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Abstract

Coral reefs face increasing pressures in response to unprecedented rates of environmental
change at present. The coral reef physical framework is formed through the production of
calcium carbonate (CaCOs3) and maintained by marine organisms, primarily hermatypic corals,
and calcifying algae. The northern part of Western Australia, known as the Kimberley, has
largely escaped land-based anthropogenic impacts and this study provides important metabolic
data on reef-building organisms from an undisturbed set of marine habitats. From the reef
platform of Browse Island, located on the mid-shelf just inside the 200 m isobath off the
Kimberley coast, specimens of the dominant coral (6 species) and algal (5 species) taxa were
collected and incubated ex-situ in light and dark shipboard experimental mesocosms for 4 hours
to measure rates of calcification and production patterns of oxygen. During experimental
light/dark incubations, all algae were net autotrophic producing 6 to 111 mmol Oz m2 day ..
In contrast, most corals were net consumers of O2 with average net fluxes ranging from —42 to
47 mmol O, m™2 day L. The net change in pH was generally negative for corals and calcifying
algae (—0.01 to —0.08 h™1). Resulting net calcification rates (1.9 to 9.9 g CaCOs m2 d?) for
corals, and calcifying algae (Halimeda and Galaxura) were all positive and were strongly
correlated to net Oz production. In intertidal habitats around Browse Island, estimated relative
contributions of coral and Halimeda to the reef production of CaCO3 were similar at around
600 to 840 g m~2 year . The low reef platform had very low coral cover of < 3% which made
asmaller contribution to calcification of ~240 g CaCO3s m2 year .. Calcification on the subtidal
reef slope was predominantly from corals, producing ~1540 g CaCOsm 2 year 2, twice that of
Halimeda. These data provide the first measures of community metabolism from the offshore
reef systems of the Kimberley. The relative contributions of the main reef builders, in these
undisturbed areas, to net community metabolism and CaCOs production is important to

understand exclusively climate-driven negative effects on tropical reefs.
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1. Introduction

The functioning of healthy coral reefs, as some of the world’s most biologically (Stuart-Smith
et al., 2018) and structurally complex ecosystems (Hughes et al., 2017b), results in a number
of ecosystem services. They provide coastal protection, with reef structures acting to dampen
wind and wave driven surges (Perry et al., 2018) and support a diverse range of species that
provide critically important resources (such as food) for coastal livelihoods (Hoegh-Guldberg
et al., 2007). However, coastal coral reefs in the Anthropocene era have been degraded for
more than a century by overfishing and pollution (Hughes et al., 2017b). With the current
unprecedented rate of environmental change, coral reefs face growing pressures. These range
from localised eutrophication (Hewitt et al., 2016) and sedimentation (Hughes et al, 2017a), to
larger scale recurrent weather events (marine heat waves; Moore et al., 2012) and rising
atmospheric greenhouse gases (especially carbon dioxide, CO2; IPCC, 2014) that result in
increasing ocean temperatures (due to atmospheric heat absorption) and ocean acidification
(OA) (Hoegh-Guldberg, 2007; Doney et al., 2009; Perry et al., 2018). Once thought protected
by the very nature of their isolation, remote reefs are also now showing impacts by increasing

stressors brought about by anthropogenic climate change (Hughes et al., 2017b).

As one of the most important determinants of overall reef function, the construction and
maintenance of the calcium carbonate (CaCOs) reef structure (the accumulation of which
requires the net production of calcium carbonate by resident taxa; Cornwall et al., 2021) is vital
to the myriad of ecosystem services that coral reefs provide (Hoegh-Guldberg et al., 2007;
Andersson et al., 2013; Moberg and Folke, 1999). The coral reef physical framework is formed
and maintained through the production of calcium carbonate (CaCOz) by marine organisms,
primarily hermatypic corals, crustose coralline algae (CCA), and other calcifying algae

(Vecsei, 2004; Perry et al., 2008; Perry et al., 2012). Scleractinian corals are primary reef
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builders in tropical environments, producing CaCOs through skeletal deposition. This net
calcium carbonate production is a balance between gross production minus the loss due to
physical, chemical, and biological erosion (Cornwall et al., 2021). The net calcium carbonate
production and related potential vertical accretion of reefs is increasingly threatened by
anthropogenic climate change (Perry et al., 2018). For scleractinian corals, one of the most
significant consequences of OA is the decrease in the concentration of carbonate ions (CO2 )
(Kleypas and Yates, 2009). Projections suggest that future rates of coral reef community
dissolution may exceed rates of CaCOs production (calcification), with the majority of coral
reefs unable to maintain positive net carbonate production globally by 2100 (i.e., net loss)

(Cornwall et al., 2021; Silverman et al., 2009; Hoegh-Guldberg et al., 2007).

These global climate change pressures are causing shifts in the composition of coral reef
species, and the urgent focus now is on identifying, quantifying and maintaining reef ecosystem
function so that coral reefs can continue to persist and deliver ecosystem services into the future
(Harborne et al., 2017). To do this it is necessary to characterize reef health in terms of
metabolism which includes calcification but also fundamental processes such as photosynthesis
and respiration (Madin et al., 2016; Carlot et al., 2022). Photosynthesis fixes CO2 in organic
materials, whereas the reverse reaction (dark respiration) releases it. In scleractinian corals with
zooxanthellae, the precipitation of CaCOz through calcification is tightly coupled to
photosynthetic fixation of CO2 and on average tends to be three times higher in daylight
conditions than in darkness (Gattuso et al., 1999). Calcification rates can increase further
through feeding on phytoplankton and suspended particles (Houlbreque and Ferrier-Pages,
2009). Overall, the excess organic production in a coral reef community (i.e., the difference
between gross primary production and dark respiration) acts as a CO2 sink, while calcification

acts as a source of CO2 (Lewis, 1977; Kinsey, 1985). Most reef flats are sources of CO to the



88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

atmosphere despite the drawdown of CO> during the day via photosynthetic processes. This is
due to their low net fixation of CO> and rather large release of CO> by precipitation of calcium
carbonate (Ware et al, 1992; Gattuso et al, 1993; Gattuso et al, 1995; Smith, 1995;

Frankignoulle et al, 1996; Gattuso et al, 1996b).

