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Abstract.
The relation between drought severity -as-expressed-through-widelyused-droughtindiees;-and drought impacts is complex

freuttand so

far relatively unexplored in the African continent. This study assesses the relation between reported drought impacts, drought
indices, water scarcity, and aridity across several counties in Kenya. The monthly bulletins of the National Drought Manage-
ment Authority in Kenya have-been-used-to-gatherprovided drought impact data. A Random Forest (RF) model was used to
explore which set of drought indices (Standardized Precipitation Index, Standardized Precipitation Evapotranspiration Index,
Standardized Soil Moisture Index and Standardized Streamflow Index) best explains drought impacts on +pasture, livestock

deaths, milk production, crop losses, food insecurity, trekking distance for water, and malnutrition. The findings of this study

suggest a relation between drought severity and the frequency of drought impacts, whereby the latter also showed a positive

relation with aridity;whilst-water-seareity-did-not-, A relation between water scarcity and aridity was not found. The RF model
revealed that every region, aggregated by aridity, had their own set of predictors for every impact category. Longer timescales

> 12 months) and the Standardized Streamflow Index were mostly present, indicating the importance of hydrological drought

to predict drought impact occurrences.

—~While the findings strongly depend on the availability of drought impact
data and the socio-economic circumstances within a region, this study highlights the potential of linking drought indices with
text-based impact reports. In doing so, however, spatial differences in aridity and water scarcity conditions have to be taken

into account.
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1 Introduction

Drought events are among the world’s most impaet-fut-impactfull disasters (Stahl et al., 2016) and are receiving increasing
attention across different scientific disciplines because of their complex links to both natural and socio-economic processes
(Van Dijk et al., 2013; Van Loon et al., 2016a, b). Drought can be characterized as a slow-onset event whose impacts build up
over time and extend spatially in relation to a range of contextual factors (Heinrich and Bailey, 2020). For instance, differences
in societal and political characteristics can lead to a different range and magnitudes of impacts even though the intensity and
duration of drought are similar (Savelli et al., 2022). At the same time, catchment characteristics also strongly influence the
severity and propagation of drought events (Van Loon, 2015).

Although the multifaceted nature of drought drivers, drought detection and quantification usually rely primarily on the

analysis of climatic and hydrological variables (Kchouk et al., 2022; Mishra and Singh, 2010; Yihdego et al., 2019). By expressin

the anomaly with respect to the mean and variability of the local climate, drought characteristics can be compared across
regions with different climate conditions. In addition, accumulation periods can be used to account for time lags and memory.
encountered in hydrological stores (Sutanto and Van Lanen, 2022). The most simple drought indices only use meteorological
data while others include soil moisture or streamflow data (Yihdego et al., 2019). Meteorological and/or soil moisture (agricultural)
drought are often expressed by the Standardized Precipitation Index (SP1), Standardized Precipitation Evapotranspiration Index
SPEI) and the Palmer Drought Severity Index (PDSI) (e.g., Baig et al. 2022; Kamruzzaman et al. 2022; Zhou et al, 2022
while the Standardized Streamflow Index (SSI), the Standardized Runoff Index and the Standardized Groundwater level Index
(SGI)_can be applied for hydrological drought (Van Loon, 2015). However, the analysis of hydro-meteorological variables
alone may not be sufficient for the identification of the actual impacts of drought as the listed drought indices do not take
into account the vulnerability of the system under analysis (Bachmair et al., 2015). To better evaluate and communicate about
drought risk, it is necessary to establish reliable links between drought indices and impacts. |

Due to the projected increase in drought frequencies(Change; 2014);each-suecessive-drought-eventeanresult-frequency in

some regions around the world (Seneviratne et al., 2021), the probability of successive drought events might rise, resulting in
increased destabilization, triggering-insecurity and resource-based eenfliets-conflict in contexts with high vulnerabilities (Peng

et al., 2020). Monitoring and early warning (M&EW) is one important measure to enhance drought resilience. The goal of
M&EW is to provide reliable and timely information on drought conditions (using a wide range of drought indices) to enable
local society to better prepare and act accordingly (Wilhite et al., 2007). However, there is a gap between forecasting a-an
extreme hydro-meteorological event and the understanding of its potential impacts, as recognized by the World Meteorolog-

ical Organization (WMO, 2015).
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The assessment and monitoring of drought impacts is complex given: (1) the great variety of drought impact categories;
(2) their possible propagation throughout the hydrological and social system; and (3) the difficulty of drought impact attribu-
tion. For Europe and the USA, drought impact databases have been developed, namely the European Drought Impact report
Inventorywjjl(EDC 2013) and the Drought Impact Reporter (NDMC, 2005 )respeetively—Some-studies-assessed-the-tink
QQWMMWWWMMWMWM
drought risk and vulnerability assessments which are useful for the development of drought monitoring and early warning
systems. These systems inform national and international organizations in providing timely and relevant assistance.

Several studies exist whereby drought impacts have been linked to drought indices. For instance, the qualitative dataset of
EDII has been used to assess the link between drought impacts and indices at continental (Blauhut et al., 2015), national (Stagge

etal., 2015), and regional scale (Bachmair et al., 2015, 2016, 2018). Fheresults-of- multiple-studies-suggest-thatlinking-drought
indieeswith-impaetsis-time;region;Linking indices to drought impacts has been done using several methods, such as logistic or

Gudmundsson et al., 2014; Parsons et al., 2019; O’Connor et al., 2022; Stag

»correlation analysis (Bachmair et al., 2016; Ma et al., 2020; Wang et al,, 2020) and an ensemble regression tree approach (random
forest) (Bachmair et al., 2016, 2017; Wang et al., 2020). A multitude of drought indices, mostly SPI and SPEI with accumulation
periods ranging between 1 and se ifie (Bachmaire ; : TMa-e ; :
Mmmwwmmwmmmmwm&wwmﬁ
applicable for the research area, for example wildfire activity (Gudmundsson et al., 2014) and agriculture (Parsons et al., 2019)
- However, according to our knowledge, there are no similar studies with a focus on the Horn of Africawhere-droughtimpaet
. Linking drought impacts with indices in that region

would generate new insights, because other types of drought impact categories are more applicable such as food insecurit
livestock hunger/death/migration, diseases, and conflict (Quandt, 2021

linear regression (Bachmair et al., 2018; Blauhut et al., 2015;

Linking drought impacts with drought indices is regarded as difficult as there is often no strong intuitive cut-off within impact
categories between non-drought and drought conditions (Hall and Leng, 2019). For instance, water scarcity conditions can be

the result of anthropogenic actions and can lead to the same impacts experienced as during drought conditions (Van Loon and
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Van Lanen, 2013). Water scarcity is a frequent phenomenon within (semi)-arid regions (Maliva and Missimer, 2012) and it
occurs when water demand (both societal and ecological water demand) exceeds water supply (Kimwatu et al., 2021). It often
leads to long-term unsustainable use of water resources (Van Loon and Van Lanen, 2013). Whereas aridity, based on the ratio
of long-term annual precipitation and potential evapotranspiration rates (UNESCO, 1979), is regarded as a relatively constant
value, water scarcity is dynamic in time and related to both decreases in water availability {dreught)-and increases in water
demand. The simultaneous presence of both water scarcity (partly driven by anthropogenic causes) and meteorological drought
in an arid region can lead to a difficult attribution of the impacts experienced. However, separation of the causes of impacts is
needed to generate reliable information to stimulate early action in the affected sectors during drought events.

