

1 **Production and accumulation of reef framework by calcifying corals and macroalgae on**
2 **a remote Indian Ocean cay.**

3

4 M. James McLaughlin¹, Cindy Bessey¹, Gary A. Kendrick², John Keesing^{1,2}, Ylva S.
5 Olsen^{1,2},

6 ¹ CSIRO Oceans & Atmosphere, Indian Ocean Marine Research Centre, 64 Fairway,
7 Crawley 6009 Australia

8 ² School of Biological Sciences and The Oceans Institute, University of Western Australia,
9 Indian Ocean Marine Research Centre, 64 Fairway, Crawley 6009 Australia

10 Correspondence to: james.mclaughlin@csiro.au

11

12

13 **Abstract**

14 Coral reefs face increasing pressures in response to unprecedented rates of environmental
15 change at present. The coral reef physical framework is formed through the production of
16 calcium carbonate (CaCO_3) and maintained by marine organisms, primarily hermatypic corals,
17 and calcifying algae. The northern part of Western Australia, known as the Kimberley, has
18 largely escaped land-based anthropogenic impacts and this study provides important metabolic
19 data on reef-building organisms from an undisturbed set of marine habitats. From the reef
20 platform of Browse Island, located on the mid-shelf just inside the 200 m isobath off the
21 Kimberley coast, specimens of the dominant coral (6 species) and algal (5 species) taxa were
22 collected and incubated ex-situ in light and dark shipboard experimental mesocosms for 4 hours
23 to measure rates of calcification and production patterns of oxygen. During experimental
24 light/dark incubations, all algae were net autotrophic producing 6 to 111 $\text{mmol O}_2 \text{ m}^{-2} \text{ day}^{-1}$.
25 In contrast, most corals were net consumers of O_2 with average net fluxes ranging from -42 to
26 $47 \text{ mmol O}_2 \text{ m}^{-2} \text{ day}^{-1}$. The net change in pH was generally negative for corals and calcifying
27 algae (-0.01 to -0.08 h^{-1}). Resulting net calcification rates (1.9 to $9.9 \text{ g CaCO}_3 \text{ m}^{-2} \text{ d}^{-1}$) for
28 corals, and calcifying algae (*Halimeda* and *Galaxura*) were all positive and were strongly
29 correlated to net O_2 production. In intertidal habitats around Browse Island, estimated relative
30 contributions of coral and *Halimeda* to the reef production of CaCO_3 were similar at around
31 600 to $840 \text{ g m}^{-2} \text{ year}^{-1}$. The low reef platform had very low coral cover of $< 3\%$ which made
32 a smaller contribution to calcification of $\sim 240 \text{ g CaCO}_3 \text{ m}^{-2} \text{ year}^{-1}$. Calcification on the subtidal
33 reef slope was predominantly from corals, producing $\sim 1540 \text{ g CaCO}_3 \text{ m}^{-2} \text{ year}^{-1}$, twice that of
34 *Halimeda*. These data provide the first measures of community metabolism from the offshore
35 reef systems of the Kimberley. The relative contributions of the main reef builders, in these
36 undisturbed areas, to net community metabolism and CaCO_3 production is important to
37 understand exclusively climate-driven negative effects on tropical reefs.

38 **1. Introduction**

39 The functioning of healthy coral reefs, as some of the world's most biologically (Stuart-Smith
40 et al., 2018) and structurally complex ecosystems (Hughes et al., 2017b), results in a number
41 of ecosystem services. They provide coastal protection, with reef structures acting to dampen
42 wind and wave driven surges (Perry et al., 2018) and support a diverse range of species that
43 provide critically important resources (such as food) for coastal livelihoods (Hoegh-Guldberg
44 et al., 2007). However, coastal coral reefs in the Anthropocene era have been degraded for
45 more than a century by overfishing and pollution (Hughes et al., 2017b). With the current
46 unprecedented rate of environmental change, coral reefs face growing pressures. These range
47 from localised eutrophication (Hewitt et al., 2016) and sedimentation (Hughes et al., 2017a), to
48 larger scale recurrent weather events (marine heat waves; Moore et al., 2012) and rising
49 atmospheric greenhouse gases (especially carbon dioxide, CO₂; IPCC, 2014) that result in
50 increasing ocean temperatures (due to atmospheric heat absorption) and ocean acidification
51 (OA) (Hoegh-Guldberg, 2007; Doney et al., 2009; Perry et al., 2018). Once thought protected
52 by the very nature of their isolation, remote reefs are also now showing impacts by increasing
53 stressors brought about by anthropogenic climate change (Hughes et al., 2017b).

54

55 As one of the most important determinants of overall reef function, the construction and
56 maintenance of the calcium carbonate (CaCO₃) reef structure (the accumulation of which
57 requires the net production of calcium carbonate by resident taxa; Cornwall et al., 2021) is vital
58 to the myriad of ecosystem services that coral reefs provide (Hoegh-Guldberg et al., 2007;
59 Andersson et al., 2013; Moberg and Folke, 1999). The coral reef physical framework is formed
60 and maintained through the production of calcium carbonate (CaCO₃) by marine organisms,
61 primarily hermatypic corals, crustose coralline algae (CCA), and other calcifying algae
62 (Vecsei, 2004; Perry et al., 2008; Perry et al., 2012). Scleractinian corals are primary reef

63 builders in tropical environments, producing CaCO_3 through skeletal deposition. This net
64 calcium carbonate production is a balance between gross production minus the loss due to
65 physical, chemical, and biological erosion (Cornwall et al., 2021). The net calcium carbonate
66 production and related potential vertical accretion of reefs is increasingly threatened by
67 anthropogenic climate change (Perry et al., 2018). For scleractinian corals, one of the most
68 significant consequences of OA is the decrease in the concentration of carbonate ions (CO_2^{-3})
69 (Kleypas and Yates, 2009). Projections suggest that future rates of coral reef community
70 dissolution may exceed rates of CaCO_3 production (calcification), with the majority of coral
71 reefs unable to maintain positive net carbonate production globally by 2100 (i.e., net loss)
72 (Cornwall et al., 2021; Silverman et al., 2009; Hoegh-Guldberg et al., 2007).

73

74 These global climate change pressures are causing shifts in the composition of coral reef
75 species, and the urgent focus now is on identifying, quantifying and maintaining reef ecosystem
76 function so that coral reefs can continue to persist and deliver ecosystem services into the future
77 (Harborne et al., 2017). To do this it is necessary to characterize reef health in terms of
78 metabolism which includes calcification but also fundamental processes such as photosynthesis
79 and respiration (Madin et al., 2016; Carlot et al., 2022). Photosynthesis fixes CO_2 in organic
80 materials, whereas the reverse reaction (dark respiration) releases it. In scleractinian corals with
81 zooxanthellae, the precipitation of CaCO_3 through calcification is tightly coupled to
82 photosynthetic fixation of CO_2 and on average tends to be three times higher in daylight
83 conditions than in darkness (Gattuso et al., 1999). Calcification rates can increase further
84 through feeding on phytoplankton and suspended particles (Houlbreque and Ferrier-Pages,
85 2009). Overall, the excess organic production in a coral reef community (i.e., the difference
86 between gross primary production and dark respiration) acts as a CO_2 sink, while calcification
87 acts as a source of CO_2 (Lewis, 1977; Kinsey, 1985). Most reef flats are sources of CO_2 to the

88 atmosphere despite the drawdown of CO₂ during the day via photosynthetic processes. This is
89 due to their low net fixation of CO₂ and rather large release of CO₂ by precipitation of calcium
90 carbonate (Ware et al, 1992; Gattuso et al, 1993; Gattuso et al, 1995; Smith, 1995;
91 Frankignoulle et al, 1996; Gattuso et al, 1996b).

92

93 One notable exception to this is in algal-dominated reef communities, which are sinks for
94 atmospheric CO₂. They exhibit larger excess community production and/or a lower community
95 calcification, (e.g., Kayanne et al, 1995; Gattuso et al, 1996a; Gattuso et al, 1997). The
96 morphological diversity of reef algae provides food (Overholtzer and Motta, 1999), habitat and
97 shelter (Price et al., 2011) for a number of invertebrate and fish species, with productivity
98 sustaining higher trophic levels. Calcified macroalgae can also contribute significantly to the
99 deposition of carbonates (Nelson, 2009). In particular, species of the genus *Halimeda* are
100 widely distributed across tropical and subtropical environments, contribute significantly to reef
101 calcification and productivity rates because of their fast growth and rapid turnover rates
102 (Vroom et al., 2003, Smith et al., 2004, Nelson, 2009) compared to corals or coralline red algae
103 (CRA). Calcification rates of *Halimeda* make it a major contributor to CaCO₃ in reefs in the
104 Caribbean (Blair and Norris, 1988; Nelson, 2009), Tahiti and the Great Barrier Reef (Drew,
105 1983; Payri, 1988). In certain locations, precipitation of calcium carbonate can approach 2.9
106 kg CaCO₃ m⁻² yr⁻¹, positioning *Halimeda* as a major contributor to carbonate budgets within
107 shallow waters around the globe (Price et al., 2011). This group further occupies a diverse
108 range of environments (mangroves, seagrass beds, and coral reefs) and can produce structurally
109 complex mounds that serve as critical habitat for a diversity of important marine life (Rees et
110 al., 2007).

111

112 Here, we compare metabolic and calcification rates of the dominant intertidal taxa of coral and
113 macroalgae at Browse Island, a small island in the Kimberley bioregion located in the northern
114 part of Western Australia. Unlike Southwestern Australia, which has one of the fastest
115 increasing rates of change from cumulative human impacts (Halpern et al., 2019), the
116 Kimberley represents one of the few “very low impact” tropical coast and shelf areas globally
117 – only 3.7% of the global oceans fall in this category (Halpern et al., 2008). Few process studies
118 have been carried out in the region due to the remoteness of these reef habitats, some of which
119 are located 100s of km from the coastline, meaning that fieldwork and data acquisition can be
120 difficult and costly. Rates of metabolism and calcification were determined in on-ship
121 incubations in October 2016, April 2017 and October 2017. Using the proportional cover of
122 the dominant benthic community, these rates were upscaled to gain whole of community
123 metabolism estimates for the Browse Island habitats and provide new insights into reef
124 ecosystem health and functioning in the absence of localised land- and sea-based anthropogenic
125 variables (Harley et al., 2006; 157 Schindler, 2006; Walther, 2010).

126

127 **2. Methods**

128 *2.1 Study site*

129 Browse Island is located on the mid-shelf just inside the 200 m isobath off the Kimberley coast
130 in northern Western Australia (14°6'S, 123°32'E; Fig. 1). The island is surrounded by a small
131 (~ 4.5 km²) planar platform reef consisting of a shallow lagoon, an extensive reef flat that is
132 conspicuously absent to the northeast of the island, and a well-defined reef crest and slope.
133 Tides are semidiurnal with a maximum range of < 5 m, exposing the reef crest and reef platform
134 habitats during low tides. The intertidal habitats are characterised by low species richness and
135 dominated by small turfing algae and calcified macroalgae of the genus *Halimeda* (15–22%
136 and 6–9% cover respectively) (Olsen et al., 2017). Coral assemblages are well developed with

137 cover of 5–8% in the intertidal habitats and 18% on the shallow reef slope (< 10 m) (Olsen et
138 al., 2017).

139

140 *2.2 Algae and coral collection*

141 Specimens of the dominant coral and algal taxa were collected from the reef platform by hand
142 during low tide, immediately brought back to the vessel and kept in a holding tank with
143 circulating seawater. Macroalgae included the calcifying green alga *Halimeda opuntia*, which
144 was the dominant species of *Halimeda* on the reef platform, the green alga *Caulerpa* sp., and
145 the calcifying red alga *Galaxaura* sp. Pieces of turf algae (turf) as well as turf attached to a
146 piece of rock (turf + substrate) were measured. In April 2016, drift algae of the genus
147 *Sargassum* found floating on the water surface were also included although this taxa was not
148 been found growing anywhere on the reef. Hermatypic corals included *Pocillopora* sp.,
149 *Goniastrea* sp., *Porites* sp., *Heliopora* sp., *Acropora* sp. and *Seriatopora* sp. Whole pieces of
150 coral small enough to fit inside the incubation cores (inner diameter ~90 mm) were collected
151 to minimise tissue damage. All coral samples were > 50 mm diameter and therefore
152 operationally defined as adults and estimated to be at least 2 to 7 years old depending on the
153 taxa (Trapon et al., 2013).

154

155 *2.3 Light and dark incubations*

156 Light and dark incubations were undertaken on the back deck of the research vessel. Four 60
157 L holding tanks were placed in a shade-free spot under natural light conditions, filled with
158 seawater and connected to a flow-through seawater system driven by an Ozito PSDW-350 watt
159 Dirty Water Submersible Water Pump with a maximum flow rate of 7,000 litres/hour, which
160 ensured the setup remained at ambient temperature (Fig. 2). The intensity of photosynthetically
161 active radiation (PAR) was recorded for each set of incubations with a HOBO Micro Station

162 logger (H21-002, Onset) placed inside one of the tanks. Six 1.56 L clear Perspex incubation
163 cores (24 total per incubation) fitted with stirring caps, were placed in each holding tank and
164 spaced evenly apart to minimise shading (Fig. 2).

