
Response to Reviewers 

 

Re: HESS Manuscript egusphere-2022-470: “Estimating spatiotemporally continuous snow water 

equivalent from intermittent satellite track observations using machine learning methods” by Ma et 

al.  

 

The comments from the editor and the reviewers are reproduced below in black and our corresponding 

responses are in blue.  

 

Thanks for the great points and comments made by the two reviewers, which are entirely constructive and 

will, we believe improve the manuscript. We provide a point-by-point response below.  

 

Reviewer #1 (Formal Review for Authors (shown to authors)): 

 

Ma et al. investigate the use of machine learning for track-to-area transformation of satellite observations 

of SWE in swathes that cover a small fraction of a watershed (it is worth noting that point-to-area 

transformation with horizontal and vertical distance weighting has long been used for assimilation of in 

situ snow observations in numerical weather prediction). This study is entirely synthetic, but interesting in 

anticipation of real remote sensing opportunities. Some clarifications and numerous minor corrections are 

required. Explainability of the ML results is promised, but there is very little physical explanation in the 

discussion of the input feature sensitivity tests. 

 

Thanks for the general comments on this manuscript. We have now added more physical explanations and 

related references relative to the input feature sensitivity test, specifically: 

 

1. Added more appropriate citations (Raleigh and Lundquist, 2012; Luce et al., 2014) explaining 

that winter precipitation in general is more influential than other meteorological forcings in SWE 

estimation (lines 521 to 522 in the revised MS). 

2. Clarified why removing a specific variable would sometimes increase or decrease MAE of SWE 

estimation (lines 529 to 536 in the revised MS). 

3. Improved the explanation of why positive biases of net longwave radiation and biases in 

precipitation cause large SWE estimation errors in the normal and wet years (lines 561 to 563 in 

the revised MS). 

 

71 

LiDAR can produce continuous SWE maps; the Airborne Snow Observatory does for this very basin. 

We have deleted the description of LiDAR in the Introduction (lines 63-65 in the old MS) and 

demonstrated that the “track-to-area” method is useful for obtaining spatially continuous SWE where 

SWE observations are only available along ground tracks (lines 100-101 in the revised MS). 

 

76 

“TTA transformation could be achieved by leveraging snow pattern repeatability”, but that 

is not what is done here. 

Lines 76-80 (in the old MS) are meant to introduce another TTA SWE transformation method based on 

snow pattern repeatability. We added more references (Magnusson et al., 2014; Schneider and Molotch, 

2016) on point-to-area SWE data transformation methods (lines 81-91 in the revised MS) to give a more 

comprehensive introduction to TTA or point-to-area SWE transformation applications.  

 

 

 

 



253 

Is a 50% perturbation in temperature applied to the Kelvin temperature (which would be enormous) or 

Celsius temperature (which would be meaningless)? A 50% error in air pressure is also unphysical. To be 

clear, is the perturbation a fixed bias (as described) and not a random error? If so, why does the DNN not 

just learn the bias? 

The unit here should be Kelvin. The 50% error doesn’t mean we increase or decrease 50% of the original 

value. Instead, we added 50% of the difference between the maximum and minimum temperature for a 

specific pixel during the study period to the original value. The perturbation is a fixed bias. The reason 

why we added biases rather than random errors to meteorological inputs is that in snow hydrology, 

systematic SWE estimation biases are the primary source of estimation error, and it mainly comes from 

the biases of input meteorological forcings in SWE modeling. We added a clarification (lines 271-273 in 

the revised MS) as to how we perturb errors for the forcing uncertainty analysis. 

 

323 

What is intended by saying “a simple ANN … is capable of learning non-linear relationships… while 

DNN … can learn more complicated relationships”? More complicated than nonlinear? 

Our intention here was to point out the superiority of a Multilayer Perceptron (MLP) relative to a Single-

layer Perceptron. A single-layer Perceptron is a neural network with only one neuron and can only 

understand linear relationships between the input and output data, while with Multilayer Perceptron, 

horizons are expanded and the neural network can have multiple layers of neurons, which are better 

adapted to more complex patterns (Gardner and Dorling, 1998). We have added some text (lines 339-343 

in the revised MS) to indicate that MLP usually performs better than a Single-layer Perceptron.  

