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Abstract 13 

Coral reefs face increasing pressures in response to unprecedented rates of environmental 14 

change at present. The coral reef physical framework is formed through the production of 15 

calcium carbonate (CaCO3) and maintained by marine organisms, primarily hermatypic corals, 16 

and calcifying algae. The northern part of Western Australia, known as the Kimberley, has 17 

largely escaped land-based anthropogenic impacts and this study provides important metabolic 18 

data on reef-building organisms from an undisturbed set of marine habitats. From the reef 19 

platform of Browse Island, located on the mid-shelf just inside the 200 m isobath off the 20 

Kimberley coast, specimens of the dominant coral (6 species) and algal (5 species) taxa were 21 

collected and incubated ex-situ in light and dark shipboard experimental mesocosms for 4 hours 22 

to measure rates of calcification and production patterns of oxygen. During experimental 23 

light/dark incubations, all algae were net autotrophic producing 6 to 111 mmol O2 m
−2 day−1. 24 

In contrast, most corals were net consumers of O2 with average net fluxes ranging from −42 to 25 

47 mmol O2 m
−2 day−1. The net change in pH was generally negative for corals and calcifying 26 

algae (−0.01 to −0.08 h−1). Resulting net calcification rates (1.9 to 9.9 g CaCO3 m
−2 d−1) for 27 

corals, and calcifying algae (Halimeda and Galaxura) were all positive and were strongly 28 

correlated to net O2 production. In intertidal habitats around Browse Island, estimated relative 29 

contributions of coral and Halimeda to the reef production of CaCO3 were similar at around 30 

600 to 840 g m−2 year−1. The low reef platform had very low coral cover of < 3% which made 31 

a smaller contribution to calcification of ~240 g CaCO3 m
−2 year−1. Calcification on the subtidal 32 

reef slope was predominantly from corals, producing ~1540 g CaCO3m
−2 year−1, twice that of 33 

Halimeda. These data provide the first measures of community metabolism from the offshore 34 

reef systems of the Kimberley. The relative contributions of the main reef builders, in these 35 

undisturbed areas, to net community metabolism and CaCO3 production is important to 36 

understand exclusively climate-driven negative effects on tropical reefs. 37 
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1. Introduction 38 

The functioning of healthy coral reefs, as some of the world’s most biologically (Stuart-Smith 39 

et al., 2018) and structurally complex ecosystems (Hughes et al., 2017b), results in a number 40 

of ecosystem services. They provide coastal protection, with reef structures acting to dampen 41 

wind and wave driven surges (Perry et al., 2018) and support a diverse range of species that 42 

provide critically important resources (such as food) for coastal livelihoods (Hoegh-Guldberg 43 

et al., 2007). However, coastal coral reefs in the Anthropocene era have been degraded for 44 

more than a century by overfishing and pollution (Hughes et al., 2017b). With the current 45 

unprecedented rate of environmental change, coral reefs face growing pressures. These range 46 

from localised eutrophication (Hewitt et al., 2016) and sedimentation (Hughes et al, 2017a), to 47 

larger scale recurrent weather events (marine heat waves; Moore et al., 2012) and rising 48 

atmospheric greenhouse gases (especially carbon dioxide, CO2; IPCC, 2014) that result in 49 

increasing ocean temperatures (due to atmospheric heat absorption) and ocean acidification 50 

(OA) (Hoegh-Guldberg, 2007; Doney et al., 2009; Perry et al., 2018). Once thought protected 51 

by the very nature of their isolation, remote reefs are also now showing impacts by increasing 52 

stressors brought about by anthropogenic climate change (Hughes et al., 2017b).  53 

 54 

As one of the most important determinants of overall reef function, the construction and 55 

maintenance of the calcium carbonate (CaCO3) reef structure (the accumulation of which 56 

requires the net production of calcium carbonate by resident taxa; Cornwall et al., 2021) is vital 57 

to the myriad of ecosystem services that coral reefs provide (Hoegh-Guldberg et al., 2007; 58 

Andersson et al., 2013; Moberg and Folke, 1999). The coral reef physical framework is formed 59 

and maintained through the production of calcium carbonate (CaCO3) by marine organisms, 60 

primarily hermatypic corals, crustose coralline algae (CCA), and other calcifying algae 61 

(Vecsei, 2004; Perry et al., 2008; Perry et al., 2012). Scleractinian corals are primary reef 62 
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builders in tropical environments, producing CaCO3 through skeletal deposition. This net 63 

calcium carbonate production is a balance between gross production minus the loss due to 64 

physical, chemical, and biological erosion (Cornwall et al., 2021). The net calcium carbonate 65 

production and related potential vertical accretion of reefs is increasingly threatened by 66 

anthropogenic climate change (Perry et al., 2018). For scleractinian corals, one of the most 67 

significant consequences of OA is the decrease in the concentration of carbonate ions (CO2
−3) 68 

(Kleypas and Yates, 2009). Projections suggest that future rates of coral reef community 69 

dissolution may exceed rates of CaCO3 production (calcification), with the majority of coral 70 

reefs unable to maintain positive net carbonate production globally by 2100 (i.e., net loss) 71 

(Cornwall et al., 2021; Silverman et al., 2009; Hoegh-Guldberg et al., 2007). 72 

 73 

These global climate change pressures are causing shifts in the composition of coral reef 74 

species, and the urgent focus now is on identifying, quantifying and maintaining reef ecosystem 75 

function so that coral reefs can continue to persist and deliver ecosystem services into the future 76 

(Harborne et al., 2017). To do this it is necessary to characterize reef health in terms of 77 

metabolism which includes calcification but also fundamental processes such as photosynthesis 78 

and respiration (Madin et al., 2016; Carlot et al., 2022). Photosynthesis fixes CO2 in organic 79 

materials, whereas the reverse reaction (dark respiration) releases it. In scleractinian corals with 80 

zooxanthellae, the precipitation of CaCO3 through calcification is tightly coupled to 81 

photosynthetic fixation of CO2 and on average tends to be three times higher in daylight 82 

conditions than in darkness (Gattuso et al., 1999). Calcification rates can increase further 83 

through feeding on phytoplankton and suspended particles (Houlbreque and Ferrier-Pages, 84 