165

166 Depending upon abundance, individual specimens of algae and coral were placed in 6 to 12
167 replicate incubation cores per taxa except where not enough individuals could be found. Table
168 1 shows the taxa incubated during each sampling trip and the number of replicates. Water
169 samples from the holding tanks were measured at each time point as controls and, in addition,
170 in October 2017, a separate seawater control (six replicate incubation cores with seawater) was
171 included. After a period of acclimation (1 to 2 h), incubations were run over a four-hour period.
172 The light incubations were conducted while the sun was at its zenith providing full irradiance
173 to the samples. After two hours, the tubs were covered with a black lid ensuring no light could
174 enter and the samples incubated for two hours in the dark.

175

176 To estimate oxygen production or consumption during the incubations, a 40 mL water sample
177 was extracted from each of the 24 cores and the four tubs at the start of the incubations and
178 hourly thereafter. A port in the cap of each core allowed for sample collection using a syringe.
179 As the sample was removed, the same volume of liquid was automatically replaced from the
180 flowthrough tank into the core so that the core volume remained constant through the
181 experiment. Samples were immediately analysed for temperature and dissolved oxygen (O₂)
182 with a YSI 5100 bench-top oxygen and temperature meter with YSI 5010 BOD stirring probe,
183 calibrated daily in air. Sample pH was determined using a TPS Aqua pH meter with an Ionode
184 probe, calibrated daily with pH 7.00 and 10.00 buffers. A second 35 mL water sample was
185 collected from each core and tub and split between one 10 mL glass vacutainer for alkalinity
186 and duplicate 10 mL sterile vials for nutrient analyses. Nutrient samples were immediately

187 frozen and alkalinity samples were stored cool and dark. At the end of the incubation, algal and
188 coral specimens were frozen. All samples were transported to Perth, Western Australia, to be
189 analysed.

190

191 *2.4 Surface areas of coral and algal specimens*

192 Metabolic measurements were standardised by surface area of the incubated specimens since
193 this represents the area available for photosynthesis and nutrient uptake. The surface area of
194 specimens of coral, *Halimeda* and turf + substrate were estimated using a single wax dipping
195 method (Veal et al., 2010). Specimens were dried, weighed and then dipped in paraffin wax at
196 65°C. The waxed samples were weighed again, and the weight of the wax calculated. The
197 surface area was estimated from the wax weights against a calibration curve constructed by
198 wax dipping geometric wooden objects of known size. The surface areas of the remaining taxa,
199 were estimated from photographs in ImageJ (Rueden et al., 2017). The ‘footprint’ of each
200 sample, i.e. the surface area of reef occupied by the organism, was also estimated by tracing
201 the outline of the specimen photographed from straight above in ImageJ.

202

203 *2.5 Chemical analyses*

204 Concentrations of nitrate + nitrite (hereafter referred to as nitrate), ammonium, phosphate and
205 dissolved silica in water samples were analysed in duplicate by flow injection analysis (Lachat
206 QuickChem 8000) with detection by absorbance at specific wavelengths for silica [QuikChem
207 Method 31-114-27-1-D], nitrate [Quikchem Method 31-107-04-1-A] and phosphate
208 [QuikChem Method 31-115-01-1-G]), and by fluorescence for ammonia according to Watson
209 et al. 2005. Detection limits were 0.02 $\mu\text{mol L}^{-1}$ for all inorganic nutrient species, with a
210 standard error of < 0.7%.

211

212 From SOP3b in Dickson et al. 2007, total alkalinity was determined for single replicates to the
213 nearest 5 $\mu\text{mol L}^{-1}$ equivalent (hereafter referred to as $\mu\text{mol L}^{-1}$) using an open cell Metrohm
214 titrator (841 Titrando, Burette: 800 Dosino 10 mL) with a Metrohm micro-glass pH probe
215 calibrated with Certipur buffer solutions at pH 2.00, 4.01, 7.00, and 10.00 (at 25.0°C). Samples
216 were kept in a Jubalo F12 temperature control water bath prior to decanting a 10 mL aliquot of
217 sample into a vessel with a water jacket maintaining temperature at 25.0°C. Samples were
218 titrated with 0.012 N HCl, standardised against sodium carbonate (99.95 to 100.05 wt%) with
219 an initial volume of titrant added to reach pH 3.5. Titrations were run to an end-point of pH 3
220 with Gran plot (Excel macro) to determine the total alkalinity endpoint near pH 4.2. Carbonate
221 system parameters were calculated from pH (measured during the incubations) and total
222 alkalinity using the package ‘seacarb’ (Gattuso et al., 2018) in R (R Core Team, 2018).
223 Alkalinity and carbonate parameters were not determined in April 2016.

224

225 *2.6 Oxygen fluxes and calcification rate calculations*

226 The changes in O₂ concentrations during light- and dark incubations were expressed as mmol
227 per day assuming stable hourly production rates over 24 h. Any replicates where O₂ did not
228 increase during both of the light intervals or did not decrease during both of the dark intervals
229 were excluded from further analysis. Net fluxes of O₂ per day (mmol day⁻¹ m⁻²) were calculated
230 for each sample assuming a 12 h photoperiod. Calcification rates of corals and calcifying algae
231 (*Halimeda opuntia*. and *Galaxaura* sp.) were estimated using the alkalinity anomaly method
232 (Smith and Key, 1975) uncorrected for changes in nutrient concentration (Chisholm and
233 Gattuso, 1991) where precipitation of one mole of CaCO₃ leads to the reduction of total
234 alkalinity by two molar equivalents. Rates per surface area (mmol day⁻¹ m⁻²) were obtained by
235 dividing these values by the surface area of each specimen.

236

237 A census-based approach was used to estimate the amount of CaCO_3 and O_2 produced by a
238 single taxon per unit area of reef surface per year (Shaw et al., 2016). The rates of calcification
239 and net O_2 production per day were divided by the ‘footprint’ area of each specimen. To
240 estimate the relative contributions from each taxon to community production per m^2 of reef,
241 these rates were multiplied by the relative percent cover in each of the major habitats. Estimates
242 of percent cover based on drop camera image analysis were obtained from Olsen et al. (2017).
243 The productivity rates for individual coral species were combined into one value for coral.

244

245 *2.7 Statistical analyses*

246 The relationships between net changes in pH and O_2 and between net O_2 production and net
247 calcification (in light and dark incubations) were examined by linear regression. Significance
248 of regressions were calculated for algae, calcified algae and corals and the 95% confidence
249 intervals for the slope of each line in R (R Core Team, 2018). Regressions were examined with
250 ANOVA and deemed significant if $p < 0.05$.

251

252 **3 Results**

253 *3.1 Experimental conditions*

254 Nutrient concentrations were low and similar among sampling trips (Table 2), as is
255 characteristic of tropical Eastern Indian Ocean offshore waters (McLaughlin et al., 2019).
256 Concentrations of nitrate were 0.05 to 0.17 $\mu\text{mol L}^{-1}$, ammonium 0.12 to 0.13 $\mu\text{mol L}^{-1}$,
257 phosphate 0.07 to 0.1 $\mu\text{mol L}^{-1}$, and silicate 2.3 to 3 $\mu\text{mol L}^{-1}$. Oxygen was around 0.19 mmol L^{-1} to 0.22 mmol L^{-1} and salinity 34.2 to 34.8 ppt. Light and temperature conditions in the
258 incubations were representative of *in situ* conditions on the reef platform and were similar
259 among trips. PAR levels were 1500 to 1587 $\mu\text{E m}^{-2} \text{s}^{-1}$ and slightly higher in October.
260 Temperatures were 28.3 to 32.8°C and highest in April. Carbonate system parameters were

262 not obtained for April 2016 due to instrument error, and some minor differences in pCO₂,
263 HCO₃⁻, CO₃²⁻, DIC and Ω Aragonite were noted between October 2016 and 2017 (Table 2).
264 Alkalinity and pH were both higher in 2016, and there were associated minor differences in
265 the concentrations of the carbonate species and the aragonite saturation state (Table 2).

266

267 *3.2 Changes in oxygen and pH*

268 Changes in dissolved O₂ differed among taxa, and between light and dark incubations. In the
269 seawater controls O₂ changed by < 0.01 mmol h⁻¹ in both light and dark incubations, showing
270 that the contribution of any organisms in the seawater itself to O₂ production and dark
271 respiration was minimal. No corrections were therefore applied. In the light incubations O₂
272 productivity fluxes were positive for all taxa (Fig. 3, top panel). The highest light flux of O₂
273 of ~380 mmol m⁻² day⁻¹ was measured for *Galaxaura* in October 2017 (Fig. 3, top). Corals
274 generally produced 100 to 260 mmol O₂ m⁻² day⁻¹ in the light, except *Heliopora*, which had
275 a flux of 50 to 80 mmol O₂ m⁻² day⁻¹. All taxa consumed O₂ during the dark incubations
276 when changes in O₂ are due to dark respiration, with mean fluxes of -15 to -190 mmol O₂
277 m⁻² day⁻¹ (Fig. 3, middle). All algae were net autotrophic and produced 6 to 111 mmol O₂
278 m⁻² day⁻¹ with the highest net O₂ flux measured for *Galaxaura* and turf at 111 and 36 mmol
279 O₂ m⁻² day⁻¹ respectively (Fig. 3, bottom). In contrast, around half of the corals were net
280 consumers of O₂ and average net fluxes spanned a wide range from -42 to 47 mmol O₂ m⁻²
281 day⁻¹.

282

283 In the light incubations, pH generally increased by 0.03 to 0.25 h⁻¹ for all taxa, except for
284 *Halimeda* in April 2016 and October 2017, which showed no change or a very small increase
285 (Fig. 4, top panel). In dark incubations, mean pH decreased for all taxa by 0.02 to 0.21 h⁻¹
286 indicative of a net increase in CO₂ through dark respiration (Fig. 4, middle). Non-calcifying

287 algae (*Sargassum*, *Caulerpa* and turf) raised net pH by 0.02 to 0.05 h⁻¹ (assuming equal
288 periods of light and darkness) (Fig. 4, bottom panel). The net change in pH was generally
289 negative for corals and calcifying algae (-0.01 to -0.08 h⁻¹), except for the coral *Goniastrea*
290 in April and October 2016 (0.01 h⁻¹) and the calcifying alga *Galaxaura* (0.03 h⁻¹; Fig. 3,
291 bottom).

292

293 Net changes in pH are largely driven by metabolic uptake and release of CO₂. We found
294 positive relationships between changes in pH and net production or consumption of O₂ except
295 in seawater controls where changes in O₂ and pH were minor (Fig. 5). The relationships for
296 algae, calcifying algae and coral were all significant, but had relatively low adjusted *r*² values
297 of 0.59, 0.46 and 0.19 respectively, suggesting significant variability among species and
298 individuals within each of these groups.

299

300 3.3 Calcification Rates

301 Corals, *Halimeda* and *Galaxaura* had positive calcification rates in light ranging from 4.2 to
302 18.4 g CaCO₃ m⁻² d⁻¹ (Fig. 6, top panel). In the dark, calcifying rates were smaller and just
303 under half of the rates were negative suggesting dissolution of CaCO₃ (Fig. 6, middle panel).
304 The resulting net calcification rates (based on equal periods of light and dark - monthly
305 average sunrise and sunset at Browse Island of 0552 and 1739 for April, and 0519 and 1754
306 for October; WillyWeather, 2022) were all positive and ranged from 1.9 to 9.9 g CaCO₃ m⁻²
307 d⁻¹ (Fig. 6, bottom). Rates of calcification were strongly linearly correlated to net O₂
308 production and were significantly higher in light than in darkness for both corals and algae
309 (Fig. 7).

310

311 3.4 Contributions to community production

312 In intertidal habitats (lagoon and high reef platform) around Browse Island, the estimated
313 relative contributions of coral (8 % cover) and *Halimeda* (7 % cover) to the reef production
314 of CaCO_3 were similar, around 600 to 840 $\text{g m}^{-2} \text{ year}^{-1}$ (Fig. 8, top panel). The low reef
315 platform had very low coral cover of < 3% (Fig. 8, middle), which therefore made a smaller
316 contribution to calcification of $\sim 240 \text{ g CaCO}_3 \text{ m}^{-2} \text{ year}^{-1}$ in this habitat (Fig. 8, top). In
317 contrast, calcification on the subtidal reef slope was predominantly from corals (19 % cover),
318 which produced $\sim 1540 \text{ g CaCO}_3 \text{ m}^{-2} \text{ year}^{-1}$, around twice the amount compared to *Halimeda*
319 (7 % cover). *Galaxaura*, which had high measured rates of productivity and calcification, was
320 extremely rare (0.02 % total cover found only in October 2017; Olsen et al., 2017) and thus
321 its contribution to community calcification and productivity were negligible. Turf was
322 responsible for the majority of the O_2 production in all habitats and produced an estimated 8
323 to 13 $\text{mmol O}_2 \text{ m}^{-2} \text{ d}^{-1}$ compared to < 2 for *Halimeda* $\text{mmol O}_2 \text{ m}^{-2} \text{ d}^{-1}$ and -4 to -1 mmol O_2
324 $\text{m}^{-2} \text{ d}^{-1}$ for corals (Fig. 8, second panel from top).