In this study, we focus on Kenyabecause-of-the-presence-of-strong-gradients—, Strong gradients characterize the country
in precipitation, aridity, water yield (i.e., amount of precipitation minus total actual evapotranspiration), and water scarcity
(Mulwa et al., 2021; Wamucii et al., 2021), in combination with the availability of reported impacts of recent droughts. The
country has experienced several drought events in the recent past: for instance, 2008-2011 was classified as a prolonged
severe drought (Mutsotso et al., 2018) and the drought in 2016-2017 was considered a national disaster (Kew et al., 2021;
Ondiko and Karanja, 2021), with more than three million people under food insecurity (Thomas et al., 2020). The country
has also experienced a diverse range of drought impacts such as cattle mortality, wildlife death, famine, human losses, and
severe food shortages (Ondiko and Karanja, 2021). The presence of drought hazardhazards, drought impacts, water scarcity,
and aridity makes this country a suitable study area to analyse their relations. In this context, the following main research
question is formulated: What is the relation of drought impacts with drought indices and with water scarcity under different
arid-cirenmstancesaridity levels?

It is expected that drought indices

ight-events and impact occurrences vary
between climate zones. We hypothesize that drought impacts (and therefore the relationship between drought indices and

impacts) will differ across regions with different aridity characteristics in Kenya because of the distinct socio-economic settings,
possibly making arid areas more vulnerable than more humid areas (Maliva and Missimer, 2012). ft+is-alse-Furthermore, it is

expected that water scarcity will show a relation with aridity due to the presence of unreliable water conditions.

2 Data and methods
2.1 Study area

Kenya is situated in East-AfricaBast Africa. Its highest altitudes can be found in the central highlands (with the highest peak
of over 5000 m above sea level observed in Mt. Kenya forested water tower), and low-lying regions can be found in the East,
Northwest, and Northeast. The country mostly has an arid and semi-arid climate which comprises about 80% of the territory
and hosts about ene-gtarter-one-quarter of the population (FEWS NET, 2013) of approximately 53 million people (The World
Bank, 2020). Mean annual rainfall is less than 250 mm in the semi-arid and arid areas and more than 2.000 mm in the

mountainous areas. Long rains are eceurring-experienced from March to May (MAM) while the-short rains occur during-from
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October to December (OND) (Ayugi et al., 2020). The medium to high potential agricultural areas are in the highland areas in
the central and western parts of the country (sub-humid/humid zones) where the population density is six times the country’s
average. Farming is the primary livelihood (both subsistence as well as commercial) for more than 75% of the population. Less
than 4% are pastoralists who mainly live in the semi-arid and arid regions which are characterized by poorly distributed and
unreliable rainfall (FEWS NET, 2013).

For this study, six counties have been selected according to different aridity levels, livelihood zones, and available drought
impact information. Figure 1 presents the counties considered in this study (Fig-ta, 1a), the aridity (Fig.1b), and the livelihood
zones (Fig-te, 1c). Marsabit is an arid county (arid index 0.03-0.20) in the Northern pastoral zone while Baringo, Kitui and
Kwale are considered semi-arid (arid index 0.20-0.50). Baringo is located in the western part of Kenya and encompasses
mostly a high-petential-high-potential agricultural zone while Kitui and Kwale are both mostly marginal mixed farming zones.
Nyeri is situated in the central highlands and encompasses mostly a high-petential-high-potential agricultural zone. However;
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Figure 1. Study area and its main characteristics. a) Counties considered in this study, b) distribution of aridity, and c) distribution of

livelihood zones.
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iThis study specifically focuses on one district in the Nyeri county, namely

Kieniwhereby-the-maintiveliheed-, according to the availability of drought impact data provided by the National Drought

135 Management Authority (NDMA). From now on, with Nyeri, we only refer to the Kieni district. The main livelihood in Kieni

is connected to agropastoral activities (FEWS NET, 2013). Narok mostly consists of (agro)pastoral grounds. Both Nyeri and

Narok are regarded sub-humid zone regions (arid index 0.50-0.75).
2.2 Data

To study the linkage between drought impacts, drought indices, water scarcity, and aridity, several datasets were used. In this

140 study, we used re-analysisreanalysis data to analyse several hydro-meteorological variables (Section 2.2.1), national drought
bulletins for extracting-text-based drought impact data (Section 2.2.2), and a gridded water scarcity dataset from McNally et al.
(2019) (Section 2.2.3).

2.2.1 Hydro-meteorological and soil moisture datasets

Precipitation data
145 Precipitation data has-been-is retrieved from the Multi-Source Weighted-Ensemble Precipitation (MSWEP j-versiont-1v2)
(Beck et al., 2019). This is a global gridded precipitation (P) dataset that takes full advantage of the complementary nature
of the highest quality gauge-, satellite- and reanalysis-based P estimates, available as a function of timescale and location,
by optimally combining them {Beek-etal-26+7a)Beck et al., 2019). MSWEP covers the period +979—present-1979-2020 at 3
hourly temporal and 0.1 degree spatial resolution. This dataset was-is chosen for this analysis based on its spatial and temporal
150 resolution, good performance in capturing spatial and temporal variation of drought conditions (Xu et al., 2019) and also for
Soil moisture and Potential Evapotranspiration data
The Global Land Evaporation Amsterdam Model (GLEAM) version 3.5a {v3-5a)-consists of a set of algorithms dedicated
to the estimation of land surface evaporation (also referred to as evapotranspiration) and root zone soil moisture from satellite

155 and reanalysis data at the global scale and 0.25 degree spatial resolution (Martens et al., 2017; Miralles et al., 2011). The

A A D A

model uses the 1a

soth-moisture(v3:3);-and-MSWEP dataset (Beck et al., 2017a), satellite-observed soil moisture, reanalyis air temperature and

radiation, and Vegetation optical depth (VOD) (Liu et al,, 2011) to produce terrestrial evaporation and root-zone soil moisture

(Martens et al., 2017). The modetuses: GLEAM model applies the Priestley and Taylor egtation(PT) equation (Priestley and Taylor, 1972)
160 to calculate the Potential Evapotranspiration (PET) based on observations of ERAS-European Centre for Medium-Range

Weather Forecasts (ECMWF), ERA-Interim surface net radiation and near surface air temperature (Dee et al., 2011). GLEAM

datasets have been used in multiple hydro-meteorological applications and recent drought conditions studies in the Horn of

Africa ., Javadinejad et al. 2019; Nicolai-Shaw et al. 2017;

). For this study, the GLEAM potential evaporation (PET) and root zone soil moisture were-used-(see-http://www-gleam-et)
165 data (see http://www.gleam.eu) is used for the period 2010-2020.
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Streamflow data

Streamflow data has-been-is_retrieved from the Global Flood Awareness System (GEOFASGLOFAS) which consists of
global gridded reanalysis river discharge data, with a horizontal resolution of 0.1 degree at a daily time step and time period of
1979—present (Harrigan et al., 2020). It combines surface-and-sub-surfacerunoff-from-the- HFESSEL-the land surface model

runoff component of
the ECMWEF ERAS5 global reanalysis (Balsamo et al., 2009; Hersbach et al., 2020) with a hydrological rainfall-runoff channel
g an g D e B o q

routing model

170

—~(Van Der Knijff et al., 2010; Hirpa et al., 2018) (see http:
/[IWww. globalﬂoods eu/). The GLoFAS dataset was chosen because of limited river discharge observational data in the stud

175 area.
2.2.2 FheImpact data from the National Drought Management Authority (NDMA)

The monthly wri

m-county early warning bulletins of
the National Drought Management Authorlty (NDMA) of Kenya were used to retrieve drought impact data. The NDMA has

offices in the 23 Arid and Semi-Arid Lands (ASALs) of Kenya which are considered vulnerable to drought. The Authority
180 performs sentinel surveillance each month based on rainfall ameuntsestimates from the Tropical Application of Meteorology
and water status. In-addition;—foed-Food security threats are assessed on (1) Availability aspects: cropping area and yield
(maize, beans, sorghum etc.), animal body condition, milk production, livestock death, and forage condition; (2) Access fac-
tors: market access and performance, food availability in the household and market. This data is fed into a web-based software

185 created by the Kenya’s Drought Early Warning System and sent directly to the county director. The director analyzes the

data against the three-monthly Vegetation Condition Index (VEDh-(previded-to-them-in-the-form-ofcharts-and-graphs)-where
after-he-compttes-the-Food-Consumption-index-and-VCI-3 month) provided at county level and on a monthly basis. The
VClis obtained from an advanced filtering method for Moderate Resolution Imaging Spectroradiometer (MODIS) normalized
difference vegetation index (NDVI) at pixel level developed and implemented by the University of Natural Resources and
190  Life Sciences (BOKU) (Klisch and Atzberger, 2016). The MODIS NDVI data undergoes offline smoothening based on the
Whittaker smoother (Atzberger and Eilers, 2011) to daily NDVI values, and near real time filtering based on available observations

Table 1. Falkenmark index for the water scarcity level.