2009). Overall, the excess organic production in a coral reef community (i.e., the difference 85 

between gross primary production and dark respiration) acts as a CO2 sink, while calcification 86 

acts as a source of CO2 (Lewis, 1977; Kinsey, 1985). Most reef flats are sources of CO2 to the 87 
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atmosphere despite the drawdown of CO2 during the day via photosynthetic processes. This is 88 

due to their low net fixation of CO2 and rather large release of CO2 by precipitation of calcium 89 

carbonate (Ware et al, 1992; Gattuso et al, 1993; Gattuso et al, 1995; Smith, 1995; 90 

Frankignoulle et al, 1996; Gattuso et al, 1996b). 91 

 92 

One notable exception to this is in algal-dominated reef communities, which are sinks for 93 

atmospheric CO2. They exhibit larger excess community production and/or a lower community 94 

calcification, (e.g., Kayanne et al, 1995; Gattuso et al, 1996a; Gattuso et al, 1997). The 95 

morphological diversity of reef algae provides food (Overholtzer and Motta, 1999), habitat and 96 

shelter (Price et al., 2011) for a number of invertebrate and fish species, with productivity 97 

sustaining higher trophic levels. Calcified macroalgae can also contribute significantly to the 98 

deposition of carbonates (Nelson, 2009). In particular, species of the genus Halimeda are 99 

widely distributed across tropical and subtropical environments, contribute significantly to reef 100 

calcification and productivity rates because of their fast growth and rapid turnover rates 101 

(Vroom et al., 2003, Smith et al., 2004, Nelson, 2009) compared to corals or coralline red algae 102 

(CRA). Calcification rates of Halimeda make it a major contributor to CaCO3 in reefs in the 103 

Caribbean (Blair and Norris, 1988; Nelson, 2009), Tahiti and the Great Barrier Reef (Drew, 104 

1983; Payri, 1988). In certain locations, precipitation of calcium carbonate can approach 2.9 105 

kg CaCO3 m
−2 yr−1, positioning Halimeda as a major contributor to carbonate budgets within 106 

shallow waters around the globe (Price et al., 2011). This group further occupies a diverse 107 

range of environments (mangroves, seagrass beds, and coral reefs) and can produce structurally 108 

complex mounds that serve as critical habitat for a diversity of important marine life (Rees et 109 

al., 2007).  110 

 111 
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Here, we compare metabolic and calcification rates of the dominant intertidal taxa of coral and 112 

macroalgae at Browse Island, a small island in the Kimberley bioregion located in the northern 113 

part of Western Australia. Unlike Southwestern Australia, which has one of the fastest 114 

increasing rates of change from cumulative human impacts (Halpern et al., 2019), the 115 

Kimberley represents one of the few “very low impact” tropical coast and shelf areas globally 116 

– only 3.7% of the global oceans fall in this category (Halpern et al., 2008). Few process studies 117 

have been carried out in the region due to the remoteness of these reef habitats, some of which 118 

are located 100s of km from the coastline, meaning that fieldwork and data acquisition can be 119 

difficult and costly. Rates of metabolism and calcification were determined in on-ship 120 

incubations in October 2016, April 2017 and October 2017. Using the proportional cover of 121 

the dominant benthic community, these rates were upscaled to gain whole of community 122 

metabolism estimates for the Browse Island habitats and provide new insights into reef 123 

ecosystem health and functioning in the absence of localised land- and sea-based anthropogenic 124 

variables (Harley et al., 2006; 157 Schindler, 2006; Walther, 2010). 125 

 126 

2. Methods 127 

2.1 Study site 128 

Browse Island is located on the mid-shelf just inside the 200 m isobath off the Kimberley coast 129 

in northern Western Australia (14°6'S, 123°32'E; Fig. 1). The island is surrounded by a small 130 

(~ 4.5 km2) planar platform reef consisting of a shallow lagoon, an extensive reef flat that is 131 

conspicuously absent to the northeast of the island, and a well-defined reef crest and slope. 132 

Tides are semidiurnal with a maximum range of < 5 m, exposing the reef crest and reef platform 133 

habitats during low tides. The intertidal habitats are characterised by low species richness and 134 

dominated by small turfing algae and calcified macroalgae of the genus Halimeda (15–22% 135 

and 6–9% cover respectively) (Olsen et al., 2017). Coral assemblages are well developed with 136 
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cover of 5–8% in the intertidal habitats and 18% on the shallow reef slope (< 10 m) (Olsen et 137 

al., 2017).  138 

 139 

2.2 Algae and coral collection 140 

Specimens of the dominant coral and algal taxa were collected from the reef platform by hand 141 

during low tide, immediately brought back to the vessel and kept in a holding tank with 142 

circulating seawater. Macroalgae included the calcifying green alga Halimeda opuntia, which 143 

was the dominant species of Halimeda on the reef platform, the green alga Caulerpa sp., and 144 

the calcifying red alga Galaxaura sp. Pieces of turf algae (turf) as well as turf attached to a 145 

piece of rock (turf + substrate) were measured. In April 2016, drift algae of the genus 146 

Sargassum found floating on the water surface were also included although this taxa was not 147 

been found growing anywhere on the reef. Hermatypic corals included Pocillopora sp., 148 

Goniastrea sp., Porites sp., Heliopora sp., Acropora sp. and Seriatopora sp. Whole pieces of 149 

coral small enough to fit inside the incubation cores (inner diameter ~90 mm) were collected 150 

to minimise tissue damage. All coral samples were > 50 mm diameter and therefore 151 

operationally defined as adults and estimated to be at least 2 to 7 years old depending on the 152 

taxa (Trapon et al., 2013).  153 

 154 

2.3 Light and dark incubations 155 

Light and dark incubations were undertaken on the back deck of the research vessel. Four 60 156 

L holding tanks were placed in a shade-free spot under natural light conditions, filled with 157 

seawater and connected to a flow-through seawater system driven by an Ozito PSDW-350 watt 158 