325

326 4 Discussion

327 Mesocosm experiments have shown that reef-building (hermatypic) corals tend to reduce pH
328 and consume O_2 (e.g. (Gattuso *et al.* 2015; Smith *et al.* 2013)), whereas calcifying macroalgae
329 increase pH and O_2 during daytime (Borowitzka and Larkum 1987; Smith *et al.* 2013). Both
330 corals and calcifying macroalgae reduce pH and O_2 concentrations due to respiration during
331 nighttime, but the rates of change differ among species (Smith *et al.* 2013). The organisms
332 investigated in the present study showed typical patterns of O_2 production in daylight and
333 consumption in darkness to other similar island reef systems as a result of photosynthesis and
334 dark respiration, but the metabolic measurements showed clear differences among taxonomic
335 groups. Algae had higher positive net O_2 fluxes with rates of 18 to 350 $\mu\text{mol O}_2 \text{ m}^{-2} \text{ day}^{-1}$, of
336 which the red calcifying alga *Galaxaura* sp. had the highest rate of net productivity by far. For

337 corals, the relatively high O₂ increase measured in daylight was coupled with high rates of
338 respiration in darkness, creating a negligible or negative net O₂ production for most species,
339 except *Porites* sp. in April 2016 and *Seriatopora* sp. in October 2016 and 2017 which were net
340 positive. Although autotrophic, our data indicates that the majority of the corals we studied
341 utilise heterotrophic supply through feeding to help sustain growth in addition to
342 photosynthesis by zooxanthellae (Houlbreque and Ferrier-Pages, 2009). These patterns are
343 generally in agreement with those reported elsewhere. For example, fleshy and calcifying algae
344 showed net diel O₂ production, whereas corals generally consumed O₂, i.e. were net
345 heterotrophic, on islands in the South Pacific (*Porites* sp.) and the Caribbean (*Madracis* sp.)
346 (Smith et al., 2013).

347

348 Concurrent with changes in O₂ were changes in seawater pH, where pH increased in daylight
349 (except for *Halimeda* in April 2016 where no change was measured) and decreased in darkness.
350 The effects of metabolic activity on bulk pH (uptake and release of CO₂ through photosynthesis
351 and dark respiration) cannot be directly separated from that of calcification, which is associated
352 with the release of H⁺ ions thereby decreasing pH (Jokiel, 2011). However, differences were
353 observed in the net pH change in incubations between calcifiers and non-calcifiers. The net
354 effect of non-calcifiers on seawater pH was positive while the majority of calcifiers caused net
355 pH to decline. In the present study, *Halimeda* (April 2016) and *Goniastrea* (April and October
356 2016) caused relatively minor increases in pH, whereas the calcifying alga *Galaxaura* elevated
357 pH by, on average, 0.03 units, comparable to the net effect of non-calcifiers. This is not
358 surprising given the high rate of O₂ production measured for *Galaxaura*, which is associated
359 with sufficient levels of CO₂ fixation to compensate for the reduction in pH associated with
360 calcification in this species. A strong link was observed between metabolism and pH in all taxa,
361 demonstrated as linear relationships between changes in pH and O₂ during the incubations.

362 Previous research by Smith et al. (2013) identified two broad patterns: metabolic changes in
363 O₂ in non-calcifiers (fleshy and turf algae) linked to large changes in pH (steep slopes), and
364 metabolic changes in O₂ in calcifying organisms (*Porites* sp. *Madracis* sp. and *Halimeda* sp.)
365 producing little or no change in pH (shallow slopes). This is contrary to the present study's
366 observations where pH and O₂ relationship gradients were similar for calcifiers and non-
367 calcifiers. Non-calcifying organisms were found to consistently have a net positive effect on
368 both pH and O₂. Change in pH for the same net change in O₂ was elevated for non-calcifiers
369 compared to calcifiers.

370

371 Production and accumulation of reef framework carbonate is controlled by the relative rates of,
372 and the interactions between, a range of ecologically, physically and chemically driven
373 production and erosion processes (Perry et al., 2008; Montaggioni and Braithwaite, 2009), with
374 the relative importance of different taxa for CaCO₃ production differing among reefs and
375 among habitats within reefs. Coral growth can be measured in several ways: linear extension
376 rate, global skeletal growth and calcification rate (measured using the alkalinity technique or
377 by ⁴⁵Ca incorporation) (Houlbreque and Ferrier-Pages, 2009). Methods to calculate
378 calcification can vary in accuracy. Overestimates of calcification rates can result from
379 calculations based on changes in alkalinity, while those relying on CaCO₃ content and growth
380 measurements (either through staining or tagging segments), may produce minimum estimates
381 as loss of new tissue is not accounted for (Hart and Kench, 2007; Houlbreque and Ferrier-
382 Pages, 2009). The alkalinity method employed in the present study was the best possible option
383 when working in a remote location where actual growth rates cannot be easily assessed, or use
384 of radioisotopes was limited. Rates of net community calcification for reef flats worldwide
385 range from 7.3 to 90 mol (730 to 9000 g) CaCO₃ m⁻² year⁻¹ with an average of 47 mol (4700
386 g) CaCO₃ m⁻² year⁻¹ (Atkinson, 2011). The patterns found in the present study — higher

387 calcification rates in daylight compared to in darkness for all corals and calcifying algae — are
388 typical. However, the coral CaCO_3 production rates per reef area (7 to 8% cover low reef
389 platform, 19% reef slope) measured here ($240 \text{ g m}^{-2} \text{ year}^{-1}$ for low reef platform, 610 to 756 g
390 $\text{m}^{-2} \text{ year}^{-1}$ in the other intertidal habitats, and $1536 \text{ g m}^{-2} \text{ year}^{-1}$ on the reef slope) were
391 somewhat lower than values reported elsewhere. In 2016, the dark rates of calcification in
392 corals were less than 50% of the rates in light with some (*Porites* and *Heliopora*) negative.
393 Dark rates of calcification in 2017 were negative or near zero for all species except *Porites*,
394 *Pocillopora* and *Seriatopora*. Houlbreque et al. (2004) showed that coral feeding enhances dark
395 calcification rates in scleractinian corals, but incubations in our study were done in absence of
396 supplemental feeding. The trend observed here may be due to some dissolution of CaCO_3 due
397 to the reduced pH during dark incubations or could be an artefact of the experimental
398 conditions. This result should therefore be taken with some caution, in particular for *Porites* in
399 October 2016, which saw the largest decrease (Fig. 5, middle panel). However, the resulting
400 strong relationship between net carbonate production and net carbonate consumption is
401 consistent with previous studies both *in situ* and in mesocosms (Albright et al., 2013).

402

403 Corals are typically the primary framework-producing components on a tropical reef and
404 dominate carbonate production per unit area (Vecsei, 2004), however additional CaCO_3 is
405 produced by calcareous crustose coralline algae (CCA) and calcareous algae of the genus
406 *Halimeda*, (e.g. Payri, 1988). Sprawling lithophytic species of *Halimeda*, like the majority of
407 the *Halimeda* around Browse Island, tend to be fast growing and have high calcification rates
408 (Hart and Kench, 2007). Rates of calcification per area of 100% *Halimeda* cover have been
409 estimated to 400 to $1667 \text{ g CaCO}_3 \text{ m}^{-2} \text{ year}^{-1}$ (in Hart and Kench, 2007 Suppl info). In other
410 locations, *Halimeda* has been estimated to contribute around 1100 to $2400 \text{ g CaCO}_3 \text{ m}^{-2} \text{ year}^{-1}$
411 to benthic carbonate production (Drew, 1983; Freile et al., 1995; Hudson, 1985; Kangwe et al.,

412 2012; Payri, 1988; Rees et al., 2007), which is higher than the 600 to 840 g CaCO₃ m⁻² year⁻¹
413 estimated for *Halimeda opuntia* in the intertidal habitats in the present study. These rates
414 depend both on the intrinsic calcification rates and on the abundance or cover of algae (6.1 to
415 8.7% cover on Browse, which corresponds to ~150 to 250 g dw m⁻²).

416

417 Nutrient capacity is one important driver of productivity in many reef ecosystems. The rate at
418 which nutrients are recycled between the constituents of the system (the ambient nutrient
419 availability, and the nutrients stored within plant and animal biomass) depends on input from
420 a variety of sources (e.g., associated with seasonal rains or upwelling) (DeAngelis, 1992;
421 Hatcher, 1990). Coral reefs, typically have low ambient nutrient availability and receive little
422 sustained exogenous nutrient input (Hatcher, 1990; Szmant, 2002), thus the high rates of
423 production found within these ecosystems are largely attributed to the nutrients stored and
424 cycled by living biomass (Pomeroy, 1974; DeAngelis et al., 1989; Sorokin, 1995). Fishes
425 typically make up a substantial component of living biomass on coral reefs and represent an
426 important reservoir of nutrients in these ecosystems (Allgeier et al., 2014). Contrary to our
427 expectations given its remote location in an area of apparently low anthropogenic impacts, the
428 reef platform around Browse Island was depauperate with a conspicuous lack of diversity in
429 key groups including macroalgae, macroinvertebrates and teleost browsers (Bessey et al.,
430 2020). McLaughlin et al. (2019) found surface water standing stock nutrient concentrations
431 low along Kimberley shelf. Conditions at Browse Island were similar with low water column
432 nutrients for nitrate, ammonia and phosphate during all trips. Understanding how changes in
433 animal populations alter nutrient dynamics on large ecological scales is a relatively recent
434 endeavour (Doughty et al., 2015). Allgeier et al. (2016) showed that targeted fishing of higher
435 trophic levels reduces the capacity of coral reef fish communities to store and recycle nutrients
436 by nearly half. Fish-mediated nutrients enhance coral growth (Meyer et al., 1983) and primary

437 production (Allgeier et al., 2013), and may regulate nutrient ratios at the ecosystem scale
438 (Allgeier et al., 2014).

439
440 The Kimberley region-wide averages of coral cover and macroalgal cover are 23.8% and 7.1%
441 (Richards et al., 2015) respectively. However, this relationship at Browse Island is reversed,
442 with macroalgae more dominant at 28% total cover to that of coral at 9% total cover. On the
443 Browse Island reef platform, the same pattern is observed where averages were 5 to 8% for
444 coral and 32% for macroalgae, differing from those of the regional averages of 14.4% and
445 15.5% of coral and macroalgae respectively (Richards et al., 2015). While the estimates
446 provided here approximate the relative contributions of *Halimeda* and coral to CaCO₃
447 production, they do not add up to a whole system budget. There are other organisms likely to
448 contribute significantly. For example, the present study did not measure metabolic or
449 calcification rates of encrusting coralline algae, which, although making up a modest 1.0 to
450 3.0% of the benthic cover in the lagoon and reef platform habitats at Browse Island, become
451 more prominent at 11.8 to 14.1% on the reef crest and slope (Olsen, unpublished data). To
452 calculate the true CaCO₃ production per area of reef, the calcification rate would need to be
453 multiplied by the benthic cover of coralline algae and the square of the benthic rugosity (Eakin,
454 1996). Using typical values for rugosity from Eakin (1996) of 1 to 1.4 for the lagoon and reef
455 platform and 1.7–2 for the reef crest and slope, and assuming a typical calcification rate of
456 1500 to 2500 g m⁻² year⁻¹ (for 100% flat-surface cover) (Hart and Kench, 2007), the
457 contribution of encrusting coralline algae to calcification in the lagoon and reef platform would
458 be minor at 70 to 134 g CaCO₃ m⁻² year⁻¹. However, they could produce a significant amount
459 of 980 to 1360 g CaCO₃ m⁻² year⁻¹ on the reef crest and slope, which is somewhere in between
460 the production rates estimated for *Halimeda* and corals. Encrusting coralline algae may
461 therefore contribute significantly to the CaCO₃ budget at Browse Island, at least in deeper

462 habitats. These values are similar to those measured elsewhere, for example 870 to 3770 g
463 $\text{CaCO}_3 \text{ m}^{-2} \text{ year}^{-1}$ at Uva reef in the eastern Pacific (Eakin, 1996).

