

- 1 Production and accumulation of reef framework by calcifying corals and macroalgae on
- 2 a remote Indian Ocean Cay.
- 4 M. James McLaughlin¹, Cindy Bessey¹, Gary A. Kendrick², John Keesing^{1,2}, Ylva S.
- 5 Olsen^{1,2},

- 6 ¹ CSIRO Oceans & Atmosphere, Indian Ocean Marine Research Centre, 64 Fairway,
- 7 Crawley 6009 Australia
- 8 ² School of Biological Sciences and The Oceans Institute, University of Western Australia,
- 9 Indian Ocean Marine Research Centre, 64 Fairway, Crawley 6009 Australia
- 10 Correspondence to: james.mclaughlin@csiro.au

Abstract

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Coral reefs face increasing pressures in response to unprecedented rates of environmental change at present. The coral reef physical framework is formed through the production of calcium carbonate (CaCO₃) and maintained by marine organisms, primarily hermatypic corals, crustose coralline algae (CCA), and other calcifying algae. The Kimberley bioregion, located in the northern part of Western Australia, has largely escaped land-based anthropogenic impacts and this study provides important metabolic data we are lacking on reef-building calcifying corals and macrophytes from an undisturbed set of marine habitats. Specimens of the dominant coral and algal taxa were collected from the reef platform of Browse Island located on the mid-shelf just inside the 200 m isobath off the Kimberley coast. During experimental light/dark incubations, all algae were net autotrophic producing 6-111 mmol O₂ m⁻² day⁻¹. In contrast, most corals were net consumers of O₂ with average net fluxes ranging from -42 to 47 mmol O₂ m⁻² day⁻¹. The net change in pH was generally negative for corals and calcifying algae (-0.01 to -0.08 h⁻¹). Corals, Halimeda (a calcifying green algae) and Galaxaura (a calcifying red algae) had positive calcification rates in light ranging from 4.2 to 18.4 g CaCO₃ m⁻² d⁻¹. Resulting net calcification rates were all positive and ranged from 1.9 to 9.9 g CaCO₃ m⁻² d⁻¹ and were strongly correlated to net O₂ production. In intertidal habitats around Browse Island, estimated relative contributions of coral and Halimeda to the reef production of CaCO₃ were similar at around 600–840 g m⁻² year⁻¹. The low reef platform had very low coral cover of < 3% which made a smaller contribution to calcification of ~240 g CaCO₃ m⁻² year⁻¹. Calcification on the subtidal reef slope was predominantly from corals, producing ~1540 g CaCO₃ m⁻² year⁻¹, twice that of *Halimeda*. The relative contributions of the main reef builders, in these undisturbed areas, to net community metabolism and CaCO₃ production and reef metabolism is important to understand exclusively climate-driven coral bleaching and mortality.

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

1. Introduction

sequestration of approximately 25-30 % of the annual anthropogenic atmospheric carbon dioxide (CO₂) emissions (Le Quéré et al., 2013). When CO₂ enters the ocean, water chemistry changes occur that are collectively referred to as ocean acidification (OA; Doney et al., 2009). Coral reefs, as some of the world's most biologically complex ecosystems, support a diverse range of species and provide critically important resources for livelihoods, such as food, and coastal protection (Hoegh-Guldberg et al., 2007). With the unprecedented rate of environmental change at present, coral reefs face increasing pressures in response to rising atmospheric greenhouse gases, especially CO₂ (IPCC, 2014). Two of the most immediate impacts of rising CO₂ levels on coral reefs are increases in ocean temperatures, due to atmospheric heat absorption, and ocean acidification (Hoegh-Guldberg, 2007; Doney et al., 2009). One of the most important determinants of overall reef function is the construction and maintenance of calcium carbonate (CaCO3) reef structure, which is vital to the myriad of ecosystem services that coral reefs provide (Hoegh-Guldberg et al., 2007; Andersson et al., 2013; Moberg and Folke, 1999). Coral reefs are known for their high photosynthetic production and calcification. Measurements of reef metabolism make it possible to characterize reef health in terms of these fundamental processes. Photosynthesis fixes CO₂ in organic materials, whereas the reverse reaction, respiration, releases it. Overall, the excess organic production in a coral reef community, i.e., the difference between gross primary production and respiration, acts as a CO₂ sink, while calcification acts as a source of CO₂ (Lewis, 1977; Kinsey, 1985).

Oceans play a crucial role in slowing global climate change through the absorption and

The coral reef physical framework is formed through the production of calcium carbonate 63 (CaCO₃) and maintained by marine organisms, primarily hermatypic corals, crustose 64 65 coralline algae (CCA), and other calcifying algae. Scleractinian corals are primary reef 66 builders in tropical environments producing CaCO3 through skeletal deposition, adding to the 67 three-dimensionality of the reef framework. For scleractinian corals, one of the most 68 significant consequences of OA is the decrease in the concentration of carbonate ions (CO_2^{-3}) . As coral's skeletons are made from the mineral phase of calcium carbonate, called 69 70 aragonite, the saturation state of aragonite (Ω_{arg}) is often related to rates of calcification. 71 Studies have demonstrated that, as CO₂ concentrations rise, the saturation state of aragonite 72 (Ω_{arg}) decreases and, in turn, the rate at which corals calcify declines (Schneider and Erez, 73 2006; Langdon, 2005; Pandolfi et al., 2011; Venn et al., 2013). Projections suggest that future 74 rates of coral reef community dissolution may exceed rates of CaCO3 production 75 (calcification), leading to net loss (Silverman et al., 2009; Hoegh-Guldberg et al., 2007). In 76 scleractinian corals with zooxanthellae, the precipitation of CaCO₃ through calcification is 77 tightly coupled to photosynthetic fixation of CO₂ and tends to be, on average, three times 78 higher in daylight conditions than in darkness (Gattuso et al., 1999). Calcification rates can 79 increase further through feeding on phytoplankton and suspended particles (Houlbreque and 80 Ferrier-Pages, 2009). Change in community structure is linked to the balance between 81 community metabolism and calcification with the CO₂ flux of seawater (Kayanne et al., 82 2005). During bleaching events rates of primary production and respiration increase but 83 community excess organic production decreases dramatically in reefs under thermal stress 84 (Kayanne et al., 2005). Baseline reef metabolism in undisturbed areas like Browse Island are important to understand exclusively climate-driven coral bleaching and mortality. 85

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

Reef algae are an important component of many tropical marine ecosystems, including coral reefs, where their morphological diversity provides habitat and shelter for a number of invertebrate and fish species, with productivity sustaining higher trophic levels. Reef-building corals are generally considered to be the dominant components of healthy or pristine coral reefs, but inconspicuous turfs and encrusting coralline algae contribute substantially to reef primary production in these areas (Odum and Odum, 1955; Hatcher, 1997). The abundance of large frondose macroalgae is typically inversely related to coral abundance; macroalgae are common on reef flat, back reef, and inshore fringing reef areas, whereas corals are more common on reef slopes. In coastal environments, like corals, calcified macroalgae can also contribute significantly to the deposition of carbonates. Among the green calcifying algae (Chlorophyta), the genus Halimeda (order Bryopsidales) are widely distributed across tropical and subtropical environments and play important ecological roles in both habitat provisioning and biogenic sediment production. Production rates of Halimeda make it major contributor to CaCO₃ in reefs in the Caribbean, Tahiti and the Great Barrier Reef (Drew, 1983; Payri, 1988). In certain locations production can approach 1.4 kg CaCO₃ m⁻² yr⁻¹, positioning *Halimeda* as a major contributor to carbonate budgets within shallow waters around the globe (Payri, 1988). This group further occupies a diverse range of environments (mangroves, seagrass beds, and coral reefs) and can produce structurally complex mounds which serve as critical habitat for a diversity of marine life (Rees et al., 2007). Community metabolism on a reef is a combination of the net photosynthesis and respiration of the organisms that live there. The corals and algae dominating the benthos of these complex ecosystems have the potential to change the chemistry of the water column (Duarte et al., 2013),

5

despite global oceanographic and atmospheric influences (Kleypas et al., 2011). Metabolic

processes can deplete or replenish oxygen, carbon, and nutrient concentrations either within

hydrodynamic boundary layers over time (Shashar et al., 1993; Zeebe et al. 1999; Anthony et al., 2011; Shamberger et al., 2011) or in larger water masses as they move across a given reef (Barnes, 1983; Barnes and Lazar, 1993; Frankignoulle et al., 1996; Gattuso et al., 1996a; Niggel et al., 2010; Wild et al., 2010). The magnitude of the metabolic changes in water column chemistry depends on the relative abundance of the different members of the reef community, their individual metabolic rates and the local oceanographic conditions. In addition to producing and consuming O₂, photosynthetic organisms alter concentrations of dissolved inorganic carbon through uptake of dissolved inorganic carbon (CO₂ or bicarbonate; e.g. Raven et al., 1995) during photosynthesis and release of CO₂ during respiration thus altering the pH of the surrounding water column (Murru and Sandgren, 2004). Calcifying organisms also alter the biogeochemistry in the water column by releasing CO₂ and H⁺ ions during the production of CaCO₃ and thus decreasing the pH (Jokiel, 2011). How calcifying primary producers such as corals with zooxanthellae and calcifying algae affect water column chemistry is therefore more difficult to predict.