Dirty Water Submersible Water Pump with a maximum flow rate of 7,000 litres/hour, which 159 

ensured the setup remained at ambient temperature (Fig. 2). The intensity of photosynthetically 160 

active radiation (PAR) was recorded for each set of incubations with a HOBO Micro Station 161 
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logger (H21-002, Onset) placed inside one of the tanks. Six 1.56 L clear Perspex incubation 162 

cores (24 total per incubation) fitted with stirring caps, were placed in each holding tank and 163 

spaced evenly apart to minimise shading (Fig. 2).  164 

 165 

Depending upon abundance, individual specimens of algae and coral were placed in 6 to 12 166 

replicate incubation cores per taxa except where not enough individuals could be found. Table 167 

1 shows the taxa incubated during each sampling trip and the number of replicates. Water 168 

samples from the holding tanks were measured at each time point as controls and, in addition, 169 

in October 2017, a separate seawater control (six replicate incubation cores with seawater) was 170 

included. After a period of acclimation (1 to2 h), incubations were run over a four-hour period. 171 

The light incubations were conducted while the sun was at its zenith providing full irradiance 172 

to the samples. After two hours, the tubs were covered with a black lid ensuring no light could 173 

enter and the samples incubated for two hours in the dark.  174 

 175 

To estimate oxygen production or consumption during the incubations, a 40 mL water sample 176 

was extracted from each of the 24 cores and the four tubs at the start of the incubations and 177 

hourly thereafter. A port in the cap of each core allowed for sample collection using a syringe. 178 

As the sample was removed, the same volume of liquid was automatically replaced from the 179 

flowthrough tank into the core so that the core volume remained constant through the 180 

experiment. Samples were immediately analysed for temperature and dissolved oxygen (O2) 181 

with a YSI 5100 bench-top oxygen and temperature meter with YSI 5010 BOD stirring probe, 182 

calibrated daily in air. Sample pH was determined using a TPS Aqua pH meter with an Ionode 183 

probe, calibrated daily with pH 7.00 and 10.00 buffers. A second 35 mL water sample was 184 

collected from each core and tub and split between one 10 mL glass vacutainer for alkalinity 185 

and duplicate 10 mL sterile vials for nutrient analyses. Nutrient samples were immediately 186 
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frozen and alkalinity samples were stored cool and dark. At the end of the incubation, algal and 187 

coral specimens were frozen. All samples were transported to Perth, Western Australia, to be 188 

analysed.  189 

 190 

2.4 Surface areas of coral and algal specimens 191 

Metabolic measurements were standardised by surface area of the incubated specimens since 192 

this represents the area available for photosynthesis and nutrient uptake. The surface area of 193 

specimens of coral, Halimeda and turf + substrate were estimated using a single wax dipping 194 

method (Veal et al., 2010). Specimens were dried, weighed and then dipped in paraffin wax at 195 

65°C. The waxed samples were weighed again, and the weight of the wax calculated. The 196 

surface area was estimated from the wax weights against a calibration curve constructed by 197 

wax dipping geometric wooden objects of known size. The surface areas of the remaining taxa, 198 

were estimated from photographs in ImageJ (Rueden et al., 2017). The ‘footprint’ of each 199 

sample, i.e. the surface area of reef occupied by the organism, was also estimated by tracing 200 

the outline of the specimen photographed from straight above in ImageJ. 201 

 202 

2.5 Chemical analyses 203 

Concentrations of nitrate + nitrite (hereafter referred to as nitrate), ammonium, phosphate and 204 

dissolved silica in water samples were analysed in duplicate by flow injection analysis (Lachat 205 

QuickChem 8000) with detection by absorbance at specific wavelengths for silica [QuikChem 206 

Method 31-114-27-1-D], nitrate [Quikchem Method 31-107-04-1-A] and phosphate 207 

[QuikChem Method 31-115-01-1-G]), and by fluorescence for ammonia according to Watson 208 

et al. 2005. Detection limits were 0.02 μmol L−1 for all inorganic nutrient species, with a 209 

standard error of < 0.7%.  210 

 211 
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From SOP3b in Dickson et al. 2007, total alkalinity was determined for single replicates to the 212 

nearest 5 μmol L−1 equivalent (hereafter referred to as μmol L−1) using an open cell Metrohm 213 

titrator (841 Titrando, Burette: 800 Dosino 10 mL) with a Metrohm micro-glass pH probe 214 

calibrated with Certipur buffer solutions at pH 2.00, 4.01, 7.00, and 10.00 (at 25.0°C). Samples 215 

were kept in a Jubalo F12 temperature control water bath prior to decanting a 10 mL aliquot of 216 

sample into a vessel with a water jacket maintaining temperature at 25.0°C. Samples were 217 

titrated with 0.012 N HCl, standardised against sodium carbonate (99.95 to100.05 wt%) with 218 

an initial volume of titrant added to reach pH 3.5. Titrations were run to an end-point of pH 3 219 

with Gran plot (Excel macro) to determine the total alkalinity endpoint near pH 4.2. Carbonate 220 

system parameters were calculated from pH (measured during the incubations) and total 221 

alkalinity using the package ‘seacarb’ (Gattuso et al., 2018) in R (R Core Team, 2018). 222 

Alkalinity and carbonate parameters were not determined in April 2016. 223 

 224 

2.6 Oxygen fluxes and calcification rate calculations 225 

The changes in O2 concentrations during light- and dark incubations were expressed as mmol 226 

per day assuming stable hourly production rates over 24 h. Any replicates where O2 did not 227 

increase during both of the light intervals or did not decrease during both of the dark intervals 228 

were excluded from further analysis. Net fluxes of O2 per day  (mmol day-1 m-2) were calculated 229 

for each sample assuming a 12 h photoperiod. Calcification rates of corals and calcifying algae 230 

(Halimeda opuntia. and Galaxaura sp.) were estimated using the alkalinity anomaly method 231 

(Smith and Key, 1975) uncorrected for changes in nutrient concentration (Chisholm and 232 