464
465 Metabolic rates of primary producers are clearly influenced by a multitude of factors including
466 hydrodynamics, irradiance, and nutrient availability (Smith et al., 2013). We were able to detect
467 considerable diurnal changes in water chemistry due to metabolic rates, since our experiments
468 were conducted in small enclosed mesocosms. The effect of metabolism on water chemistry is
469 expected to dissipate downstream in a more turbulent or dynamic environment (Anthony et al.
470 2011). However, coral and algae metabolic rates and resultant flux from diffusive boundary
471 layer also increases with flow rates (Carpenter et al. 1991; Lesser et al. 1994; Bruno and
472 Edmunds 1998; Mass et al. 2010). Because our experiments were conducted in near no-flow
473 chambers (mesocosm water was replenished with fresh seawater in small amounts during
474 sample extraction), our measurements are conservative values and likely represent the lower
475 range of potential effects that these reef organisms have on surrounding water chemistry,
476 however where residence times can be extended, particularly when trapping of water on the
477 reef at low tides occurs, our results are likely reflective of how these benthic organisms affect
478 water chemistry in the lagoonal habitats of Browse Island.

479

480 **5 Conclusions**

481 This study investigated the metabolism of coral and algae on the reef of remote Browse
482 Island, found on the mid-shelf region of the Kimberley in Western Australia. Due to its
483 remoteness, Browse Island presented a unique opportunity to observe these organisms in a
484 pristine habitat where direct anthropogenic pressures are minimal. Browse Island is the only
485 emergent mid-shelf reef in the Kimberley bioregion having semidiurnal tides reaching a
486 maximum range of 5 m (Olsen et al., 2017), half the magnitude of tides experienced by reefs

487 closer to the coast (McLaughlin et al., 2019). Its benthic structure is very different from both
488 Kimberley inner (e.g. Montgomery Reef, Adele and Cassini Islands) and outer (e.g. Ashmore
489 Reef and Rowley Shoals) shelf reefs. The relative contributions of algae and corals to reef
490 productivity are likely to differ across the Kimberley shelf, with corals becoming more
491 important in offshore waters and algal calcifiers being important on the mid-shelf. Estimated
492 aerial production rates did not take into account the relief (differences in height from place to
493 place on the reef surface) of the substrate. The reef platform surrounding Browse Island has
494 relatively low surface relief, whereas the reef slope and crest have high rugosity, which
495 means production rates in the latter environments may be underestimated. Despite these
496 limitations, the rates estimated in this study are similar to those measured elsewhere.

497

498 The higher cover of *Halimeda* and the low coral cover at Browse Island compared to other
499 reefs in the region mean that corals and *Halimeda* contribute equally to productivity rates of
500 CaCO_3 on the Browse Island reef flat, however, their relative contributions to the reef
501 framework and sedimentary budget of the reef is unknown. To gain an understanding of the
502 relationships between carbonate production and sinks on the reef, further study into the types
503 and amounts of CaCO_3 material found in each reef sink is necessary. The Kimberley coastal
504 shelf, which is characterised by coral reef environments with clear, low nutrient waters and
505 low productivity, has largely escaped land-based anthropogenic impacts, but has been
506 negatively affected by climate-driven coral bleaching and mortality, for example from heat
507 waves at Scott Reef in 1998 and 2016 (Smith et al., 2008, Gilmour et al., 2013 and Hughes et
508 al., 2017) and Ashmore Reef in 2003 and 2010 (Ceccarelli et al., 2011 and Heyward, 2011).

509

510 There is lack of sufficient observations of pCO_2 , nutrients and research on the upper ocean
511 carbon cycle from the Indian Ocean (Sreeush et al., 2020), and which are critical to modelling

512 of ocean acidification in the region (Panchang and Ambokar, 2021). The uptake of carbon
513 dioxide by the ocean alters the composition of seawater chemistry with elevated partial
514 pressures of carbon dioxide (pCO₂) causing seawater pH and the CaCO₃ saturation state to
515 decrease (Feely et al, 2004). Ocean acidification directly threatens crucial trophic levels of
516 the marine ecosystem. Baseline reef measurements in undisturbed areas like Browse Island
517 are important to understand exclusively climate-driven stressors in lieu of local
518 anthropogenic pressures normally associated with coastal tropical reefs. The effects of
519 temperature stressors on reef communities and their productivity remain to be investigated in
520 this region. Different components of the reef around Browse Island are likely to have
521 different vulnerabilities to warming and heat waves. Future environmental stressors leading
522 to changes in benthic community composition, structure and subsequent changes in reef
523 productivity and in rates of production of CaCO₃, could have major implications for Browse
524 Island.

525

526 **Author contribution:** M. James McLaughlin – Conceptualization, formal analysis,
527 investigation, resources, methodology, visualisation, and writing (original draft preparation);
528 Cindy Bessey - Investigation, resources, project administration, and writing (review and
529 editing); Gary A. Kendrick - Conceptualization, funding acquisition, project administration,
530 supervision, and writing (review and editing); John Keesing - Conceptualization, funding
531 acquisition, investigation, resources, supervision, and writing (review and editing); Ylva S.
532 Olsen - Conceptualization, formal analysis, investigation, project administration, resources,
533 methodology, visualisation, and writing (original draft preparation)

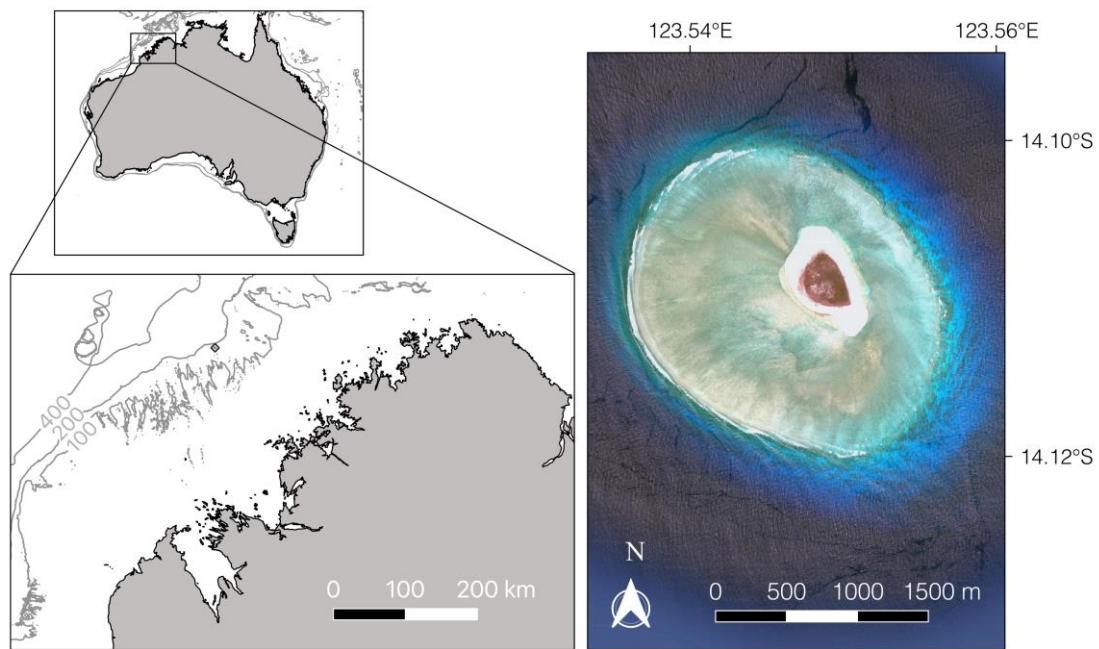
534

535 **Declaration of funding:** The authors acknowledge the financial support of Shell Australia
536 Pty Ltd and the INPEX-operated Ichthys liquefied natural gas (LNG) project in conducting
537 this research.

538

539 **Competing interests:** The authors declare that they have no conflict of interest.

540


541

542 **Acknowledgements**

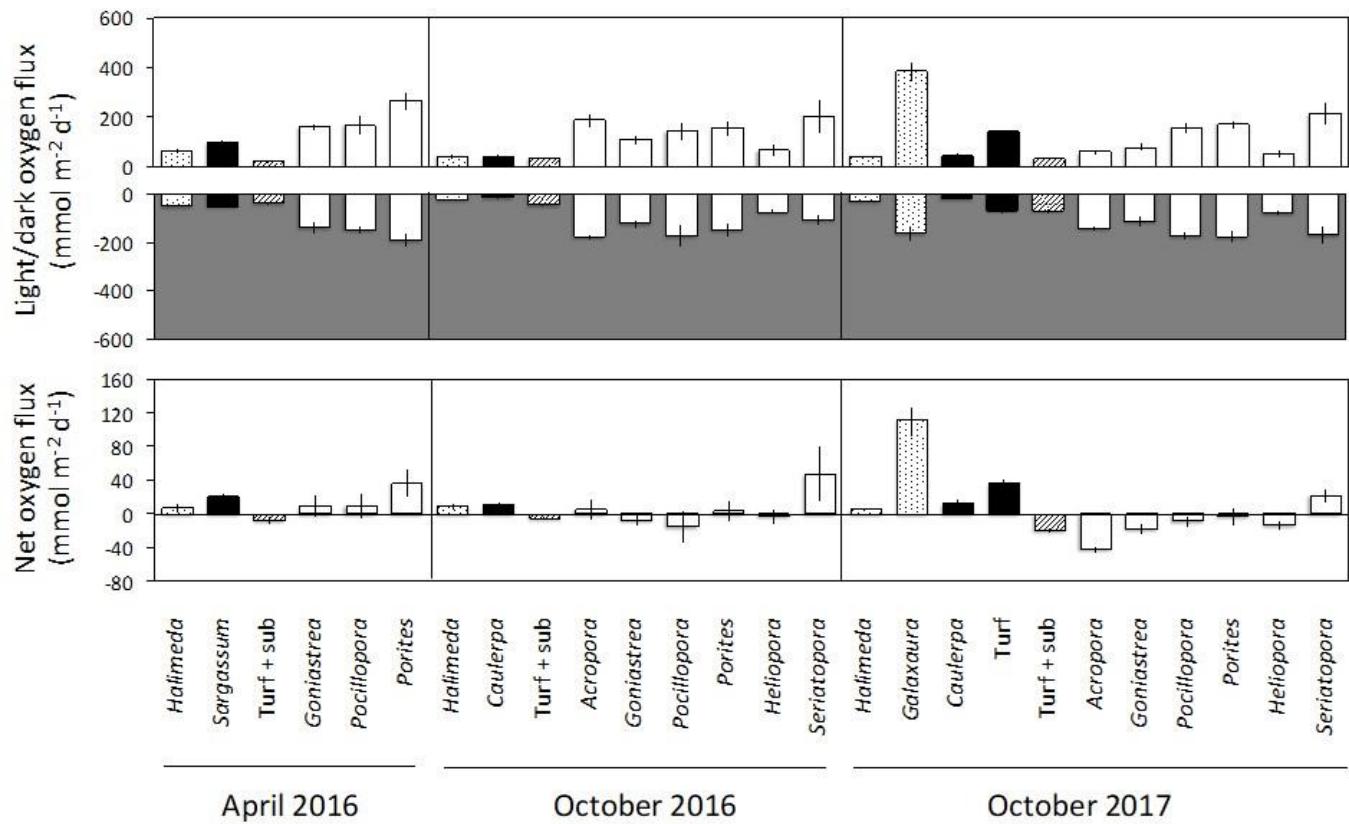
543 The authors thank Max Rees, Mark Tonks for their support of this work, the staff at Quest
544 Maritime for vessel logistics and the crews of the Browse Invincible and the Browse Express
545 for help in the field.