 

330 

Levenberg-Marquardt is not the cost function, it is the algorithm used to minimize the cost 

function. 

Thanks for pointing out the error. We have modified the description of Levenberg-Marquardt algorithm 

(lines 346-347 in the revised MS). 

 

Time series of SWE observations would not be available for wet snow after peak SWE. 

We leverage the SWE reanalysis dataset (F2022 introduced in Section 2.2) as the synthetic “truth” for 

evaluating our SWE estimates.  It is available over a full water year, whether the snow is wet or not. We 

have clarified that the synthetic truth from F2022 was available for a full water year during the study 

period (lines 134 to 135 in the revised MS)  

 

There is no discussion of why removing a particular variable will sometimes increase and 

sometimes decrease MAE in Figure 8. 

We have added texts (lines 529 to 536 in the revised MS) to explain why some meteorological forcings 

have negligible influence on TTA SWE transformations in specific years so that removing such variables 

will sometimes increase and sometimes decrease MAE. 

 

The biases in Figure 9 are fractions, not %. Why are there non-zero changes of MAE for zero bias in WY 

2015 and 2017? 

Thanks for pointing this out; we have changed the X-axis by a factor of 100. The non-zero changes of 

MAE for zero bias were an error in plotting Figure 9, which has been corrected below and in the revised 

MS. 

 



 
Figure 9. 

 

535 

I do not follow the argument for why positive longwave radiation errors cause larger errors. Is it that 

decreasing longwave radiation cannot increase 1 April SWE above the cumulated snowfall, but increasing 

longwave radiation can decrease SWE all the way to zero? 

We have added a short explanation (lines 561 to 563 in the revised MS) as to why positive longwave 

radiation errors cause larger errors. 

 

The legend “Observation coverage” could be removed from Figure 10 so that it does not overlap the 

ground tracks (and four decimal places is excessive for the percentage). 

Thanks for the suggestion. We have modified Figure 10 (also shown below) and moved the information 

about observation coverage to the supplement (Table S1). 

 

 



 
 

Figure 10. 

 

 



Minor Corrections 

We have carefully proofread the MS and made minor corrections throughout to eliminate the grammatical 

mistakes noted by the reviewer, see below. 

 

32 

“it therefore, mitigates” – delete comma 

Revised. 

 

43 

“whether large amounts of snow accumulate” 

Revised. 

 

52 

“spatial, rather than point observations” – delete comma 

Revised. 

 

56 

“except during periods of precipitation” 

Revised. 

 

59 

“topographically complex areas etc. (Le et al. 2017),”– delete etc. and comma 

Revised. 

 

113 

“snow dominated” 

Revised. 

 

157 

“Each of the experiments used one of four algorithms” 

Revised.  

 

221 

“We investigated the performance of the SWE TTA estimation” 

Revised. 

 

231 

“from the closest previous observation day” 

Revised. 

 

352 

“for all four algorithms” 

Revised. 

 

358 

“The reason for larger values” 

Revised. 

 

372 

“for all three years” 

Revised. 



375 

It would make more sense to say that April 1st SWE is highly correlated with cumulative winter 

precipitation. 

Agreed. We changed this sentence to “April 1st SWE is highly correlated with cumulative winter 

precipitation.” (lines 400-401 in the revised MS). 

 

379 

“The error range is larger in WY2008 than in the dry year” 

Revised. 

 

391 

“underestimation tends to occur” 

Revised. 

 

449 

The information in this first sentence is repeated in the next sentence. 

Revised. We deleted the redundant sentence. 

 

451 

“(dry, average and wet)” 

Revised.  

 

460 

Delete “are more obvious” 

Revised. 

 

463 

“are shown in Fig. 7” 

Revised. 

 

472 

“becoming more apparent” 

Revised. 

 

505 

“that provides the most useful information” 

Revised. 

 

507 

“The dominance of precipitation is most significant” 

Revised. 

 

518 

“larger biases have larger impacts” 

Revised. 

 

525 

“so SWE estimates from the network are slightly different” 

Revised. 

 

 



534 

“In addition, we propose” 

Revised. 

 

580 

“is larger than two” 

Revised. 

 

581 

“if more than two ground tracks pass” 

Revised. 

