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The paper aims to assess recent trends in seasonal precipitation in the USA in a long-term 
climatological context. For this purpose, a novel temporal reconstruction or downscaling approach is 
presented, to derive precipitation (3-mon aggregate) at a monthly time-step from tree-ring based 
reconstructions at a seasonal time step. Such downscaling is of general interest for climate change 
assessment in hydrology and meteorology and fits well within the scope of HESS. 
 
The paper is generally well written and organised. However, I have some comments that include 
methodological concerns that should be considered before publication. 

Thank you for your thoughtful review and comments. We have sought to address your 

comments and suggestions below. The marked line numbers follow the article with tracked 

changes. 

Methodological concerns: 

A) Temporal downscaling using K nearest neighbour resampling 
 
1) The methods take into account matching 13-month time segments of the past based on three “SPI 
matching points”, regardless of the season. However, precipitation has a typical seasonal regime, and 
I would strongly assume that a seasonal-correct matching would be essential to extract realistic 
monthly SPI (or precipitation) scenarios from the past. 

We appreciate the reviewer’s concern about seasonal-correct matching potentially better 

capturing some characteristics of the seasonal regime beyond the probability distribution, e.g. 

temporal autocorrelation or sudden onset changes aligned with seasons. We considered this issue 

when originally designing our approach, but ultimately were forced to balance the benefits of a 

larger library of feasible SPI traces against the risk of missing some seasonally-specific time series 

behavior. We chose the former, with the additional assumption that anchoring the time series 

behavior at three seasonal points within the year would likely oversample sequences with similar 

seasonal behaviors. We have added text to the discussion in the manuscript to explain this design 

decision and acknowledge that more work could be done in future research to explore the 

magnitude of seasonality effects on SPI sequences.  

Lines 475 - 482: 

When developing the KNN approach, we chose to consider all 13-month time segments, 

regardless of seasonality, which may not capture some higher order characteristics like seasonal 

correlation. This design decision was a trade-off between the benefits of a larger sampling library 

of feasible SPI traces and the risk of overlooking some seasonally-specific time series behavior. 

We chose the former, with an additional assumption that anchoring the time series behavior at 

three seasonal points would likely oversample segments with similar seasonal behaviors. Also, 



our process of selecting SPI sequences and converting back to precipitation based on the 

seasonal probability distribution reflects the region’s seasonal characteristics. This is 

demonstrated in Fig. S1 showing that our dsNASPA captures the general seasonality well. Still, 

future research might explore the magnitude of seasonality effects and persistence on SPI 

sequences in the downscaling process.  

2) Calculating a mean SPI pattern as a mean of SPI scenarios is not fully correct as SPI values are highly 

nonlinear transformations of monthly precipitation and therefore not additive. I suggest either 

calculating average monthly precipitation directly from the precipitation series, or to analyse the 

sensitivity of your approach with regard to the correct calculation. 

Our method aligns with your suggestion: directly calculate the precipitation of each of the 10 

neighbors based on the gamma distribution and then average these 10 precipitation values before 

transforming into an SPI value. We fully agree that the SPI values are non-linear and non-additive. 

As we acknowledge that the description in the downscaling process may have lacked clarity, we 

have revised to improve explanation as follow in lines 197-199: 

Revised: Then, the ten monthly resampled SPI-3 time series were converted back to the 3-months 

precipitation using 2-parameter Gamma distributions derived from the GPCC dataset. Lastly, the 

10 sets of precipitation time series were averaged and inserted into the targeted year of the 

NASPA. 

3) Using the average temporal signal will filter out climate (i.e. between-year, or event-specific) 
variability of events, which restricts the possible user value of the reconstructions data set. I would 
appreciate to clarify this in the aims and add to the discussion. From my point of view, the strength of 
the ensemble of history-based scenarios over some “average” scenario would be that the ensemble 
represents the diversity of realistic realizations conditional to the given information (three matching 
points), while the mean is not thus realistic (as it never happened) and unrealistically smooth, too.  

We have added the following sentences in discussion in lines 492-499. 

Our primary objective is a realization of the best possible estimate of the changes in 

precipitation distributions (climatology) of the past, rather than to replicate specific events in 

the time series. If one was interested in predicting precipitation in a given year, we recommend 

using the original NASPA dataset, rather than our dsNASPA interpolation. Overall, our derived 

Gamma distribution can be used to understand the most likely climatology of the past, and 

potentially, the future based on available data.  