Mesocosm experiments have shown that reef-building (hermatypic) corals tend to reduce pH and consume O₂ (e.g. (Gattuso et al., 2015; Smith et al., 2013)) whereas calcifying macroalgae increase pH and O₂ during daytime (Borowitzka and Larkum, 1987; Smith et al., 2013). Both corals and calcifying macroalgae reduce pH and O₂ concentrations due to respiration during nighttime, but the rates of change differ among species (Smith et al., 2013). There are limited numbers of studies examining the individual effects of key primary producers on water chemistry in the same study, and thus, we lack knowledge of the relative contributions of the main reef builders to net community metabolism and CaCO₃ production on most coral reefs.

The Kimberley bioregion located in the northern part of Western Australia is host to extensive coastal reef systems, isolated offshore reefs and islands. It represents one of the few "very low impact" tropical coast and shelf areas globally – only 3.7% of the global oceans fall in this category (Halpern et al., 2008) – highlighting its significance as an undisturbed reef habitat. Few process studies have been carried out in the region due to the remoteness of these reefs, some of which are located 100s of km from the coastline, meaning that fieldwork and data acquisition can be difficult and costly. Here, we compare metabolic and calcification rates of the dominant intertidal taxa of macroalgae and coral at Browse Island, a small island in the Kimberley, something never previously examined in these systems. Rates of net metabolism and calcification were determined in on-ship incubations in October 2016, April 2017 and October 2017. These rates were upscaled for the dominant benthic community types using the proportional cover of the benthos.

2. Methods

2.1 Study site

Browse Island is located on the mid-shelf just inside the 200 m isobath off the Kimberley coast in northern Western Australia ($14^{\circ}6'S$, $123^{\circ}32'E$; Fig. 1). The island is surrounded by a small ($\sim 4.5 \text{ km}^2$) planar platform reef consisting of a shallow lagoon, an extensive reef flat that is conspicuously absent to the northeast of the island, and a well-defined reef crest and slope. Tides are semidiurnal with a maximum range of < 5 m, exposing the reef crest and reef platform habitats during low tides. The intertidal habitats are characterised by low species richness and dominated by small turfing algae and calcified macroalgae of the genus *Halimeda* (15-22% and 6-9% cover respectively) (Olsen et al., 2017). Coral assemblages are well developed with cover of 5-8% in the intertidal habitats and 18% on the shallow reef slope (< 10 m) (Olsen et al., 2017).

2.2 Algae and coral collection

Specimens of the dominant coral and algal taxa were collected from the reef platform by hand during low tide, immediately brought back to the vessel and kept in a holding tank with circulating seawater. Macroalgae included the calcifying green alga *Halimeda opuntia*, which was the dominant species of *Halimeda* on the reef platform, the green alga *Caulerpa* sp., and the calcifying red alga *Galaxaura* sp. Pieces of turf algae (turf) as well as turf attached to a piece of rock (turf + substrate) were measured. In April 2016, drift algae of the genus *Sargassum* found floating on the water surface were also included although this taxa was not been found growing anywhere on the reef. Hermatypic corals included *Pocillopora* sp., *Goniastrea* sp., *Porites* sp., *Heliopora* sp., *Acropora* sp. and *Seriatopora* sp. Whole pieces of coral small enough to fit inside the incubation cores (inner diameter ~90 mm) were collected to minimise tissue damage. All coral samples were > 50 mm diameter and therefore operationally defined as adults and estimated to be at least 2 to 7 years old depending on the taxa (Trapon et al., 2013).

2.3 Light and dark incubations

Light and dark incubations were undertaken on the back deck of the research vessel. Four 60 L holding tanks were placed in a shade-free spot under natural light conditions, filled with seawater and connected to a flow-through seawater system, which ensured the setup remained at ambient temperature. Photosynthetically active radiation (PAR) was recorded with a HOBO Micro Station logger (H21-002, Onset) placed inside one of the tanks. Each holding tank contained six 1.56 L clear Perspex incubation cores fitted with stirring caps. A port in the cap of each core allowed for sample collection using a syringe. As the sample was removed, the

same volume of liquid was automatically replaced from the flowthrough tank into the core so that the core volume remained constant through the experiment.

Individual specimens of algae and coral were placed in 6–12 replicate incubation cores per taxa except where not enough individuals could be found. Table 1 shows the taxa incubated during each sampling trip and the number of replicates. Water samples from the holding tanks were measured at each time point as controls and, in addition, in October 2017, a separate seawater control (six replicate incubation cores with seawater) was included. After a period of acclimation (1–2 h), incubations were run over a four-hour period. The light incubations were conducted while the sun was at its zenith providing full irradiance to the samples. After two hours, the tubs were covered with a black lid ensuring no light could enter and the samples incubated for two hours in the dark.

To estimate oxygen production or consumption during the incubations, a 40 mL water sample was extracted from each of the 24 cores and the four tubs at the start of the incubations and hourly thereafter. Samples were immediately analysed for temperature and dissolved oxygen (O₂) with a YSI 5100 bench-top oxygen and temperature meter with YSI 5010 BOD stirring probe, calibrated daily in air. Sample pH was determined using a TPS Aqua pH meter with an Ionode probe, calibrated daily with pH 7.00 and 10.00 buffers. A second 35 mL water sample was collected from each core and tub and split between one 10 mL glass vacutainer for alkalinity and duplicate 10 mL sterile vials for nutrient analyses. Nutrient samples were immediately frozen and alkalinity samples were stored cool and dark. At the end of the incubation, algal and coral specimens were frozen. All samples were transported to Perth, Western Australia, to be analysed.

2.4 Surface areas of coral and algal specimens

210

211

212

214

215

216

217

218

219

221

222

223

224

225

226

227

228

229

230

231

232

233

234

this represents the area available for photosynthesis and nutrient uptake. The surface area of 213 specimens of coral, *Halimeda* and turf + substrate were estimated using a single wax dipping method (Veal et al., 2010). Specimens were dried, weighed and then dipped in paraffin wax at 65°C. The waxed samples were weighed again, and the weight of the wax calculated. The surface area was estimated from the wax weights against a calibration curve constructed by wax dipping geometric wooden objects of known size. The surface areas of the remaining taxa, were estimated from photographs in ImageJ (Rueden et al., 2017). The 'footprint' of each sample, i.e. the surface area of reef occupied by the organism, was also estimated by tracing 220 the outline of the specimen photographed from straight above in ImageJ. 2.5 Chemical analyses Concentrations of nitrate + nitrite (hereafter referred to as nitrate), ammonium, phosphate and dissolved silica in water samples were analysed in duplicate by flow injection analysis (Lachat QuickChem 8000) with detection by absorbance at specific wavelengths for silica [QuikChem Method 31-114-27-1-D], nitrate [Quikchem Method 31-107-04-1-A] and phosphate [QuikChem Method 31-115-01-1-G]), and by fluorescence for ammonia according to Watson et al. 2005. Detection limits were 0.02 µmol L⁻¹ for all inorganic nutrient species, with a standard error of < 0.7%. Total alkalinity was determined to the nearest 5 µmol L⁻¹ equivalent (hereafter referred to as µmol L⁻¹) using an open cell Metrohm titrator (841 Titrando, Burette: 800 Dosino 10 mL) with a Metrohm micro-glass pH probe calibrated with Certipur buffer solutions at pH 2.00, 4.01, 7.00, and 10.00 (at 25.0°C). Samples were kept in a Jubalo F12 temperature control water bath

Metabolic measurements were standardised by surface area of the incubated specimens since