546

547 **Figures**

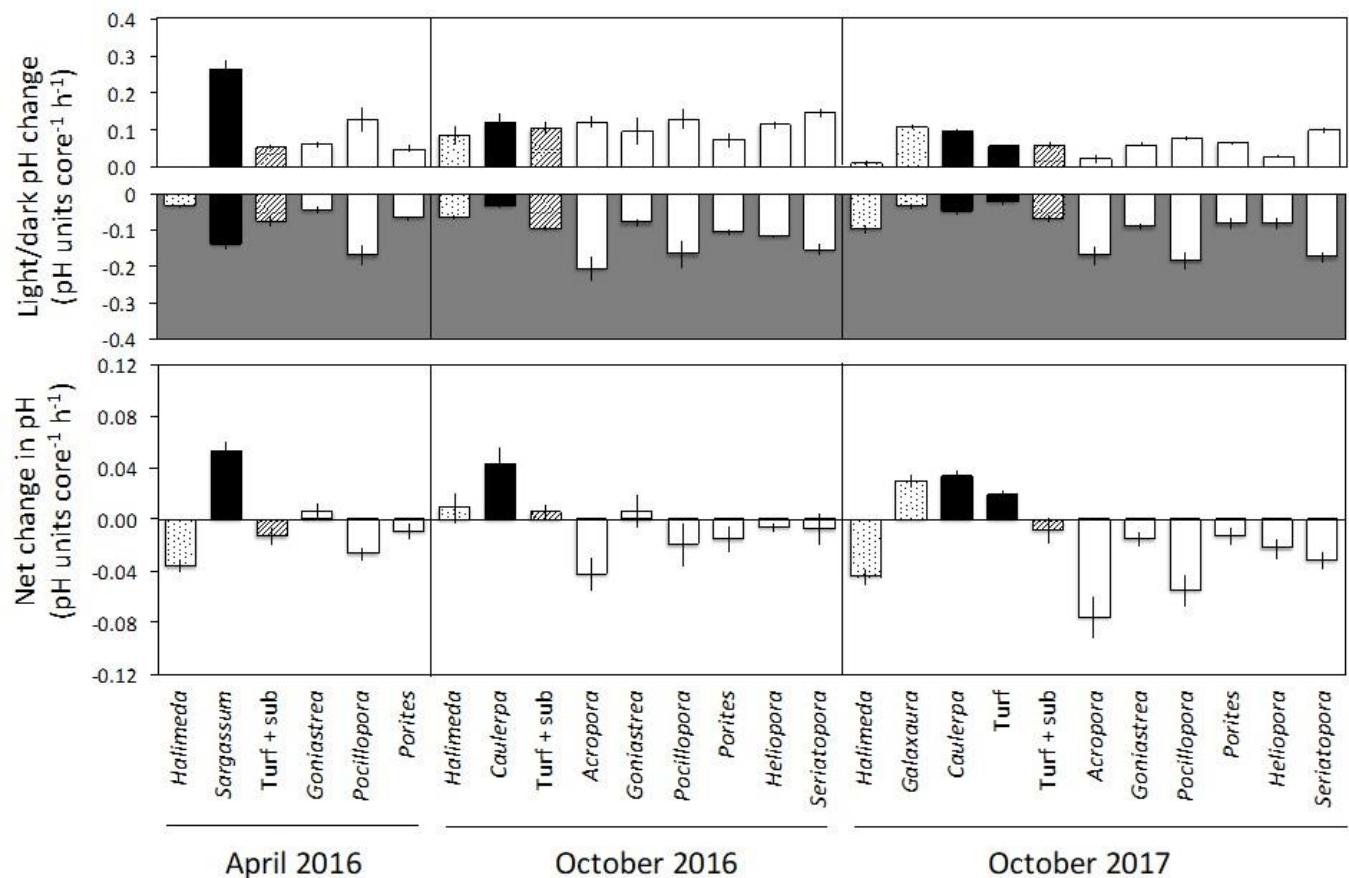
548

549 **Figure 1.** The study site, Browse Island (diamond, bottom left map), is located just inside the
550 200-m isobath on the continental shelf. The small map (top left) shows the location of the island
551 relative to the Australian coastline with the 100, 200 and 400 m isobaths marked in gray. The
552 satellite image (right; © Google Earth 2018) shows the extent of the reef.


553

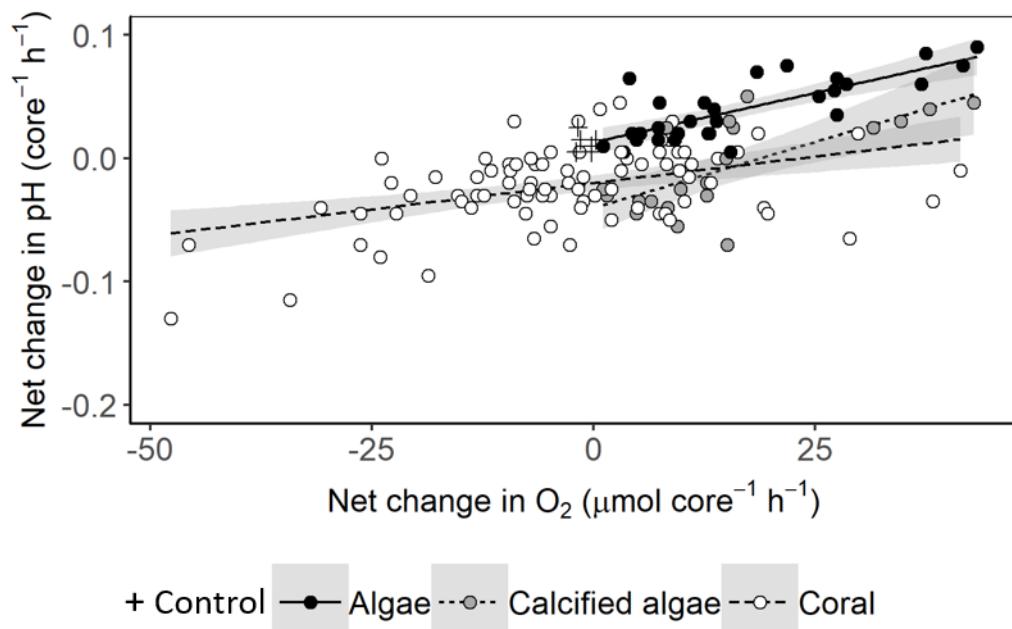
554

Figure 2. Experimental setup of respirometry incubations for Browse Island coral and macroalgae.


555

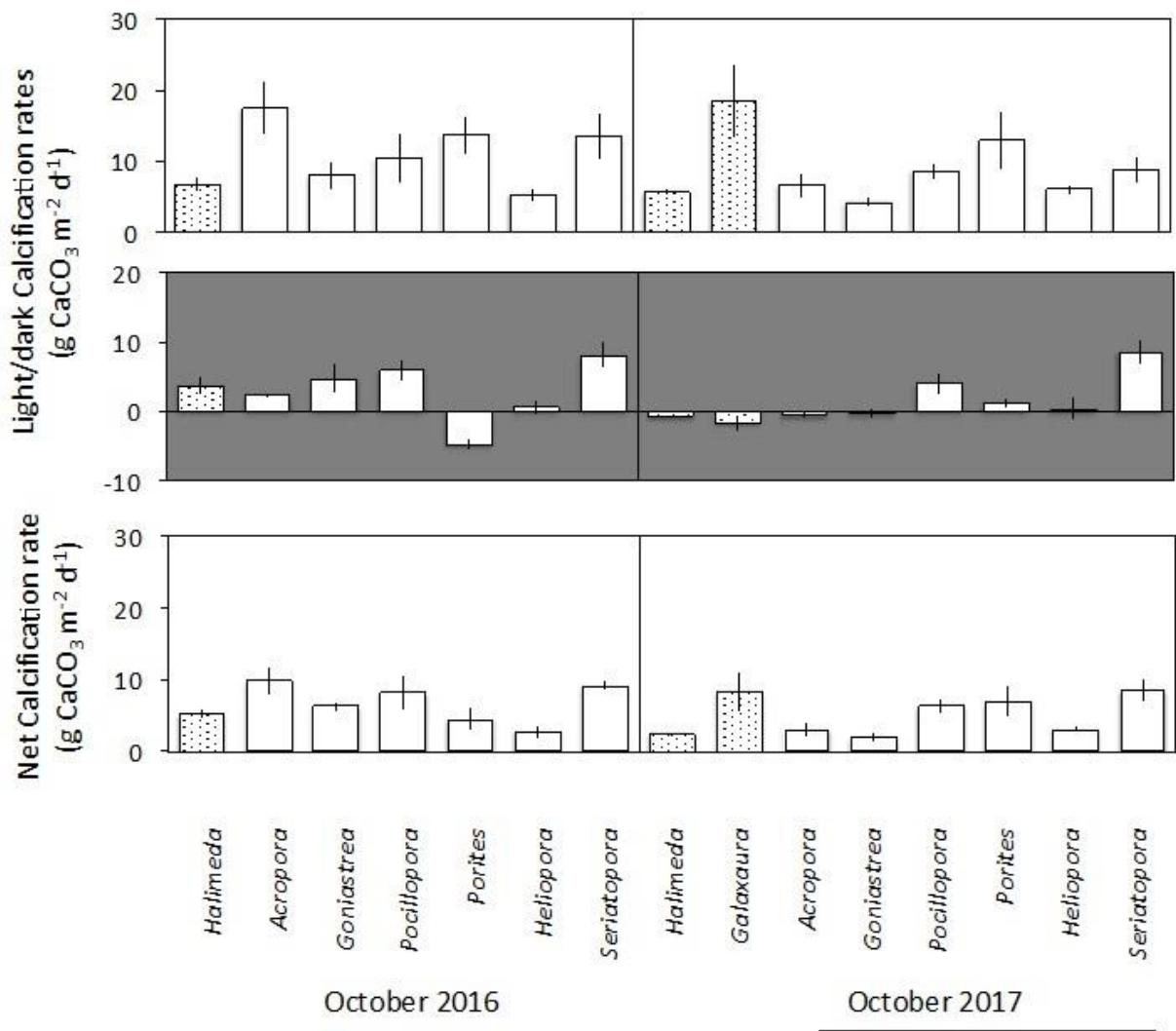
556

557 **Figure 3.** Net changes in oxygen (means \pm se) in light (top) and dark (middle) incubations of
 558 calcifying algae (stippled), macroalgae and turf (black), turf + substrate (diagonal stripes) and
 559 coral (white) standardised by specimen surface area. The bottom panel shows the net daily
 560 production of oxygen (means \pm se) assuming a 12-h photoperiod and stable rates of
 561 photosynthesis and dark respiration over a 24-h period.


562

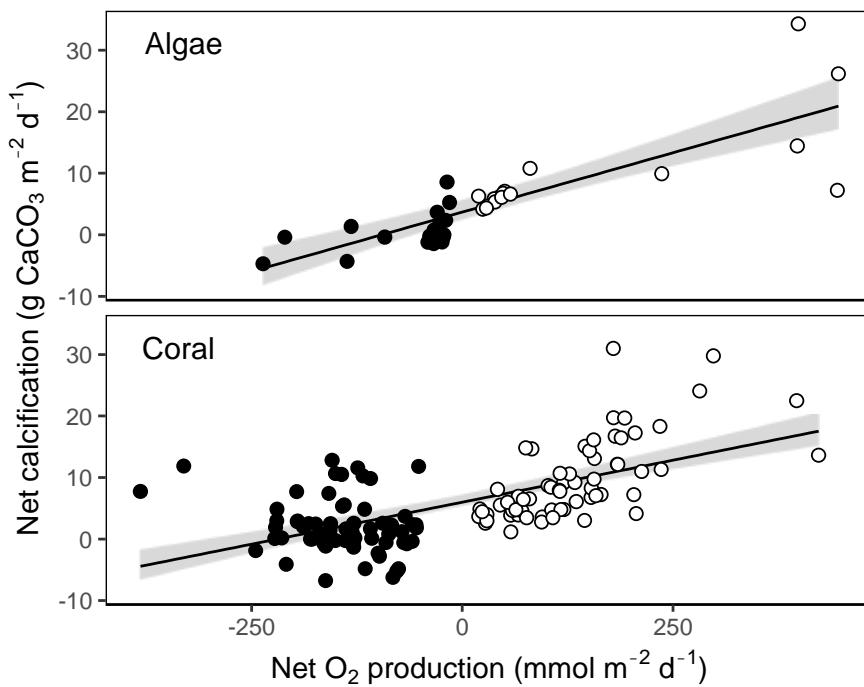
563

564 **Figure 4.** Net changes in pH per hour for each 1.56-L incubation core (means \pm se) in light
 565 (top) and dark (middle) incubations calcifying algae (stippled), macroalgae and turf (black),
 566 turf + substrate (diagonal stripes) and coral (white). The bottom panel shows the net change in
 567 pH per hour (means \pm se) assuming equal periods of light and darkness.