Gattuso, 1991) where precipitation of one mole of CaCO3 leads to the reduction of total 233 

alkalinity by two molar equivalents. Rates per surface area (mmol day-1 m-2) were obtained by 234 

dividing these values by the surface area of each specimen.  235 

 236 
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A census-based approach was used to estimate the amount of CaCO3 and O2 produced by a 237 

single taxon per unit area of reef surface per year (Shaw et al., 2016). The rates of calcification 238 

and net O2 production per day were divided by the ‘footprint’ area of each specimen. To 239 

estimate the relative contributions from each taxon to community production per m2 of reef, 240 

these rates were multiplied by the relative percent cover in each of the major habitats. Estimates 241 

of percent cover based on drop camera image analysis were obtained from Olsen et al. (2017). 242 

The productivity rates for individual coral species were combined into one value for coral. 243 

 244 

2.7 Statistical analyses 245 

The relationships between net changes in pH and O2 and between net O2 production and net 246 

calcification (in light and dark incubations) were examined by linear regression. Significance 247 

of regressions were calculated for algae, calcified algae and corals and the 95% confidence 248 

intervals for the slope of each line in R (R Core Team, 2018). Regressions were examined with 249 

ANOVA and deemed significant if p < 0.05.  250 

 251 

3 Results 252 

3.1 Experimental conditions 253 

Nutrient concentrations were low and similar among sampling trips (Table 2), as is 254 

characteristic of tropical Eastern Indian Ocean offshore waters (McLaughlin et al., 2019). 255 

Concentrations of nitrate were 0.05 to 0.17 μmol L−1, ammonium 0.12 to 0.13 μmol L−1, 256 

phosphate 0.07to 0.1 μmol L−1, and silicate 2.3 to 3 μmol L−1. Oxygen was around 0.19 mmol 257 

L−1 to 0.22 mmol L−1 and salinity 34.2 to 34.8 ppt. Light and temperature conditions in the 258 

incubations were representative of in situ conditions on the reef platform and were similar 259 

among trips. PAR levels were 1500 to 1587 μE m−2 s−1 and slightly higher in October. 260 

Temperatures were 28.3 to 32.8°C and highest in April. Carbonate system parameters were 261 
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not obtained for April 2016 due to instrument error, and some minor differences in pCO2, 262 

HCO3
–, CO32

–, DIC and Ω Aragonite were noted between October 2016 and 2017 (Table 2). 263 

Alkalinity and pH were both higher in 2016, and there were associated minor differences in 264 

the concentrations of the carbonate species and the aragonite saturation state (Table 2). 265 

 266 

3.2 Changes in oxygen and pH 267 

Changes in dissolved O2 differed among taxa, and between light and dark incubations. In the 268 

seawater controls O2 changed by < 0.01 mmol h−1 in both light and dark incubations, showing 269 

that the contribution of any organisms in the seawater itself to O2 production and dark 270 

respiration was minimal. No corrections were therefore applied. In the light incubations O2 271 

productivity fluxes were positive for all taxa (Fig. 3, top panel). The highest light flux of O2 272 

of ~380 mmol m−2 day−1 was measured for Galaxaura in October 2017 (Fig. 3, top). Corals 273 

generally produced 100 to 260 mmol O2 m
−2 day−1 in the light, except Heliopora, which had 274 

a flux of 50 to 80 mmol O2 m
−2 day−1. All taxa consumed O2 during the dark incubations 275 

when changes in O2 are due to dark respiration, with mean fluxes of −15 to −190 mmol O2 276 

m−2 day−1 (Fig. 3, middle). All algae were net autotrophic and produced 6 to 111 mmol O2 277 

m−2 day−1 with the highest net O2 flux measured for Galaxaura and turf at 111 and 36 mmol 278 

O2 m
−2 day−1 respectively (Fig. 3, bottom). In contrast, around half of the corals were net 279 

consumers of O2 and average net fluxes spanned a wide range from −42 to 47 mmol O2 m
−2 280 

day−1.  281 

 282 

In the light incubations, pH generally increased by 0.03 to 0.25 h−1 for all taxa, except for 283 

Halimeda in April 2016 and October 2017, which showed no change or a very small increase 284 

(Fig. 4, top panel). In dark incubations, mean pH decreased for all taxa by 0.02 to 0.21 h−1 285 

indicative of a net increase in CO2 through dark respiration (Fig. 4, middle). Non-calcifying 286 
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algae (Sargassum, Caulerpa and turf) raised net pH by 0.02 to 0.05 h−1 (assuming equal 287 

periods of light and darkness) (Fig. 4, bottom panel). The net change in pH was generally 288 

negative for corals and calcifying algae (−0.01 to −0.08 h−1), except for the coral Goniastrea 289 

in April and October 2016 (0.01 h−1) and the calcifying alga Galaxaura (0.03 h−1; Fig. 3, 290 

bottom). 291 

 292 

Net changes in pH are largely driven by metabolic uptake and release of CO2. We found 293 

positive relationships between changes in pH and net production or consumption of O2 except 294 

in seawater controls where changes in O2 and pH were minor (Fig. 5). The relationships for 295 

algae, calcifying algae and coral were all significant, but had relatively low adjusted r2 values 296 

of 0.59, 0.46 and 0.19 respectively, suggesting significant variability among species and 297 

individuals within each of these groups.  298 

 299 

3.3 Calcification Rates 300 

Corals, Halimeda and Galaxaura had positive calcification rates in light ranging from 4.2 to 301 

18.4 g CaCO3 m
−2 d−1 (Fig. 6, top panel). In the dark, calcifying rates were smaller and just 302 

under half of the rates were negative suggesting dissolution of CaCO3 (Fig. 6, middle panel). 303 

The resulting net calcification rates (based on equal periods of light and dark - monthly 304 

average sunrise and sunset at Browse Island of 0552 and 1739 for April, and 0519 and 1754 305 

for October; WillyWeather, 2022) were all positive and ranged from 1.9 to 9.9 g CaCO3 m
−2 306 

d−1 (Fig. 6, bottom). Rates of calcification were strongly linearly correlated to net O2 307 

production and were significantly higher in light than in darkness for both corals and algae 308 