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

prior to decanting a 10 mL aliquot of sample into a vessel with a water jacket maintaining temperature at 25.0°C. Samples were titrated with 0.012 N HCl, standardised against sodium carbonate (99.95-100.05 wt%) with an initial volume of titrant added to reach pH 3.5. Titrations were run to an end-point of pH 3 with Gran plot (Excel macro) to determine the total alkalinity endpoint near pH 4.2. Carbonate system parameters were calculated from pH (measured during the incubations) and total alkalinity using the package 'seacarb' (Gattuso et al., 2018) in R (R_Core_Team 2018). Alkalinity and carbonate parameters were not determined in April 2016. 2.6 Oxygen fluxes and calcification rate calculations The changes in O₂ concentrations during light- and dark incubations were expressed as mmol per day assuming stable hourly production rates over 24 h. Any replicates where O₂ did not increase during both of the light intervals or did not decrease during both of the dark intervals were excluded from further analysis. Net fluxes of O_2 per day were calculated for each sample assuming a 12-h photoperiod. Calcification rates of corals and calcifying algae (Halimeda opuntia. and Galaxaura sp.) were estimated using the alkalinity anomaly method (Smith and Key, 1975) uncorrected for changes in nutrient concentration (Chisholm and Gattuso, 1991) where precipitation of one mole of CaCO₃ leads to the reduction of total alkalinity by two molar equivalents. Rates per surface area were obtained by dividing these values by the surface area of each specimen. A census-based approach was used to estimate the amount of CaCO₃ and O₂ produced by a single taxon per unit area of reef surface per year (Shaw et al., 2016). The rates of calcification and net O₂ production per day were divided by the 'footprint' area of each specimen. To estimate the relative contributions from each taxon to community production per m² of reef,

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

these rates were multiplied by the relative percent cover in each of the major habitats. Estimates of percent cover based on drop camera image analysis were obtained from Olsen et al. (2017). The productivity rates for individual coral species were combined into one value for coral. 2.7 Statistical analyses The relationships between net changes in pH and O2 and between net O2 production and net calcification (in light and dark incubations) were examined by linear regression. Significance of regressions were calculated for algae, calcified algae and corals and the 95% confidence intervals for the slope of each line in R (R_Core_Team, 2018). Regressions were examined with ANOVA and deemed significant if p < 0.05. 3 Results 3.1 Experimental conditions The ambient conditions during the incubations are shown in Table 2. Nutrient concentrations were low, as is characteristic of tropical Eastern Indian Ocean offshore waters (McLaughlin et al., 2019), and similar among sampling trips. Concentrations of nitrate were < 0.17 µmol L^{-1} , ammonium <0.13 µmol L^{-1} , phosphate < 0.1 µmol L^{-1} , and silicate < 3 µmol L^{-1} . Oxygen was around 6–7 mg L⁻¹ and salinity 34.2–34.8 ppt. Light and temperature conditions in the incubations were representative of in situ conditions on the reef platform and were similar among trips. PAR levels were 1500–1587 μE m⁻² s⁻¹ and slightly higher in October, whereas temperatures were 28.3-32.8°C and highest in April. Carbonate system parameters were not obtained for April 2016, and some differences were noted between October 2016 and 2017. Alkalinity and pH were both higher in 2016, and there were associated minor differences in the concentrations of the carbonate species and the aragonite saturation state (Table 2).

285 286 3.2 Changes in oxygen and pH Changes in dissolved O2 differed among taxa and between light and dark incubations. In the 287 seawater controls O₂ changed by < 0.01 mmol h⁻¹ in both light and dark incubations, showing 288 289 that the contribution of any organisms in the seawater itself to O₂ production and respiration 290 was minimal. No corrections were therefore applied. In the light incubations, when any 291 change in O2 resulted from primary production minus respiration, mean O2 concentrations increased for all taxa (Fig. 2, top panel). The highest light flux of O₂ of ~380 mmol m⁻² day⁻¹ 292 293 was measured for Galaxaura in October 2017 (Fig. 2, top). Corals generally produced 100-260 mmol O₂ m⁻² day⁻¹ in the light, except *Heliopora*, which had a flux of 50–80 mmol O₂ 294 m⁻² day⁻¹. All taxa consumed O₂ during the dark incubations when changes in O₂ are due to 295 respiration, with mean fluxes of -15 to -190 mmol O₂ m⁻² day⁻¹ (Fig. 2, middle). All algae 296 were net autotrophic and produced 6-111 mmol O₂ m⁻² day⁻¹ with the highest net O₂ flux 297 measured for *Galaxaura* and turf at 111 and 36 mmol O₂ m⁻² day⁻¹ respectively (Fig. 2, 298 299 bottom). In contrast, around half of the corals were net consumers of O₂ and average net fluxes spanned a wide range from -42 to 47 mmol O₂ m⁻² day⁻¹. It is important to note that 300 coral specimens tested in the incubations were 50-90 mm (smallest diameter) and that the 301 302 patterns observed may be specific to smaller coral colonies. 303 In the light incubations, pH generally increased by 0.03–0.25 h⁻¹ for all taxa, except for 304 305 Halimeda in April 2016 and October 2017, which showed no change or a very small increase (Fig. 3, top panel). In dark incubations, mean pH decreased for all taxa by 0.02–0.21 h⁻¹ 306 307 indicative of a net increase in CO₂ through respiration (Fig. 3, middle). Non-calcifying algae 308 (Sargassum, Caulerpa and turf) raised net pH by 0.02-0.05 h⁻¹ (assuming equal periods of 309 light and darkness) (Fig. 3, bottom panel). The net change in pH was generally negative for

310 corals and calcifying algae (-0.01 to -0.08 h⁻¹), except for the coral Goniastrea in April and 311 October 2016 (0.01 h⁻¹) and the calcifying alga *Galaxaura* (0.03 h⁻¹; Fig. 3, bottom). 312 313 Net changes in pH are largely driven by metabolic uptake and release of CO₂. We found 314 positive relationships between changes in pH and net production or consumption of O₂ except 315 in seawater controls where changes in O₂ and pH were minor (Fig. 4). The relationships for algae, calcifying algae and coral were all significant, but had relatively low adjusted r^2 values 316 317 of 0.59, 0.46 and 0.19 respectively, suggesting significant variability among species and 318 individuals within each of these groups. 319 320 3.3 Calcification Rates 321 Corals, Halimeda and Galaxaura had positive calcification rates in light ranging from 4.2 to 18.4 g CaCO₃ m⁻² d⁻¹ (Fig. 5, top panel). In the dark, calcifying rates were smaller and just 322 under half of the rates were negative suggesting dissolution of CaCO₃ (Fig. 5, middle panel). 323 324 The resulting net calcification rates (assuming equal periods of light and darkness) were all positive and ranged from 1.9 to 9.9 g CaCO₃ m⁻² d⁻¹ (Fig. 5, bottom). Rates of calcification 325 326 were strongly linearly correlated to net O₂ production and were significantly higher in light 327 than in darkness for both corals and algae (Fig. 6). 328 329 3.4 Contributions to community production 330 In intertidal habitats around Browse Island, the estimated relative contributions of coral and Halimeda to the reef production of CaCO₃ were similar, around 600-840 g m⁻² year⁻¹ (Fig. 7, 331 332 top panel). The low reef platform had very low coral cover of < 3% (Fig. 7, middle), which 333 therefore made a smaller contribution to calcification of ~240 g CaCO₃ m⁻² year⁻¹ in this 334 habitat (Fig. 7, top). In contrast, calcification on the subtidal reef slope was predominantly

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

from corals, which produced ~1540 g CaCO₃ m⁻² year⁻¹, around twice the amount compared to Halimeda. Galaxaura, which had high measured rates of productivity and calcification, was extremely rare and its contribution to community calcification and productivity were negligible. Turf was responsible for the majority of the O2 production in all habitats and produced an estimated 8–13 mmol O₂ m⁻² d⁻¹ compared to < 2 for *Halimeda* mmol O₂ m⁻² d^{-1} and -4 to -1 mmol O_2 m⁻² d⁻¹ for corals (Fig. 7, second panel from top). 4 Discussion The Kimberley coastal region (located in remote north-western Australia) has a macrotidal regime where spring tidal ranges can reach up to 11 m in some locations (McLaughlin et al., 2020; Kowalik, 2004). The region contains thousands of islands with a total reef area estimated to be ~2000 km² (Kordi and O'Leary, 2016), inhabited by diverse coral reef and seagrass communities (Richards et al., 2015; Wells et al., 1995). Recent work has revealed the strongly tide-dominated circulation that can occur on Kimberley reef platforms (Lowe et al., 2015). Browse Island has the only emergent mid-shelf reef in the Kimberley bioregion and its benthic structure is very different from both inner and outer shelf reefs. The regionwide averages of coral cover and macroalgal cover are 23.8% and 7.1% (Richards et al., 2018) respectively, but at Browse Island the relationship is reversed with macroalgae more dominant at 28% total cover to that of 9% for coral. On the Browse Island reef platform the same pattern is observed where averages were 5-8% for coral and 32% for macroalgae, differing from those of the regional averages of 14.4% and 15.5% of coral and macroalgae respectively (Richards et al., 2018). Observations from shallow benthic habitats, like those at Browse Island, have shown that seawater O₂ and carbonate chemistry vary over diel cycles related to patterns in

