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Abstract. Seasonal variability of the global hydrologic cycle directly impacts human activities, including hazard assessment 10 

and mitigation, agricultural decisions, and water resources management. This is particularly true across the High Mountain 

Asia (HMA) region, where availability of water resources can change depending on local seasonality of the hydrologic 

cycle. Forecasting the atmospheric states and surface conditions, including hydrometeorological relevant variables, at 

subseasonal-to-seasonal (S2S) lead times of weeks-to-months is an area of active research and development. NASA’s 

Goddard Earth Observing System (GEOS) S2S prediction system has been developed with this research goal in mind. Here, 15 

we benchmark the forecast skill of GEOS-S2S (version 2) hydrometeorological forecasts at 1-3 month lead times in the 

HMA region, including a portion of the Indian Subcontinent, during the retrospective forecast period, 1981-2016. To assess 

forecast skill, we evaluate 2-m air temperature, total precipitation, fractional snow cover, snow water equivalent, surface soil 

moisture, and terrestrial water storage forecasts against the Modern-Era Retrospective analysis for Research and 

Applications, Version 2 (MERRA-2) and independent reanalysis data, satellite observations, and data fusion products. 20 

Anomaly correlation is highest when the forecasts are evaluated against MERRA-2 and particularly in variables with long 

memory in the climate system, likely due to similar initial conditions and model architecture used in GEOS-S2S and 

MERRA-2. When compared to MERRA-2, results for the 1-month forecast skill range from anomaly correlation of 

Ranom=0.18 for precipitation to Ranom=0.62 for soil moisture. Anomaly correlations are consistently lower when forecasts are 

evaluated against independent observations; results for the 1-month forecast skill range from Ranom=0.13 for snow water 25 

equivalent to Ranom=0.24 for fractional snow cover. We find that, generally, hydrometeorological forecast skill is dependent 

on the forecast lead time, the memory of the variable within the physical system, and the validation dataset used. Overall, 

these results benchmark the GEOS-S2S system’s ability to forecast HMA hydrometeorology. 
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1 Introduction 

Skillful prediction of hydrometeorological conditions at subseasonal-to-seasonal (S2S) timescales depends on a range of 30 

factors, including the representation of land and ocean initial conditions (Dirmeyer et al., 2018; Mariotti et al., 2018), a 

model’s ability to capture large scale atmospheric processes (Gibson et al., 2020), a model’s representation of climate mode 

variability (e.g., Waliser et al., 2006, 2009; Shukla et al., 2018), the chosen perturbation and ensemble scheme (Scaife et al., 

2014), and the level of predictability itself. S2S forecasting differs from numerical weather prediction where skill largely 

depends on accurate representation of atmospheric initial conditions (Pielke Sr. et al., 1999). There is a need to understand 35 

the processes that drive S2S prediction skill, and there has been extensive research (e.g., Merryfield et al., 2020; White et al., 

2021) aimed towards understanding the complexity of these systems. However, further improvements in S2S forecasting 

skill, particularly of societally relevant variables, are sought because accurate S2S forecasts are useful for advance planning 

in various sectors, such as energy, water resources, agriculture, and disaster mitigation (National Academies Press, 2016). 

 40 

S2S hydrometeorological forecasts can be valuable in heavily populated regions, such as the Indian Subcontinent, as well as 

in more sparsely populated areas, such as High Mountain Asia (HMA). These regions experience substantial inter- and intra- 

annual variability in water resources. HMA has been dubbed one of the main ‘water towers’ of the Earth (Viviroli et al., 

2007; Immerzeel et al., 2010, 2020) and has been hypothesized to influence global weather patterns through its impact on 

teleconnections (Nash et al., 2021). S2S forecasting systems, such as the Goddard Earth Observing System S2S prediction 45 

system (GEOS-S2S), could skillfully capture large-scale atmospheric patterns and teleconnections (Gibson et al., 2020; Lim 

et al., 2021), including those impacting the HMA region. Ding and Wang (2007) and Lim (2015) demonstrated the 

importance of the Eurasian teleconnection in driving the planetary-scale Rossby-wave propagation that causes the 

intraseasonal variability over central Asia and the northern part of India. Other studies investigated climate variations over 

