a common tensor product spline term. To accomplish this 

objective, first we downscaled the irregularly spaced, bi-annual NASPA reconstruction into 3 months average precipitation 540 

with monthly resolutioninto monthly scale using a KNN approach. This permits analyses at a seasonal scale and enables the 

NASPA reconstruction to be integrated with instrumental data. In accordance with FAIR data principles, Wwe make our data 

publicly available to allow researchers to access it and for develop future drought trend studies (Wilkinson et al., 2016).  

Second, we identified unique biases arising from different precipitation data sources and accounted for these biases in a 

hierarchical GAM model with model-based bias correction. This model corrected both persistent biases and seasonal specific 545 

biases in both mean and shape parameters of fitted distributions. Accounting for unique seasonal biases is important as previous 

studies have found bias magnitude can vary by season (Piani et al., 2010; Li et al., 2010). This is especially relevant when 

merging NASPA datawith observation datasets, because the temporal downscaling procedure depends strongly on season, e.g., 

MJJ is made directly from original reconstruction while ASO is based on KNN interpolating between the prior MJJ and the 

future DJFMA.  550 

Third, after confirming that the temporal downscaling and non-stationary SPI model with bias correction were able to capture 

long-term trends, this study applied the model to a wide range of case study sites. Analyzing long-term trends in each season 

permits observation of shifts in seasonality and its variability. Those changes are also captured by season, so that our study 

could point out a specific season that is experiencing rapid changes although other seasons do not have drastic changes. 
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