Category m?/year /capita
heightNo stress >1700
Stress 1000-1700
Scarcity 500-1000
Absolute scarcity <500
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within the past 175 days (Atzberger et al., 2014). In addition, the director calculates the percentage of children under five years
with malnutrition using the index-ef-malnutrition-(using-the-mid-upper-arm-cireumferenee)—Mid-Upper-Arm Circumference
MUAC) color codes of the United Nations Children’s Fund (UNICEF) against the long term average. Lastly, the Food
Consumption Score (FCS) is computed based on food frequency and diversity based on a seven-day recall of food consumed
at the household level, taking into account the relative nutrition importance of different food groups (WEP, 2008). A poor FCS.
means a lack of vegetable consumption every day and low consumption of protein rich food such as dairy and meat.

2.2.3 Water scarcity

This study have-has utilized water scarcity (WS) data from McNally et al. (2019);-. The data is a monthly water scarcity dataset
with a spatial resolution of 0.1 degree for Africa between-from March 2018 and-to the present. The water scarcity dataset is
based on hydrological data from the Famine Early Warning System Network (FEWS NET) Land Data Assimilation System
(FLDAS) and gridded population data from WorldPop (2015). The FLDAS’s Noah 3.6 land surface model is derived from

the Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) rainfall and NASA’s Modern-Era Retrospective

analysis for Research and Applications (MERRA-2) meteorological forcing. The different classes of water scarcity are defined
by the Falkenmark index (Falkenmark et al., 1989). This index categorises the amount of renewable freshwater available for

each person per year, as shown in Table 1. The water scarcity dataset of McNally et al. (2019) provides monthly water scarcity
data despite the yearly values of the Falkenmark index. HowevetFor this, McNally et al. (2019) used the yearly values of the
Falkenmark index to classify the water scarcity on a monthly basis by using a 12-month running total of the streamflow data.
The water scarcity dataset have-been-was aggregated for the whole of Kenya whereafter monthly average values per county
have been calculated and classified by the Falkenmark index. More information about the water scarcity dataset can be found

in Appendix A.
2.3 Methods
2.3.1 Drought indices

There are several widely-used standardized drought indices to characterize meteorological, hydrological and soil moisture
drought. The Standardized Precipitation Index (SPI), devised by McKee et al. (1993), allows quantification of precipitation
deficits/ surpluses on a range of different accumulation periods. The SPI was-is calculated by summing daily MSWEP precip-
itation over n months (termed accumulation periods) obtaining a monthly temporal resolution. Monthly precipitation values

were-are then ranked and their percentiles calculated. The number of zeros was-is taken into consideration following recom-

mendations from Stagge et al. (2015). Thereafter, the values werefitte
the-are standardized to a normal distribution with values between —3 and 33 by ranking, so without fitting a parametric
This is justifiable in our case because the distribution is

statistical distribution (as tested by Stagge et al. 2015, and others).

already approximately normal. When we compared the SPI calculated with a statistical distribution and SPI with rankin

the results were similar, Finally, the gridded SPI values were-are spatially aggregated to county resolution by averaging the




SPI values of all grid eelt-cells per county, to match the spatial resolution of the recorded impacts. Negative values of the
225  drought indices indicate dryer than average conditions while positive values indicate wetter than average conditions. An area
is considered in drought when the drought index is below 0. A similar procedure was-is used in the calculation of the indices
mentioned below.
The Standardized Precipitation Evapotranspiration Index (SPEI) is similar to SPI but-alse-incerporates—temperature-by
230 instead of precipitation it uses the difference between precipitation and potential evapotranspiration as input (Begueria et al., 2014)
. Thus, it provides a water balance and does not have the zero precipitation problems encountered by SPI. SPEI incorporates

the effects of potential evapotranspiration, which depends strongly on the temperature. The Standardized Soil Moisture Index
(SSMI) is based on mean monthly GLEAM reetzonre-100t-zone soil moisture content. Finally, the Standardized Streamflow

Index (SSI) is based on mean monthly GIoFAS discharge values (Nalbantis, 2008). A mask svas-is created with mean monthly

235 discharge values above 1 m3/s. This mask was-is then used for the calculation of the SSI. SSI and SSMI are often used to take

into account drought propagation through the hydrological cycle and are therefore able to better represent catchment memory
compared to SPI and SPEI

All the four drought indices (SPI, SPEI, SSMI and SSI) were-are calculated on a monthly timescale at the original grid scale

with an accumulation period of 1, 3, 6, 12 and 24 months. The drought indices wete-are calculated for the period 1980-2020.

240 However, for investigating drought indices-impact relationships, we used-use drought indices between 2644—2620July 2013

and 2020, in accordance with the availability of drought impact data. In this study, SPI and SPEI represents meteorological

drought, as they are based on precipitation and evapotranspiration anomalies. SSMI represents soil moisture drought, while SSI
represents hydrological drought, as they are based on soil moisture and streamflow anomalies respectively (Yihdego et al., 2019
. We also used SPI and SPEI with longer accumulation periods as a proxy for soil moisture and hydrological drought (Dai et al., 2020; Senev

~

245
2.3.2 Drought impact data

This research gathered drought impact data from the National Drought Management Authority (NDMA) for the abeve-specified
above-specified counties in Kenya, between20+4-and-2020-from July 2013 to December 2020 (https://www.ndma.go.ke/). The
NDMA was established by the Kenyan government in 2016 with the aim to set up and operate early warning drought systems
250 and to develop drought preparedness strategies and contingency plans (Barrett et al., 2020). Their website provides monthly
county early warning bulletins assessing food security in 23 regions using socio-economic and biophysical factors. These text-
based impact reports provide the input for the impact categories considered in this study. The impact categories are based on

the available information from the NDMA and can therefore be regarded as categories of socio-economic relevance for Kenya.

The heading of the early warning bulletins provides information on the drought phase classification, according to the
255 following levels: 'normal’, ’alert’, alarm’, ’emergency’ or ‘recovery’. This classification is based on biophysical variables

such as SPI and VCI, and socio-economic indicators of food security (Mwangi et al., 2022). Only the bulletins mentionin

the phases ’alert’, ’alarm’ or ’emergency’ were considered for this analysis. Furthermore, the early warning bulletins inform
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about the severity of drought by categorizing the state of the monitored biophysical and socio-economic indicators. This
categorization is in general related to the following five levels: very good, normal, moderate, severe, or extreme conditions.
We converted this information into binary data by assigning a value of 0 to very good and normal conditions and a value of 1
to moderate, severe, and extreme conditions. This study defines a drought impact as a negative or adverse effect on economic,
environmental or social level which are experienced under drought conditions (Erian et al., 2021). The text-based-impactdata

Pasture (i.e. livestock migration pattern, quality and quantity of pasture, livestock body condition);

Livestock deaths;

Milk production;

Food insecurity (based on the Food Consumption Score, FCS);

Crop losses;

Trekking distance to gather water for households;

Malnutrition.