HMA by the impact of the North Atlantic Oscillation (Li et al., 2005, 2008), Indian Ocean Dipole and El Niño Southern 50 

Oscillation (Stuecker et al., 2017; Sang et al., 2019; Power et al., 2021; Meena et al., 2022), the Central Indian Ocean mode 

(Zhou et al., 2017), and the boreal summer intraseasonal oscillation (Jiang et al., 2004; Hatsuzuka and Fujinami 2017).  

 

The proper representation of large-scale teleconnections in S2S forecasting systems and how that impacts 

hydrometeorological conditions is complicated by local characteristics, which degrades the accuracy of high-resolution S2S 55 

forecasts at local scales. For example, the northward propagation of the boreal summer intraseasonal oscillation originates in 

the northern Indian Ocean and tends to dissipate near the foothills of Himalayas, and high humidity along the southern slope 

of the Himalayas and Tibetan Plateau leads to enhanced precipitation events (Jiang et al., 2004; Hatsuzuka and Fujinami 

2017). It is, however, extremely difficult to pin-point specific locations where this process ultimately occurs. Therefore, to 

gain a better understanding and make better predictions of how the Earth system behaves at regional scales, such as for the 60 

HMA region, further research is warranted. 
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Numerous investigations have examined the impacts of climate and weather in the HMA region, including air temperature 

(Su et al., 2013; Dars et al., 2020), precipitation (Su et al., 2013; Ghatak et al., 2018; Liu and Margulis 2019; Christensen et 

al., 2019; Dars et al., 2020; Stanley et al., 2020), terrestrial water storage and the overall water budget (Loomis et al., 2019a; 65 

Yoon et al., 2019), groundwater storage (Xiang et al., 2016; Wang et al., 2021), snow (Liu et al., 2021a; Liu and Margulis 

2019; Margulis et al., 2019), glaciers (Shugar et al., 2020; Maurer et al., 2020; Batbaatar et al., 2021), atmospheric river 

storms (Nash et al., 2021), hydropower (Mishra et al., 2020), and landslides (Bekaert et al., 2020; Stanley et al., 2020). There 

are many communities of scientists in the US, Europe, or Asia investigating how climate is changing in HMA and what 

drives these changes (e.g., Arendt et al., 2017).  70 

 

More broadly, studies such as Vitart and Robertson (2018), de Andrade et al., (2019), and Robertson et al., (2020), have 

investigated the usefulness of S2S forecasting for global climate and weather extremes. These types of studies can be used to 

deduce the skill of S2S forecasts for the HMA region. For instance, these studies show how forecasting a variable like 

precipitation in the HMA region can be difficult, with forecasts being acceptable out to week 1, but starting to degrade for 75 

forecasts in weeks 2-4. Furthermore, there have been studies that investigate the skill of S2S forecasts specifically for 

regions including or close to HMA. For example, Deorias et al., (2021) compared the prediction of the Indian monsoon in 

different S2S models; Hsu et al., (2021) investigated simulations of the East Asian winter monsoon on S2S time scales; 

Gerlitz et al., (2020) applied climate informed seasonal forecasts of water availability in Central Asia; and Zhou et al., 

(2021) developed a hydrological monitoring and S2S forecasting system for south and Southeast Asian river basins. Many of 80 

these studies utilized S2S prediction systems, but there is still a need for further evaluation of S2S forecast skill for 

hydrometeorological variables in the HMA region. Our study examines the skill of S2S forecasting for the HMA region 

using the GEOS-S2S forecasting system.   