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

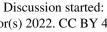
384

of CO₂ during daylight hours result in elevated pH and an elevated aragonite saturation state (Ω_{arag}) during the day when calcification rates peak. The process of calcification decreases pH in the surrounding water, but for calcifying autotrophs CO₂ uptake and fixation through photosynthesis can potentially offset changes to the carbonate chemistry caused by calcification (Smith et al., 2013). Methods to calculate calcification can vary in accuracy where overestimates of calcification rates can result from calculations based on changes in alkalinity, while those relying on CaCO₃ content and growth measurements, either through staining or tagging segments, may produce minimum estimates as loss of new tissue is not accounted for (Hart and Kench, 2007). The method employed in the present study was the best possible option when working in a remote location where actual growth rates cannot be easily assessed. The organisms investigated here showed typical patterns of O₂ production in daylight and consumption in darkness to other similar island reef systems as a result of photosynthesis and respiration, but the metabolic measurements showed clear differences among taxa and functional groups. Algae had higher positive net O2 fluxes with rates of 5.7-111.6 mg O2 m⁻² day⁻¹, of which the red calcifying alga *Galaxaura* sp. had the highest rate of net productivity by far. For corals, the relatively high O₂ increase measured in daylight was coupled with high rates of respiration in darkness, creating a negligible or negative net O2 production for most species, except Porites sp. in April 2016 and Seriatopora sp. in October 2016 and 2017 which were net positive. This indicates that the majority of the corals are largely

photosynthesis and respiration (e.g. Duarte et al., 2013). Primary production and the uptake

example, fleshy and calcifying algae showed net diel O₂ production, whereas corals generally

heterotrophic and rely on feeding in addition to photosynthesis by zooxanthellae to sustain


growth. These patterns are generally in agreement with those reported elsewhere, for

385 consumed O₂, i.e. were net heterotrophic, on islands in the South Pacific (Porites sp.) and the 386 Caribbean (Madracis sp.) (Smith et al., 2013). 387 388 Concurrent with changes in O2 were changes in seawater pH, where pH increased in daylight 389 (except for Halimeda in April 2016 where no change was measured) and decreased in 390 darkness. The effects of metabolic activity on bulk pH (uptake and release of CO₂ through 391 photosynthesis and respiration) cannot be directly separated from that of calcification, which 392 is associated with the release of H+ ions thereby decreasing pH (Jokiel, 2011). However, 393 differences were observed in the net pH change in incubations between calcifiers and non-394 calcifiers. The net effect of non-calcifiers on seawater pH was positive while the majority of 395 calcifiers caused net pH to decline. The process of calcification decreases pH in the 396 surrounding water, but for calcifying autotrophs CO2 uptake and fixation through 397 photosynthesis can potentially offset changes to the carbonate chemistry caused by 398 calcification (Smith et al., 2013). In the present study, Halimeda (April 2016) and Goniastrea 399 (April and October 2016) caused relatively minor increases in pH, whereas the calcifying 400 alga Galaxaura elevated pH by, on average, 0.03 units, comparable to the net effect of non-401 calcifiers. This is not surprising given the high rate of O₂ production measured for 402 Galaxaura, which is associated with sufficient levels of CO2 fixation to compensate for the 403 reduction in pH associated with calcification in this species. A strong link was observed 404 between metabolism and pH in all taxa, demonstrated as linear relationships between changes 405 in pH and O₂ during the incubations. Previous research by Smith et al. (2013) identified two 406 broad patterns; metabolic changes in O₂ in non-calcifiers (fleshy and turf algae) linked to 407 large changes in pH (steep slopes), and metabolic changes in O₂ in calcifying organisms 408 (Porites sp. Madracis sp. and Halimeda sp.) producing little or no change in pH (shallow 409 slopes). This is contrary to the present study observations where slopes of relationships

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

between pH and O₂ were similar for calcifiers and non-calcifiers. Non-calcifying organisms were found to consistently have a net positive effect on both pH and O₂. Change in pH for the same net change in O₂ was elevated for non-calcifiers compared to calcifiers. This difference can be attributed to the process of calcification, which reduces the 'baseline pH' in these relationships. Production and accumulation of reef framework carbonate is controlled by the relative rates of, and the interactions between, a range of ecologically, physically and chemically driven production and erosion processes (Perry et al., 2008; Montaggioni and Braithwaite, 2009), with the relative importance of different taxa for CaCO₃ production differing among reefs and among habitats within reefs. Rates of net community calcification for reef flats worldwide range from 7.3 to 90 mol (730–9000 g) CaCO₃ m⁻² year⁻¹ with an average of 47 mol (4700 g) CaCO₃ m⁻² year⁻¹ (Atkinson, 2011). Patterns found in the present study higher calcification rates in daylight compared to in darkness for all corals and calcifying algae — are therefore typical. However, the coral CaCO₃ production rates per reef area (7– 8% cover low reef platform, 19% reef slope) measured here (240 g m⁻² year⁻¹ for low reef platform, 610–756 g m⁻² year⁻¹ in the other intertidal habitats, and 1536 g m⁻² year⁻¹ on the reef slope) were somewhat lower than values reported elsewhere. Several of the taxa showed negligible production or even dissolution of CaCO₃ in darkness. The resulting strong relationship between net carbonate production and net carbonate consumption is consistent with previous studies both in situ and in mesocosms (Albright et al., 2013). Corals are typically the primary framework-producing components on a tropical reef and dominate carbonate production per unit area (Vecsei, 2004), however additional CaCO₃ is produced by calcareous crustose coralline algae (CCA) and calcareous algae of the genus

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

Halimeda, (e.g. Payri, 1988). Sprawling lithophytic species of Halimeda, like the majority of the Halimeda around Browse Island, tend to be fast growing and have high calcification rates (Hart and Kench, 2007). Rates of calcification per area of 100% Halimeda cover have been estimated to 400-1667 g CaCO₃ m⁻² year⁻¹ (in Hart and Kench, 2007 Suppl info). In other locations, Halimeda has been estimated to contribute around 1100–2400 g CaCO₃ m⁻² year⁻¹ to benthic carbonate production (Drew, 1983; Freile et al., 1995; Hudson, 1985; Kangwe et al., 2012; Payri, 1988; Rees et al., 2007), which is higher than the 600-840 g CaCO₃ m⁻² year⁻¹ estimated for *Halimeda opuntia* in the intertidal habitats in the present study. These rates depend both on the intrinsic calcification rates and on the abundance or cover of algae $(6.1-8.7\% \text{ cover on Browse, which corresponds to } \sim 150-250 \text{ g dw m}^{-2}).$ While the estimates provided here approximate the relative contributions of Halimeda and coral to CaCO₃ production, they do not add up to a whole system budget. There are other organisms likely to contribute significantly. For example, the present study did not measure metabolic or calcification rates of encrusting coralline algae, which, although making up a modest 1.0–3.0% of the benthic cover in the lagoon and reef platform habitats at Browse Island, become more prominent at 11.8–14.1% on the reef crest and slope (Olsen, unpublished data). To calculate the true CaCO₃ production per area of reef, the calcification rate would need to be multiplied by the benthic cover of coralline algae and the square of the benthic rugosity (Eakin, 1996). Using typical values for rugosity from Eakin (1996) of 1–1.4 for the lagoon and reef platform and 1.7-2 for the reef crest and slope, and assuming a typical calcification rate of 1500–2500 g m⁻² year⁻¹ (for 100% flat-surface cover) (Hart and Kench, 2007), the contribution of encrusting coralline algae to calcification in the lagoon and reef platform would be minor at 70–134 g CaCO₃ m⁻² year⁻¹. However, they could produce a significant amount of 980–1360 g CaCO₃ m⁻² year⁻¹ on the reef crest and slope, which is

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

coralline algae may therefore contribute significantly to the CaCO₃ budget at Browse Island, at least in deeper habitats. These values are similar to those measured elsewhere, for example 870–3770 g CaCO₃ m⁻² year⁻¹ at Uva reef in the eastern Pacific (Eakin, 1996). Conclusions Browse Island is the only emergent mid-shelf reef in the Kimberley bioregion and is host to a different benthic community composition compared to the closest reefs both inshore (e.g. Montgomery Reef, Adele and Cassini Islands) and offshore (e.g. Ashmore Reef and Rowley Shoals). The relative contributions of algae and corals to reef productivity are likely to differ across the shelf, with corals becoming more important in offshore waters and algal calcifiers being important on the mid-shelf. Estimated aerial production rates did not take into account the relief of the substrate. The reef platform surrounding Browse Island has relatively low surface relief, whereas the reef slope and crest have high rugosity, which means production rates in the latter environments may be underestimated. Despite these limitations, the rates estimated in this study are similar to those measured elsewhere. The higher cover of *Halimeda* and the low coral cover at Browse Island compared to other reefs in the region mean that corals and Halimeda contribute equally to productivity rates of CaCO₃ on the Browse Island reef flat, however, their relative contributions to the reef framework and sedimentary budget of the reef is unknown. To gain an understanding of the

somewhere in between the production rates estimated for *Halimeda* and corals. Encrusting

relationships between carbonate production and sinks on the reef, further study into the types

and amounts of CaCO₃ material found in each reef sink is necessary. The Kimberley coastal

shelf, which is characterised by coral reef environments with clear, low nutrient waters and

negatively affected by climate-driven coral bleaching and mortality, for example from heat

low productivity, has largely escaped land-based anthropogenic impacts, but has been