 

603 

“more satellite overpasses do not improve the estimates much” 

Revised. 

 

621 

“can be used” 

Revised. 

 

628 

“and wet years” 

Revised. 

 

634 

“The DNN method is the most accurate” 

Revised. 

 

635 

“and reduction in the training data size” 

Revised. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Reviewer #2 (Formal Review for Authors (shown to authors)): 

 

The manuscript ‘Estimating spatiotemporally continuous snow water equivalent from intermittent satellite 

track observations using machine learning methods’ by Ma et al. provides an interesting synthetic study 

regarding SWE observations from potential satellite tracks for track-to-area transformations. In general, I 

think such studies are important to be prepared for novel satellite missions and their ‘real world’ 

applications. The study is carried out in the Upper Toulomne River Basin in California in the Western 

United States. The authors apply statistic and machine learning techniques to answer the following four 

research questions: 

 

(1) How does the spatially distributed April 1st SWE inferred from TTA compare with the synthetic 

truth, and how do their differences vary in dry, normal, and wet years? 

 

(2) What are the dominant variables for the April 1st SWE estimation in statistical and machine 

learning TTA methods, and which method has the highest accuracy? 

 

(3) How does the accuracy of the domain-wide SWE estimates from TTA approaches evolve within a 

season at different temporal observation resolution? 

 

(4) How does the performance of TTA change as a function of the spatial sampling density (number 

of hypothetical ground tracks), and what is the preferred number of tracks? 

 

The manuscript is well written and organized. I agree with all points raised by reviewer 1. In addition, I 

have some further points, which need clarification and/or additional information before publication. 

 

Please change the unit of SWE in mm (instead of m or cm) throughout the paper (text, figures, tables), as 

mm is the unit for SWE. 

We have changed the unit of SWE from m to mm throughout the paper as suggested, including text, 

figures, and tables.  

 

In general, please discuss if the pixel size and satellite track width of approx. 1 km is suitable to 

accurately describe the quantity of snow and SWE accumulation and ablation within the catchment (and, 

also for which applications is this resolution sufficient?). Could there be any limitations and need for 

higher spatial resolutions? 

Thank you for the suggestions. The pixel size is 480m and the track width is about 1 km (lines 135-137 in 

the revised MS). We did not design the parameters but just used the best available data. The synthetic 

tracks are consistent with a notional design for a P-band signal of opportunity proposed mission (by 

NASA’s Jet Propulsion Laboratory; see Yueh et al., 2021 for more information). The “truth” for the 

analysis of SWE estimates is the snow reanalysis data (F2022), which is at a 480 m spatial resolution. 

Designing a satellite with the finer spatial resolution is expected to increase the training size of ML-based 

TTA SWE transformation, which may lead to better performance of continuous SWE estimation, but 

about 1 km seems to be what is now technically feasible. Due to space limitations, we only explored one 

SWE spatial resolution, and we preferred to defer analysis of the sensitivity of ML performance to 

observation resolution to future studies. We have added more discussion as to what the further steps 

would be if we would like to consider SWE observations with diverse spatial resolutions (lines 678-683 

in the revised MS). 

 

Title: The title is a bit misleading. The study is fully synthetic, but the title ‘promises’ somehow ‘real’ 

satellite track observations. I would recommend to at least include the word ‘synthetic’ (or ‘hypothetic’) 

in the title. Moreover, as you use statistic and machine learning methods it would make sense to add also 

statistic in the title. Suggestion: 



‘Estimating spatiotemporally continuous snow water equivalent from intermittent synthetic satellite track 

observations using statistic and machine learning methods’. 

Thank you for your suggestion. We have added “synthetic” to the title to avoid implying that the 

observations are real.  We found that the other qualifiers make the title too cumbersome, and instead, we 

have changed the title to “Estimating spatiotemporally continuous snow water equivalent from 

intermittent satellite observations:  An evaluation using synthetic data”. 

 

Abstract: The abstract should be revised: Please add information on the potential future satellite mission 

(P-SoOP), on which you relate your work on TTA, and give information on the spatial resolution of your 

synthetic satellite tracks. 