In this context, our KNN approach creates a plausible estimate for periods lacking NASPA 

estimates (e.g., ASO) and is apt for estimating smooth changes in the distribution of historical 

climatology. As further support, we found that taking the mean of nearest neighbor ensembles 

did not artificially and dramatically decrease the variance (Fig. S1). 



B) Bias correction 
 
When the ultimate aim of this paper is to analyse nonlinear long-term trend behaviour, I wonder how 
far bias-correction will have any effect on the results. Did you correct only biases in the mean or also 
in the shape parameter? Section 3.2 suggests that both are corrected, but e.g. Fig. 6b ASO (cp. to Fig. 
5) suggests that this is not the case. There is also a strong bias in the long-term average visible in Fig. 
6b NDJ. 

Thanks for your comments. As mentioned in the text (Lines 320), both shape and mean 

parameters are corrected. This is illustrated as an adjustment in precipitation values at mean (SPI= 

0), and SPI = +1.5 and -1.5 (0.068 and 0.933 percentile) in our results. For example, precipitation 

at SPI= +1.5 of NASPA (Fig. 5. ASO) is computed around 40 mm/month but is corrected as 

60mm/month when it is adjusted using Gridmet (Fig. 6b, ASO).  

As you correctly note, it is possible to see a correction for both the mean and shape in Fig 5, 

particularly for where the NASPA overly compressed the variance (Lines 330-332). Fig. 5 was 

intended to demonstrate the bias correction process, whereas Fig. 6 was intended to emphasize 

the trend in the SPI=0, -1.5, and +1.5 over the last 600 years, after bias correcting using Gridmet 

as a baseline. Fig 6 only displays the post-bias correction common trend for clarity. We have added 

the following text to the caption of Fig 6: 

Trends in the mean and SPI = -1.5 to +1.5 range are shown using Gridmet as baseline to illustrate 

bias correction, while the raw data is shown without bias correction for context. 

Further, I would assume that bias correction (in any of the parameters) will only change the results 
(incl. quantile values) if it is performed over the whole series in a non-constant way, and I wonder 
how this can be performed for the longer past before the CRU and GridMET observation periods.  

We assume bias in the mean and shape parameters, determined during the overlapping data 

period, remains constant in the long-term (See Lines 263). This assumption is necessary for any 

bias correction to function outside the common observed period and is the same principle that 

underlies delta index or quantile matching bias correction for climate model projections. Based 

on NASPA validation, we feel reasonably confident that bias remains consistent during the 

period with consistent tree-ring coverage (1400-present, shaded white in Fig. 7), but may begin 

to change as chronology coverage and reconstruction skill decreases (beyond 1400, shaded grey 

in Fig. 7). We therefore chose to show the full period reported by the NASPA but recommend 

caution for the most distant periods (Lines 428 - 429).  

Specific comments: 

The aims of the study and methodology need to be sharpened in the text.  
 
“This study is designed to address the challenge of merging precipitation datasets with varied biases 



and temporal scales to calculate a common Standardized Precipitation Index (SPI; Guttman, 1999) 
meteorological drought series that incorporates non-stationarity” (L. 84) seems not to fit to the actual 
study where the target is a downsclaed monthly precipitation series (dsNASPA, Fig. 1) and finally a 3-
month precipitation average (L. 170).  

We revised lines 84-85 as follow: 

This study is designed to address the challenge of constructing 2000 years of precipitation 

climatology by merging multiple datasets with varied biases and temporal scales.  

Similarly, with BIAS correction: I had a hard time to understand whether the study really aims at bias-
corrected dsNASPA (as clearly stated in Section 2.4), or just investigating model bias (Sect. 3.2) and 
later constructing long-term trends (Sect. 3.3). (But I think this can easily be clarified.) 

 We have revised lines 86-92 as follows: 

The objectives of this study are therefore to (1) construct downscaled NASPA precipitation time 

series from bi-annual into monthly scale with 3 months average resolution, (2) identify unique 

biases inherent in different precipitation data and remove those biases, and ultimately (3) 

construct a 2000 year continuous climatology model that can capture century-scale shifts in the 

3-month precipitation. This approach mimics the underlying distribution methodology of the 

Standard Precipitation Index.  The continuous climatology derived from proxy reconstructions 

and modern observations is the true goal, with the first two objectives functioning as necessary 

intermediate steps towards this ultimate goal. 