568

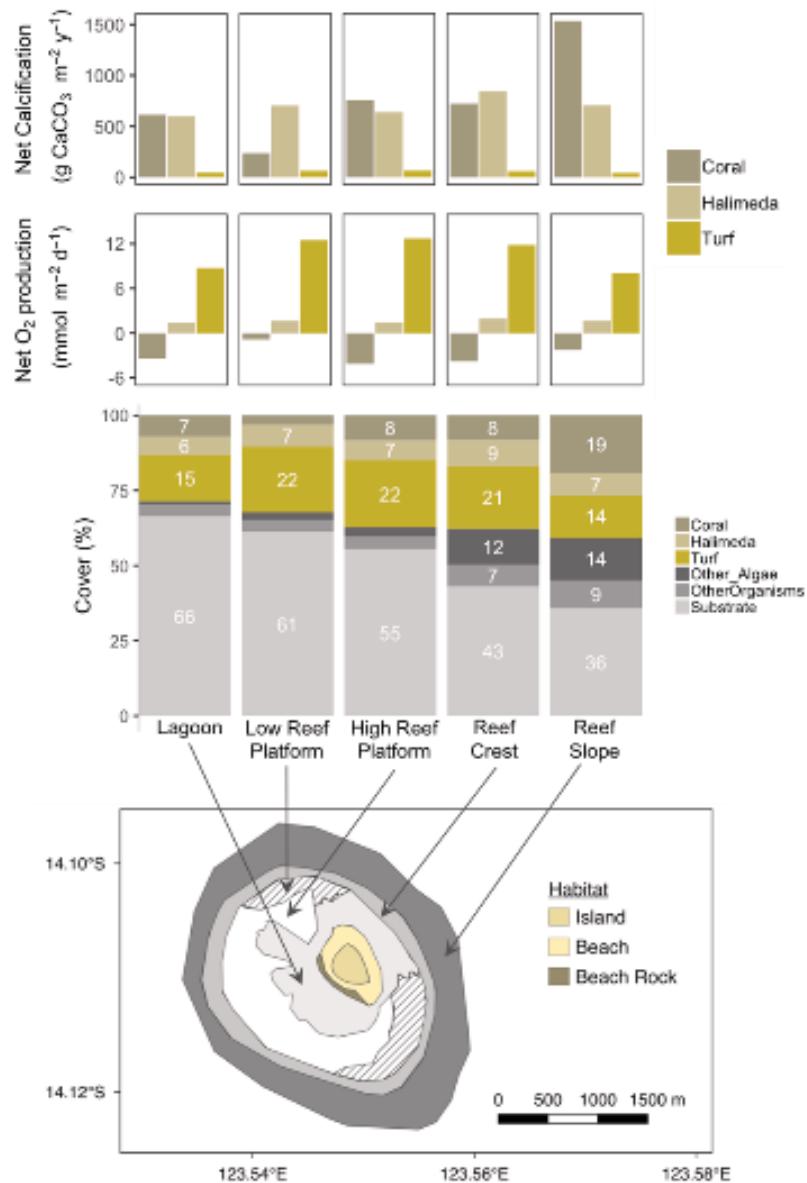
569

570 **Figure 5.** Net change in pH versus O₂ per 1.56-L incubation core assuming equal periods of
 571 light and darkness. Linear relationships are fitted with 95% confidence intervals shown in gray.
 572 For algae; net change in pH = 0.13 + 0.0016 × net change in O₂ (ANOVA: F_{1,27} = 41.15, p
 573 <0.001). For calcified algae; net change in pH = -0.04 + 0.0021 × net change in O₂ (ANOVA:
 574 F_{1,19} = 17.86, p <0.001). For corals; net change in pH = -0.02 + 0.00086 × net change in O₂
 575 (ANOVA: F_{1,82} = 18.88, p <0.001).


576

577

578 **Figure 6.** Calcification rates for corals (white) and calcifying algae (stippled) (means ± se) in
 579 light (top) and dark (middle). The bottom panel shows the daily net calcification rate (means ±
 580 se) assuming a 12-h photoperiod.


581

582

583 **Figure 7.** Relationship between net calcification rate and net productivity for calcifying algae
 584 (top) and corals (bottom). Open circles indicate rates measured in light and closed circles rates
 585 measured in dark. Linear fits are shown with 95% confidence intervals in gray. For calcified
 586 algae; net calcification = $3.6 + 0.039 \times$ net O₂ production (ANOVA: $F_{1,32} = 67.0$, $p < 0.001$).
 587 For corals; net calcification = $5.99 + 0.027 \times$ net O₂ production (ANOVA: $F_{1,126} = 82.2$, p
 588 < 0.001).

589

590

591 **Figure 8.** Map of the reef around Browse Island showing the major habitat types (bottom
 592 panel). Reef surface percent cover of coral, *Halimeda*, turf and other categories in each habitat
 593 (middle panel) based on drop-camera image analysis data from (Olsen *et al.* 2017). Net
 594 calcification and net oxygen production by coral, *Halimeda* and turf per m^{-2} of reef (top two
 595 panels) scaled up by multiplying rates obtained from incubations of each taxon by the percent
 596 cover in each habitat.

597 **Tables**

598 **Table 1.** Taxa measured in on-ship incubation experiments including the number of replicate
 599 specimens measured (one specimen per incubation core). Some of the specimens were not
 600 included in the final analysis due to sampling errors or due to O₂ not increasing during both of
 601 the light intervals or not decreasing during both of the dark intervals; the resulting number of
 602 specimens used are shown in brackets.

	Taxa	Apr 2016	Oct 2016	Oct 2017
Algae	<i>Halimeda opuntia</i>	6 (5)	6	6
	Turf algae + substrate	6 (5)	6	6
	Turf algae	-	-	6
	<i>Sargassum</i> sp.	12	-	-
	<i>Caulerpa</i> sp.	-	6	6
	<i>Galaxaura</i> sp.	-	-	6 (5)
Coral	<i>Pocillopora</i> sp.	6	6	6
	<i>Goniastrea</i> sp.	6 (5)	6	6
	<i>Porites</i> sp.	5	6	6
	<i>Heliopora</i> sp.	-	6 (5)	6
	<i>Acropora</i> sp.	-	5	6
	<i>Seriatopora</i> sp.	-	4	6
Seawater control		-	-	6

603

604

605 **Table 2.** Ambient concentrations of parameters measured during incubations (means \pm se);
 606 nutrients ($\text{NO}_3^- + \text{NO}_2^-$ = nitrate + nitrite, NH_4^+ = ammonium, PO_4^{3-} = orthophosphate, Si =
 607 silica) and oxygen (O_2), total alkalinity (TALK), Photosynthetically Active Radiation (PAR),
 608 temperature (T) and salinity. Calculated carbonate system parameters (means \pm se); CO_2
 609 partial pressure ($p\text{CO}_2$), concentrations of HCO_3^- , CO_3^{2-} and dissolved inorganic carbon
 610 (DIC), and the saturation state of aragonite (Ω Aragonite). In April 2016, two replicate PAR
 611 measurements were taken at 11:00, 12:00 and 13:00 h. In October 2016 and 2017, PAR was
 612 measured every minute and values between 11:00 and 13:00 h averaged.

	Apr 2016	Oct 2016	Oct 2017
Number of replicates (n)	8	10	12
$\text{NO}_3^- + \text{NO}_2^-$ ($\mu\text{mol L}^{-1}$)	0.15 ± 0.04	0.05 ± 0.01	0.17 ± 0.01
NH_4^+ ($\mu\text{mol L}^{-1}$)	0.12 ± 0.02	0.13 ± 0.01	0.13 ± 0.01
PO_4^{3-} ($\mu\text{mol L}^{-1}$)	0.08 ± 0.01	0.07 ± 0.00	0.09 ± 0.00
Si ($\mu\text{mol L}^{-1}$)	2.74 ± 0.04	2.93 ± 0.04	2.30 ± 0.02
O_2 ($\mu\text{mol L}^{-1}$)	19.3 ± 0.19	20.8 ± 0.16	23.4 ± 0.29
PAR 11–13 h ($\mu\text{E m}^{-2} \text{s}^{-1}$)	1499.6	1587.1	1587.0
T (°C)	32.8 ± 0.1	31.2 ± 0.1	28.3 ± 0.1
Salinity (ppt)	34.8	34.5	34.2
TALK ($\mu\text{mol L}^{-1}$)	NA	2408 ± 5	2390 ± 2
pH	8.17 ± 0.02	8.14 ± 0.02	8.11 ± 0.01
Calculated carbonate system parameters			
$p\text{CO}_2$ (uatm)	NA	295 ± 14	335 ± 17
HCO_3^- (mmol kg^{-1})	NA	1.61 ± 0.03	1.69 ± 0.02
CO_3^{2-} (mmol kg^{-1})	NA	0.30 ± 0.006	0.26 ± 0.006
DIC (mmol kg^{-1})	NA	1.93 ± 0.02	1.97 ± 0.02
Ω Aragonite	NA	5.02 ± 0.11	4.27 ± 0.10

613

614

615 **References**

616 Albright, R., Langdon, C., and Anthony, K.R.N.: (2013) Dynamics of seawater carbonate chemistry,
617 production, and calcification of a coral reef flat, central Great Barrier Reef, *Biogeosciences*, 10, 6747-
618 6758, <https://doi.org/10.5194/bg-10-6747-2013>, 2013.

619 Allgeier, J.E., Yeager, L.A. and Layman, C.A.: Consumers regulate nutrientlimitation regimes and
620 primary production in seagrass ecosystems, *Ecology* 94, 521–529, doi.org/ 10.1890/12-1122.1, 2013.

621 Allgeier, J.E., Layman, C.A., Mumby, P.J. and Rosemond, A.D.: Consistent nutrient storage and
622 supply mediated by diverse fish communities in coral reef ecosystems, *Global Change Biology*, 20,
623 2459–2472, doi.org/ 10.1111/gcb.12566, 2014.

624 Allgeier, J.E., Valdivia, A., Cox, C., and Layman, C.A.: Fishing down nutrients on coral reefs, *Nature*
625 *Communications*, 7, 1-5, doi.org/10.1038/ncomms12461, 2016.

626 Andersson A.J., and Gledhill D.: Ocean acidification and coral reefs: Effects on breakdown,
627 dissolution, and net ecosystem calcification, *Annual Review of Marine Science*, 5, 321–48,
628 <https://doi.org/10.1146/annurev-marine-121211-172241>, 2013.

629 Anthony, K.R.N., Kleypas, J.A., and Gattuso, J.P.: Coral reefs modify their seawater carbon
630 chemistry—implications for impacts of ocean acidification, *Global Change Biology* , 17, 3655–3666,
631 doi: 10.1111/j.1365-2486.2011.02510.x, 2011.

632 Atkinson, M.J.: Biogeochemistry of nutrients. In *Coral Reefs: An ecosystem in transition*, edited by:
633 Dubinsky, Z., and Stambler, N., Springer: London, 2011.

634 Bessey, C., Keesing, J.k., McLaughlin, M.J., Rees, M., Tonks, M., Kendrick, G.A., and Olsen, Y.S.:
635 Teleost community composition and the role of herbivory on the intertidal reef of a small isolated
636 island in north-west Australia, *Marine and Freshwater Research*, 76, 684-696,
637 doi.org/10.1071/MF19066, 2020.

638 Blair, S.M., and Norris, J.N.: The deep-water species of *Halimeda Lamouroux* (Halimediaceae,
639 Chlorophyta) from San Salvador Island, Bahamas: species composition, distribution and depth
640 records, *Coral Reefs*, 6, 227–236, doi.org/10.1007/BF00302019, 1988.

641 Borowitzka, M.A., and Larkum, A.W.D.: Calcification in algae: Mechanisms and the role of
642 metabolism, *Critical Reviews in Plant Sciences*, 6, 1-45, doi.org/10.1080/07352688709382246, 1987.

643 Bruno, J.F. and Edmunds, P.J.: Metabolic consequences of phenotypic plasticity in the coral *Madracis*
644 *mirabilis*: the effect of morphology and water flow on aggregate respiration. *Journal of Experimental*
645 *Marine Biology and Ecology*, 229, 187–195, doi.org/10.1016/s0022-0981(98)00050-1, 1998.

646 Carlot, J., Rouzé, H., Barneche, D.R., Mercière, A., Espiau, B., Cardini, U., Brandl, S.J., Casey, J.M.,
647 Pérez-Rosales, G., Adjeroud, M., Hédouin, L., and Parravicini, V.: Scaling up calcification,
648 respiration, and photosynthesis rates of six prominent coral taxa, *Ecology and Evolution*, 12, e8613,
649 doi.org/10.1002/ece3.8613, 2022.

650 Carpenter, R.C., Hackney, J.M., and Adey, W.H.: Measurements of primary productivity and
651 nitrogenase activity of coral reef algae in a chamber incorporating oscillatory flow, *Limnology and*
652 *Oceanography*, 36, 40–49, doi.org/ 10.4319/lo.1991.36.1.0040, 1991.

653 Ceccarelli, D.M., Jones, G.P., and McCook, L.J.: Interactions between herbivorous fish guilds and
654 their influence on algal succession on a coastal coral reef, *Journal of Experimental Marine Biology*
655 and *Ecology*, 399, 60-67, doi.org/10.1016/j.jembe.2011.01.019, 2011.

656 Chisholm, J.R.M., and Gattuso, J.-P.: Validation of the alkalinity anomaly technique for investigating
657 calcification of photosynthesis in coral reef communities, *Limnology and Oceanography*, 36, 1232-
658 1239, doi.org/10.4319/lo.1991.36.6.1232, 1991.

659 Cornwall, C.E., Comeau, S., Komder, N.A., Perry, C.T., van Hooidonk, R., DeCarlo, T.M., Pratchett,
660 M.S., Anderson, K.D., Browne, N., Carpenter, R., Diaz-Pulido, G., D'Olivo, J.P., Doo, S.S.,
661 Figueiredo, J., Fortunata, S.V.A., Kennedy, E., Lantz, C.A., McCulloch, M.T., Gonzalez-Rivero, M.,
662 Schoepf, V., Smithers, S.G., and Lowe, R.J.: Global declines in coral reef calcium carbonate
663 production under ocean acidification and warming, *Proceedings of the National Academy of Sciences*,
664 118, e2015265118, doi.org/10.1073/pnas.2015265118, 2021.