One notable exception to this is in algal-dominated reef communities, which are sinks for
atmospheric CO>. They exhibit larger excess community production and/or a lower community
calcification, (e.g., Kayanne et al, 1995; Gattuso et al, 1996a; Gattuso et al, 1997). The
morphological diversity of reef algae provides food (Overholtzer and Motta, 1999), habitat and
shelter (Price et al., 2011) for a number of invertebrate and fish species, with productivity
sustaining higher trophic levels. Calcified macroalgae can also contribute significantly to the
deposition of carbonates (Nelson, 2009). In particular, species of the genus Halimeda are
widely distributed across tropical and subtropical environments, contribute significantly to reef
calcification and productivity rates because of their fast growth and rapid turnover rates
(Vroom et al., 2003, Smith et al., 2004, Nelson, 2009) compared to corals or coralline red algae
(CRA). Calcification rates of Halimeda make it a major contributor to CaCOs in reefs in the
Caribbean (Blair and Norris, 1988; Nelson, 2009), Tahiti and the Great Barrier Reef (Drew,
1983; Payri, 1988). In certain locations, precipitation of calcium carbonate can approach 2.9
kg CaCOs m~2 yr?, positioning Halimeda as a major contributor to carbonate budgets within
shallow waters around the globe (Price et al., 2011). This group further occupies a diverse
range of environments (mangroves, seagrass beds, and coral reefs) and can produce structurally
complex mounds that serve as critical habitat for a diversity of important marine life (Rees et

al., 2007).
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Here, we compare metabolic and calcification rates of the dominant intertidal taxa of coral and
macroalgae at Browse Island, a small island in the Kimberley bioregion located in the northern
part of Western Australia. Unlike Southwestern Australia, which has one of the fastest
increasing rates of change from cumulative human impacts (Halpern et al., 2019), the
Kimberley represents one of the few “very low impact” tropical coast and shelf areas globally
—only 3.7% of the global oceans fall in this category (Halpern et al., 2008). Few process studies
have been carried out in the region due to the remoteness of these reef habitats, some of which
are located 100s of km from the coastline, meaning that fieldwork and data acquisition can be
difficult and costly. Rates of metabolism and calcification were determined in on-ship
incubations in October 2016, April 2017 and October 2017. Using the proportional cover of
the dominant benthic community, these rates were upscaled to gain whole of community
metabolism estimates for the Browse Island habitats and provide new insights into reef
ecosystem health and functioning in the absence of localised land- and sea-based anthropogenic

variables (Harley et al., 2006; 157 Schindler, 2006; Walther, 2010).

2. Methods

2.1 Study site

Browse Island is located on the mid-shelf just inside the 200 m isobath off the Kimberley coast
in northern Western Australia (14°6'S, 123°32'E; Fig. 1). The island is surrounded by a small
(~ 4.5 km?) planar platform reef consisting of a shallow lagoon, an extensive reef flat that is
conspicuously absent to the northeast of the island, and a well-defined reef crest and slope.
Tides are semidiurnal with a maximum range of < 5 m, exposing the reef crest and reef platform
habitats during low tides. The intertidal habitats are characterised by low species richness and
dominated by small turfing algae and calcified macroalgae of the genus Halimeda (15-22%

and 6-9% cover respectively) (Olsen et al., 2017). Coral assemblages are well developed with
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cover of 5-8% in the intertidal habitats and 18% on the shallow reef slope (< 10 m) (Olsen et

al., 2017).

2.2 Algae and coral collection

Specimens of the dominant coral and algal taxa were collected from the reef platform by hand
during low tide, immediately brought back to the vessel and kept in a holding tank with
circulating seawater. Macroalgae included the calcifying green alga Halimeda opuntia, which
was the dominant species of Halimeda on the reef platform, the green alga Caulerpa sp., and
the calcifying red alga Galaxaura sp. Pieces of turf algae (turf) as well as turf attached to a
piece of rock (turf + substrate) were measured. In April 2016, drift algae of the genus
Sargassum found floating on the water surface were also included although this taxa was not
been found growing anywhere on the reef. Hermatypic corals included Pocillopora sp.,
Goniastrea sp., Porites sp., Heliopora sp., Acropora sp. and Seriatopora sp. Whole pieces of
coral small enough to fit inside the incubation cores (inner diameter ~90 mm) were collected
to minimise tissue damage. All coral samples were > 50 mm diameter and therefore
operationally defined as adults and estimated to be at least 2 to 7 years old depending on the

taxa (Trapon et al., 2013).