2.3: KNN approach  
 
L. 157: I think the aim here is not to simulate uncertainty, but to cover the range of possible monthly 
precipitation patterns behind the 3 matching points. As you have absolutely no information what was 
in between the 3 matching points, all "well matching" patterns are equally likely (same for L. 179). 

We agree with your comment and have revised the text. Also, we have removed mentioning the 

resampling approach as per your comments in PDF file in this section (the comment was: Would 

not call this a resampling approach, it is rather selecting history-based scenarios). Please refer 

below: 

Line 180: 

Original: Because this is a resampling approach, multiple (K = 10) annual historical sequences are 

inserted for each year of the reconstruction to simulate uncertainty. 



Revised: To do this, multiple (K = 10) annual historical sequences are inserted for each year of 

the reconstruction to approximate plausible monthly precipitation patterns that most closely 

match the three NASPA reconstructed periods.  

Line 204 - 206: 

Original: Third, the K neighbors create an ensemble of time series, incorporating uncertainty. 

Revised: Third, the K neighbors create an ensemble of equally likely time series, identifying an 

envelope of feasible time series when there is no information between the 3 points from the 

NASPA reconstruction. 

The KNN could be directly based on monthly precipitation rather than on SPI (see general comments). 

Please refer to our response above.  
 
L. 178: “Second, direct resampling based on similarity from the GPCC sample field incorporates 
realistic seasonal progression and persistence of the SPI” – Only if just the seasonally aligned patterns 
are used (see my previous comment). 

As mentioned above, our SPI nearest neighbors provide plausible patterns of “anomalies”. 

Converting the “anomaly” back to precipitation based on the seasonal probability distribution 

provides realistic seasonality. We agree that including “persistence” in this statement without 

clarification may have been too broad. We originally meant that resampling from historic GPCC 

SPI-3 sequences would incorporate the structural persistence from the 3-month moving average 

process, which contributes the majority of persistence (temporal autocorrelation). But, we 

acknowledge that ignoring seasonality in resampling was a design decision that may miss some 

seasonal-specific persistence due to atmospheric circulation (see comment for Methodological 

Concern A). We have therefore modified this sentence to read “… realistic seasonal progression 

and the 3-month structural persistence of the SPI-3” (Line 204). We have also added discussion 

about the benefits of using seasonally aligned samples and suggested future study in Line 475-

482. 

2.4: Section is hard to follow, suggest to improve clarity.  

We have revised this section to improve clarity and addressed all the detailed comments below 

and in the attached file.  

Please state at the beginning the aim of this step (e.g. Is it adjusting your NASPA reconstruction to 
long-term fluctuations and average seasonal cycle of one/two different precipitation data sets? Or is it 
just estimating the temporally varying parameters of the Gamma distribution to be used for SPI 
calculation – so is it really bias-correction then?) 



Thanks for the suggestion. The aim of the GAM modeling has been added in lines 216 - 221:  

This method was applied to create a single, common estimate of the temporally varying Gamma 

distribution parameters representing precipitation climatology by incorporating information 

from multiple biased data products. We refer to the process of accounting for seasonal bias in 

the mean and shape parameters from different data sets as “bias correction” for the remainder 

of this paper because it mirrors the process of bias correction by moment matching. However, 

unlike a separate bias correction step, this is performed within the GAM model, permitting 

confidence intervals around each of the bias correction terms.  

The presentation of the model (Eq. 1 and 2, text around) is confusing. All parameters need to be 
explained in the text, consistent use of beta or B (L.206), redundant use of beta for model parameters 
of both Gamma parameters (Eq. 1 and 2), and finally also for the scale of the Gamma distribution 
mu/alpha (L. 200).  (See further sticky-notes in the annotated pdf). 
 

Thanks so much for your valuable comments. The equations were revised with distinctive 

notation for each model parameter and removed scale parameter notation. The model term in 

equation is also revised to display names of all datasets as per your comments.  

