Masked diversity and contrasting soil processes in tropical seagrass meadows: the control of environmental settings

Gabriel Nuto Nóbrega¹; Xosé L. Otero²; Danilo Jefferson Romero³; Hermano Melo Queiroz³; Daniel Gorman⁴; Margareth da Silva Copertino⁵; Marisa de Cássia Piccolo⁶; Tiago Osório Ferreira³, *

¹ Graduate Program in Geoscience (Geochemistry), Department of Geochemistry, Federal Fluminense University, Outeiro São João Batista, s/n, Niterói, RJ, Brazil. 24.020-141
² CRETUS Institute, Departamento Edafología e Química Agrícola, Facultade de Bioloxía, Universidade de Santiago de Compostela, Rúa Lope G Marzoa, s/n. Campus sur. 15782 Santiago de Compostela, Spain;
³ Department of Soil Science, College of Agriculture Luiz de Queiroz, University of São Paulo, ESALQ/USP, Av. Pádua Dias 11, 13.418-260, Piracicaba, SP, Brazil;
⁴ Commonwealth Scientific and Industrial Research Organization (CSIRO), Oceans and Atmosphere, Crawley, WA, Australia.
⁵ Institute of Oceanography, Federal University of Rio Grande (FURG), Av. Itália Km 08, Carreiros, Rio Grande – RS, CEP: 96.201-900, Brazil;
⁶ Laboratory of Nutrient Cycling, Center of Nuclear Energy in Agriculture, University of São Paulo, Av. Centenário 303, 13.400.970, Piracicaba, São Paulo, Brazil

Correspondence to: Tiago O. Ferreira (toferreira@usp.br)

Supplementary Material
Fig. S1 Different plant densities and biomass of studied seagrasses. In detail, the high density and biomass in the seagrass from the NE coast (a-b), compared to the low density and biomass of the SE coast (c-d), and low biomass of the S coast (e-f).
Fig. S2 Overview of the soil sampler (A) with the tube attached (B). Remote hammering action (C and D) to insert the tube into the soil, a soil core (E) and seagrass soil profile (F).
Fig. S3 Correlation of the studied variables for the studied soils. (a) Cation exchange capacity (CEC) and total organic carbon (TOC); (b) TOC and exchangeable Ca$^{2+}$ + Mg$^{2+}$; (c) Degree of pyritization (DOP) and pH$_{\text{oxidation}}$; (d) TOC and DOP.