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

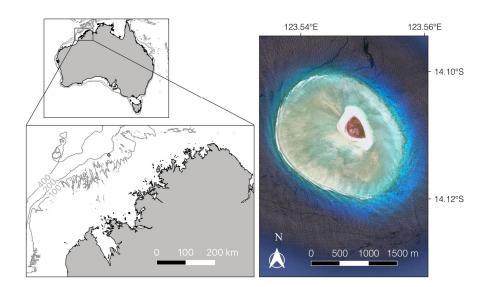
506

507

508

509

waves at Scott Reef in 1998 and 2016 (Smith et al., 2008, Gilmour et al., 2013 and Hughes et al., 2017) and Ashmore Reef in 2003 and 2010 (Ceccarelli et al., 2011 and Heyward, 2011). The effects of temperature stressors on reef communities and their productivity remain to be investigated in this region. Different components of the reef around Browse Island are likely to have different vulnerabilities to warming and heat waves. Future environmental stressors leading to changes in benthic community composition, structure and subsequent changes in reef productivity and in rates of production of CaCO₃, could have major implications for Browse Island. Author contribution: M. James McLaughlin – Conceptualization, formal analysis, investigation, resources, methodology, visualisation, and writing (original draft preparation); Cindy Bessey - Investigation, resources, project administration, and writing (review and editing); Gary A. Kendrick - Conceptualization, funding acquisition, project administration, supervision, and writing (review and editing); John Keesing - Conceptualization, funding acquisition, investigation, resources, supervision, and writing (review and editing); Ylva S. Olsen - Conceptualization, formal analysis, investigation, project administration, resources, methodology, visualisation, and writing (original draft preparation) **Declaration of funding:** The authors acknowledge the financial support of Shell Australia Pty Ltd and the INPEX-operated Ichthys liquefied natural gas (LNG) project in conducting this research. **Competing interests:** The authors declare that they have no conflict of interest.

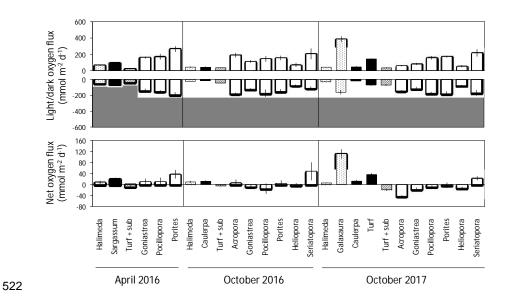


510	Acknowledgements
511	The authors thank Max Rees, Mark Tonks for their support of this work, the staff at Quest
512	Maritime for vessel logistics and the crews of the Browse Invincible and the Browse Express
513	for help in the field.
514	

515 Figures

Figure 1. The study site, Browse Island (diamond, bottom left map), is located just inside the 200-m isobath on the continental shelf. The small map (top left) shows the location of the island relative to the Australian coastline with the 100, 200 and 400 m isobaths marked in gray. The satellite image (right; © Google Earth 2018) shows the extent of the reef.

521


516517

518

519

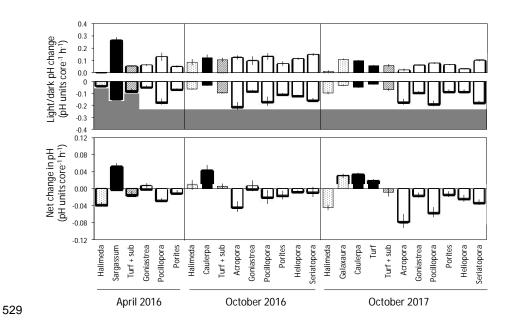
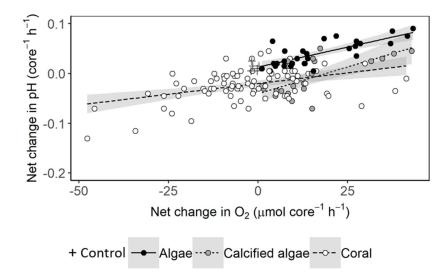


Figure 2. Net changes in oxygen (means \pm se) in light (top) and dark (middle) incubations of calcifying algae (stippled), macroalgae and turf (black), turf + substrate (diagonal stripes) and coral (white) standardised by specimen surface area. The bottom panel shows the net daily production of oxygen (means \pm se) assuming a 12-h photoperiod and stable rates of photosynthesis and respiration over a 24-h period.

Figure 3. Net changes in pH per hour for each 1.56-L incubation core (means \pm se) in light (top) and dark (middle) incubations calcifying algae (stippled), macroalgae and turf (black), turf + substrate (diagonal stripes) and coral (white). The bottom panel shows the net change in pH per hour (means \pm se) assuming equal periods of light and darkness.


530

531

532

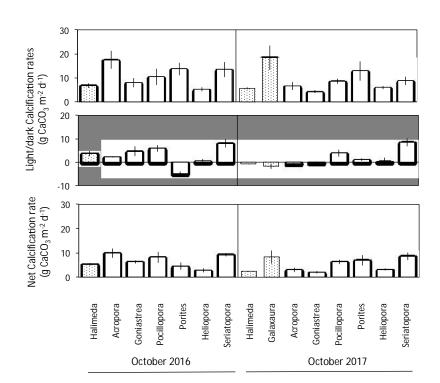
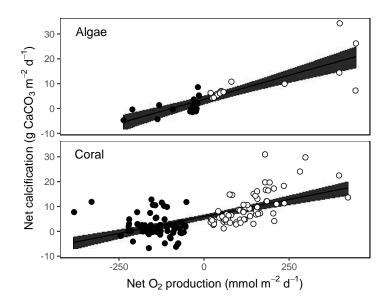


Figure 4. Net change in pH versus O_2 per 1.56-L incubation core assuming equal periods of light and darkness. Linear relationships are fitted with 95% confidence intervals shown in gray. For algae; net change in pH = 0.13 + 0.0016 × net change in O_2 (ANOVA: $F_{1,27}$ = 41.15, p <0.001). For calcified algae; net change in pH = -0.04 + 0.0021 × net change in O_2 (ANOVA: $F_{1,19}$ = 17.86, p <0.001). For corals; net change in pH = -0.02 + 0.00086 × net change in O_2 (ANOVA: $F_{1,82}$ = 18.88, p <0.001).

544


545

546

Figure 5. Calcification rates for corals (white) and calcifying algae (stippled) (means \pm se) in light (top) and dark (middle). The bottom panel shows the daily net calcification rate (means \pm se) assuming a 12-h photoperiod.

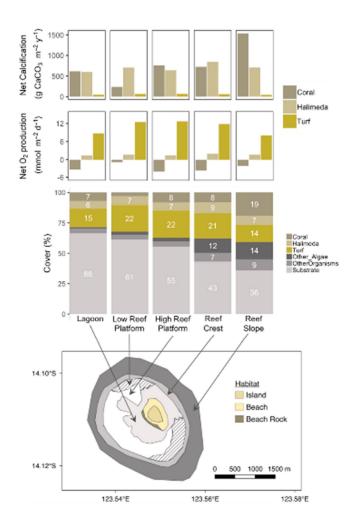


Figure 6. Relationship between net calcification rate and net productivity for calcifying algae (top) and corals (bottom). Open circles indicate rates measured in light and closed circles rates measured in dark. Linear fits are shown with 95% confidence intervals in gray. For calcified algae; net calcification = $3.6 + 0.039 \times$ net O_2 production (ANOVA: $F_{1,32} = 67.0$, p <0.001). For corals; net calcification = $5.99 + 0.027 \times$ net O_2 production (ANOVA: $F_{1,126} = 82.2$, p <0.001).

Figure 7. Map of the reef around Browse Island showing the major habitat types (bottom panel). Reef surface percent cover of coral, *Halimeda*, turf and other categories in each habitat (middle panel) based on drop-camera image analysis data from (Olsen *et al.* 2017). Net calcification and net oxygen production by coral, *Halimeda* and turf per m⁻² of reef (top two panels) scaled up by multiplying rates obtained from incubations of each taxon by the percent cover in each habitat.