𝑃3 𝑚𝑜𝑛𝑡ℎ,𝑚,𝑦 = 𝑔𝑎𝑚𝑚𝑎(µ, 𝛼)   (
𝑚: 𝑚𝑜𝑛𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑦𝑒𝑎𝑟,

 𝑦: 𝑦𝑒𝑎𝑟 
) 

𝜇 = 𝛽0𝜇 (
𝐶𝑅𝑈

𝑁𝐴𝑆𝑃𝐴
𝐺𝑟𝑖𝑑𝑚𝑒𝑡

) + 𝛽1𝜇𝑓𝑠_𝜇 (𝑋𝑚𝑜𝑛𝑡ℎ, by = 
𝐶𝑅𝑈

𝑁𝐴𝑆𝑃𝐴
𝐺𝑟𝑖𝑑𝑚𝑒𝑡

) +  𝛽2µ𝑓𝑡𝑒_µ(𝑋𝑦𝑒𝑎𝑟 , 𝑋𝑚𝑜𝑛𝑡ℎ  ) (1) 

1

log (𝛼)
=  𝛽0𝛼 (

𝐶𝑅𝑈
𝑁𝐴𝑆𝑃𝐴

𝐺𝑟𝑖𝑑𝑚𝑒𝑡
) +  𝛽1𝛼 𝑓𝑠_𝛼 (𝑋𝑚𝑜𝑛𝑡ℎ , 𝑏𝑦 =

𝐶𝑅𝑈
𝑁𝐴𝑆𝑃𝐴

𝐺𝑟𝑖𝑑𝑚𝑒𝑡
) + 𝛽2𝛼 𝑓𝑡𝑒_𝛼(𝑋𝑦𝑒𝑎𝑟 , 𝑋𝑚𝑜𝑛𝑡ℎ  ) (2) 

 

where P3 month,m.y represents the 3-month moving average precipitation at year y and month m. 

The precipitation is fitted in Gamma probability distribution, where have µ (mean) and α (shape 

parameter). The 𝛽s are different parameters of each spline function, 𝑓𝑠 and 𝑓𝑡𝑒, which denote 

cyclic and tensor spline, respectively. The underlying principle of the model is that there exists a 

single best estimate of the precipitation distribution at any given time, described by the mean 

and shape parameters of the gamma distribution that changes seasonally 𝛽1𝑓𝑠(𝑋𝑚𝑜𝑛𝑡ℎ,𝑏𝑦 =

𝑑𝑎𝑡𝑎𝑠𝑒𝑡) and can also change slowly on a multi-decadal scale, fte(Xyear, Xmonth) with constant y 

intercept,  𝛽0(𝑑𝑎𝑡𝑎𝑠𝑒𝑡).  

Can you be more specific about the GAM model components? For the long-term component, what is 
the nature of the spline, what is the time-window of smoothing, how has it been chosen/optimised? 
And: how does it behave in the observation period of two, one and finally no instrumental records, 
and what is the nature of bias-correction in the three periods, esp. in the pre-instrumental period? 



We applied the tensor spline as a long-term component, enabling us to model interactions of 

multiple variables in different time units. The smoothed is constrained every 70 years to mimic 

changes in multi-decadal scale with preventing overfitting.  

This is added in the text as below in main text lines 251 - 257:   

The single common tensor product spline smoother (fte(Xyear, Xmonth)) is shared across all datasets 

to model the interaction of long-term trends (Xyear) relative to season (Xmonth) using smoothly 

changing parameters for the two dimensions (year and month). A tensor product spline is an 

anisotropic multi-dimensional smoother, meaning it can model the interaction of variables with 

different units and can assign different degrees of smoothing for each direction, as is necessary 

for dimensions of month and year. Estimating 𝛽2𝜇and 𝛽2𝛼 in terms of year and month allows for 

non-linear annual trends for each month while constraining these trends to be smooth through 

time. We constrain the smoother with control points (knots) every 70 years for mean and shape 

parameters to approximate climate variability on decadal scales while preventing excessive 

sensitivity/volatility.   

Further, L. 195 “a smooth long-term trend that is common to all data sets (CRU, GridMET, and NASPA) 
– reads like a contradiction to L. 223: “Following the first assumption, … we adjust CRU and NASPA 
parameters to match the GridMET dataset”   

We have changed the first sentence as follows based on another comment for clarification (Line 
231-235): 

When applied, this model decomposes information from all datasets (CRU, GridMET, and 

NASPA) into a smoothed long-term trend that is common to all datasets and an additional 

annual seasonality smoother that varies slightly by dataset to account for bias relative to 

GridMET. In this way, there is a single common trend, with an adjustment added to shift the 

mean and shape parameters up or down seasonally based on the data source.  