2.3 Light and dark incubations

Light and dark incubations were undertaken on the back deck of the research vessel. Four 60
L holding tanks were placed in a shade-free spot under natural light conditions, filled with
seawater and connected to a flow-through seawater system driven by an Ozito PSDW-350 watt
Dirty Water Submersible Water Pump with a maximum flow rate of 7,000 litres/hour, which
ensured the setup remained at ambient temperature (Fig. 2). The intensity of photosynthetically

active radiation (PAR) was recorded for each set of incubations with a HOBO Micro Station
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logger (H21-002, Onset) placed inside one of the tanks. Six 1.56 L clear Perspex incubation
cores (24 total per incubation) fitted with stirring caps, were placed in each holding tank and

spaced evenly apart to minimise shading (Fig. 2).

Depending upon abundance, individual specimens of algae and coral were placed in 6 to 12
replicate incubation cores per taxa except where not enough individuals could be found. Table
1 shows the taxa incubated during each sampling trip and the number of replicates. Water
samples from the holding tanks were measured at each time point as controls and, in addition,
in October 2017, a separate seawater control (six replicate incubation cores with seawater) was
included. After a period of acclimation (1 to2 h), incubations were run over a four-hour period.
The light incubations were conducted while the sun was at its zenith providing full irradiance
to the samples. After two hours, the tubs were covered with a black lid ensuring no light could

enter and the samples incubated for two hours in the dark.

To estimate oxygen production or consumption during the incubations, a 40 mL water sample
was extracted from each of the 24 cores and the four tubs at the start of the incubations and
hourly thereafter. A port in the cap of each core allowed for sample collection using a syringe.
As the sample was removed, the same volume of liquid was automatically replaced from the
flowthrough tank into the core so that the core volume remained constant through the
experiment. Samples were immediately analysed for temperature and dissolved oxygen (Oz)
with a YSI 5100 bench-top oxygen and temperature meter with YSI 5010 BOD stirring probe,
calibrated daily in air. Sample pH was determined using a TPS Aqua pH meter with an lonode
probe, calibrated daily with pH 7.00 and 10.00 buffers. A second 35 mL water sample was
collected from each core and tub and split between one 10 mL glass vacutainer for alkalinity

and duplicate 10 mL sterile vials for nutrient analyses. Nutrient samples were immediately
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frozen and alkalinity samples were stored cool and dark. At the end of the incubation, algal and
coral specimens were frozen. All samples were transported to Perth, Western Australia, to be

analysed.

2.4 Surface areas of coral and algal specimens

Metabolic measurements were standardised by surface area of the incubated specimens since
this represents the area available for photosynthesis and nutrient uptake. The surface area of
specimens of coral, Halimeda and turf + substrate were estimated using a single wax dipping
method (Veal et al., 2010). Specimens were dried, weighed and then dipped in paraffin wax at
65°C. The waxed samples were weighed again, and the weight of the wax calculated. The
surface area was estimated from the wax weights against a calibration curve constructed by
wax dipping geometric wooden objects of known size. The surface areas of the remaining taxa,
were estimated from photographs in ImageJ (Rueden et al., 2017). The ‘footprint’ of each
sample, i.e. the surface area of reef occupied by the organism, was also estimated by tracing

the outline of the specimen photographed from straight above in ImagelJ.

2.5 Chemical analyses

Concentrations of nitrate + nitrite (hereafter referred to as nitrate), ammonium, phosphate and
dissolved silica in water samples were analysed in duplicate by flow injection analysis (Lachat
QuickChem 8000) with detection by absorbance at specific wavelengths for silica [QuikChem
Method 31-114-27-1-D], nitrate [Quikchem Method 31-107-04-1-A] and phosphate
[QuikChem Method 31-115-01-1-G]), and by fluorescence for ammonia according to Watson
et al. 2005. Detection limits were 0.02 umol L™t for all inorganic nutrient species, with a

standard error of < 0.7%.
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From SOP3b in Dickson et al. 2007, total alkalinity was determined for single replicates to the
nearest 5 pmol L™* equivalent (hereafter referred to as pmol L™2) using an open cell Metrohm
titrator (841 Titrando, Burette: 800 Dosino 10 mL) with a Metrohm micro-glass pH probe
calibrated with Certipur buffer solutions at pH 2.00, 4.01, 7.00, and 10.00 (at 25.0°C). Samples
were kept in a Jubalo F12 temperature control water bath prior to decanting a 10 mL aliquot of
sample into a vessel with a water jacket maintaining temperature at 25.0°C. Samples were
titrated with 0.012 N HCI, standardised against sodium carbonate (99.95 t0100.05 wt%) with
an initial volume of titrant added to reach pH 3.5. Titrations were run to an end-point of pH 3
with Gran plot (Excel macro) to determine the total alkalinity endpoint near pH 4.2. Carbonate
system parameters were calculated from pH (measured during the incubations) and total
alkalinity using the package ‘seacarb’ (Gattuso et al., 2018) in R (R Core Team, 2018).

Alkalinity and carbonate parameters were not determined in April 2016.

2.6 Oxygen fluxes and calcification rate calculations

The changes in Oz concentrations during light- and dark incubations were expressed as mmol
per day assuming stable hourly production rates over 24 h. Any replicates where O did not
increase during both of the light intervals or did not decrease during both of the dark intervals
were excluded from further analysis. Net fluxes of O, per day (mmol day™* m) were calculated
for each sample assuming a 12 h photoperiod. Calcification rates of corals and calcifying algae
(Halimeda opuntia. and Galaxaura sp.) were estimated using the alkalinity anomaly method
(Smith and Key, 1975) uncorrected for changes in nutrient concentration (Chisholm and
Gattuso, 1991) where precipitation of one mole of CaCOs leads to the reduction of total
alkalinity by two molar equivalents. Rates per surface area (mmol day* m2) were obtained by

dividing these values by the surface area of each specimen.