Jaceardsimilarity-The Jaccard similarity coefficient for binary values, first developed by Paul Jaccard in 1901 (Jaccard, 1912
, was used to measure the similarities between the occurrence of drought impact categories (Niwattanakul et al., 2013). It

measures the size of intersection of the two binary sets divided by the size of the union, the following equation is given:

ANB
Jaccard(A,B) = :ABB: (1)

2.3.3 Random Forest Modelling

A machine learning algorithm, namely the classification type of Random Forest (RF), have-has been used to assess the relation

ehtindices(Rpackage randomPorestversion-4-6-14)—ltis-a-drought indices
best linked to drought impacts per region with the same aridity level. RF is a powerful tool for developing a predictive
model and is a fairly new technique for linking drought indices with impacts but showed high potential in the studies of

(Bachmair-et-al52016;2047)Bachmair et al. (2016, 2017). The RF algorithm, proposed by Breiman (2001), eombinesseverat

andomized—deciston—trees—and-aggregates—their—predietions—constructs multiple random independent decision trees as an
ensemble to reduce the risk of overfitting (this study used 1000 trees). Each tree is constructed on boot-strapped fixed size

sub-samples of the data and predictions are made by averaging. Itis-designed-to-minimize-the-overall-classification-Approximately
0O0B) data.

two-third of the training dataset is used for building a tree while one third is not used, called the out-of-ba

10
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This generates an additional estimate of performance, namely the OOB error which is irrespeetive-of-theelass—distribution

~a method to measure the prediction
error of the random forest. The predictor variables are the drought indices as mentioned in section 2.3.1, and the response
variables are the binary time series of reported drought impacts derived from the monthly early warning bulletins of the
NDMA.

The drought impact datasets were aggregated-by-aridity-clustered according to aridity levels: Marsabit (arid), Barmgo Kwale
and Kitui (semi-arid) and Narok/Nyerl (sub-humid).

the-original-dataset-as-test For each of these regions, a RF model was constructed per drought impact category. In order to
validate the model, a training and test dataset were constructed with a proportion of 75% and 25% of the original dataset. The
training datasets were balanced using a synthetic minority oversampling technique (SMOTE) and randomized under-sampling.
(RUS) as the RE algorithm is sensitive to class imbalances. The caret package in Rstudio (version 6.0-93) was used to conduct
the RE model analyses, after Kuhn (2008). The ‘variable importance” function (varlmp) of this package was used to determine
the importance of a predictor variable for the model to make accurate predictions. Specifically, the prediction accuracy on the
QOB data is recorded for each tree, which is also done after permuting each predictor variable. The difference in accuracy
between the two models is then averaged over all trees, and normalized by the standard error (Kuhn, 2008; Liaw et al., 2002).

The predictive power of the RE models was assessed in two ways. First, the overall model performance on the test set was
evaluated based on a 10-fold cross-validation. Therefore, for each model run, the test dataset was split into 90% for training and
10% for prediction. This allows the evaluation of the performance of the RF model on unseen data excluded from model fitting.
As model performance metrics, we computed the QOB error rate and the accuracy. Second, the RE model was fitted to the test
dataset to see how the model would perform on unseen and unbalanced data. The area-following model performance metrics
were used to see how the RF model performed on the test set; precision, recall, the Fl-score, and the “Area under the ROC
(Receiver Operating-Charaeteristic)-eurvecurve” (AUC) deseribes-the-model's-ability-(Hanley and McNeil, 1982). Precision
is the true impacts divided by anything that we predicted as impact while recall is the true impacts divided by anything that
should have been predicted as an impact. The Fl-score is a combination of recall and precision. The AUC describes whether
the model was able to predlct the occurrence and non-occurrence of events—eorrectly—A—more-detailed-explanation—about
-impacts correctly. We validated the results of the RF model by
conducting a point-biserial correlation. This method measures the direction and strength of a relationship between a continuous

and categorical variable (Essen and Akpan, 2018). The results of this analysis will not be discussed in detail but are included
in Appendix C.
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Table 2. Total amount of reported drought impacts between 2016 and 2020 and the share of drought impact categories (%) for each county.

County Baringo | Kitui | Kwale | Marsabit | Narok | Nyeri
CeuntNumber of impacts 45 93 50 124 51 44
Pasture (%) 17.8 30.1 | 28.0 20.2 25.5 29.6
Livestock deaths (%) 11.1 5.4 6.0 9.7 9.8 4.6
Milk production (%) 222 226 | 26.0 18.6 27.5 31.8
Food insecurity (%) 44 10.8 | 10.0 15.3 39 159
Crop losses (%) 6.7 1.1 4.0 2.4 2.0 2.3
Trekking distance water (%) | 20.0 15.1 12.0 16.9 17.7 9.1
Malnutrition (%) 17.8 150 | 14.0 16.9 13.7 6.8

3 Results
3.1 Drought indices and drought impacts

To visually-represent-therelationships-illustrate the relationship between drought impacts and drought indices, a timeframe

from 2016 to 2020 is constructed-to-inclade-the-drought-of 2016/2017 - Most-droueht-tmpa were reported-in-Marsabitan

chosen. Table 2 presents the share of each
drought impact category (in %) with respect to the total number of drought impacts per county. Most drought impacts were
reported in Marsabit and Kitui while Baringo and Nyeri reported the lowest amount of impacts. Pasture and Milk production
are the most reported drought impacts across the counties, with values between 17.8 and 31.8%. Noticeable is that Nyeri has
the highest share in pasture-related impacts: Pasture impacts are 29.6% and Milk production impacts are 31.8% of the total

impacts for Nyeri. The least reported drought impacts are on Crop losses, Livestock deaths and Food insecurity with average
values of 3.1% and Marsabit

. Impacts related to Malnutrition are the highest in Baringo (17.8%

16.9%), while Nyeri has by far the lowest amount of Malnutrition impacts (6.8%). Baringo has the highest share of impacts
concerning Trekking distance for water (20.0%) while Nyeri has the lowest percentage (9.1%).

A timeline-time series of the drought indicator SPEI for different accumulation periods (1, 3, 6, 12 and 24 months) and
a timeline with drought impacts are presented for Marsabit and Nyeri in Figures 2a and 2b for the time period 2016-2020.

We choose to visualize the drought impacts and SPEI time series of those counties because of their contrasting aridity levels.
Similar figures for the other counties are included in the Supplement (Figures S1-S4). Noticeable is that Marsabit experienced

more extreme drought (in frequency and intensity) than Nyeri: SPEI-03 with a value of —2.22 in November 2018 was the most

extreme drought for Marsabit while SPEI-12 with a value of —1.90 in April 2017 was the most extreme drought for Nyeri.
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SPEI-24 indicates that Marsabit experienced a multiyear drought from January 2016 to May 2019. The drought of 2016~
2017 is well visible for both counties. In addition, there was a drought at the end of 2018 and 2019 which is more pronounced
for Marsabit than for Nyeri. Regarding the drought impacts, Marsabit reported drought impacts (N = 124) from March 2016
until December 2020 with the exception of the periods between March and December 2018 and between November 2019
and August 2020. Nyeri reported drought impacts (N = 44) from February 2017 until September 2019 with only one impact
reported between November 2017 and January 2019.