And: What is the model vs. the data set? (If this is the same, than please use one term 
consistently) 

The term “model” in the main text is all revised, and the equations are revised to display names 

of all datasets instead of referring “model”.  

For instance, 

Lines 261 - 263:  The first two terms derive intercept and seasonality distinctive to each dataset. 

The first term (𝛽0 (𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑠)) accounts for dataset specific intercept and the second term 

(𝛽1𝑓𝑠(𝑋𝑚𝑜𝑛𝑡ℎ, by = 𝑑𝑎𝑡𝑎𝑠𝑒𝑡)) accounts for dataset specific seasonality. 



3. Results 
 
3.1 & Fig.1: Are these all bias-corrected values or not? Which values need to be bias-corrected, all 
apart from GridMET to make them comparable to GridMET? 

Figure 1 and Section 3.1 refer only to pre-processing the NASPA data (temporal downscaling to 

fill gaps) prior to the GAM model that accounts for bias. Therefore, all the values are before bias 

correction. You are correct, those values are not related to GridMET. To make them comparable 

to GridMET, they are then bias corrected in the next step (Sections 2.4 and 3.2). 

L. 258: “Despite the limitation, downscaling accurately predicts the general precipitation pattern in 
terms of seasonal and long-term average precipitation, with nMAE values generally between 0.1 - 
0.5.”: Can you compare this with a naïve estimator, being the long-term monthly average 
precipitation (highly naïve), or better the monthly precipitation quantile values qgam (alpha), where 
probability alpha corresponds to the anomaly linearly interpolated between the matching points? 
How much is the gain in performance using your reconstruction (downscaling) approach? 

This is a reasonable request to provide context for the nMAE. We have calculated nMAE for the 

highly naïve estimator, ignoring NASPA reconstructions and instead using mean climatology. The 

figure below compares the nMAE of our dsNASPA and that of highly naïve estimator. We found 

dsNASPA provides more accurate signal in months with some NASPA information (December 

through July), as one would expect, while providing approximately similar signal in the months 

without NASPA information. It should be noted that the dsNASPA interpolation scheme prevents 

extremely high errors (nMAE > 1, off the y-axis scale) in certain regions of the semi-arid Western 

US where NASPA has the most skill. Fig. S3 further demonstrates the validity of our results in 

each season, not only with respect to mean absolute error, but with visible correlation between 

observations and dsNASPA. A naïve estimate would produce a single estimate (vertical line) with 

none of this correlation. We are confident that all three seasons except for ASO capture enough 

long-term characteristics to investigate smooth trends in each season. We have added two 

sentences explaining the performance of dsNASPA compared to this very simplified model. 

 Line 329-334: We compared performance of the dsNASPA with a highly naive alternative 

(assuming the mean GPCC climatology) and found that dsNASPA provides a clear signal in the 

period with NASPA information (blue shaded period in Fig 4). As expected, the dsNASPA 

provides less information in the interpolation period where NASPA estimates are not available. 

However, during these gap seasons, the dsNASPA still produces positive correlation with 

observations, useful for measuring climatological shifts, and greatly reduces extreme errors 

created by the naïve estimator in the semi-arid West.  

We initially considered a linear interpolation approach, but excluded it because it provided only 

a single estimate for each time step, essentially assuming the same uncertainty whether we are 

at a time step with a NASPA estimate (e.g. MJJ) or if we are interpolating between NASPA 



estimates (e.g. ASO). This means we could not produce the envelope of feasible paths between 

the three NASPA anchor points, with the envelope naturally getting wider as we moved further 

from the NASPA estimates in time and tightening as we approached each estimate. We 

considered this information critical and therefore discounted the linear interpolation approach. 

 

Figure 1. Comparison of nMAE for each season, showing. (Left) nMAE of dsNASPA (Left and reproduced from Fig. 4) and nMAE 
for the naïve long-term average estimator (Right). Note, the y-axis is mirrored for the naïve estimator, which cuts off some of the 

worst nMAE scores (> 1 in much of the semi-arid West).  

3.2 Investigating model bias 
 
REM: Here I believed to see that you are not performing bias correction, but you rather use the GAM 
model to decompose the 3 signals (dsNASPA, CRU, GridMET) into the long-term trend and seasonal 
average components (please make this clear in intro and methods section). Pls. clarify. 