10
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A census-based approach was used to estimate the amount of CaCOs and O. produced by a
single taxon per unit area of reef surface per year (Shaw et al., 2016). The rates of calcification
and net O production per day were divided by the ‘footprint’ area of each specimen. To
estimate the relative contributions from each taxon to community production per m? of reef,
these rates were multiplied by the relative percent cover in each of the major habitats. Estimates
of percent cover based on drop camera image analysis were obtained from Olsen et al. (2017).

The productivity rates for individual coral species were combined into one value for coral.

2.7 Statistical analyses

The relationships between net changes in pH and O. and between net O2 production and net
calcification (in light and dark incubations) were examined by linear regression. Significance
of regressions were calculated for algae, calcified algae and corals and the 95% confidence
intervals for the slope of each line in R (R Core Team, 2018). Regressions were examined with

ANOVA and deemed significant if p < 0.05.

3 Results

3.1 Experimental conditions

Nutrient concentrations were low and similar among sampling trips (Table 2), as is
characteristic of tropical Eastern Indian Ocean offshore waters (McLaughlin et al., 2019).
Concentrations of nitrate were 0.05 to 0.17 pmol L™, ammonium 0.12 to 0.13 umol L,
phosphate 0.07to 0.1 umol L2, and silicate 2.3 to 3 umol L™1. Oxygen was around 0.19 mmol
L1 to 0.22 mmol L and salinity 34.2 to 34.8 ppt. Light and temperature conditions in the
incubations were representative of in situ conditions on the reef platform and were similar
among trips. PAR levels were 1500 to 1587 pE m 2 s * and slightly higher in October.

Temperatures were 28.3 to 32.8°C and highest in April. Carbonate system parameters were

11
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not obtained for April 2016 due to instrument error, and some minor differences in pCO?2,
HCO37, CO3;7, DIC and Q Aragonite were noted between October 2016 and 2017 (Table 2).
Alkalinity and pH were both higher in 2016, and there were associated minor differences in

the concentrations of the carbonate species and the aragonite saturation state (Table 2).

3.2 Changes in oxygen and pH

Changes in dissolved O differed among taxa, and between light and dark incubations. In the
seawater controls O, changed by < 0.01 mmol h™* in both light and dark incubations, showing
that the contribution of any organisms in the seawater itself to O production and dark
respiration was minimal. No corrections were therefore applied. In the light incubations O
productivity fluxes were positive for all taxa (Fig. 3, top panel). The highest light flux of O>
of ~380 mmol m2 day * was measured for Galaxaura in October 2017 (Fig. 3, top). Corals
generally produced 100 to 260 mmol O2 m~2 day ! in the light, except Heliopora, which had
a flux of 50 to 80 mmol O, m~2 day*. All taxa consumed O during the dark incubations
when changes in O are due to dark respiration, with mean fluxes of —15 to —190 mmol O>
m~2 day ! (Fig. 3, middle). All algae were net autotrophic and produced 6 to 111 mmol O
m~2 day* with the highest net O flux measured for Galaxaura and turf at 111 and 36 mmol
02 m2 day* respectively (Fig. 3, bottom). In contrast, around half of the corals were net
consumers of O, and average net fluxes spanned a wide range from —42 to 47 mmol O, m2

day 2.

In the light incubations, pH generally increased by 0.03 to 0.25 h™* for all taxa, except for
Halimeda in April 2016 and October 2017, which showed no change or a very small increase
(Fig. 4, top panel). In dark incubations, mean pH decreased for all taxa by 0.02 to 0.21 h™*

indicative of a net increase in CO> through dark respiration (Fig. 4, middle). Non-calcifying
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algae (Sargassum, Caulerpa and turf) raised net pH by 0.02 to 0.05 h™* (assuming equal
periods of light and darkness) (Fig. 4, bottom panel). The net change in pH was generally
negative for corals and calcifying algae (—0.01 to —0.08 h™1), except for the coral Goniastrea
in April and October 2016 (0.01 h™!) and the calcifying alga Galaxaura (0.03 h™%; Fig. 3,

bottom).

Net changes in pH are largely driven by metabolic uptake and release of CO,. We found
positive relationships between changes in pH and net production or consumption of O, except
in seawater controls where changes in Oz and pH were minor (Fig. 5). The relationships for
algae, calcifying algae and coral were all significant, but had relatively low adjusted r? values
of 0.59, 0.46 and 0.19 respectively, suggesting significant variability among species and

individuals within each of these groups.

3.3 Calcification Rates

Corals, Halimeda and Galaxaura had positive calcification rates in light ranging from 4.2 to
18.4 g CaCO3z m2 d* (Fig. 6, top panel). In the dark, calcifying rates were smaller and just
under half of the rates were negative suggesting dissolution of CaCO3 (Fig. 6, middle panel).
The resulting net calcification rates (based on equal periods of light and dark - monthly
average sunrise and sunset at Browse Island of 0552 and 1739 for April, and 0519 and 1754
for October; WillyWeather, 2022) were all positive and ranged from 1.9 t0 9.9 g CaCOs m™
d! (Fig. 6, bottom). Rates of calcification were strongly linearly correlated to net O,

production and were significantly higher in light than in darkness for both corals and algae

(Fig. 7).