Taking the 2016/2017 drought as an example, the drought impacts reported in Marsabit are between March 2016 and Febru-
ary 2018 and highly overlap with SPEI-12 values lower than 0, which is prevalent between April 2016 and March 2018. Re-
ported drought impacts for Nyeri are between February 2017 and March 2017 and correspond most with SPEI-12 values lower

than 0, occurring from October 2016 until April 2018. A-directrelationship-with-the-In general, drought impact occurrence

does not happen simultaneously with the drought time period of the other accumulation periodsis-not-direetly—visible, except

for SPEI-24. In particular, most of the analysed drought impacts occur after the onset of drought identified with accumulation

periods of less than 12.
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Figure 2. A timetine-time series of the drought indieator-index SPEI for different accumulation periods (1, 3, 6, 12 and 24 months) and a

timeline with drought impacts for Marsabit (arid) and Nyeri (sub-humid). The colored dots indicate the type of impact occurrence. Negative
values of SPEI indicate dryer than normal periods (indicating-a-drought)-are-presented-inred) while positive values are-indicate wetter than

normal (blue).
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Table 3. Correlation between the impact categories (Jaccard similarity): the asterisks indicate the statistical significance (p value < 0.05) in

accordance with Chung et al. (2019).

Impact category Pasture | Livestock deaths | Food insecurity | Milk production | Trekking distance water | Malnutrition
Livestock deaths 0.23*%

Food insecurity 0.39*% | 0.27*_

Milk production 0.63* | 0.23* 0.42%

Trekking distance water | 0.50* | 0.26* 0.29 0.47%

Malnutrition 0.41 0.20 0.27 0.34 0.34

Crop losses 0.15 0.04 0.00* 0.11 0.11 0.11

(a) Water scarcity over March 2018 and 2020.

(b) Water scarcity and drought impacts.
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Figure 3. The degree of water scarcity per year (March 2018-2020) across the counties (a) and months with drought impacts in relation to

water scarcity (b) (McNally et al., 2019).

In-this-stuady;—we-We also explored the relation between reported drought impacts (Fable-3)-by using the Jaccard similarity

for binary values.

The results are shown in Table 3 whereby closer to 1 means that the datasets are more similar to each other

than closer to 0. Pasture and Milk production have the highest significant Jaccard similarity of 0.63 )»-while

Crop losses are not much related to any other impact category (<0.20). Trekking distance to water points indicates-a-bit-of
relation-with-Pastare(0:50)-and-Mitk-production-thave a significant Jaccard similarity of 0.50 with Pasture and 0.47 ywith Milk
production. Other relations between-impact-eategories-are-not-very-prevatent-(<have a Jaccard similarity below 0.40).
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3.2 Drought impacts and water scarcity

The degree of water scarcity per year (in number of months) across the counties is visualized in Figure 3a. This is done from
March 2018 due to the length of the WS dataset. Kitui and Marsabit experienced no water stress since March 2018 {start-of
timeframe-WS—datasety-while Nyeri experienced stress, scarcity and absolute scarcity during six out of ten months in 2018
and all months of 2019. Baringo, Kwale and Narok did also experience stress and scarcity conditions (respectively 2, 4 and
2 months out of 10 for 2018 AW-S-dataset-starts—atMareh264+8)-and 4, 0 and 4 months out of 12 for 2019) but with a lower
frequency than Nyeri.

Figure 3b shows the amount of months with drought impacts during 2018 and 2020 in relation to the degree of water
scarcity. Nyeri experienced 9 months with drought impacts between March 2018 and 2020, of which 6 months with absolute
water scarcity and 3 months in a stress situation. Kitui and Marsabit experienced 14 months with drought impacts but did
not experience any degree of water scarcity. Baringo had 6 months with drought impacts, of which half of the months were

showing stress situations.
3.3 TheRandom Forest meodelto link drought impacts and drought indices

The performance of the Random forest (RF) models per impact category is shown in Table 4. The AUC-regions are aggregated

by their aridity levels: Marsabit is classified as arid, Baringo/Kitui/Kwale are semi-arid and Narok/Nyeri are sub-humid regions.
The RF models have been trained on 75% of the data and tested on 25% of the data. The performance of the RF model has

been evaluated by looking at the OOB and accuracy while precision, recall, the F1-score and the AUC are used as performance
metrics for the test data set.

The AUC values as performance metric for the test data set ranges from 0.50 to 1.00. The performance of the models for
the drought impacts on Pastureand-Livestoek-have-the-, Livestock and Milk production for the arid and sub-humid regions had
the best fit, with AUC values ranging from 6:87-0.76 to 1.00. Models developed for the drought impact of Malnutrition have
had the worst fit, with all AUC values below 0.60. ?he%rmde}&fe%&ﬁﬂérfegieﬁeﬁMﬁs&bﬁ%MA%ﬁﬂd%@Vggg%wQ

models related to the arid and sub-humid regions

as_performed
better than the models of the semi-arid region with an exception of the model developed for Crop losses (AUC of 0.75).
NQ&&%@&&M@%MWWWWW high performance tvalues (Fl-score of
1.00 )-swhi an M

—regions in relation to Trekking distance of water
for households (F1-score of 0.75 and AUC of 0.92). We will only discuss the variable importance metrics of the RF models
1) that performed relatively well on the test dataset because it is important that the model can predict drought impacts based

on unseen data (not used for model training) and (2) whereby the results were similar with the results of the point-biserial

correlation (Appendix C). The last column of Table 4 indicates if the model is discussed in terms of variable importance.
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Table 4. Performanee-RF performance metrics: the performance of the RF model perimpact-eategory-is tested by looking at the OOB and
arid-characteristies-MA-=-Marsabitthe accuracy while precision, BA—=-Baringerecall, K=Kt KW-=1Iwale; NA—=Naroek-the F1-score
and NY¥—=Nyerithe AUC are computed as performance metrics for the performance of the RF model on the test data set (25%).

height Arid- Performance RF Semi-arid- | Performance test set | Sub-humid-zene-
Pasture 14.81 0.87 6:62-0.89 6:96-0.89 0.89

Livestock deaths 781 0.88 0.50 1.00 6740,

Milk production 6-86-22.00 6:56-0.84 6-89-0.83 0.71 0.77

) Food insecurity 11.11 0.89 1.00 1.00 1.00
And Croplosses 921 089 100 033 05
Malnutrition 32.00 070, 0.60_ 075 06’

Pasture. 12,93 090, 082 095 088

Crop losses 9.02 0.90 0.20 0.25 0.22

Malnutrition_ 3243 0.66_ 0.60 0.55 0.5

Pasture. 625 092, 093 100 0.9¢

humid Crop losses 5.00 094 0.00_ 0.00 NA
Malnutrition 0-5629.63 6:59-0.72 0.37 043 0.40

Figures 4and-, 5 shew-the-and 6 show the top five drought indices which are best linked with the drought impact categories;

16

o ha NMognDe

NMIDA -3 O an




1
Sub-humid Arid Sub-humid
spi12 spi-24 _ sPi-12 SSMI-03
(%] 1%}
< k3
2 ssioa sPi-o1 _ Ssswi-12 sPi-1z
= 3
g s
SSMI-03- SSI-24- - SPEI-24- SSMI-12-
SSI-01- SPEI-01- - SSMI-03- SPEI-12-
4 4 5 10 15 0
Importance Importance
(a) Pasture (b) Livestock deaths

Figure 4. Drought indices best linked with Pasture and Livestock deaths for the arid region (Marsabit) and the sub-humid regions
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Figure 5. Trekking-distanee-water-points-Drought indices best linked with Milk production for the arid region (NAMarsabit) and sub-humid
regions (Narok/N¥Nyeri) and drought indices best linked with Crop losses for the semi-arid regions (Baringo, Kitui and Kwale) and

. As shown in Figure 4a, Pasture impacts for Marsabit-the arid region tend to be related to shorter drought anomalies (6
months) than Narek-and-Nyeri-the sub-humid regions (24 months) Furthermore, SSI is-the-best-predictor-and SPI are the best
i the arid region while SPEI

predictors for Pasture impacts in M
405 and SPI are the best predictors for

Narek/Nyeri-with-a-MDPA-higher-than18%the sub-humid regions. For Livestock Deaths (Figure 4b), the situation is reversed:
meteorological-indicessuch-as-SPEland-SPlwith-longer accumulation periods (12-24 months) are the-bestlinkforMarsabit
while-the-predictors-SShand-SSMI-with-designated to the arid region while shorter accumulation periods are related to the
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Figure 6. Drought indices best linked with Food insecurity for the arid region (Marsabit) and the drought indices best linked with Trekkin

distance for water for the sub-humid regions (Narok/Nyeri).

sub-humid regions (3-12 months). SPEL and SP1 are the best I

Fheresultsshow-that Foed-inseeurity-for-predictors for Livestock deaths in the arid region while SSI and SSMI are the best
predictors for the sub-humid regions. Especially SSI-03 seems to be a strong predictor (importance of 19.05) for Livestock
deaths in the sub-humid region. Milk production in the arid region of Marsabit-can-be-wetlpredieted-with-tend to be most
Wma range of drought indices(Figure-Sa)-among-which-SSMiis-the
. namely SSMI, SSI, SPEI and SPL.