We revised the introduction to highlight how to account for bias through modeling in lines 96-98: 

Original: Second, we develop a model to simultaneously analyze unique biases in proxy and 

instrumental datasets, account for them, and then analyze a non-linear trend common across the 

datasets.   

Revised:  Then, we develop a model to simultaneously capture non-linear trends while accounting 

for unique biases across proxy and instrumental datasets by decomposing information from all 

datasets into their shared long-term trends, seasonality, and data-specific bias. 

Also, our method section (lines 229 - 235) demonstrates how our GAM model works in analyzing 

data-unique seasonality and shared long-term trend. We added more explanation based on your 

suggestion:  

Original: Here, we expand this approach, by adding a hierarchical grouping variable to 

simultaneously model common seasonal-specific long-term trends across datasets, while 



incorporating variability at the group level following the approach of Pederson et al. (2019). When 

applied to our model, this involves a smoothed long-term trend that is common to all datasets 

(CRU, GridMET, and NASPA) and differences for the seasonal terms that repeat annually at the 

group-level (climate dataset) (Pedersen et al., 2019). The modeled data-unique seasonality can 

capture seasonal bias in each dataset, and it was further adjusted to construct the long-term trend 

time series. 

Revised: Here, we expand this approach, by adding a hierarchical grouping variable to 

simultaneously model common seasonal-specific long-term trends across datasets, while 

incorporating variability at the group level following the approach of Pederson et al. (2019). When 

applied, this model decomposes information from all datasets (CRU, GridMET, and NASPA) into a 

smoothed long-term trend that is common to all datasets and also an annual seasonality that 

varies slightly by dataset to account for bias relative to GridMET. In this way, there is a single 

common trend, with an adjustment added to shift the mean and shape parameters up or down 

seasonally based on the data source.  

This section is well written (pls. use consistent names of the three monthly products) 

We refer to the name as 3-month precipitation.  
 
The bias in the long-term trend component in the particular station shows quite significant 
underestimation. Can you generalize this finding to all 14 stations? 

Thanks for the suggestion, we have added additional figures in the supplement (Fig. S4) to show 

bias in four equally spaced seasons at all study sites. We believe that these new figures will 

improve understanding of the bias inherent in three datasets in our study sites and provide 

complete transparency for any reader who is interested.  

Line 370-376: 

We present the results for all other regions in Fig. S4. The results indicate that the shape biases 

are largely dependent on the season, whereas mean biases are more dependent on the gauge. 

Notably, the ASO season shows large biases in the shape parameter. This is primarily because 

the dsNASPA in this season can’t represent occasional extreme precipitation values, inducing an 

underestimation of its variance. In contrast, the MJJ season shows considerably less bias since 

the dsNASPA has developed from complete precipitation information in NASPA. A few 

exceptions exist in Mtv, CO and Grd, MT, where have large biases in the mean parameters 

across all seasons, possibly due to topographic effects between the gauge locations in these 

mountainous regions.  

 



3.3 Constructing long-term trends  
 
REM: Here I understood that in a second step you now indeed correct for all biases assessed in the 
step before.  
 
“By accounting for the model-induced bias described in Section 3.2 and adjusting all datasets to match 
GridMET, we were able to generate a 2000-year model of non-stationary precipitation trends for each 
gauge.”  
 
Given the nonlinear nature of long-term trend models, how much credence do we have that biases 
found in the short instrumental periods (~40 and ~120 years), by a model forced to parallel log-term 
trend components, can be generalized to the past 2 millennia? (This should be discussed, e.g. also in 
the light of the finding of Duethmann & Blöschl (2020) about instrumental biases in precipitation 
including station density). 
 

Thank you for raising this concern. We agree that assuming stationarity in bias is a caveat of this 

method. However, it is a necessity that underlies nearly all proxy reconstructions. We have 

added text to highlight this caveat and to reiterate our much stronger confidence in the 

stationarity of bias back to 1400 (illustrated in Fig 7) and discussed in our response to 

Methodological Concern B.   