(Fig. 7).  309 

 310 

3.4 Contributions to community production 311 
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In intertidal habitats (lagoon and high reef platform) around Browse Island, the estimated 312 

relative contributions of coral (8 % cover) and Halimeda (7 % cover) to the reef production 313 

of CaCO3 were similar, around 600 to 840 g m−2 year−1 (Fig. 8, top panel). The low reef 314 

platform had very low coral cover of < 3% (Fig. 8, middle), which therefore made a smaller 315 

contribution to calcification of ~240 g CaCO3 m
−2 year−1 in this habitat (Fig. 8, top). In 316 

contrast, calcification on the subtidal reef slope was predominantly from corals (19 % cover), 317 

which produced ~1540 g CaCO3 m
−2 year−1, around twice the amount compared to Halimeda 318 

(7 % cover). Galaxaura, which had high measured rates of productivity and calcification, was 319 

extremely rare (0.02 % total cover found only in October 2017; Olsen et al., 2017) and thus 320 

its contribution to community calcification and productivity were negligible. Turf was 321 

responsible for the majority of the O2 production in all habitats and produced an estimated 8 322 

to 13 mmol O2 m
−2 d−1 compared to < 2 for Halimeda mmol O2 m

−2 d−1 and −4 to −1 mmol O2 323 

m−2 d−1 for corals (Fig. 8, second panel from top).  324 

 325 

4 Discussion  326 

Mesocosm experiments have shown that reef-building (hermatypic) corals tend to reduce pH 327 

and consume O2 (e.g. (Gattuso et al. 2015; Smith et al. 2013)), whereas calcifying macroalgae 328 

increase pH and O2 during daytime (Borowitzka and Larkum 1987; Smith et al. 2013). Both 329 

corals and calcifying macroalgae reduce pH and O2 concentrations due to respiration during 330 

nighttime, but the rates of change differ among species (Smith et al. 2013). The organisms 331 

investigated in the present study showed typical patterns of O2 production in daylight and 332 

consumption in darkness to other similar island reef systems as a result of photosynthesis and 333 

dark respiration, but the metabolic measurements showed clear differences among taxonomic 334 

groups. Algae had higher positive net O2 fluxes with rates of 18 to 350 µmol O2 m
−2 day−1, of 335 

which the red calcifying alga Galaxaura sp. had the highest rate of net productivity by far. For 336 
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corals, the relatively high O2 increase measured in daylight was coupled with high rates of 337 

respiration in darkness, creating a negligible or negative net O2 production for most species, 338 

except Porites sp. in April 2016 and Seriatopora sp. in October 2016 and 2017 which were net 339 

positive. Although autotrophic, our data indicates that the majority of the corals we studied 340 

utilise heterotrophic supply through feeding to help sustain growth in addition to 341 

photosynthesis by zooxanthellae (Houlbreque and Ferrier-Pages, 2009). These patterns are 342 

generally in agreement with those reported elsewhere. For example, fleshy and calcifying algae 343 

showed net diel O2 production, whereas corals generally consumed O2, i.e. were net 344 

heterotrophic, on islands in the South Pacific (Porites sp.) and the Caribbean (Madracis sp.) 345 

(Smith et al., 2013). 346 

 347 

Concurrent with changes in O2 were changes in seawater pH, where pH increased in daylight 348 

(except for Halimeda in April 2016 where no change was measured) and decreased in darkness. 349 

The effects of metabolic activity on bulk pH (uptake and release of CO2 through photosynthesis 350 

and dark respiration) cannot be directly separated from that of calcification, which is associated 351 

with the release of H+ ions thereby decreasing pH (Jokiel, 2011). However, differences were 352 

observed in the net pH change in incubations between calcifiers and non-calcifiers. The net 353 

effect of non-calcifiers on seawater pH was positive while the majority of calcifiers caused net 354 

pH to decline. In the present study, Halimeda (April 2016) and Goniastrea (April and October 355 

2016) caused relatively minor increases in pH, whereas the calcifying alga Galaxaura elevated 356 

pH by, on average, 0.03 units, comparable to the net effect of non-calcifiers. This is not 357 

surprising given the high rate of O2 production measured for Galaxaura, which is associated 358 

with sufficient levels of CO2 fixation to compensate for the reduction in pH associated with 359 

calcification in this species. A strong link was observed between metabolism and pH in all taxa, 360 

demonstrated as linear relationships between changes in pH and O2 during the incubations. 361 
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Previous research by Smith et al. (2013) identified two broad patterns: metabolic changes in 362 

O2 in non-calcifiers (fleshy and turf algae) linked to large changes in pH (steep slopes), and 363 

metabolic changes in O2 in calcifying organisms (Porites sp. Madracis sp. and Halimeda sp.) 364 

producing little or no change in pH (shallow slopes). This is contrary to the present study’s 365 

observations where pH and O2 relationship gradients were similar for calcifiers and non-366 

calcifiers. Non-calcifying organisms were found to consistently have a net positive effect on 367 

both pH and O2. Change in pH for the same net change in O2 was elevated for non-calcifiers 368 

compared to calcifiers.  369 

 370 

Production and accumulation of reef framework carbonate is controlled by the relative rates of, 371 

and the interactions between, a range of ecologically, physically and chemically driven 372 

production and erosion processes (Perry et al., 2008; Montaggioni and Braithwaite, 2009), with 373 

the relative importance of different taxa for CaCO3 production differing among reefs and 374 

among habitats within reefs. Coral growth can be measured in several ways: linear extension 375 

rate, global skeletal growth and calcification rate (measured using the alkalinity technique or 376 

by 45Ca incorporation) (Houlbreque and Ferrier-Pages, 2009). Methods to calculate 377 

calcification can vary in accuracy. Overestimates of calcification rates can result from 378 

calculations based on changes in alkalinity, while those relying on CaCO3 content and growth 379 

measurements (either through staining or tagging segments), may produce minimum estimates 380 

as loss of new tissue is not accounted for (Hart and Kench, 2007; Houlbreque and Ferrier-381 