At the sub-humid segions, SS1i the best preditor for Milk prodution with accumulation periods between 3-24 months, For
Baringe:IKwale-and-Kitui-the semi-arid regions, high accumulation periods (6—24-12-24 months) are associated with Crop
losses s-whereby SSMI--SSEwhereby SSMI is the most prominent predictor. For the sub-humid regions, lower accumulation
pfmp«@wand SPEI are the most promlnent indices(Figure-Sb)—Noticeable

MeanDeereaseGint-of H0%predictors. The results show that Food insecurity for the arid region can be well predicted with a

range of drought indices (Figure 5a), namely SPEI, SSI, SPI and SSMI with a more or less stable accumulation period of 12
months. Trekking distance to water points for Narok/Nyeri-the sub-humid regions can mainly be predicted by SSI --SPEFand

SPHwith an accumulation period between-6—24-monthstHigure-5ejof 6 months.
4 Discussion
4.1 Data sources and methods

This study used the water scarcity dataset of McNally et al. (2019) which is based on regional streamflow data and population

data from WordPop 2015. This dataset has never been validated in the Horn of Africa which could be a limitation of this
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research. In addition, different hydrological datasets were used for the water scarcity dataset and the calculation of the SSI.
However, despite some inconsistencies between the datasets, both are following the same pattern which justifies drawing con-

clusions based on the water scarcity dataset. The comparison between streamflow data of the water scarcity dataset and SSI-01

is included in Appendix B. Furthermore, the computation of the meteorological drought indices (SPI/SPEI) and the WS dataset

are based on different satellite-based precipitation products, namely MSWEP and CHIRPS respectively. The two datasets
showed good performances on global level (Beck et al., 2017b) and more specifically for East Africa (Cattani et al., 2021).

Although the slightly underestimation of the MSWEP data compared to CHIRPS over East Africa, both precipitation products

showed considerable agreement (Cattani et al., 2021), thereby justifying the simultaneous use of both products.
Drought impact data have been generated by analyzing the monthly county-specific reports of the NDMA. Thesereportshad

to-the NDMA-—ensures-This data source had some missing months, namely between 4 and 8 months, different per county, and
mainly at the beginning of the period (between July 2013 and December 2014). Despite these missing months, there is still
a robust and reliable timeline of drought impact data available for more than 90% of the considered months. In addition, the

bulletins were iteratively checked by several NDMA employees to ensure a reliable list of drought impact eeetrreneesdata.
Despite the great effort and very valuable drought impact data information from the NDMA, this study stresses the need for

an impact database for Africa such as the already existing databases EDII and-DIR(EDC, 2013) and DIR (NDMC, 2005) for
Europa and the USA respectively. Future research can assess how to build an impact database with enhanced quality in terms
of higher spatial and temporal resolution, more impact categories and more quantitative information on the impact. To build
such a database for historical events, systematically blending and fusing impact data coming from different sources need to
be explored (Majani et al., 2022). Sources that can possibly complement the NDMA bulletins range from global repositories
such as the Emergency Events Database (EM-DATor-Destventar.) (Guha-Sapir et al., 2016) or the Disaster Inventory System
(DesInventar, https://www.desinventar.net/), drought appeals from humanitarian organisations such as the Kenya Red Cross
Society, index-insurance claims submitted to insurance companies or digital media reports.

We used a Random Forest technique to link drought impacts with drought indices. However, other literature used other
techniques such as the Pearson correlation (Wang et al., 2020), Spearman correlation (Ma et al., 2020), and logistic regression
(Bachmair et al., 2017; Blauhut et al., 2015; Stagge et al., 2015) Using RF to link drought indices with drought impacts is a
i : but

has been done several times before (e.g. Bachmair et al. 2016, 2017; Wang et al. 2020). These studies indicated a potential
of using RF for drought M&EW. This study confirms this, as the performance indicestAHE)-metrics were good for several

fairly new technique an

drought impact categories and all the discussed models in terms of ’variable importance’ showed similarities with the results
of the point-biserial correlation (Appendix C). However, using+
need-to-expand-the-drought-impaet-there were differences in the predictive power of the RF model among the drought impact

This could be related to (1) data availabilit ., data on impacts related to malnutrition) as the

RF model is sensitive to data eollection-because-of its-sensitivity-to-data-availability (Bachmair et al., 2016) and (2) deviations

categories and the regions.
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in the link between drought impacts and indices among the counties, making the model perform worse when the counties are
combined together (i.e., the models in relation to the semi-arid regions).

4.2 Relations with aridity

The majority of the drought impact data are livestock- and pasture-related —It-was-expeeted-that-the reported-droughtimpacts
were-tinked-which is in accordance with the main livelihood activity of the eeunty—This-is-partly-confirmed-by-theresults-of

impaet-categorieseonsidered-considered counties and with the information provided by the NDMA.
Marsabit and Kitui had the highest reported drought impacts while Baringo and Nyeri the least amount of reported drought

impacts. This suggests that drought impacts are linked with aridity because Marsabit and Kitui contain larger areas classified
as (semi-)arid than Baringo and Nyeri. Fhe-Also, the interference with socio-economic circumstances is likely to play a role
as acute and chronic food insecurity, poverty, lack of economic development, limited access to basic social services, and low

education levels are the highest among households in the ASALs (FEWS NET, 2013).

¢-Maliva and Missimer (2012)

stated that arid areas will have more extreme drought due to global warming which will increase the potential evapotranspiration

(Seneviratne et al., 2021; Wang et al., 2022). However, this study eannottink-drought-eccurrenee-to-aridity—cannot link the
frequency and intensity of drought events with different aridity levels because of the short timeframe (+6-approx. 7 years)
analyzed. The analysis of longer timeseries—eonld-time series could not only indicate if there is—an—interanntal-trend—and
variability-of drought-indices; therefore determining-whether-are changes in drought severity, area, and frequency but also if

there is a dryingelimate-ora-dreughteventlong-term shift to a more arid climate (Xu et al., 2021). This could be an interesting
follow-up research whereby aridity conditions could be analysed in relation to drought occurrences.