Line 487 - 490: 

Stationarity in bias is an assumption of this method, however, it is a necessity that underlies 

most proxy reconstructions. Based on prior NASPA validation, we are most confident that bias 

remains consistent during the period with consistent tree-ring coverage (1400-present, shaded 

white in Fig. 7), but may begin to change as chronology coverage and reconstruction skill 

decreases (beyond 1400, shaded grey in Fig. 7). 

Looking at the plots, it seems that only biases in the mean long-term trend and not in the 
shape/spread parameter are corrected? Please clarify. 
 

The bias correction in shape parameter can be observed by the intervals between precipitation 

values at SPI = +1.5 and -1.5. For example, in Figure 5 ASO season, the dsNASPA shows a 

relatively small interval between SPI = + 1.5 and -1.5 compared to Gridmet dataset. Our model 

adjusts the shape parameter of dsNASPA based on Gridmet, resulting in larger interval as shown 

in Figure 6b, ASO. The result indicates that the modeled wet anomaly (at SPI = +1.5) is far 

outside of the dsNASPA variability as the y-intercept and seasonally varied bias in shape 

parameters are corrected and have continuous smoothed ranges in line with Gridmet.  



 
Further, please clarify if all the statements about wet and dry periods, etc. in this section are derived 
from the dsNASPA, or from the other series.  

Our statements are based on the common long-term signal from all data. You are correct that 

beyond 1900, the other data is not available and so the model collapses to be informed by 

dNASPA. Other estimates of pre-Industrial climate could be incorporated into this framework in 

the future. 

L. 304: Hard to see the described wetting/drying trends in the plot. Drying trends only in the wet 

anomalies but not at drought conditions – can you interpret this? Please make clear in the wording 

that you are reporting about wet/dry anomalies, rather than absolutely wet/dry conditions. 

We corrected the sentence as below (Line 387-389): 

Original: Figure 6a shows the warm season (MJJ) has undergone a long-lasting wetting trend 

from the 1800s to 1900, followed by an abrupt drying trend during the 20th century. Those 

recent rapid drying trends are manifested in both the mean (SPI = 0) and wet condition (SPI = 

1.5). 

Revision: Figure 6a shows the warm season (MJJ) has undergone a long-lasting wetting trend 

from the 1800s to 1900, followed by an abrupt drying trend during the 20th century in both the 

mean (SPI = 0) and wet extreme case (SPI = 1.5). 

Fig 6a: The plot shows quite some annual differences, and biases in the spread between dsNASPA and 
the observation records.  

We agree. In particular, the bias in variance between observations and NASPA in FMA is an 
example of why bias correction term was necessary in order to assimilate the proxy 
reconstructions into a framework with observations. This is a particularly extreme case 
presented here for demonstration. You can see the remainder of similar figures in Supplement 
S4. 

L. 308: “The current NDJ mean is the wettest condition of the last 1000 years” – What is “current”, and 
based on which series? 

We fixed the sentence for clarification:  

 The current NDJ mean is the wettest condition of the last 1000 years. 

The modeled mean of NDJ in current years (2000-2020 CE) is the wettest condition of the last 
1000 years (Figure 6a). 



Fig 6: red line – why is MJJ 2020 value a “modern benchmark”? (and why only for MJJ a benchmark is 
shown?) Further, what is the meaning of intense yellow colour at the end of FMA and ASO in panel 
6a? 

Thanks for raising this issue. Our intention was to emphasize the period with notable changes, 

however, in response to your concern, we have removed the highlighted area and red line in 

MJJ 2020 to avoid confusion. 

L. 318: significant drying trend – how do you define significance? 

Thanks for your feedback. We revised the “significant drying trend” to “strong drying trend”. 
 
L. 320: are app references in the paragraph to Fig. 6b (instead of Fig. 5b)? 

Corrected 
 
L. 327: Ref to Fig. 5? 

Corrected 

L. 340: “Figure 7 implies a general spatial pattern of recent drying in the western US, and wetting in 
the 340 eastern US.” I would agree with the wetting trends in the eastern US, but do not see a general 
pattern of drying trends in the western US. 

 
 We have revised as follow (Line 431 - 432): 

Original: Figure 7 implies a general spatial pattern of recent drying in the western US, and 

wetting in the eastern US. 

Revised: Figure 7 shows that the 14 demonstration  sites generally follow a spatial climate 

pattern found in previous studies: with Industrial-era drying trends in the southwestern US, and 

wetting trends in eastern US (Lehner et al., 2018; Prein et al., 2016; Ellis and Marston, 2020). 