Pages, 2009). The alkalinity method employed in the present study was the best possible option 382 

when working in a remote location where actual growth rates cannot be easily assessed, or use 383 

of radioisotopes was limited. Rates of net community calcification for reef flats worldwide 384 

range from 7.3 to 90 mol (730 to 9000 g) CaCO3 m
−2 year−1 with an average of 47 mol (4700 385 

g) CaCO3 m−2 year−1 (Atkinson, 2011). The patterns found in the present study — higher 386 
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calcification rates in daylight compared to in darkness for all corals and calcifying algae — are 387 

typical. However, the coral CaCO3 production rates per reef area (7 to 8% cover low reef 388 

platform, 19% reef slope) measured here (240 g m−2 year−1 for low reef platform, 610 to 756 g 389 

m−2 year−1 in the other intertidal habitats, and 1536 g m−2 year−1 on the reef slope) were 390 

somewhat lower than values reported elsewhere. In 2016, the dark rates of calcification in 391 

corals were less than 50% of the rates in light with some (Porites and Heliopora) negative. 392 

Dark rates of calcification in 2017 were negative or near zero for all species except Porites, 393 

Pocillopora and Seriatopora. Houlbreque et al. (2004) showed that coral feeding enhances dark 394 

calcification rates in scleractinian corals, but incubations in our study were done in absence of 395 

supplemental feeding. The trend observed here may be due to some dissolution of CaCO3 due 396 

to the reduced pH during dark incubations or could be an artefact of the experimental 397 

conditions. This result should therefore be taken with some caution, in particular for Porites in 398 

October 2016, which saw the largest decrease (Fig. 5, middle panel). However, the resulting 399 

strong relationship between net carbonate production and net carbonate consumption is 400 

consistent with previous studies both in situ and in mesocosms (Albright et al., 2013). 401 

 402 

Corals are typically the primary framework-producing components on a tropical reef and 403 

dominate carbonate production per unit area (Vecsei, 2004), however additional CaCO3 is 404 

produced by calcareous crustose coralline algae (CCA) and calcareous algae of the genus 405 

Halimeda, (e.g. Payri, 1988). Sprawling lithophytic species of Halimeda, like the majority of 406 

the Halimeda around Browse Island, tend to be fast growing and have high calcification rates 407 

(Hart and Kench, 2007). Rates of calcification per area of 100% Halimeda cover have been 408 

estimated to 400 to 1667 g CaCO3 m
−2 year−1 (in Hart and Kench, 2007 Suppl info). In other 409 

locations, Halimeda has been estimated to contribute around 1100 to 2400 g CaCO3 m
−2 year−1 410 

to benthic carbonate production (Drew, 1983; Freile et al., 1995; Hudson, 1985; Kangwe et al., 411 
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2012; Payri, 1988; Rees et al., 2007), which is higher than the 600 to 840 g CaCO3 m
−2 year−1 412 

estimated for Halimeda opuntia in the intertidal habitats in the present study. These rates 413 

depend both on the intrinsic calcification rates and on the abundance or cover of algae (6.1 to 414 

8.7% cover on Browse, which corresponds to ~150 to 250 g dw m-2). 415 

 416 

Nutrient capacity is one important driver of productivity in many reef ecosystems. The rate at 417 

which nutrients are recycled between the constituents of the system (the ambient nutrient 418 

availability, and the nutrients stored within plant and animal biomass) depends on input from 419 

a variety of sources (e.g., associated with seasonal rains or upwelling) (DeAngelis, 1992; 420 

Hatcher, 1990). Coral reefs, typically have low ambient nutrient availability and receive little 421 

sustained exogenous nutrient input (Hatcher, 1990; Szmant, 2002), thus the high rates of 422 

production found within these ecosystems are largely attributed to the nutrients stored and 423 

cycled by living biomass (Pomeroy, 1974; DeAngelis et al., 1989; Sorokin, 1995). Fishes 424 

typically make up a substantial component of living biomass on coral reefs and represent an 425 

important reservoir of nutrients in these ecosystems (Allgeier et al., 2014). Contrary to our 426 

expectations given its remote location in an area of apparently low anthropogenic impacts, the 427 

reef platform around Browse Island was depauperate with a conspicuous lack of diversity in 428 

key groups including macroalgae, macroinvertebrates and teleost browsers (Bessey et al., 429 

2020). McLaughlin et al. (2019) found surface water standing stock nutrient concentrations 430 

low along Kimberley shelf. Conditions at Browse Island were similar with low water column 431 

nutrients for nitrate, ammonia and phosphate during all trips. Understanding how changes in 432 

animal populations alter nutrient dynamics on large ecological scales is a relatively recent 433 

endeavour (Doughty et al., 2015). Allgeier et al. (2016) showed that targeted fishing of higher 434 

trophic levels reduces the capacity of coral reef fish communities to store and recycle nutrients 435 

by nearly half. Fish-mediated nutrients enhance coral growth (Meyer et al., 1983) and primary 436 
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production (Allgeier et al., 2013), and may regulate nutrient ratios at the ecosystem scale 437 

(Allgeier et al., 2014). 438 

 439 

The Kimberley region-wide averages of coral cover and macroalgal cover are 23.8% and 7.1% 440 

(Richards et al., 2015) respectively. However, this relationship at Browse Island is reversed, 441 

with macroalgae more dominant at 28% total cover to that of coral at 9% total cover. On the 442 

Browse Island reef platform, the same pattern is observed where averages were 5 to 8% for 443 

coral and 32% for macroalgae, differing from those of the regional averages of 14.4% and 444 

15.5% of coral and macroalgae respectively (Richards et al., 2015). While the estimates 445 

provided here approximate the relative contributions of Halimeda and coral to CaCO3 446 

production, they do not add up to a whole system budget. There are other organisms likely to 447 

contribute significantly. For example, the present study did not measure metabolic or 448 

calcification rates of encrusting coralline algae, which, although making up a modest 1.0 to 449 

3.0% of the benthic cover in the lagoon and reef platform habitats at Browse Island, become 450 

more prominent at 11.8 to 14.1% on the reef crest and slope (Olsen, unpublished data). To 451 

calculate the true CaCO3 production per area of reef, the calcification rate would need to be 452 

multiplied by the benthic cover of coralline algae and the square of the benthic rugosity (Eakin, 453 

1996). Using typical values for rugosity from Eakin (1996) of 1 to 1.4 for the lagoon and reef 454 

platform and 1.7–2 for the reef crest and slope, and assuming a typical calcification rate of 455 