Tables

Table 1. Taxa measured in on-ship incubation experiments including the number of replicate specimens measured (one specimen per incubation core). Some of the specimens were not included in the final analysis due to sampling errors or due to O_2 not increasing during both of the light intervals or not decreasing during both of the dark intervals; the resulting number of specimens used are shown in brackets.

	Taxa	Apr 2016	Oct 2016	Oct 2017
Algae	Halimeda opuntia	6 (5)	6	6
	Turf algae + substrate	6 (5)	6	6
	Turf algae	-	-	6
	Sargassum sp.	12	-	-
	Caulerpa sp.	-	6	6
	Galaxaura sp.	-	-	6 (5)
Coral	Pocillopora sp.	6	6	6
	Goniastrea sp.	6 (5)	6	6
	Porites sp.	5	6	6
	Heliopora sp.	-	6 (5)	6
	Acropora sp.	-	5	6
	Seriatopora sp.	-	4	6
	Seawater control	-	-	6

Table 2. Ambient concentrations of parameters measured during incubations (means \pm se); nutrients (NO₃⁻ + NO₂⁻ = nitrate + nitrite, NH₄⁺ = ammonium, PO₄³⁻ = orthophosphate, Si = silica) and oxygen (O₂), total alkalinity (TAlk), Photosynthetically Active Radiation (PAR), temperature (T) and salinity. Calculated carbonate system parameters (means \pm se); CO₂ partial pressure (pCO₂), concentrations of HCO₃⁻, CO₃²⁻ and dissolved inorganic carbon (DIC), and the saturation state of aragonite (Ω Aragonite). In April 2016, two replicate PAR measurements were taken at 11:00, 12:00 and 13:00 h. In October 2016 and 2017, PAR was measured every minute and values between 11:00 and 13:00 h averaged.

	Apr 2016	Oct 2016	Oct 2017	
Number of replicates (n)	8	10	12	
$NO_3^- + NO_2^- (\mu mol \ L^{-1})$	0.15 ± 0.04	0.05 ± 0.01	0.17 ± 0.01	
NH_4^+ (µmol L^{-1})	0.12 ± 0.02	0.13 ± 0.01	0.13 ± 0.01	
PO_4^{3-} (µmol L ⁻¹)	0.08 ± 0.01	0.07 ± 0.00	0.09 ± 0.00	
Si (μ mol L ⁻¹)	2.74 ± 0.04	2.93 ± 0.04	2.30 ± 0.02	
$O_2 (mg L^{-1})$	6.18 ± 0.06	6.66 ± 0.05	7.48 ± 0.09	
PAR 11–13 h ($\mu E m^{-2} s^{-1}$)	1499.6	1587.1	1587.0	
T (°C)	32.8 ± 0.1	31.2 ± 0.1	28.3 ± 0.1	
Salinity (ppt)	34.8	34.5	34.2	
TAlk (μ mol L ⁻¹)	NA	2408 ± 5	2390 ± 2	
pH	8.17 ± 0.02	8.14 ± 0.02	8.11 ± 0.01	
Calculated carbonate system parameters				
pCO ₂ (uatm)	NA	295 ± 14	335 ± 17	
$HCO_3^- (mmol kg^{-1})$	NA	1.61 ± 0.03	1.69 ± 0.02	
CO_3^{2-} (mmol kg ⁻¹)	NA	0.30 ± 0.006	0.26 ± 0.006	
DIC (mmol kg ⁻¹)	NA	1.93 ± 0.02	1.97 ± 0.02	
Ω Aragonite	NA	5.02 ± 0.11	4.27 ± 0.10	

581	References
582 583 584	Albright, R., Langdon, C., and Anthony, K.R.N.: (2013) Dynamics of seawater carbonate chemistry, production, and calcification of a coral reef flat, central Great Barrier Reef, Biogeosciences, 10, 6747-6758, https://doi.org/10.5194/bg-10-6747-2013, 2013.
585 586 587	Andersson A.J., and Gledhill D.: Ocean acidification and coral reefs: Effects on breakdown, dissolution, and net ecosystem calcification, Annual Review of Marine Science, 5, 321–48, https://doi.org/10.1146/annurev-marine-121211-172241, 2013.
588 589 590 591	Anthony, K.R.N., Kleypas, J.A., and Gattuso, J.P.: Coral reefs modify their seawater carbon chemistry—implications for impacts of ocean acidification, Global Change Biology , 17, 3655–3666, doi: 10.1111/j.1365-2486.2011.02510.x, 2011.
592 593	Atkinson, M.J.: Biogeochemistry of nutrients. In Coral Reefs: An ecosystem in transition, edited by: Zubinsky, Z., and Stambler, N., Springer: London, 2011.
594 595 596 597	Barnes, D.J.: Profiling coral reef productivity and calcification using pH and oxygen electrodes, Journal of Experimental Marine Biology and Ecology, 66, 149–161, doi:10.1016/0022-0981(83)90036-9, 1983.
598 599 600	Barnes, D.J., and Lazar, B.: Metabolic performance of a shallow reef patch near Eilat on the Red sea, Journal of Experimental Marine Biology and Ecology, 174, 1–13, doi:10.1016/0022-0981(93)90248-M, 1993.
601 602	Borowitzka, M.A., and Larkum, A.W.D.: Calcification in algae: Mechanisms and the role of metabolism, Critical Reviews in Plant Sciences, 6, 1-45, doi.org/10.1080/07352688709382246, 1987.
603 604 605	Ceccarelli, D.M., Jones, G.P., and McCook, L.J.: Interactions between herbivorous fish guilds and their influence on algal succession on a coastal coral reef, Journal of Experimental Marine Biology and Ecology, 399, 60-67, doi.org/10.1016/j.jembe.2011.01.019, 2011.
606 607 608 609	Chisholm, J.R.M., and Gattuso, JP.: Validation of the alkalinity anomaly technique for investigating calcification of photosynthesis in coral reef communities, Limnology and Oceanography, 36, 1232-1239, doi.org/10.4319/lo.1991.36.6.1232, 1991.
610 611 612	Drew, E.A.: Halimeda biomass, growth rates and sediment generation on reefs in the central great barrier reef province, Coral Reefs, 2, 101-110, doi.org/10.1007/BF02395280, 1983.
613 614 615 616 617	Duarte, C.M., Hendriks, I.E., Moore, T.S., Olsen, Y.S., Steckbauer, A., Ramajo, L., Carstensen, J., Trotter, J.A., and McCulloch, M.: Is Ocean Acidification an Open-Ocean Syndrome? Understanding Anthropogenic Impacts on Seawater pH, Estuaries and Coasts, 36, 221-236, doi.org/ 10.1007/s12237-013-9594-3, 2013.
618 619 620 621 622 623 624	Doney, S.C., Fabry, V.J., Feely, R.A., and Kleypas, J.A.: Ocean acidification: the other CO2 problem, Annual Review of Marine Science, 1, 169–192, doi.org/ 10.1146/annurev.marine.010908.163834, 2009.
	Eakin, C.M.: Where have all the carbonates gone? A model comparison of calcium carbonate budgets before and after the 1982–1983 El Nino at Uva Island in the eastern Pacific, Coral Reefs, 15, 109-119, doi.org/10.1007/BF01771900, 1996.