4.3 Water scarcity and drought impacts

According to the water scarcity dataset, most drought impacts occurred at times without water stress (Figure 3b.), with the
exception of Nyeri. These findings contrast with the text-based drought impact data on distance from water sources (i.e.,

Trekking distance for water) from the NDMA bulletins, which could be used as a proxy for water stress conditions. Increased

distance from water sources was reported in arid-and-semi-arid-regions-the arid (Marsabit) and sub-humid (Nyeri) region
during most of the months when meteorological and hydrological drought conditions occurred (Figure 3b)—The-same-impaet

Q nd-one—month-d no tha 2010 droneht-eventin—ND
v, g1o—GFo =

{Figure-2b2). Noticeable is that Marsabit has more reported drought impacts on Trekking distance for water (16.9%) than Nyeri
9.1%) (Table 2) while Nyeri has more months with water scarcity than Marsabit which has zero months with water scarcit
(Figure 3a,).
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The discrepancies between the increased distance from water sources and the water scarcity index could be explained by
the fact that the streamflow data used for developing the WS dataset were calculated without taking into account the presence
of reservoirs, located mainly in the central-western areas of Kenya (Lehner et al., 2011; Mulwa et al., 2021). In addition, the
WS dataset uses population data as a proxy for water demand. Since the population density has high values in central-western
counties and low values for the ASAL counties (which host only 25% of the population although they cover about 80% of the
territory of Kenya -+(FEWSNET2003H(FEWS NET, 2013), it is not surprising that the WS index is higher for west-central
counties than for ASAL counties. However, low population density does not imply low water stress: pastoral and agricultural
livelihoods are predominant in the ASAL counties and are highly dependent on water availability (FEWS NET, 2013). In
addition, the staplefoods-"pulses’ (i.e. dry cereals) for densely populated areas located in central-western counties are mainly
supplied by the ASAL counties, resulting in high water consumption by the latter. Finally, water scarcity is also shaped by
political choices, public policies, and social order (Savelli et al., 2021; Van Loon and Van Lanen, 2013). These factors were
not accounted for in the development of the WS dataset.

In summary, the WS dataset is apolitical, does not take reservoirs into account, and is highly dependent on population
density, which is not a true reflection of water demand. Despite these limitations, interesting conclusions can still be drawn.
The WS dataset highlights-suggests that water resources were sufficient to meet the water demand in the arid and semi-arid
regions of Kenya during drought events. However, water insecurity in the ASAL regions was high during periods of drought
(FEWS NET, 2017), possibly due to inefficient water management, for example poor maintenance of water supply systems
(related in turn to corruption and poverty) (Bellaubi and Boehm, 2018; Jenkins, 2017; Mulwa et al., 2021). The sub-humid
central-western counties, on the other hand, sheuld-havesutfered-from—could have experienced water scarcity during periods
of drought due to the high population density and hence the high pressure on available water resources. However, in reality,
they experience little water stress thanks to the presence of reservoirs that buffered the drought conditions (FEWS NET, 2017).

This shows that water scarcity can be reversed through wise usage of the available water resources (Phillip, 2013).

4.4 Drought indices and the Random Forest model
The results show that linking drought indices with drought impacts is region-specific, as confirmed by many other studies

(Bachmair et al., 2015, 2016, 2018; Blauhut et al., 2015; Ma et al., 2020; Parsons et al., 2019; Stagge et al., 2015; Wang et al.,
2020). For instance, shorter accumulation periods were found for Pasture at Marsabit (SSI-06) while longer accumulation
periods were found for Narok/Nyeri (SPEI-24). This lag suggests the presence of water buffers in Narok/Nyeri, damming the
sub-annual fluctuations in water availability and therefore generating less influence on the impact category Pasture (Mulwa
et al., 2021). On the contrary, Livestock deaths are linked with high accumulation periods in Marsabit (SPEI-12) and short
accumulation periods in Nyeri (SSI-03). These differences between-the-in best match between drought impacts and drought
indices implies-therefore-imply a link with human activities as they can lag the moment of impact occurrence. As confirmed
by Xu et al. (2019), human activities can interfere with natural processes and therefore influence the drought propagation time
between meteorological and hydrological drought. This calls for more research towards water management practices in relation

to drought indices and drought impacts.
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530 Regarding the drought indices, various drought indices are marked as the most optimal indicator: SSI is found in relation

to Pasture (arid region), Livestock deaths (Marsabity;Pasture-(Narok/Nyerisub-humid regions), Milk production (sub-humid
regions) and Trekking distance to water points (Narek/Nyerisub-humid regions), while SSMI is found in relation to Milk

production (arid region) and Crop losses (BaringoKwate Kitai)-andFood-inseeurity- (Marsabitsemi-arid regions). Noticeable
is that SSI gives a possible link with water-dependent activities while SSMI shows a possible link with agricultural practices.
535 It is expected that SSI and SSMI would show a memory in relation to SPI and SPEI because of the propagation through
the hydrological cycle, introducing a lag between meteorological, soil moisture and hydrological drought (Wang-et-al;-2616)
(Seneviratne et al., 2012; Wanders et al., 2017; Wang et al., 2016). Therefore, the time length and duration of SPI and SPEI
can be used to express soil moisture and hydrological drought. In general a 1-month timescale is considered meteorological
drought, 3-6 months as soil moisture drought and 12 months can be considered as hydrological drought (Dai et al., 2020). This
540 link is partly visible by looking at the drought indices in relation to the accumulation periods. For instance, SSI-06 is the best
match for Trekking distance household which indicates hydrological drought. The best link after SSI-06 are amongst others

SPEI and SPI with a 24 months timescale, also indicating the presence of a hydrological drought.
Studies that linked drought impacts with drought indices are mainly focused on Europe (Bachmair et al., 2015, 2016, 2018;
Blauhut et al., 2015; Parsons et al., 2019; Stagge et al., 2015) and recently China (Ma et al., 2020; Wang et al., 2020). Com-
545 parisons with these studies are quite difficult due to the different socio-economic and climatic circumstances. As studied by
Bachmair et al. (2018), SPI and SPEI with an accumulation period of three and four months showed the highest correlation

for the impacts on crops in Germany. This is net-consistent with the results found in this-study-in-relation to Crop losses for

Baringo, Kitui-and-Kwale—these-the sub-humid regions whereby SPI-03 and SPEI-03 are the best match. However, it is not

consistent with the results found for the semi-arid regions whereby the accumulation periods are quite high (6—24-24 months).
550 As stated in the study of Bachmair et al. (2018), an accumulation period of one month was found to have a notably lower

correlation with drought impacts and was often non-significant which is also confirmed by the results of this study. A reason-
able explanation for this is that the occurrence of impacts lags behind the occurrence of drought. Another study of Bachmair
et al. (2016), showed that SPI and SPEI with longer accumulation periods (12-24 months) are best linked to impact occurrence
in the UK when using the RF model. In general, this does match with the results of this study --whereby SPI-12, SPEI-12,
555 SPI-24 and SPEI-24 are the-mostocetrring-aceumulationpertods;-often present in the top five drought indices best linked with
the drought impact categories, thereby linking the occurrence of drought impacts with the presence of hydrological drought.
Our results indicate that impacts associated with different types of drought have different response times, as confirmed by the

distinct differences in drought indices and impact linkage pattern.

H-shoeuld-benoted-that-This study did not directly account for short and/or long term drought resilience actions applied in the

560 ASAL regions and their link to the reported drought impacts in the NDMA monthly bulletins while this could be of influence on

the drought impacts-indices relationship. Drought resilience actions can be related to (1) structural interventions for increasin

the water availability (e.g. construction of reservoirs), (2) sustainable land management practices (e.g. i

and drought resistant crops), (3) pasture and livestock management (e.g. livestock restocking and improved varieties of grass
2016; Mude et al., 2007; Njarui et al., 2020; Opiyo et al., 2015; , 2016; weADAPT, 2023

and (4) livelihood diversification (Kenya Parr
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increase the resilience of the communities (Nyberg et al., 2020). This could as well explain the differences in the optimal

drought indices found among the researched areas as the level of preparedness can lag or mitigate the occurrence of drought

impacts, resulting in a better fit with drought indices with higher accumulation periods. The past years Kenya has experienced
several drought events. This can influence the extent of adaptation measures taken and therefore the resilience against droughts

which affects the impacts. It is therefore recommended to link adaptation measures to drought impacts and indices in order to
analyze spatial differences and to map fluctuations over time.