1500 to 2500 g m−2 year−1 (for 100% flat-surface cover) (Hart and Kench, 2007), the 456 

contribution of encrusting coralline algae to calcification in the lagoon and reef platform would 457 

be minor at 70 to 134 g CaCO3 m
−2 year−1. However, they could produce a significant amount 458 

of 980 to 1360 g CaCO3 m
−2 year−1 on the reef crest and slope, which is somewhere in between 459 

the production rates estimated for Halimeda and corals. Encrusting coralline algae may 460 

therefore contribute significantly to the CaCO3 budget at Browse Island, at least in deeper 461 
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habitats. These values are similar to those measured elsewhere, for example 870 to 3770 g 462 

CaCO3 m
−2 year−1 at Uva reef in the eastern Pacific (Eakin, 1996).  463 

 464 

Metabolic rates of primary producers are clearly influenced by a multitude of factors including 465 

hydrodynamics, irradiance, and nutrient availability (Smith et al., 2013). We were able to detect 466 

considerable diurnal changes in water chemistry due to metabolic rates, since our experiments 467 

were conducted in small enclosed mesocosms. The effect of metabolism on water chemistry is 468 

expected to dissipate downstream in a more turbulent or dynamic environment (Anthony et al. 469 

2011). However, coral and algae metabolic rates and resultant flux from diffusive boundary 470 

layer also increases with flow rates (Carpenter et al. 1991; Lesser et al. 1994; Bruno and 471 

Edmunds 1998; Mass et al. 2010). Because our experiments were conducted in near no-flow 472 

chambers (mesocosm water was replenished with fresh seawater in small amounts during 473 

sample extraction), our measurements are conservative values and likely represent the lower 474 

range of potential effects that these reef organisms have on surrounding water chemistry, 475 

however where residence times can be extended, particularly when trapping of water on the 476 

reef at low tides occurs, our results are likely reflective of how these benthic organisms affect 477 

water chemistry in the lagoonal habitats of Browse Island. 478 

 479 

5 Conclusions 480 

This study investigated the metabolism of coral and algae on the reef of remote Browse 481 

Island, found on the mid-shelf region of the Kimberley in Western Australia. Due to its 482 

remoteness, Browse Island presented a unique opportunity to observe these organisms in a 483 

pristine habitat where direct anthropogenic pressures are minimal.  Browse Island is the only 484 

emergent mid-shelf reef in the Kimberley bioregion having semidiurnal tides reaching a 485 

maximum range of 5 m (Olsen et al., 2017), half the magnitude of tides experienced by reefs 486 
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closer to the coast (McLaughlin et al., 2019). Its benthic structure is very different from both 487 

Kimberley inner (e.g. Montgomery Reef, Adele and Cassini Islands) and outer (e.g. Ashmore 488 

Reef and Rowley Shoals) shelf reefs. The relative contributions of algae and corals to reef 489 

productivity are likely to differ across the Kimberley shelf, with corals becoming more 490 

important in offshore waters and algal calcifiers being important on the mid-shelf. Estimated 491 

aerial production rates did not take into account the relief (differences in height from place to 492 

place on the reef surface) of the substrate. The reef platform surrounding Browse Island has 493 

relatively low surface relief, whereas the reef slope and crest have high rugosity, which 494 

means production rates in the latter environments may be underestimated. Despite these 495 

limitations, the rates estimated in this study are similar to those measured elsewhere. 496 

 497 

The higher cover of Halimeda and the low coral cover at Browse Island compared to other 498 

reefs in the region mean that corals and Halimeda contribute equally to productivity rates of 499 

CaCO3 on the Browse Island reef flat, however, their relative contributions to the reef 500 

framework and sedimentary budget of the reef is unknown. To gain an understanding of the 501 

relationships between carbonate production and sinks on the reef, further study into the types 502 

and amounts of CaCO3 material found in each reef sink is necessary. The Kimberley coastal 503 

shelf, which is characterised by coral reef environments with clear, low nutrient waters and 504 

low productivity, has largely escaped land-based anthropogenic impacts, but has been 505 

negatively affected by climate-driven coral bleaching and mortality, for example from heat 506 

waves at Scott Reef in 1998 and 2016 (Smith et al., 2008, Gilmour et al., 2013 and Hughes et 507 

al., 2017) and Ashmore Reef in 2003 and 2010 (Ceccarelli et al., 2011 and Heyward, 2011). 508 

 509 

There is lack of sufficient observations of pCO2, nutrients and research on the upper ocean 510 

carbon cycle from the Indian Ocean (Sreeush et al., 2020), and which are critical to modelling 511 
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of ocean acidification in the region (Panchang and Ambokar, 2021). The uptake of carbon 512 

dioxide by the ocean alters the composition of seawater chemistry with elevated partial 513 

pressures of carbon dioxide (pCO2) causing seawater pH and the CaCO3 saturation state to 514 

decrease (Feely et al, 2004). Ocean acidification directly threatens crucial trophic levels of 515 

the marine ecosystem. Baseline reef measurements in undisturbed areas like Browse Island 516 

are important to understand exclusively climate-driven stressors in lieu of local 517 

anthropogenic pressures normally associated with coastal tropical reefs. The effects of 518 

temperature stressors on reef communities and their productivity remain to be investigated in 519 

this region. Different components of the reef around Browse Island are likely to have 520 

different vulnerabilities to warming and heat waves. Future environmental stressors leading 521 

to changes in benthic community composition, structure and subsequent changes in reef 522 

productivity and in rates of production of CaCO3, could have major implications for Browse 523 

Island.  524 
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Figures 547 

 548 

Figure 1. The study site, Browse Island (diamond, bottom left map), is located just inside the 549 

200-m isobath on the continental shelf. The small map (top left) shows the location of the island 550 

relative to the Australian coastline with the 100, 200 and 400 m isobaths marked in gray. The 551 

satellite image (right; © Google Earth 2018) shows the extent of the reef. 552 

 553 

  554 
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Figure 2. Experimental setup of respirometry incubations for Browse Island coral and 

macroalgae. 