Fig. 7: This figure gives the synthesis of the paper, by presenting seasonal trend components across 
the 14 stations across the US. I wonder for the methods to derive the evidence here, how far is bias-
correction necessary to get evidence about wetting/drying trends as given in the text?  

Our hierarchical modeling structure adjusts the mean and shape parameters up or down using single 

common value and seasonally varied value, all based on GridMET dataset. Thus, our method 

provides reliable results in comparing long-term trends across different seasons and understanding 

the seasonal shifts in these trends. Also, our method makes the modeled trends in the periods with 

multiple available datasets are especially reliable since the shared trends are analyzed by multiple 



datasets. This gives greater certainty in 20th century trends where we can understand modern 

changes.  

Beyond the mean trend in Figure 7, our bias correction method effectively analyzes long-term 

trends in any anomalies as we adjust the shape parameters. This ensures that long-term trends at 

any climate anomaly during any season can be investigated, as depicted in Figure 6 and mentioned 

in Line 401 – 406: 

The variance between SPI = 1.5 and SPI = -1.5 became much larger during the recent period, 

particularly for the ASO season, implying both wet and dry anomalies have become more extreme 

than during prior centuries. The strong drying trend in MJJ coupled with a wetting trend during the 

NDJ season indicates a seasonal shift of the driest season. 

Regarding the synthesis of the paper, an interesting question would be to what extent the recent 
trends in the three monthly precipitation series (especially stratified by season) are consistent. And 
given the nMAE in the FMA and MJJ season introduced by downscaling, how far the recent trends in 
downscaled dsNASPA and the original NASPA values coincide. 

That is an interesting follow-up question. Our downscaling approach (essentially interpolation 

by resampling) and bias correction approach (essentially quantile matching) should generally 

maintain rank order. In other words, high anomalies in the NASPA should still be high in the 

dsNASPA, even with bias adjustments. So, one would expect that an increasing/decreasing trend 

would appear in both. 

 

The only case where the original NASPA and the fitted trend might disagree is if CRU and 

Gridmet have a completely opposite trend, in which case the model would indicate negligible 

trend, with a much larger uncertainty in the trend. 

Discussion: 
 
Please add a discussion about the overall uncertainty of the approach. What kind of uncertainty needs 
to be expected given the NASPA reconstruction skill (Table 1) overlaid with downscaling uncertainty 
(Fig. 4)? What sources and approx. order of magnitude of uncertainty need to be expected in the 
longer past beyond the observation period? How shall the dsNASPA be interpreted (or: for which 
purposes can they be used) given the uncertainty? 

We have added the following paragraph in line 483 - 487 in discussion: We also acknowledge the 

uncertainties over the whole modelling process. The uncertainties in dsNASPA stemming from 

the downscaling process in addition to the original reconstruction process vary by region and 

season. As shown in our results, the downscaling skills are much higher in the period where the 

original NASPA provides information (Fig. S1 and S4). Reconstruction skills in the original NASPA 

vary depending on the region due to the availability and sensitivity of tree-ring chronologies 

(Stahle et al., 2020).   



Also, in Lines 491-496: 

Our primary objective is a realization of the best possible estimate of the changes in 

precipitation distributions (climatology) of the past, rather than to replicate specific events in 

the time series. If one was interested in predicting precipitation in a given year, we recommend 

using the original NASPA dataset, rather than our dsNASPA. Overall, our derived Gamma 

distribution can be used to understand the most likely climatology of the past, and potentially, 

the future based on available data.  

Technical comments: 
 
L. 241: Use term dsNASPA for downscaled (i.e. monthly) NASPA consistently throughout the text (and 
figures, e.g. Fig. 5). 

We fixed dsNASPA in all lines, and legends in Figure 5 and Figure 6.  
 
L. 148 (and throughout the text): Make clear that the SPI thresholds, values, represent wet/dry 
anomalies, which does not mean that the condition is absolutely dry. 

We have fixed the dry/wet condition to dry/wet anomaly or anomalies in Line 148, 343, 344, 
and 354 
 

Typos and minor comments to the wording see sticky notes in the annotated pdf of the MS (use them 
as appropriate). 

Thanks for your time and consideration. We have attempted to address all your comments in 
PDFs. Responses are attached in the sticky notes and revised text are shown in manuscript.  
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