This study contributes to the ongoing debate about the operational needs for drought monitoring by linking multiple drought
indices to reported drought impacts. Results-Our results show the best drought index for a given impactwhich-. This can be
combined with other socio-economic and environmental data to provide enough inputs for the construction of drought impact

forecasting, useful for stakeholders and decision makers (Heinrich and Bailey, 2020; Stagge et al., 2015). In addition, this

research takes the first step in exploring the link between drought and water scarcity and aridity, which
is valuable information for the existing literature database on drought and its impacts. However, it is recommended to validate
the results in other areas and on finer spatial scales whereby the influence of human activities on drought propagation and water
scarcity can be analyzed. Besides this, research would benefit from a refinement of the water scarcity dataset in order to better

represent human influences on water scarcity conditions.

5 Conclusions

There is an urgent need to develop early warning systems to mitigate the adverse consequences of drought and thereby reducing

the human and financial costs. However, there is still no full understanding of the relation between drought impacts and drought
indices in Africa. In-addition;this-This continent struggles with water scarcity and the presence of arid regions, which possibly
influences the relation between drought hazard and impacts. This paper aimed to fill this knowledge gap by exploring the link
between drought impacts, drought indices, water scarcity and aridity with a focus on Kenya.

The arid region of Marsabit had the most severe drought and the highest amount of drought impacts over a timeframe from
2016 to 2020. Nyeri, classified as a sub-humid region, had lower frequencies and intensities of drought and reported the least
amount of drought impacts. This indicates that drought impacts are linked with drought severity and that the occurrence of
drought impacts are related to aridity. The skewed spatial distribution of drought impacts could be related to the fragile socio-
economic conditions in the ASALs of Kenya which makes this region more vulnerable to drought than the sub-humid region
of central-western Kenya. Water scarcity as derived by the WS dataset was not found to be related with aridity while this
was expected due-to-the-presence-of-unreliable-water-conditionsbecause arid regions are often facing limited water resources.
On the contrary, Marsabit (arid) did not experience any water scarcity during the analysed timeframe (March 2018 and 2020)

whilst Nyeri (sub-humid) did. In addition, most drought impacts occurred at times without water stress (except for Nyeri)
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even when increased distance from water sources was reported as a drought impact, which can be used as a proxy for water
stress conditions. Reasonable explanations for this can be found in the water scarcity dataset which is apolicital, does not take
reservoir into account, and is highly dependent on population density.

With a Random Forest model, a link between drought impacts and drought indices was made. The results indicated that
every region, aggregated on aridity, had their own set of predictors for every impact category. Region dependency was found
by other studies as well. In relation to drought impacts on Pasture, anomalies were shorter (6 months) for the arid region of
Marsabit than for the sub-humid regions of Narok/Nyeri (24 months). For the impacts on Livestock deaths reversed results
were found: lower accumulation periods were found for Narok/Nyeri (3-12 months) while longer accumulation periods were
present in Marsabit (12-24 months). Drought indices with longer timescales (>> 12 months), indicating a hydrological drought,
were often found to match best with al-the drought impact occurrences. The differences in linkages could be related to water
management practices, natural characteristics and climatic circumstances.

The predictive ability of indices heavily depends on the spatial and temporal resolution of drought impact data. Therefore,
this study stresses the need of systematic drought impact data collection as-done-by-the-NDBMAaround the world following
the example of the NDMA in Kenya. In addition, a-finerspatial-resolution-is-needed-we recommend to look at finer spatial

resolutions to capture the regional differences in human influences on water scarcity and drought impacts. Studying ether

similar research areas and validating the results of this study on smaller scales will expand the knowledge base on drought

and impacts and will substantiate the conclusions of this study. This study analyzed the link between drought indices and
text-based impact reports with a focus on the African continent which has never been studied before. The integration of

regional predictions on drought impacts will contribute to the development of early warning systems on drought which help

society to better prepare and act accordingly, therefore reducing vulnerability and increasing resilience to drought and impacts.
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Appendix A: Detailed explanation of the water scarcity dataset

The water scarcity index from McNally et al. (2019) is based on outputs from the FEWS NET Land Data Assimilation Sys-
tem (FLDAS), which is a custom instance of the National Aeronautics and Space Administration (NASA) Land Information
System (LIS). The FLDAS’s Noah 3.6 land surface model is driven by the Climate Hazards Group InfraRed Precipitation
with Station (CHIRPS) rainfall and NASA’s Modern-Era Retrospective analysis for Research and Applications (MERRA-2)
meteorological forcing. This model partitions rainfall inputs into surface and subsurface runoff (i.e., baseflow), soil moisture
storage and evapotranspiration. Surface runoff is the precipitation in excess of infiltration and saturation capacity of the soil
while subsurface runoff is the drainage from the bottom soil moisture layer caused by gravity. The total runoff is routed though
the river network with the Hydrological Modelling and Analysis Platform version 2 (HyMAP-2) river routing scheme. The
definition of catchments are based on boundaries defined by the U.S. Geological Survey (USGS) Hydrological Derivatives
for Modelling Applications (HDMA) database. A Pfafstetter code, based on an hierarchical numbering system, are attributed
to the catchments. For the water scarcity index, Pfafstetter level 6 basins are used in order to represent the relatively local
nature of water supplies. Two population datasets are used as a proxy for water demand, namely the WorldPop 2015 dataset
and the European Commission’s Joint Research Center’s (JRC) Global Human Settlement (GHS) data. To classify the amount
of water scarcity, the Falkenmark index is used. The Falkenmark Index thresholds are specified annually while monthly data
is required for the routinely updated maps about water scarcity. Therefore, a 12-month running total of the streamflow from
the current and 11 previous months are used whereby the Falkenmark index (based on yearly values) can still be used on a
monthly resolution. The population estimates are aggregated to Pfafstetter basin level 6 whereafter the 12-month total spatially

aggregated streamflow (m?) is divided by the population to produce an estimate of m*/person (McNally et al., 2019).

Marsabit Nyeri
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i
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i

2019 2020 2021 2019 2020
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(a) Marsabit (b) Nyeri

Figure Al. Streamflow anomalies (WS) and SSI-01 between March 2018 and 2020.
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Appendix B: The hydrological datasets: the streamflow datasources

Different hydrological datasets were used for the water scarcity dataset and the calculation of the SSI. The SSI index is based
on data from GloFAS while streamflow data for the water scarcity dataset is based on outputs from the FLDAS. If there are
any discrepancies between the datasets, wrong conclusions could be made. To compare the two different datasets, SSI-01 is
plot together with the streamflow anomalies of the water scarcity dataset for Marsabit and Nyeri (Figure A1). The streamflow
anomalies are based on the 1982-2016 FLDAS historical record while SSI is based on the period between 1980 and 2010.

Despite some irregularities between the datasets, both are following quite the same pattern. This suggest that it is reasonable

to compare the results from the two different hydrological datasets.

are—th oY ome-of-ate and ORA o-the-ne od O eaf-and-theltea

nodes-are-the-terminal-nodespredicting-the-outeome—tn-In order to validate the model-a-training-dataset-and-a-test-datasetis

model in relation to variable importance, a point-biserial correlation was conducted. It is used to measure the predietion-error

mtry-are-visible-in-—relationship between a binary and continuous variable. Table Al. shows the results of the point-biserial
correlation: only the top 5 drought indices with the strongest correlation are included. The minus sign indicates a negative

correlation between the two variables.
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Table A1. Point-biserial correlation: linking the drought indices with drought impact category per region with the same level of aridity. The

asterisks indicate the statistical significance:

<0.05*

<0.001* and p < 0.0001***,

Pasture Livestock deaths Milk production Food insecurity Crop losses Water distance Malnutrition
2 |SPEL-12 [-0.51*** |SSMI-12 | -0.39** | SPEI-12 |-0.53*** | SPI-12 |-0.63*** | SPI-01 |-0.05 | SSI-06 | -0.26* | SPI-12 |-0.02
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