665 DeAngelis, D.L.: *Dynamics of Nutrient Cycling and Food Webs*: Chapman and Hall, London, 1992.

666 DeAngelis, D.L., Mulholland, P.J., Palumbo, A.V., Steinman, A.D., Huston, M.A. and Elwood, J.W.:
667 Nutrient dynamics and food-web stability, *Annual Review of Ecology and Systematics*, 20, 71-95,
668 www.jstor.org/stable/2097085, 1989.

669 Dickson, A., Gilmore, C.L., Christian, S., Christian, J.R. Guide to best practices for ocean CO₂
670 measurements. North Pacific Marine Science Organization, 2007.

671 Doney, S.C., Fabry, V.J., Feely, R.A., and Kleypas, J.A.: Ocean acidification: the other CO₂ problem,
672 *Annual Review of Marine Science*, 1, 169-192, doi.org/ 10.1146/annurev.marine.010908.163834,
673 2009.

674 Doughty, C.E. Roman, J., Faurbyd, S., Wolfe, A., Haquea, A., Bakkerf, E.S., Malhia, Y., Dunning
675 Jr.g, J.B., and Svenninget, J.-C.: Global nutrient transport in a world of giants. *Proceedings of the*
676 *National Acadamy of Sciences USA*, 113, 868-873, doi.org/ 10.1073/pnas.1502549112, 2015.

677 Drew, E.A.: Halimeda biomass, growth rates and sediment generation on reefs in the central great
678 barrier reef province, *Coral Reefs*, 2, 101-110, doi.org/10.1007/BF02395280, 1983.

679 Eakin, C.M.: Where have all the carbonates gone? A model comparison of calcium carbonate budgets
680 before and after the 1982-1983 El Nino at Uva Island in the eastern Pacific, *Coral Reefs*, 15, 109-119,
681 doi.org/10.1007/BF01771900, 1996.

682 Frankignoulle, M., Gattuso, J.P., Biondo, R., Bourge, I., CopinMontegut, G., and Pichon, M.: Carbon
683 fluxes in coral reefs II: eulerian study of inorganic carbon dynamics and measurement of air-sea CO₂
684 exchanges, *Marine Ecology Progress Series*, 145, 123-132, doi:10.3354/meps145123, 1996.

685 Freile, D., Milliman, J.D., and Hillis, L.: Leeward bank margin Halimeda meadows and draperies and
686 their sedimentary importance on the western Great Bahama Bank slope, *Coral Reefs*, 14, 27-33,
687 doi.org/10.1007/BF00304068, 1995.

688 Gattuso, J.-P., Pichon, M., Delesalle, B., and Frankignoulle, M.: Community metabolism and airsea
689 CO₂, fluxes in a coral reef ecosystem (Moorea, French Polynesia). *Marine Ecology Progress Series*,
690 96, 259-267, http://www.jstor.org/stable/24833554, 1993.

691 Gattuso, J.-P., Pichon, M., and Frankignoulle, M.: Biological control of air-sea CO₂ fluxes: Effect of
692 photosynthetic and calcifying marine organisms and ecosystems. *Marine Ecology Progress Series*,
693 129, 307- 312, doi.org/10.3354/meps129307, 1995.

694 Gattuso, J.-P., Frankignoulle, M., Smith, S.V., Ware, J.R., and Wollast, R.: Coral reefs and carbon
695 dioxide. *Science*, 271, 1298, doi.org/10.1126/science.271.5253.1298-a, 1996a.

696 Gattuso, J.-P., Pichon, M., Delesalle, B., Canon, C., and Frankignoulle, M.: Carbon fluxes in coral
697 reefs I: lagrangian measurement of community metabolism and resulting air-sea CO₂ disequilibrium,
698 *Marine Ecology Progress Series*, 145, 109-121, doi:10.3354/meps145109, 1996b.

699 Gattuso, J.-P., Payri, C.E., Pichon, M., Delesalle, B., and Frankignoulle, M.: Primary production,
700 calcification, and air-sea CO₂ fluxes of a macroalgal dominated coral reef community (Moorea,
701 French Polynesia), *Journal of Phycology*, 33, 729-738, doi.org/ 10.1111/j.0022-3646.1997.00729.x,
702 1997.

703 Gattuso, J.-P., Epitalon, J.-M., Orr, J., Gentili, B., Hagens, M., Hofmann, A., Mueller, J.-D., Proye,
704 A., Rae, J., and Soetaert, K.: seacarb:Seawater Carbonate Chemistry, 2018.

705 Gilmour, J.P., Smith, L.D., Heyward, A.J., Baird, A.H., and Pratchett, M.S.: Recovery of an Isolated
706 Coral Reef System Following Severe Disturbance, *Science*, 340, 69-71, doi.org/
707 10.1126/science.1232310, 2013.

708 Halpern, B.S., Walbridge, S., Selkoe, K.A., Kappel, C.V., Micheli, F., Agrosa, C., Bruno, J.F., Casey,
709 K.S., Ebert, C., Fox, H.E., Fujita, R., Heinemann, D., Lenihan, H.S., Madin, E.M.P., Perry, M.T.,
710 Selig, E.R., Spalding, M., Steneck, R., and Watson, R.: A Global Map of Human Impact on Marine
711 Ecosystems, *Science*, 319, 948, doi.org/ 10.1126/science.1149345, 2008.

712 Halpern, B.S., Frazier, M., Afflerbach, J., Lowndes, J.S., Micheli, F., O'Hara, C., Scarborough, C.,
713 and Selkoe, K.A.: Recent pace of change in human impact on the world's ocean, *Science Reports*, 9,
714 11609, doi.org/10.1038/s41598-019-47201-9, 2019.

715 Harborne, A.R., Rogers, A., Bozec, Y.-M. and Mumby, P.J.: Multiple stressors and the functioning of
716 coral reefs. *Annual Review of Marine Science*, 9, 445–468, 2017.

717 Harley, C. D., Hughes, A.R., Hultgren, K.M., Miner, B.J., Sorte, C.J.B., Thornber, C.S., Rodriguez,
718 L.F., Tomanek, L., Williams S.L.: The impacts of climate change in coastal marine systems, *Ecology*
719 Letters, 9, 228– 241, doi.org/10.1111/j.1461-0248.2005.00871.x, 2006.

720 Hart, D.E., and Kench, P.S.: Carbonate production of an emergent reef platform, Warraber Island,
721 Torres Strait, Australia, *Coral Reefs*, 26, 53-68, doi.org/ 10.1007/s00338-006-0168-8, 2007.

722 Hatcher, B.G.: Coral reef primary productivity—a hierarchy of patterns and process. *Trends in Ecology*
723 and Evolution

724 Hewitt, J.E., Ellis, J.I., and Thrush, S.F.: Multiple stressors, nonlinear effects and the implications of
725 climate change impacts on marine coastal ecosystems, *Global Change Biology*, 2, 2665–2675.
726 doi.org/10.1111/gcb.13176, 2016.

727 Heyward, A., Jones, R., Meeuwig, J., Burns, K., Radford, B., Colquhoun, J., Cappo, M., Case, M.,
728 O'Leary, R., Fisher, R., Meekan, M., and Stowar, M.: Monitoring Study S5. Banks and Shoals,
729 Montara 2011 Offshore Banks Assessment Survey Report for PTTEP Australasia (Ashmore Cartier)
730 Pty. Ltd., Australian Institute of Marine Science, Townsville, 253pp, 2011.

731 Hoegh-Guldberg, O., Mumby, P. J., Hooten, A. J., Steneck, R. S., Greenfield, P., Gomez, E., Harvell,
732 C. D., Sale, P. F., Edwards, A. J., Caldeira, K., Knowlton, N., Eakin, C. M., Iglesias-Prieto, R.,
733 Muthiga, N., Bradbury, R. H., Dubi, A., and Hatziolos, M. E.: Coral reefs under rapid climate change
734 and ocean acidification, *Science*, 318, 1737–1742, doi.org/10.1126/science.1152509, 2007.

735 Houlbreque, F., and Ferrier-Pages, C.: Heterotrophy in tropical scleractinian corals, *Biological*
736 reviews of the Cambridge Philosophical Society

737 84, 1-17, doi.org/10.1111/j.1469-
185X.2008.00058.x, 2009.

738 Houlbreque, F., Tambutte, E., Allemand, D. and Ferrier-Pages, C.: Interactions between zooplankton
739 feeding, photosynthesis and skeletal growth in the Scleractinian coral *Stylophora pistillata*, *Journal of*
740 *Experimental Biology*, 207, 1461–1469, doi.org/10.1242/jeb.00911, 2004.

741 Hudson, J.H.: Growth rate and carbonate production in *Halimeda opuntia*: Marquesas Keys, Florida.
742 In *Paleoalgology: contemporary research and applications*, edited by Toomey, D.F. and Nitecki,
743 M.H., Springer-Verlag: Berlin, 1985.

744 Hughes, T.P., Kerry, J.T., Álvarez-Noriega, M., Álvarez-Romero, J.G., Anderson, K.D., Baird, A.H.,
745 Babcock, R.C., Beger, M., Bellwood, D.R., Berkelmans, R., Bridge, T.C., Butler, I.R., Byrne, M.,
746 Cantin, N.E., Comeau, S., Connolly, S.R., Cumming, G.S., Dalton, S.J., Diaz-Pulido, G., Eakin, C.M.,
747 Figueira, W.F., Gilmour, J.P., Harrison, H.B., Heron, S.F., Hoey, A.S., Hobbs, J.A., Hoogenboom,
748 M.O., Kennedy, E.V., Kuo, C.-Y., Lough, J.M., Lowe, R.J., Liu, G., McCulloch, M.T., Malcolm,
749 H.A., McWilliam, M.J., Pandolfi, J.M., Pears, R.J., Pratchett, M.S., Schoepf, V., Simpson, T.,
750 Skirving, W.J., Sommer, B., Torda, G., Wachenfeld, D.R., Willis, B.L. and Wilson, S.K.: Global
751 warming and recurrent mass bleaching of corals, *Nature*, 543, 373–377, doi.org/10.1038/nature21707,
752 2017a.

753 Hughes, T.P., Barnes, M.L., Bellwood, D.R., Cinner, J.E., Cumming, G.S., Jackson, J.B.C., Kleypas,
754 J., van de Leemput, I.A., Lough, J.M., Morrison, T.H., Palumbi, S.R., van Nes, E.H. and Scheffer, M.:
755 Coral reefs in the Anthropocene, *Nature*, 546, 82-90, doi:10.1038/nature22901, 2017b.

756 IPCC: *Climate Change 2014: Impacts, Adaptation, and Vulnerability, Part A: Global and Sectoral
757 Aspects, Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental
758 Panel on Climate Change*, Cambridge University Press, Cambridge, United Kingdom and New York,
759 2014.

760 Jokiel, P.L.: Ocean Acidification and Control of Reef Coral Calcification by Boundary Layer
761 Limitation of Proton Flux, *Bulletin of Marine Science*, 87, 639-657, doi.org/10.5343/bms.2010.1107,
762 2011.

763 Kangwe, J., Semesi, I.S., Beer, S., Mtolera, M., and Björk, M.: Carbonate Production by Calcareous
764 Algae in a Seagrass-Dominated System: The Example of Chwaka Bay, CHAPTER 8, In *People,
765 Nature and Research in Chwaka Bay, Zanzibar, Tanzania*, edited by de la Torre-Castro, M. and
766 Lyimo, T.J., WIOMSA: Zanzibar, 2012.

767 Kayanne, H., Suzuki, A., and Saito, H.: Diurnal changes in the partial pressure of carbon dioxide in
768 coral reef water, *Science*, 269, 214—216, doi.org/ 10.1126/science.269.5221.214, 1995.

769 Kinsey, D.W.: Metabolism, calcification and carbon production: I: System level studies, paper
770 presented at 5th International Coral Reef Congress, Int. Coral Reef Soc., Tahiti, 1985.

771 Kleypas, J.A., and Yates, K.K.: Coral reefs and ocean acidification, *Oceanography*, 22, 108–117,
772 https://doi.org/10.5670/oceanog.2009.101, 2009.

773 Lesser, M.P., Weis, V.M., Patterson, M.R., and Jokiel, P.L.: Effects of morphology and water motion
774 on carbon delivery and productivity in the reef coral, *Pocillopora damicornis*: diffusion barriers,
775 inorganic carbon limitation, and biochemical plasticity, *Journal of Experimental Marine Biology and
776 Ecology*, 178, 153–179, doi.org/10.1016/0022-0981(94)90034-5, 1994.

777 Lewis, J. B.: Process of organic production on coral reefs, *Biolocial Review*, 52, 305–347,
778 doi.org/10.1111/j.1469-185X.1977.tb00836.x, 1977.

779 Lowe, R.J., Leon, A.S., Symonds, G., Falter, J.L., and Gruber, R.: The intertidal hydraulics of tide-
780 dominated reef platforms, *J. Geophys. Res.-Oceans*, 120, 4845–4868,
781 https://doi.org/10.1002/2015jc010701, 2015.