 

The NASA Global Modeling and Assimilation Office utilizes the GEOS-S2S forecasting system, which initializes S2S 85 

forecasts each month using a weakly coupled atmosphere-ocean data assimilation system (Borovikov et al., 2018; Molod et 

al., 2020). Forecasts are provided to national and international multi-model prediction efforts, including the North American 

Multi-Model Ensemble (Kirtman et al., 2014). The skill of GEOS-S2S has been reported in various works, such as Gibson et 

al., (2020) who assessed the hindcast skill of representing ridging events over the Western United States in different S2S 

models and found the forecast horizon of GEOS-S2S to be comparable with other S2S models in the community. Recent 90 

GEOS-S2S system developments improved the representation of ocean temperatures and heat transport (Molod et al., 2020) 

and the retrospective forecast of climate indices, including the El Niño Southern Oscillation, North Atlantic Oscillation, and 

the Madden-Julian Oscillation, particularly at 1-to-3-month lead times (Molod et al., 2020; Lim et al., 2021). These 

improvements should contribute to enhancements in global hydrometeorological forecast skill in GEOS-S2S.  

 95 
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In this study, we examine the ability of GEOS-S2S forecasts to accurately predict near-surface air temperature, total 

precipitation, fractional snow cover area, snow water equivalent, surface soil moisture, and terrestrial water storage across 

the HMA region and a large portion of the Indian subcontinent at 1-, 2-, and 3-month lead times. These variables are directly 

relevant to the accurate prediction of water resources and processes critical to local populations. Evaluation and 

improvement of hydrometeorological forecast lead time can improve warning systems for natural hazards such as flooding or 100 

landslides and provide critical information for agricultural purposes (Bekaert et al., 2020; Stanley et al., 2020). However, the 

complex relationships among variables as well as the regional topography within HMA make S2S forecasting for this area 

challenging. Some of these variables, such as temperature or precipitation, are more difficult to accurately forecast at the S2S 

time scales compared to other variables because of their fast nature and low memory in the physical system. It is 

hypothesized there is higher forecast skill for the variables with longer temporal memory in the physical system, such as 105 

snow, soil moisture, or terrestrial water storage. Therefore, proper initialization of these variables can allow for longer-

lasting skill in the S2S forecasting system. 

 

The first objective of this work is to provide a benchmark of GEOS-S2S hydrometeorological forecast skill for the HMA 

region and across a large portion of the Indian Subcontinent. A second objective of the analysis is to determine potential 110 

areas of improvements in model initialization or more realistic representation in the model architecture, which can help 

enhance the forecast accuracy in future GEOS-S2S versions and extend the skillful forecast window of variables in the HMA 

region. The paper is organized as follows: Section 2 introduces the datasets and methods used in this study, Section 3 reports 

the results of the evaluation, Section 4 offers a discussion on the main findings, and Section 5 concludes with a summary of 

the paper. 115 

2 Data and Methods 

2.1 Region of Focus 

Here, we refer to “HMA” as the domain shown in Figure 1 and covering parts of China, Afghanistan, Pakistan, Nepal, 

Bhutan, India, Bangladesh, Myanmar, Kazakhstan, Uzbekistan, Kyrgyzstan, and Tajikistan and stretches across several 

mountain ranges, including the Himalayas, Inner Tibetan Plateau, Karakoram, and Hindu Kush. These mountains funnel 120 

fresh water into major river basins that support about 1.5 billion people, providing drinking water, irrigation, and 

hydropower (Immerzeel et al., 2020), including the Tarim, Indus, Yangtze, and Ganges/Brahmaputra basins. HMA has one 

of the highest concentrations of snow and glacier ice outside of the polar regions, making it an extremely important region to 

study and evaluate S2S forecasting of hydrometeorological variables. The HMA region we consider here includes areas of 

different topography, population density, and climate. For this reason, we split our domain into different subregions (shown 125 

in the boxes in Figure 1) that account for the different areas within HMA.  
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2.2 GEOS-S2S Prediction System 