3.4 Contributions to community production

13
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In intertidal habitats (lagoon and high reef platform) around Browse Island, the estimated
relative contributions of coral (8 % cover) and Halimeda (7 % cover) to the reef production
of CaCO3 were similar, around 600 to 840 g m2 year * (Fig. 8, top panel). The low reef
platform had very low coral cover of < 3% (Fig. 8, middle), which therefore made a smaller
contribution to calcification of ~240 g CaCOs m2 year* in this habitat (Fig. 8, top). In
contrast, calcification on the subtidal reef slope was predominantly from corals (19 % cover),
which produced ~1540 g CaCO3 m2 year *, around twice the amount compared to Halimeda
(7 % cover). Galaxaura, which had high measured rates of productivity and calcification, was
extremely rare (0.02 % total cover found only in October 2017; Olsen et al., 2017) and thus
its contribution to community calcification and productivity were negligible. Turf was
responsible for the majority of the O production in all habitats and produced an estimated 8
to 13 mmol O, m~2 d™* compared to < 2 for Halimeda mmol O, m™? d* and —4 to —1 mmol O

m~2 d™* for corals (Fig. 8, second panel from top).

4 Discussion

Mesocosm experiments have shown that reef-building (hermatypic) corals tend to reduce pH
and consume Oz (e.g. (Gattuso et al. 2015; Smith et al. 2013)), whereas calcifying macroalgae
increase pH and O2 during daytime (Borowitzka and Larkum 1987; Smith et al. 2013). Both
corals and calcifying macroalgae reduce pH and O concentrations due to respiration during
nighttime, but the rates of change differ among species (Smith et al. 2013). The organisms
investigated in the present study showed typical patterns of O production in daylight and
consumption in darkness to other similar island reef systems as a result of photosynthesis and
dark respiration, but the metabolic measurements showed clear differences among taxonomic
groups. Algae had higher positive net O, fluxes with rates of 18 to 350 pmol O, m™2 day %, of

which the red calcifying alga Galaxaura sp. had the highest rate of net productivity by far. For
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corals, the relatively high O increase measured in daylight was coupled with high rates of
respiration in darkness, creating a negligible or negative net O production for most species,
except Porites sp. in April 2016 and Seriatopora sp. in October 2016 and 2017 which were net
positive. Although autotrophic, our data indicates that the majority of the corals we studied
utilise heterotrophic supply through feeding to help sustain growth in addition to
photosynthesis by zooxanthellae (Houlbreque and Ferrier-Pages, 2009). These patterns are
generally in agreement with those reported elsewhere. For example, fleshy and calcifying algae
showed net diel Oz production, whereas corals generally consumed O, i.e. were net
heterotrophic, on islands in the South Pacific (Porites sp.) and the Caribbean (Madracis sp.)

(Smith et al., 2013).

Concurrent with changes in Oz were changes in seawater pH, where pH increased in daylight
(except for Halimeda in April 2016 where no change was measured) and decreased in darkness.
The effects of metabolic activity on bulk pH (uptake and release of CO2 through photosynthesis
and dark respiration) cannot be directly separated from that of calcification, which is associated
with the release of H* ions thereby decreasing pH (Jokiel, 2011). However, differences were
observed in the net pH change in incubations between calcifiers and non-calcifiers. The net
effect of non-calcifiers on seawater pH was positive while the majority of calcifiers caused net
pH to decline. In the present study, Halimeda (April 2016) and Goniastrea (April and October
2016) caused relatively minor increases in pH, whereas the calcifying alga Galaxaura elevated
pH by, on average, 0.03 units, comparable to the net effect of non-calcifiers. This is not
surprising given the high rate of O> production measured for Galaxaura, which is associated
with sufficient levels of CO. fixation to compensate for the reduction in pH associated with
calcification in this species. A strong link was observed between metabolism and pH in all taxa,
demonstrated as linear relationships between changes in pH and O during the incubations.
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Previous research by Smith et al. (2013) identified two broad patterns: metabolic changes in
O2 in non-calcifiers (fleshy and turf algae) linked to large changes in pH (steep slopes), and
metabolic changes in O in calcifying organisms (Porites sp. Madracis sp. and Halimeda sp.)
producing little or no change in pH (shallow slopes). This is contrary to the present study’s
observations where pH and O relationship gradients were similar for calcifiers and non-
calcifiers. Non-calcifying organisms were found to consistently have a net positive effect on
both pH and O. Change in pH for the same net change in O, was elevated for non-calcifiers

compared to calcifiers.

Production and accumulation of reef framework carbonate is controlled by the relative rates of,
and the interactions between, a range of ecologically, physically and chemically driven
production and erosion processes (Perry et al., 2008; Montaggioni and Braithwaite, 2009), with
the relative importance of different taxa for CaCOs production differing among reefs and
among habitats within reefs. Coral growth can be measured in several ways: linear extension
rate, global skeletal growth and calcification rate (measured using the alkalinity technique or
by “Ca incorporation) (Houlbreque and Ferrier-Pages, 2009). Methods to calculate
calcification can vary in accuracy. Overestimates of calcification rates can result from
calculations based on changes in alkalinity, while those relying on CaCOs content and growth
measurements (either through staining or tagging segments), may produce minimum estimates
as loss of new tissue is not accounted for (Hart and Kench, 2007; Houlbreque and Ferrier-
Pages, 2009). The alkalinity method employed in the present study was the best possible option
when working in a remote location where actual growth rates cannot be easily assessed, or use
of radioisotopes was limited. Rates of net community calcification for reef flats worldwide
range from 7.3 to 90 mol (730 to 9000 g) CaCO3s m2 year * with an average of 47 mol (4700