- 626 Frankignoulle, M., Gattuso, J.P., Biondo, R., Bourge, I., CopinMontegut, G., and Pichon, M.: Carbon
- 627 fluxes in coral reefs II: eulerian study of inorganic carbon dynamics and measurement of air-sea CO2
- 628 exchanges, Marine Ecology Progress Series, 145, 123–132, doi:10.3354/meps145123, 1996.
- 629 Freile, D., Milliman, J.D., and Hillis, L.: Leeward bank margin Halimeda meadows and draperies and
- 630 their sedimentary importance on the western Great Bahama Bank slope, Coral Reefs, 14, 27-33,
- 631 doi.org/10.1007/BF00304068, 1995.
- 632
- 633 Gattuso, J.P., Pichon, M., Delesalle, B., Canon, C., and Frankignoulle, M.: Carbon fluxes in coral
- 634 reefs I: lagrangian measurement of community metabolism and resulting air-sea CO2 disequilibrium,
- 635 Marine Ecology Progress Series, 145, 109–121, doi:10.3354/meps145109, 1996.
- 636 Gattuso, J.P., Allemand, D., and Frankignoulle, M.: Photosynthesis and calcification at cellular,
- 637 organismal and community levels in coral reefs: A review on interactions and control by carbonate
- 638 chemistry, American Zoologist, 39, 160-183, doi.org/10.1093/icb/39.1.160, 1999.
- 639
- Gattuso, J.P., Epitalon, J.-M., Orr, J., Gentili, B., Hagens, M., Hofmann, A., Mueller, J.-D., Proye, A.,
- Rae, J., and Soetaert, K.: seacarb:Seawater Carbonate Chemistry, 2018.
- 642 Gilmour, J.P., Smith, L.D., Heyward, A.J., Baird, A.H., and Pratchett, M.S.: Recovery of an Isolated
- 643 Coral Reef System Following Severe Disturbance, Science, 340, 69-71, doi.org/
- 644 10.1126/science.1232310, 2013.
- 645
- 646 Halpern, B.S., Walbridge, S., Selkoe, K.A., Kappel, C.V., Micheli, F., Agrosa, C., Bruno, J.F., Casey,
- 647 K.S., Ebert, C., Fox, H.E., Fujita, R., Heinemann, D., Lenihan, H.S., Madin, E.M.P., Perry, M.T.,
- 648 Selig, E.R., Spalding, M., Steneck, R., and Watson, R.: A Global Map of Human Impact on Marine
- 649 Ecosystems, Science, 319, 948, doi.org/10.1126/science.1149345, 2008.
- 650
- 651 Hart, D.E., and Kench, P.S.: Carbonate production of an emergent reef platform, Warraber Island,
- 652 Torres Strait, Australia, Coral Reefs, 26, 53-68, doi.org/ 10.1007/s00338-006-0168-8, 2007.
- 653 Hatcher, B.G.: Coral reef ecosystems: How much greater is the whole than the sum of the parts? Coral
- 654 Reefs, 16, 77–91, doi.org/10.1007/s003380050244, 1997.
- Heyward, A., Jones, R., Meeuwig, J., Burns, K., Radford, B., Colquhoun, J., Cappo, M., Case, M.,
- 656 O'Leary, R., Fisher, R., Meekan, M., and Stowar, M.: Monitoring Study S5. Banks and Shoals,
- 657 Montara 2011 Offshore Banks Assessment Survey Report for PTTEP Australasia (Ashmore Cartier)
- Pty. Ltd., Australian Institute of Marine Science, Townsville, 253pp, 2011.
- Hoegh-Guldberg, O., Mumby, P. J., Hooten, A. J., Steneck, R. S., Greenfield, P., Gomez, E., Harvell,
- 660 C. D., Sale, P. F., Edwards, A. J., Caldeira, K., Knowlton, N., Eakin, C. M., Iglesias-Prieto, R.,
- 661 Muthiga, N., Bradbury, R. H., Dubi, A., and Hatziolos, M. E.: Coral reefs under rapid climate change
- and ocean acidification, Science, 318, 1737–1742, doi.org/10.1126/science.1152509, 2007.

- Houlbreque, F., and Ferrier-Pages, C.: Heterotrophy in tropical scleractinian corals, Biological
- reviews of the Cambridge Philosophical Society, 84, 1-17, doi.org/10.1111/j.1469-
- 666 185X.2008.00058.x, 2009.

- 668 Hudson, J.H.: Growth rate and carbonate production in Halimeda opuntia: Marquesas Keys, Florida.
- 669 In Paleoalgology: contemporary research and applications, edited by Toomey, D.F. and Nitecki,
- 670 M.H., Springer-Verlag: Berlin, 1985.

- 671 Hughes, T., Kerry, J., Álvarez-Noriega, M. Álvarez-Romero, J.G., Anderson, K.D., Baird, A.H.,
- 672 Babcock, R,C., Beger, M., Bellwood, D.R., Berkelmans, R., Bridge, T.C., Butler, I.R., Byrne, M.,
- 673 Cantin, N.E., Comeau, S., Connolly, S.R., Cumming, G.S., Dalton, S.J., Diaz-Pulido, G., Eakin, C.M.,
- 674 Figueira, W.F., Gilmour, J.P., Harrison, H.B., Heron, S.F., Hoey, A.S., Hobbs, J.A., Hoogenboom,
- 675 M.O., Kennedy, E.V., Kuo, C., Lough, J.M., Lowe, R.J., Liu, G., McCulloch, M.T., Malcolm, H.A.,
- 676 McWilliam, M.J., Pandolfi, J.M., Pears, R.J., Pratchett, M.S., Schoepf, V., Simpson, T., Skirving,
- 677 W.J., Sommer, B., Torda, G., Wachenfeld, D.R., Willis, B.L., and Wilson, S.K.: Global warming and
- 678 recurrent mass bleaching of corals, Nature, 543, 373–377, doi.org/10.1038/nature21707, 2017.
- 679
- 680 IPCC: Climate Change 2014: Impacts, Adaptation, and Vulnerability, Part A: Global and Sectoral
- Aspects, Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental
- Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York,
- 683 2014.
- 684 Jokiel, P.L.: Ocean Acidification and Control of Reef Coral Calcification by Boundary Layer
- 685 Limitation of Proton Flux, Bulletin of Marine Science, 87, 639-657, doi.org/10.5343/bms.2010.1107,
- 686 2011.
- 687
- 688 Kangwe, J., Semesi, I.S., Beer, S., Mtolera, M., and Björk, M.: Carbonate Production by Calcareous
- Algae in a Seagrass-Dominated System: The Example of Chwaka Bay, CHAPTER 8, In People,
- 690 Nature and Research in Chwaka Bay, Zanzibar, Tanzania, edited by de la Torre-Castro, M. and
- 691 Lyimo, T.J., WIOMSA: Zanzibar, 2012.
- 692 Kinsey, D.W.: Metabolism, calcification and carbon production: I:System level studies, paper
- presented at 5th International Coral Reef Congress, Int. Coral Reef Soc., Tahiti, 1985.
- Kleypas, J.A., Anthony, K.R.N., and Gattuso, J.P.: Coral reefs modify their seawater carbon
- 695 chemistry—case study from a barrier reef (Moorea, French Polynesia), Global Change Biology, 17,
- 696 3667–3678, doi.org/10.1111/j.1365-2486.2011.02530.x, 2011.
- 697 Kordi, M.N. and O'Leary, M.:Geomorphic classification of coral reefs in the north western Australian
- shelf, Regional Studies in Marine Science, 7, 100–110, doi.org/10.1016/j.rsma.2016.05.012, 2016.
- 699 Kowalik, Z.:Tide distribution and tapping into tidal energy, Oceanologia, 46, 291–331, 2004.
- 700 Langdon, C.: Effect of elevated pCO2 on photosynthesis and calcification of corals and interactions
- 701 with seasonal change in temperature/irradiance and nutrient enrichment, Journal of Geophysical
- 702 Research, 110, C09S07, doi:10.1029/2004jc002576, 2005.
- 703 Le Quéré, C., Andres, R. J., Boden, T., Conway, T., Houghton, R. A., House, J. I., Marland, G.,
- 704 Peters, G. P., van der Werf, G. R., Ahlström, A., Andrew, R. M., Bopp, L., Canadell, J. G., Ciais, P.,
- 705 Doney, S. C., Enright, C., Friedlingstein, P., Huntingford, C., Jain, A. K., Jourdain, C., Kato, E.,
- 706 Keeling, R. F., Klein Goldewijk, K., Levis, S., Levy, P., Lomas, M., Poulter, B., Raupach, M. R.,
- 707 Schwinger, J., Sitch, S., Stocker, B. D., Viovy, N., Zaehle, S., and Zeng, N.: The global carbon budget
- 708 1959–2011, Earth System Science Data, 5, 165–185, doi.org/10.5194/essd-5-165-2013, 2013.
- 709
- 710 Lewis, J. B.: Process of organic production on coral reefs, Biolocial Review, 52, 305–347,
- 711 doi.org/10.1111/j.1469-185X.1977.tb00836.x, 1977.

- 713 Lowe, R.J., Leon, A.S., Symonds, G., Falter, J.L., and Gruber, R.: The intertidal hydraulics of tide-
- dominated reef platforms, J. Geophys. Res.-Oceans, 120, 4845–4868,
- 715 https://doi.org/10.1002/2015jc010701, 2015.