Thank you for your suggestions. What is a bit tricky is that some of the technical background is in a 

NASA proposal under consideration, and we’re limited in what we can say, On the other hand, the Yueh 

et al. (2021) paper, which we cite, can be leveraged for more information, including some on P-SoOP. We 

now mention P-SoOP briefly in the abstract (lines 15-17 in the revised MS) as the starting point for our 

synthetic SWE observations and provided more information on P-SoOP in the introduction part (lines 93-

101 in the revised MS). 

 

38+: I am missing a solid literature review 

a) on satellite based SWE and snow height derivation. This should at least include the following 

references: 

 

Lievens, H., Brangers, I., Marshall, H.P., Jonas, T., Olefs, M. and De Lannoy, G., 2022. Sentinel-1 

snow depth retrieval at sub-kilometer resolution over the European Alps. The Cryosphere, 16(1), 

pp.159-177. 

 

Deschamps-Berger, C., Gascoin, S., Berthier, E., Deems, J., Gutmann, E., Dehecq, A., Shean, D. and 

Dumont, M., 2020. Snow depth mapping from stereo satellite imagery in mountainous terrain: 

evaluation using airborne laser-scanning data. The Cryosphere, 14(9), pp.2925-2940. 

 

Thank you for your suggestions on the references. We have added these citations (Lievens et al., 

2022; Deschamps-Berger et al., 2020) about snow depth derivation in the introduction part (lines 65-

67 in the revised MS). 

 

b) on other TTA or point-based methods. 

In addition to the TTA and point-based method using snow pattern repeatability (Pflug and 

Lundquist, 2020), we have added two other papers (Magnusson et al., 2014; Schneider and Molotch, 

2016) that discuss other TTA or point-based methods (lines 81-91 in the revised MS). 

 

57: Please add ‘wet snow’ as further limitation. 

We have added a comment on this limitation of PM-based SWE remote sensing (lines 57-61 in the 

revised MS), with a reference to Walker and Goodison (1993).  

 

82: Please give some more information on P-SoOP in the manuscript, including when it is planned to be 

launched and if the track width matches your synthetic assumption. What is the expected accuracy of P-

band based SWE estimates? 

We cited Yueh et al. (2021) and a proposed NASA’s SNoOPI satellite (SigNals of Opportunity: P-band 

Investigation) to provide more information on P-SoOP (lines 93-101 in the revised MS), none of which 

are yet operational. However, our project was not limited to P-SoOP but was applicable to any 

intermittent satellite observations.  

 

 



103: Why not also areas in high latitudes? 

Good point. We have rewritten this statement to indicate that the method has potential for all snow-

covered areas globally (lines 114-115 in the revised MS). 

 

122: The F2022 snow reanalysis dataset should be described in more detail. What is the 

meteorological input to generate SWE? Are the applied meteorological variables for the 

F2022 snow reanalysis dataset the same than those you used for your machine learning 

approaches (is independency given)? 

We have added more details, but this is a published paper, so we only give a high-level summary and 

refer the reader to the archival paper for details. We have clarified that the ML training samples and 

domain-wide model inputs are from the same data source (lines 150-152 in the revised MS). 

 

195: Please define how you classified the years in dry, normal and extremely wet. What 

are the thresholds? 

We have added more details explaining how we defined the extremely dry, normal, and extraordinary wet 

years (lines 206-209 in the revised MS) and how we chose the 12 typical water years (lines 214-219 in the 

revised MS). 

 

338 and Figure 3: As you clearly mention, DNN performs best. However, it is worth to mention that RF 

shows the lowest PEBAS values for the normal and wet years. Also, more clear statements why DNN 

performs best would help. 

Thank you for the suggestion. We have mentioned that RF performed best in terms of PEBAS in wet and 

normal years. Also, we have provided more information and related citations (Segal, 2004) as to why 

DNN (MLP) performs best (lines 355-365 in the revised MS). 

 

565: Please add some more discussion on the fact that topography plays an important role regarding the 

‘choice’ of the satellite tracks. Does this play a role in Figure 11 as an increase in the number of ground 

tracks shows outliers in the course of MAE for WY2017 – 3 ground tracks and WY2008 – 5 ground 

tracks. 

We have added more discussion regarding Figure 11 and Figure S7 explaining that topography plays an 

important role in the performance of TTA SWE transformation (lines 611-617 in the revised MS).  
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