g) CaCOs m2 year ! (Atkinson, 2011). The patterns found in the present study — higher
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calcification rates in daylight compared to in darkness for all corals and calcifying algae — are
typical. However, the coral CaCOs production rates per reef area (7 to 8% cover low reef
platform, 19% reef slope) measured here (240 g m~2 year * for low reef platform, 610 to 756 g
m~2 year ! in the other intertidal habitats, and 1536 g m2 year ! on the reef slope) were
somewhat lower than values reported elsewhere. In 2016, the dark rates of calcification in
corals were less than 50% of the rates in light with some (Porites and Heliopora) negative.
Dark rates of calcification in 2017 were negative or near zero for all species except Porites,
Pocillopora and Seriatopora. Houlbreque et al. (2004) showed that coral feeding enhances dark
calcification rates in scleractinian corals, but incubations in our study were done in absence of
supplemental feeding. The trend observed here may be due to some dissolution of CaCOs3 due
to the reduced pH during dark incubations or could be an artefact of the experimental
conditions. This result should therefore be taken with some caution, in particular for Porites in
October 2016, which saw the largest decrease (Fig. 5, middle panel). However, the resulting
strong relationship between net carbonate production and net carbonate consumption is

consistent with previous studies both in situ and in mesocosms (Albright et al., 2013).

Corals are typically the primary framework-producing components on a tropical reef and
dominate carbonate production per unit area (Vecsei, 2004), however additional CaCOs3 is
produced by calcareous crustose coralline algae (CCA) and calcareous algae of the genus
Halimeda, (e.g. Payri, 1988). Sprawling lithophytic species of Halimeda, like the majority of
the Halimeda around Browse Island, tend to be fast growing and have high calcification rates
(Hart and Kench, 2007). Rates of calcification per area of 100% Halimeda cover have been
estimated to 400 to 1667 g CaCO3; m2 year * (in Hart and Kench, 2007 Suppl info). In other
locations, Halimeda has been estimated to contribute around 1100 to 2400 g CaCO3 m 2 year*

to benthic carbonate production (Drew, 1983; Freile et al., 1995; Hudson, 1985; Kangwe et al.,
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2012; Payri, 1988; Rees et al., 2007), which is higher than the 600 to 840 g CaCOsm 2 year *
estimated for Halimeda opuntia in the intertidal habitats in the present study. These rates
depend both on the intrinsic calcification rates and on the abundance or cover of algae (6.1 to

8.7% cover on Browse, which corresponds to ~150 to 250 g dw m).

Nutrient capacity is one important driver of productivity in many reef ecosystems. The rate at
which nutrients are recycled between the constituents of the system (the ambient nutrient
availability, and the nutrients stored within plant and animal biomass) depends on input from
a variety of sources (e.g., associated with seasonal rains or upwelling) (DeAngelis, 1992;
Hatcher, 1990). Coral reefs, typically have low ambient nutrient availability and receive little
sustained exogenous nutrient input (Hatcher, 1990; Szmant, 2002), thus the high rates of
production found within these ecosystems are largely attributed to the nutrients stored and
cycled by living biomass (Pomeroy, 1974; DeAngelis et al., 1989; Sorokin, 1995). Fishes
typically make up a substantial component of living biomass on coral reefs and represent an
important reservoir of nutrients in these ecosystems (Allgeier et al., 2014). Contrary to our
expectations given its remote location in an area of apparently low anthropogenic impacts, the
reef platform around Browse Island was depauperate with a conspicuous lack of diversity in
key groups including macroalgae, macroinvertebrates and teleost browsers (Bessey et al.,
2020). McLaughlin et al. (2019) found surface water standing stock nutrient concentrations
low along Kimberley shelf. Conditions at Browse Island were similar with low water column
nutrients for nitrate, ammonia and phosphate during all trips. Understanding how changes in
animal populations alter nutrient dynamics on large ecological scales is a relatively recent
endeavour (Doughty et al., 2015). Allgeier et al. (2016) showed that targeted fishing of higher
trophic levels reduces the capacity of coral reef fish communities to store and recycle nutrients

by nearly half. Fish-mediated nutrients enhance coral growth (Meyer et al., 1983) and primary
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production (Allgeier et al., 2013), and may regulate nutrient ratios at the ecosystem scale

(Allgeier et al., 2014).

The Kimberley region-wide averages of coral cover and macroalgal cover are 23.8% and 7.1%
(Richards et al., 2015) respectively. However, this relationship at Browse Island is reversed,
with macroalgae more dominant at 28% total cover to that of coral at 9% total cover. On the
Browse Island reef platform, the same pattern is observed where averages were 5 to 8% for
coral and 32% for macroalgae, differing from those of the regional averages of 14.4% and
15.5% of coral and macroalgae respectively (Richards et al., 2015). While the estimates
provided here approximate the relative contributions of Halimeda and coral to CaCOs
production, they do not add up to a whole system budget. There are other organisms likely to
contribute significantly. For example, the present study did not measure metabolic or
calcification rates of encrusting coralline algae, which, although making up a modest 1.0 to
3.0% of the benthic cover in the lagoon and reef platform habitats at Browse Island, become
more prominent at 11.8 to 14.1% on the reef crest and slope (Olsen, unpublished data). To
calculate the true CaCOs production per area of reef, the calcification rate would need to be
multiplied by the benthic cover of coralline algae and the square of the benthic rugosity (Eakin,
1996). Using typical values for rugosity from Eakin (1996) of 1 to 1.4 for the lagoon and reef
platform and 1.7-2 for the reef crest and slope, and assuming a typical calcification rate of
1500 to 2500 g m™2 year* (for 100% flat-surface cover) (Hart and Kench, 2007), the
contribution of encrusting coralline algae to calcification in the lagoon and reef platform would
be minor at 70 to 134 g CaCOs m2 year . However, they could produce a significant amount
of 980 to 1360 g CaCOs m 2 year * on the reef crest and slope, which is somewhere in between
the production rates estimated for Halimeda and corals. Encrusting coralline algae may

therefore contribute significantly to the CaCOz budget at Browse Island, at least in deeper
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habitats. These values are similar to those measured elsewhere, for example 870 to 3770 ¢

CaCO3; m2 year ! at Uva reef in the eastern Pacific (Eakin, 1996).