- 717 McLaughlin M.J., Lourey M.J., Hanson C.E., Cherukuru N, Thompson P.A., and Pattiaratchi C.:
- 718 Biophysical oceanography of tidally-extreme waters of the southern Kimberley coast, Western
- 719 Australia, Continental Shelf Research, 173, 1-12, doi.org/10.1016/j.csr.2018.12.002, 2019.
- 720 McLaughlin, M.J., Greenwood, J., Branson, P., Lourey, M.J., and Hanson, C.E.: Evidence of
- 721 phytoplankton light acclimation to periodic turbulent mixing along a tidally dominated tropical
- 722 coastline, Journal of Geophysical Research: Oceans, 125, e2020JC016615.
- 723 https://doi.org/10.1029/2020JC016615, 2020
- 724 Moberg F., and Folke C.: Ecological goods and services of coral reef ecosystems, Ecological
- 725 Economics, 29, 215-233, doi.org/10.1016/S0921-8009(99)00009-9, 1999.
- 726 Montaggioni, L.F., and Braithwaite, C.J.R.: Quaternary coral reef systems. Elsevier, p 532, 2009.
- 727 Murru, M., and Sandgren, C.D.: Habitat matters for inorganic carbon acquisition in 38 species of red
- 728 macroalgae (Rhodophyta) from Puget Sound, Washington, USA, Journal of Phycology, 40, 837-845,
- 729 doi.org/10.1111/j.1529-8817.2004.03182.x, 2004.
- 730 Niggel, W., Haas, A.F., and Wild, C.: Benthic community composition affects O2 availability and
- variability in a Northern Red Sea fringing reef, Hydrobiologia, 644, 401-405, 731
- 732 doi.org/10.1007/s10750-010-0200-4, 2010.
- 734
- Odum, H. T., and Odum, E. P.: Trophic structure and productivity of a windward coral reef
- 735 community on Eniwetok Atoll, Ecological Monographs, 25, 291–320, 1955.
- 736

- 737 Olsen, Y.S., Bessey, C., McLaughlin, J., and Keesing, J.K.: Annual Report: Patterns in primary
- 738 producers, herbivory and reef metabolism around Browse Island, Milestone Report for Shell/INPEX
- 739 Applied Research Program, 2017.
- 740
- 741 Pandolfi, J. M., Connolly, S. R., Marshall, D. J., and Cohen, A. L.: Projecting coral reef futures under
- 742 global warming and ocean acidification, Science, 333, 418-422, doi.org/10.1126/science.1204794,
- 743
- 744 745
- Payri, C.E.: Halimeda contribution to organic and inorganic production in a Tahitian reef system,
- 746 Coral Reefs, 6, 251-262, doi.org/10.1007/BF00302021, 1988.
- 747 Perry, C.T., Spencer, T., and Kench, P.: Carbonate budgets and reef production states: a geomorphic
- 748 perspective on the ecological phase-shift concept, Coral Reefs, 27, 853-866, doi.org/10.1007/s00338-
- 749 008-0418-z, 2008.

750

- 751 R_Core_Team: R: A language and environment for statistical computing, R Foundation for Statistical
- 752 Computing, Vienna, Austria, 2018.
- 753
- Raven, J.A., Walker, D.I., Johnston, A.M., Handley, L.L., and Kübler, J.E.: Implications of 13C 754
- 755 natural abundance measurements for photosynthetic performance by marine macrophytes in their
- 756 natural environment, Marine Ecology Progress Series, 123, 193-205, doi.org/ 10.3354/meps123193,
- 757 1995.

- 759 Rees, S.A., Opdyke, B.N., Wilson, P.A., and Henstock, T.J.: Significance of Halimeda bioherms to
- 760 the global carbonate budget based on a geological sediment budget for the Northern Great Barrier
- 761 Reef, Australia, Coral Reefs, 26, 177-188, doi.org/10.1007/s00338-006-0166-x, 2007.

- 762 Richards, Z.T., Garcia, R.A., Wallace, C.C., Rosser, N.L., and Muir, P.R.: A diverse assemblage of
- 763 reef corals thriving in a dynamic intertidal reef setting (Bonaparte Archipelago, Kimberley, Australia),
- 764 PLoS ONE, 10, e0117791, https://doi.org/10.1371/journal.pone.0117791, 2015.

- 766 Rueden, C.T., Schindelin, J., Hiner, M.C., DeZonia, B.E., Walter, A.E., Arena, E.T., and Eliceiri,
- 767 K.W.: ImageJ2: ImageJ for the next generation of scientific image data, BMC Bioinformatics, 18,
- 768 529, doi.org/10.1186/s12859-017-1934-z, 2017.
- 769 Schneider, K. and Erez, J.: The effect of carbonate chemistry on calcification and photosynthesis in
- 770 the hermatypic coral Acropora eurystoma, Limnology and Oceanography, 51, 1284–1293,
- 771 doi.org/10.4319/lo.2006.51.3.1284, 2006.

772

- 773 Shamberger, K.E.F., Feely, R.A., Sabine, C.L., Atkinson, M.J., DeCarlo, E.H., Mackenzie, F.T.,
- 774 Drupp, P.S., and Butterfield, D.A.: Calcification and organic production on a Hawaiian coral reef,
- 775 Marine Chemistry, 127, 64–75. doi.org/10.1016/j.marchem.2011.08.003, 2011.
- 776 Shashar, N., Cohen, Y., and Loya, Y.: Extreme diel fluctuations of oxygen in diffusive boundary
- 777 layers surrounding stony corals, Biological Bulletin, 185, 455–461, doi.org/ 10.2307/1542485, 1993.
- 778 Shaw, E.C., Hamylton, S.M., and Phinn, S.R.: Incorporating benthic community changes into
- 779 hydrochemical-based projections of coral reef calcium carbonate production under ocean
- 780 acidification, Coral Reefs, 35, 739-750, doi.org/10.1007/s00338-016-1407-2, 2016.
- 781 Silverman, J., Lazar, B., Cao, L., Caldeira, K., and Erez, J.: Coral reefs may start dissolving when
- 782 atmospheric CO2 doubles, Geophysical Research Letters, 36, L05606, doi:10.1029/2008gl036282,
- **783** 2009.

784

- 785 Smith, J.E., Price, N.N., Nelson, C.E., and Haas, A.F. Coupled changes in oxygen concentration and
- 786 pH caused by metabolism of benthic coral reef organisms, Marine Biology, 160, 2437-2447,
- 787 doi.org/10.1007/s00227-013-2239-z, 2013.
- 788 Smith, T.B., Nemeth, R.S., Blondeau, J., Calnan, J.M., Kadison, E., and Herzlieb S.: Assessing coral
- 789 reef health across onshore to offshore stress gradients in the US Virgin Islands, Marine Pollution
- 790 Bulletin, 56, 1983–1991, doi.org/10.1016/j.marpolbul.2008.08.015, 2008.

791

- 792 Smith, S.V., and Key, G.S.: Carbon dioxide and metabolism in marine environments, Limnology and
- 793 Oceanography, 20, 493-495, doi.org/10.4319/lo.1975.20.3.0493, 1975

794

- 795 Trapon, M.L., Pratchett, M.S., and Hoey, A.S.: Spatial variation in abundance, size and orientation of
- 796 juvenile corals related to the biomass of parrotfishes on the Great Barrier Reef, Australia, PLoS One,
- 797 8, e57788, doi.org/10.1371/journal.pone.0057788, 2013.

- 799 Veal, C.J., Carmi, M., Fine, M., and Hoegh-Guldberg, O.: Increasing the accuracy of surface area
- estimation using single wax dipping of coral fragments, Coral Reefs, 29, 893-897,
- 801 doi.org/10.1007/s00338-010-0647-9, 2010.
- 802 Vecsei, A.: A new estimate of global reefal carbonate production including the fore-reefs. Global
- 803 Planet Change, 43, 1–18, doi.org/10.1016/j.gloplacha.2003.12.002, 2004.
- Venn, A. A., Tambutté, E., Holcomb, M., Laurent J., Allemand, D. and Tambutté, S.: Impact of
- 805 seawater acidification on pH at the tissue–skeleton interface and calcification in reef corals,
- Proceedings of the National Academy of Sciences, 110, 1634–1639,
- 807 doi.org/10.1073/pnas.1216153110, 2013.

808	Watson, R.J., Butler, E.C.V., Clementson, L.A., and Berry, K.M.: Flow-injection analysis with
809	fluorescence detection for the determination of trace levels of ammonium in seawater, Journal of
810	Environmental Monitoring, 7, 37-42, doi.org/10.1039/b405924g, 2005.
811	Wells, F., Hanley, J.R., and Walker, D.I.: Marine biological survey of the southern Kimberley,
812	Western Australia, Western Australian Museum, 1995.
813	Wild, C., Niggel, W., Naumann, M.S., and Haas, A.F.: Organic matter release by Red Sea coral reef
814	organisms—potential effects on microbial activity and in situ O2 availability, Marine Ecology
815	Progress Series, 411, 61–71, doi.org/10.3354/meps08653, 2010.
816	Zeebe, R.E., Wolf-Gladrow, D.A., and Jansen, H.: On the time required to establish chemical and
817	isotopic equilibrium in the carbon dioxide system in seawater, Marine Chemistry, 65, 135–153,
818	doi.org/10.1016/S0304-4203(98)00092-9, 1999.