  555 
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 556 

Figure 3. Net changes in oxygen (means ± se) in light (top) and dark (middle) incubations of 557 

calcifying algae (stippled), macroalgae and turf (black), turf + substrate (diagonal stripes) and 558 

coral (white) standardised by specimen surface area. The bottom panel shows the net daily 559 

production of oxygen (means ± se) assuming a 12-h photoperiod and stable rates of 560 

photosynthesis and dark respiration over a 24-h period.  561 

  562 
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 563 

Figure 4. Net changes in pH per hour for each 1.56-L incubation core (means ± se) in light 564 

(top) and dark (middle) incubations calcifying algae (stippled), macroalgae and turf (black), 565 

turf + substrate (diagonal stripes) and coral (white). The bottom panel shows the net change in 566 

pH per hour (means ± se) assuming equal periods of light and darkness.  567 

  568 
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 569 

Figure 5. Net change in pH versus O2 per 1.56-L incubation core assuming equal periods of 570 

light and darkness. Linear relationships are fitted with 95% confidence intervals shown in gray. 571 

For algae; net change in pH = 0.13 + 0.0016 × net change in O2 (ANOVA: F1,27 = 41.15, p 572 

<0.001). For calcified algae; net change in pH = −0.04 + 0.0021 × net change in O2 (ANOVA: 573 

F1,19 = 17.86, p <0.001). For corals; net change in pH = −0.02 + 0.00086 × net change in O2 574 

(ANOVA: F1,82 = 18.88, p <0.001). 575 

  576 
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 577 

Figure 6. Calcification rates for corals (white) and calcifying algae (stippled) (means ± se) in 578 

light (top) and dark (middle). The bottom panel shows the daily net calcification rate (means ± 579 

se) assuming a 12-h photoperiod. 580 

  581 
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 582 

Figure 7. Relationship between net calcification rate and net productivity for calcifying algae 583 

(top) and corals (bottom). Open circles indicate rates measured in light and closed circles rates 584 

measured in dark. Linear fits are shown with 95% confidence intervals in gray. For calcified 585 

algae; net calcification = 3.6 + 0.039 × net O2 production (ANOVA: F1,32 = 67.0, p <0.001). 586 

For corals; net calcification = 5.99 + 0.027 × net O2 production (ANOVA: F1,126 = 82.2, p 587 

<0.001). 588 
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 590 

Figure 8. Map of the reef around Browse Island showing the major habitat types (bottom 591 

panel). Reef surface percent cover of coral, Halimeda, turf and other categories in each habitat 592 

(middle panel) based on drop-camera image analysis data from (Olsen et al. 2017). Net 593 

calcification and net oxygen production by coral, Halimeda and turf per m−2 of reef (top two 594 

panels) scaled up by multiplying rates obtained from incubations of each taxon by the percent 595 

cover in each habitat. 596 
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Tables 597 

Table 1. Taxa measured in on-ship incubation experiments including the number of replicate 598 

specimens measured (one specimen per incubation core). Some of the specimens were not 599 

included in the final analysis due to sampling errors or due to O2 not increasing during both of 600 

the light intervals or not decreasing during both of the dark intervals; the resulting number of 601 

specimens used are shown in brackets. 602 

  Taxa Apr 2016 Oct 2016 Oct 2017 

Algae Halimeda opuntia 6 (5) 6 6 

 Turf algae + substrate 6 (5) 6 6 

 Turf algae - - 6 

 Sargassum sp. 12 - - 

 Caulerpa sp. - 6 6 

 Galaxaura sp. - - 6 (5) 

     

Coral Pocillopora sp. 6 6 6 

 Goniastrea sp. 6 (5) 6 6 

 Porites sp. 5 6 6 

 Heliopora sp. - 6 (5) 6 

 Acropora sp. - 5 6 

  Seriatopora sp. - 4 6 

     

 Seawater control - - 6 

 603 

  604 
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Table 2. Ambient concentrations of parameters measured during incubations (means ± se); 605 

nutrients (NO3
– + NO2

– = nitrate + nitrite, NH4
+ = ammonium, PO4

3– = orthophosphate, Si = 606 

silica) and oxygen (O2), total alkalinity (TAlk), Photosynthetically Active Radiation (PAR), 607 

temperature (T) and salinity. Calculated carbonate system parameters (means ± se); CO2 608 

partial pressure (pCO2), concentrations of HCO3
–, CO3

2– and dissolved inorganic carbon 609 

(DIC), and the saturation state of aragonite (Ω Aragonite). In April 2016, two replicate PAR 610 

measurements were taken at 11:00, 12:00 and 13:00 h. In October 2016 and 2017, PAR was 611 

measured every minute and values between 11:00 and 13:00 h averaged.  612 

 Apr 2016 Oct 2016 Oct 2017 

Number of replicates (n) 8 10 12 

NO3
– + NO2

– (μmol L−1) 0.15 ± 0.04 0.05 ± 0.01 0.17 ± 0.01 

NH4
+ (μmol L−1) 0.12 ± 0.02 0.13 ± 0.01 0.13 ± 0.01 

PO4
3– (μmol L−1) 0.08 ± 0.01 0.07 ± 0.00 0.09 ± 0.00 

Si (μmol L−1) 2.74 ± 0.04 2.93 ± 0.04 2.30 ± 0.02 

O2 (μmol L−1) 19.3 ± 0.19 20.8 ± 0.16 23.4 ± 0.29 

PAR 11–13 h (μE m−2 s−1) 1499.6 1587.1 1587.0 

T (°C) 32.8 ± 0.1 31.2 ± 0.1 28.3 ± 0.1 

Salinity (ppt) 34.8 34.5 34.2 

TAlk (μmol L−1) NA 2408 ± 5 2390 ± 2 

pH 8.17 ± 0.02 8.14 ± 0.02 8.11 ± 0.01 

    

Calculated carbonate system parameters   

pCO2 (uatm) NA 295 ± 14 335 ± 17 

HCO3
– (mmol kg−1) NA 1.61 ± 0.03 1.69 ± 0.02 

CO3
2– (mmol kg−1) NA 0.30 ± 0.006 0.26 ± 0.006 

DIC (mmol kg−1) NA 1.93 ± 0.02 1.97 ± 0.02 

Ω Aragonite  NA 5.02 ± 0.11 4.27 ± 0.10 

 613 

  614 
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