Metabolic rates of primary producers are clearly influenced by a multitude of factors including
hydrodynamics, irradiance, and nutrient availability (Smith et al., 2013). We were able to detect
considerable diurnal changes in water chemistry due to metabolic rates, since our experiments
were conducted in small enclosed mesocosms. The effect of metabolism on water chemistry is
expected to dissipate downstream in a more turbulent or dynamic environment (Anthony et al.
2011). However, coral and algae metabolic rates and resultant flux from diffusive boundary
layer also increases with flow rates (Carpenter et al. 1991; Lesser et al. 1994; Bruno and
Edmunds 1998; Mass et al. 2010). Because our experiments were conducted in near no-flow
chambers (mesocosm water was replenished with fresh seawater in small amounts during
sample extraction), our measurements are conservative values and likely represent the lower
range of potential effects that these reef organisms have on surrounding water chemistry,
however where residence times can be extended, particularly when trapping of water on the
reef at low tides occurs, our results are likely reflective of how these benthic organisms affect

water chemistry in the lagoonal habitats of Browse Island.

5 Conclusions

This study investigated the metabolism of coral and algae on the reef of remote Browse
Island, found on the mid-shelf region of the Kimberley in Western Australia. Due to its
remoteness, Browse Island presented a unique opportunity to observe these organisms in a
pristine habitat where direct anthropogenic pressures are minimal. Browse Island is the only
emergent mid-shelf reef in the Kimberley bioregion having semidiurnal tides reaching a

maximum range of 5 m (Olsen et al., 2017), half the magnitude of tides experienced by reefs
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closer to the coast (McLaughlin et al., 2019). Its benthic structure is very different from both
Kimberley inner (e.g. Montgomery Reef, Adele and Cassini Islands) and outer (e.g. Ashmore
Reef and Rowley Shoals) shelf reefs. The relative contributions of algae and corals to reef
productivity are likely to differ across the Kimberley shelf, with corals becoming more
important in offshore waters and algal calcifiers being important on the mid-shelf. Estimated
aerial production rates did not take into account the relief (differences in height from place to
place on the reef surface) of the substrate. The reef platform surrounding Browse Island has
relatively low surface relief, whereas the reef slope and crest have high rugosity, which
means production rates in the latter environments may be underestimated. Despite these

limitations, the rates estimated in this study are similar to those measured elsewhere.

The higher cover of Halimeda and the low coral cover at Browse Island compared to other
reefs in the region mean that corals and Halimeda contribute equally to productivity rates of
CaCOs on the Browse Island reef flat, however, their relative contributions to the reef
framework and sedimentary budget of the reef is unknown. To gain an understanding of the
relationships between carbonate production and sinks on the reef, further study into the types
and amounts of CaCO3 material found in each reef sink is necessary. The Kimberley coastal
shelf, which is characterised by coral reef environments with clear, low nutrient waters and
low productivity, has largely escaped land-based anthropogenic impacts, but has been
negatively affected by climate-driven coral bleaching and mortality, for example from heat
waves at Scott Reef in 1998 and 2016 (Smith et al., 2008, Gilmour et al., 2013 and Hughes et

al., 2017) and Ashmore Reef in 2003 and 2010 (Ceccarelli et al., 2011 and Heyward, 2011).

There is lack of sufficient observations of pCO2, nutrients and research on the upper ocean

carbon cycle from the Indian Ocean (Sreeush et al., 2020), and which are critical to modelling
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of ocean acidification in the region (Panchang and Ambokar, 2021). The uptake of carbon
dioxide by the ocean alters the composition of seawater chemistry with elevated partial
pressures of carbon dioxide (pCO2) causing seawater pH and the CaCOs3 saturation state to
decrease (Feely et al, 2004). Ocean acidification directly threatens crucial trophic levels of
the marine ecosystem. Baseline reef measurements in undisturbed areas like Browse Island
are important to understand exclusively climate-driven stressors in lieu of local
anthropogenic pressures normally associated with coastal tropical reefs. The effects of
temperature stressors on reef communities and their productivity remain to be investigated in
this region. Different components of the reef around Browse Island are likely to have
different vulnerabilities to warming and heat waves. Future environmental stressors leading
to changes in benthic community composition, structure and subsequent changes in reef
productivity and in rates of production of CaCOg, could have major implications for Browse

Island.
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549  Figure 1. The study site, Browse Island (diamond, bottom left map), is located just inside the
550  200-m isobath on the continental shelf. The small map (top left) shows the location of the island
551  relative to the Australian coastline with the 100, 200 and 400 m isobaths marked in gray. The