782 Madin, J.S., Anderson, K.D., Andreasen, M.H., Bridge, T.C.L., Cairns, S.D., Connolly, S.R., Darling,
783 E.S., Diaz, M., Falster, D.S., Franklin, E.C., Gates, R.D., Harmer, A.M.T., Hoogenboom, M.O.,
784 Huang, D., Keith, S.A., Kosnik, M.A., Kuo, C.-Y., Lough, J.M., Lovelock, C.E., Luiz, O., Martinelli,

785 J., Mizerek, T., Pandolfi, J.M., Pochon, X., Pratchett, M.S., Putnam, H.M., Roberts, T.E., Stat, M.,
786 Wallace, C.C., Widman, E. and Baird, A.H.: The Coral Trait Database, a curated database of
787 trait information for coral species from the global oceans. *Scientific Data*, 3, 160017.
788 <https://doi.org/10.1038/sdata.2016>.

789 Mass, T., Genin, A., Shavit, U., Grinstein, M., and Tchernov, D.: Flow enhances photosynthesis in
790 marine benthic autotrophs by increasing the efflux of oxygen from the organism to the water,
791 *Proceedings of the National Academy of Sciences USA*, 107, 2527–2531,
792 doi.org/10.1073/pnas.0912348107, 2010.

793 McLaughlin M.J., Lourey M.J., Hanson C.E., Cherukuru N, Thompson P.A., and Pattiarratchi C.:
794 Biophysical oceanography of tidally-extreme waters of the southern Kimberley coast, Western
795 Australia, *Continental Shelf Research*, 173, 1-12, doi.org/10.1016/j.csr.2018.12.002, 2019.

796 Meyer, J.L., Schultz, E.T. and Helfman, G.S.: Fish schools—an asset to corals, *Science* 220, 1047–
797 1049, doi.org/10.1126/science.220.4601.1047, 1983.

798 Moberg F., and Folke C.: Ecological goods and services of coral reef ecosystems, *Ecological
799 Economics*, 29, 215–233, [doi.org/10.1016/S0921-8009\(99\)00009-9](https://doi.org/10.1016/S0921-8009(99)00009-9), 1999.

800 Montaggioni, L.F., and Braithwaite, C.J.R.: Quaternary coral reef systems. Elsevier, p 532, 2009.

801 Moore, J.A.Y., Bellchambers, L.M., Depczynski, M.R., Evans, R.D., Evans, S.N., Field, S.N.,
802 Friedman, K.J., Gilmour, J.P., Holmes, T.H., Middlebrook, R., Radford, B.T., Ridgway, T., Shedrawi,
803 G., Taylor, H., Thomson, D.P., & Wilson, S.K. Unprecedented Mass Bleaching and Loss of Coral
804 across 12° of Latitude in Western Australia in 2010–11. *PLoS ONE* 7(12): e51807.
805 [doi:10.1371/journal.pone.0051807](https://doi.org/10.1371/journal.pone.0051807), 2012.

806 Nelson, W.A.: Calcified macroalgae – critical to coastal ecosystems and vulnerable to change: a
807 review, *Marine and Freshwater Research*, 60, 787–801, doi.org/10.1071/MF08335, 2009.

808 Olsen, Y.S., Bessey, C., McLaughlin, J., and Keesing, J.K.: Annual Report: Patterns in primary
809 producers, herbivory and reef metabolism around Browse Island, Milestone Report for Shell/INPEX
810 Applied Research Program, 2017.

811 Overholtzer, K.L. and Motta, P.J.: Comparative resource use by juvenile parrotfishes in the Florida
812 Keys, *Marine Ecology Progress Series*, 177, 177–187, 1999.

813 Panchang, R. and Ambokar, M.: Ocean acidification in the Northern Indian ocean : A review, *Journal
814 of Asian Earth Sciences*, doi.org/10.1016/j.jseaes.2021.104904, 219, (104904), 2021.

815 Payri, C.E.: Halimeda contribution to organic and inorganic production in a Tahitian reef system,
816 *Coral Reefs*, 6, 251-262, doi.org/10.1007/BF00302021, 1988.

817 Perry, C.T., Spencer, T., and Kench, P.: Carbonate budgets and reef production states: a geomorphic
818 perspective on the ecological phase-shift concept, *Coral Reefs*, 27, 853–866, doi.org/10.1007/s00338-008-0418-z, 2008.

820 Perry, C.T., Edinger, E.N., Kench, P.S., Murphy, G.N., Smithers, S.G., Steneck, R.S., and Mumby,
821 P.J.: Estimating rates of biologically driven coral reef framework production and erosion: a new
822 census-based carbonate budget methodology and applications to the reefs of Bonaire, *Coral Reefs*, 31,
823 853–868, doi.org/10.1007/s00338-012-0901-4, 2012.

824 Perry, C.T., Alvarez-Filip, L., Graham, N.A.J., Mumby, P.J., Wilson, S.K., Kench, P.S., Manzello,
825 D.P., Morgan, K.M., Slangen, A.B.A., Thomson, D.P., Januchowski-Hartley, F., Smithers, S.G.,
826 Steneck, R.S., Carlton, R., Edinger, E.N., Enochs, I.C., Estrada-Saldívar, N., Haywood, M.D.E.,
827 Kolodziej, G., Murphy, G.N., Pérez-Cervantes, E., Suchley, A., Valentino, L., Boenish, R., Wilson,

828 M., and Macdonald, C.: Loss of coral reef growth capacity to track future increases in sea level.
829 *Nature*, 558, 396–400, doi.org/10.1038/s41586-018-0194-z, 2018.

830 Pomeroy, L.R.: The ocean's food web, a changing paradigm. *Bioscience* 24, 9,
831 doi.org/10.2307/1296885, 1974.

832 Price, N.N., Hamilton, S.L., Tootell, J.S., and Smith, J.E.: Species-specific consequences of ocean
833 acidification for the calcareous tropical green algae *Halimeda*, *Marine Ecology Progress Series*, 440,
834 67–78, doi.org/10.3354/meps09309, 2011.

835 R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical
836 Computing, Vienna, Austria. URL <https://www.R-project.org/>. 2018.

837 Rees, S.A., Opdyke, B.N., Wilson, P.A., and Henstock, T.J.: Significance of *Halimeda* bioherms to
838 the global carbonate budget based on a geological sediment budget for the Northern Great Barrier
839 Reef, Australia, *Coral Reefs*, 26, 177-188, doi.org/10.1007/s00338-006-0166-x, 2007.

840 Richards, Z.T., Garcia, R.A., Wallace, C.C., Rosser, N.L., and Muir, P.R.: A diverse assemblage of
841 reef corals thriving in a dynamic intertidal reef setting (Bonaparte Archipelago, Kimberley, Australia),
842 *PLoS ONE*, 10, e0117791, doi.org/10.1371/journal.pone.0117791, 2015.

843 Rueden, C.T., Schindelin, J., Hiner, M.C., DeZonia, B.E., Walter, A.E., Arena, E.T., and Eliceiri,
844 K.W.: ImageJ2: ImageJ for the next generation of scientific image data, *BMC Bioinformatics*, 18,
845 529, doi.org/10.1186/s12859-017-1934-z, 2017.

846

847 Schindler, D.W.: Recent advances in the understanding and management of eutrophication,
848 *Limnology and Oceanography*, 51, 356– 363, doi.org/ 10.4319/lo.2006.51.1_part_2.0356, 2006.

849

850 Shaw, E.C., Hamylton, S.M., and Phinn, S.R.: Incorporating benthic community changes into
851 hydrochemical-based projections of coral reef calcium carbonate production under ocean
852 acidification, *Coral Reefs*, 35, 739-750, doi.org/10.1007/s00338-016-1407-2, 2016.

853 Silverman, J., Lazar, B., Cao, L., Caldeira, K., and Erez, J.: Coral reefs may start dissolving when
854 atmospheric CO₂ doubles, *Geophysical Research Letters*, 36, L05606, doi:10.1029/2008gl036282,
855 2009.

856 Smith, J.E., Hunter, C.L., Conklin, E.J., Most, R., Sauvage, T., Squair, C., and Smith, C.M.: Ecology
857 of the Invasive Red Alga *Gracilaria salicornia* (Rhodophyta) on O'ahu, Hawai'i, *Pacific Science*, 58,
858 325-343, doi.org/ 10.1353/psc.2004.0023, 2004.

859 Smith, J.E., Price, N.N., Nelson, C.E., and Haas, A.F. Coupled changes in oxygen concentration and
860 pH caused by metabolism of benthic coral reef organisms, *Marine Biology*, 160, 2437-2447,
861 doi.org/10.1007/s00227-013-2239-z, 2013.

862 Smith, S.V., and Key, G.S.: Carbon dioxide and metabolism in marine environments, *Limnology and
863 Oceanography*, 20, 493-495, doi.org/10.4319/lo.1975.20.3.0493, 1975

864 Smith, S.V.: Reflections on the measurement and significance of carbon metabolism on coral reefs,
865 Kansas Geological Survey Open-File Report 95-96a, Kansas Geological Survey, Lawrence, Kansas,
866 1995.

867 Smith, T.B., Nemeth, R.S., Blondeau, J., Calnan, J.M., Kadison, E., and Herzlieb S.: Assessing coral
868 reef health across onshore to offshore stress gradients in the US Virgin Islands, *Marine Pollution
869 Bulletin*, 56, 1983–1991, doi.org/10.1016/j.marpolbul.2008.08.015, 2008.

870 Sorokin, Y.: in *Coral Reef Ecology*, 102, 215–249, edited by: Heldmaier, G., Lange, O.L., Mooney,
871 H.A., and Sommer, U., Springer: Berlin, Heidelberg, 1995.

872 Sreeush, M.G., Valsala, V., Santanu, H., Pentakota, S., Prasad, K.V.S.R., Naidu, C.B., and
873 Murtugudde, R.: Biological production in the Indian Ocean upwelling zones – Part II: Data based
874 estimates of variable compensation depths for ocean carbon models via Cyclostationary Bayesian
875 Inversion, *Deep Sea Research Part II*, 179, doi.org/10.1016/j.dsr2.2019.07.007, 2020.

876 Stuart-Smith, R.D., Brown, C.J., Ceccarelli, D.M. and Edgar, G.J.: Ecosystem restructuring along the
877 Great Barrier Reef following mass coral bleaching, *Nature*, 560, 92–96, 2018.

878 Szmant, A.M.: Nutrient enrichment on coral reefs: is it a major cause of coral reef decline? *Estuaries*
879 25, 743–766, doi.org/10.1007/BF02804903, 2002.

880 Trapon, M.L., Pratchett, M.S., and Hoey, A.S.: Spatial variation in abundance, size and orientation of
881 juvenile corals related to the biomass of parrotfishes on the Great Barrier Reef, Australia, *PLoS One*,
882 8, e57788, doi.org/10.1371/journal.pone.0057788, 2013.

883 Veal, C.J., Carmi, M., Fine, M., and Hoegh-Guldberg, O.: Increasing the accuracy of surface area
884 estimation using single wax dipping of coral fragments, *Coral Reefs*, 29, 893–897,
885 doi.org/10.1007/s00338-010-0647-9, 2010.

886 Vecsei, A.: A new estimate of global reefal carbonate production including the fore-reefs. *Global
887 Planet Change*, 43, 1–18, doi.org/10.1016/j.gloplacha.2003.12.002, 2004.

888 Vroom, P.S., Smith, C.M., Coyer, J.A. Walters, L.J., Hunter, C.L., Beach, K.S., & Smith, J.E.: Field
889 biology of Halimeda tuna (Bryopsidales, Chlorophyta) across a depth gradient: comparative growth,
890 survivorship, recruitment, and reproduction. *Hydrobiologia*, 501, 149–166,
891 https://doi.org/10.1023/A:1026287816324, 2003.

892 Walther, G-R.: Community and ecosystem responses to recent climate change, *Philosophical
893 Transactions of the Royal Society B: Biological Sciences*, 365, 2019– 2024, doi.org/
894 0.1098/rstb.2010.0021, 2010.

895 Watson, R.J., Butler, E.C.V., Clementson, L.A., and Berry, K.M.: Flow-injection analysis with
896 fluorescence detection for the determination of trace levels of ammonium in seawater, *Journal of
897 Environmental Monitoring*, 7, 37–42, doi.org/10.1039/b405924g, 2005.

898 Ware, J. R., Smith, S.V., and Reaka-Kudla, M.L.: Coral reefs: Sources or sinks of atmospheric CO₂?
899 *Coral Reefs*, 11, 127–130, doi.org/10.1007/BF00255465, 1992.

900 WillyWeather 2022, Browse Island Sunrise / Sunset Times website, accessed 02 November 2022,
901 <https://sunrisesunset.willyweather.com.au/wa/kimberley/browse-island.html>.

902