552  satellite image (right; © Google Earth 2018) shows the extent of the reef.
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Figure 2. Experimental setup of respirometry incubations for Browse Island coral and
macroalgae.
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Figure 3. Net changes in oxygen (means * se) in light (top) and dark (middle) incubations of
calcifying algae (stippled), macroalgae and turf (black), turf + substrate (diagonal stripes) and
coral (white) standardised by specimen surface area. The bottom panel shows the net daily
production of oxygen (means + se) assuming a 12-h photoperiod and stable rates of

photosynthesis and dark respiration over a 24-h period.
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563

564  Figure 4. Net changes in pH per hour for each 1.56-L incubation core (means + se) in light
565 (top) and dark (middle) incubations calcifying algae (stippled), macroalgae and turf (black),
566  turf + substrate (diagonal stripes) and coral (white). The bottom panel shows the net change in

567  pH per hour (means + se) assuming equal periods of light and darkness.
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Figure 5. Net change in pH versus O per 1.56-L incubation core assuming equal periods of
light and darkness. Linear relationships are fitted with 95% confidence intervals shown in gray.
For algae; net change in pH = 0.13 + 0.0016 x net change in O2 (ANOVA: F127=41.15, p
<0.001). For calcified algae; net change in pH = —0.04 + 0.0021 x net change in O2 (ANOVA:
F119=17.86, p <0.001). For corals; net change in pH = —0.02 + 0.00086 x net change in O2

(ANOVA: F1g, = 18.88, p <0.001).
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577

578  Figure 6. Calcification rates for corals (white) and calcifying algae (stippled) (means + se) in
579 light (top) and dark (middle). The bottom panel shows the daily net calcification rate (means

580  se) assuming a 12-h photoperiod.
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Figure 7. Relationship between net calcification rate and net productivity for calcifying algae
(top) and corals (bottom). Open circles indicate rates measured in light and closed circles rates
measured in dark. Linear fits are shown with 95% confidence intervals in gray. For calcified
algae; net calcification = 3.6 + 0.039 x net O, production (ANOVA: F13, = 67.0, p <0.001).
For corals; net calcification = 5.99 + 0.027 x net O production (ANOVA: F1126 = 82.2, p

<0.001).
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Figure 8. Map of the reef around Browse Island showing the major habitat types (bottom
panel). Reef surface percent cover of coral, Halimeda, turf and other categories in each habitat
(middle panel) based on drop-camera image analysis data from (Olsen et al. 2017). Net
calcification and net oxygen production by coral, Halimeda and turf per m2 of reef (top two
panels) scaled up by multiplying rates obtained from incubations of each taxon by the percent

cover in each habitat.

31



597 Tables

598 Table 1. Taxa measured in on-ship incubation experiments including the number of replicate
599  specimens measured (one specimen per incubation core). Some of the specimens were not
600 included in the final analysis due to sampling errors or due to Oz not increasing during both of
601 the light intervals or not decreasing during both of the dark intervals; the resulting number of

602  specimens used are shown in brackets.

Taxa Apr 2016 Oct 2016 Oct 2017
Algae Halimeda opuntia 6 (5) 6 6
Turf algae + substrate 6 (5) 6 6
Turf algae - - 6
Sargassum sp. 12 - -
Caulerpa sp. - 6 6
Galaxaura sp. - - 6 (5)
Coral Pocillopora sp. 6 6 6
Goniastrea sp. 6 (5) 6 6
Porites sp. 5 6 6
Heliopora sp. - 6 (5) 6
Acropora sp. - 5 6
Seriatopora sp. - 4 6
Seawater control - - 6
603
604
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614

Table 2. Ambient concentrations of parameters measured during incubations (means * se);
nutrients (NOs~+ NO2~ = nitrate + nitrite, NH4" = ammonium, PO4* = orthophosphate, Si =
silica) and oxygen (O>), total alkalinity (TAIk), Photosynthetically Active Radiation (PAR),
temperature (T) and salinity. Calculated carbonate system parameters (means * se); CO>
partial pressure (pCO.), concentrations of HCO3~, CO3%~ and dissolved inorganic carbon
(DIC), and the saturation state of aragonite (Q Aragonite). In April 2016, two replicate PAR
measurements were taken at 11:00, 12:00 and 13:00 h. In October 2016 and 2017, PAR was

measured every minute and values between 11:00 and 13:00 h averaged.

Apr 2016 Oct 2016 Oct 2017
Number of replicates (n) 8 10 12
NOs + NOz (umol L)  0.15+0.04 0.05+0.01 0.17£0.01
NHs" (umol L) 0.12£0.02 0.13+0.01 0.13+£0.01
POs* (umol L) 0.08 £0.01 0.07 £0.00 0.09 £0.00
Si (umol L) 2.74 £ 0.04 2.93+£0.04 2.30 £ 0.02
Oz (umol L) 19.3+0.19 20.8 £ 0.16 23.4+0.29
PAR 11-13 h (nE m2s) 1499.6 1587.1 1587.0
T (°C) 32.8+0.1 31.2+£0.1 28.3+0.1
Salinity (ppt) 34.8 34.5 34.2
TAIk (umol L) NA 2408 £ 5 2390 + 2
pH 8.17 £0.02 8.14 + 0.02 8.11+£0.01
Calculated carbonate system parameters
pCO; (uatm) NA 295 + 14 335+ 17
HCO3 (mmol kg ™) NA 1.61 +0.03 1.69 +0.02
CO3% (mmol kg ™) NA 0.30 £ 0.006 0.26 £ 0.006
DIC (mmol kg™?) NA 1.93 +0.02 1.97 +0.02
Q Aragonite NA 5.02+0.11 4.27+0.10
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