We evaluate GEOS-S2S, version 2 (Molod et al., 2020); the GEOS-S2S forecasting system is an atmosphere-ocean general 

circulation model (AOGCM) and ocean data assimilation system. The AOGCM includes the GEOS atmospheric general 

circulation model (AGCM; Molod et al., 2015; Rienecker et al., 2008), the Catchment land surface model (Koster et al., 130 

2000), Version 5 of the Modular Ocean Model developed by the Geophysical Fluid Dynamics Laboratory (Griffies, 2012), 

and Version 4.1 of the sea ice model developed by the Los Alamos National Laboratory (Hunke & Lipscomb, 2008). GEOS-

S2S forecasts are initialized using a precomputed atmospheric analysis and ocean data assimilation (Penny et al., 2013). The 

system components are coupled using the Earth System Modeling Framework (Hill et al., 2004) and the Modeling Analysis 

and Prediction Layer interface layer (Suarez et al., 2007). 135 

 

The GEOS-S2S analysis uses a weakly-coupled atmosphere-ocean data assimilation system with a 5-day assimilation cycle. 

During the initial 5-day predictor segment, every 6 hours, the departure of model trajectory from observed ocean fields is 

determined and sea ice fraction is replaced with satellite-derived observations (Cavalieri et al., 1996). Following the 

predictor segment, the model is rewound and ocean analysis increments are applied during the first 18 hours of the 5-day 140 

corrector segment. During both segments, the atmosphere is nudged to a precomputed state and SST is strongly relaxed to 

MERRA-2 values to ensure that the ocean and atmosphere are as consistent as possible. A detailed description is in Molod et 

al., (2020). 

 

Forecasts are initialized from the GEOS-S2S analysis at the end of the corrector segment. During the retrospective forecast 145 

period (1981-2016), forecasts are initialized using an unperturbed lagged scheme, with unperturbed forecasts initialized 

every 5 days during the last half of each month for a total of four ensemble members. During the operational forecast period 

(2017-present), an additional 6 perturbed forecasts are initialized on the last forecast day of each month. All forecasts are 9 

months in duration, but, we focus here on the 4 ensemble members in the retrospective forecasts with 1-, 2-, and 3-month 

lead times. Retrospective forecasts, which are used in this study, are completed to provide a model climatology for use in 150 

probabilistic forecasting and provide a long period for forecast verification (Molod et al., 2020). GEOS-S2S forecasts have 

been used and evaluated in studies related to the Madden-Julian Oscillation (Lim et al., 2021), sea surface salinity and its 

impact on the El Niño Southern Oscillation (Hackert et al., 2020), the impact of volcano eruptions on surface temperatures 

and precipitation (Aquila et al., 2021), and others. 

 155 

The hydrometeorological variables of interest were obtained from the GEOS-S2S archive, and include: 2-m air temperature 

(T2M from the “surf” collection), total precipitation (PRECTOT from the “vis2d” collection), snow cover area fraction 

(ASNOW from the “vis2d” collection and called fSCA for the remainder of this paper), snow water equivalent (SNOMAS 

from the “vis2d” collection and called SWE for the remainder of this paper), soil moisture in the surface layer from 0-5 cm 
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(WET1 from the “vis2d” collection and SM for the remainder of this paper), and terrestrial water storage (TWLAND from 160 

the “surf” collection and ‘TWS’ for the remainder of this paper). The PRECTOT variable investigated here is total 

precipitation including rain and snowfall, i.e., PRECTOT = liquid + solid (total) precipitation. SM is calculated at each grid 

cell by scaling the WET1 variable with porosity. For grid cells that are frozen or are covered in snow, the soil moisture value 

is masked out as a no-data-value grid cell to focus on the warm season, following the work of De Lannoy and Reichle 

(2016). Simulated TWS includes soil moisture, snow, and the canopy interception reservoir, but not surface water (that is, 165 

lake and river water) or glaciers. Table 1 provides a list of these variables as represented in GEOS-S2S (Nakada et al., 2018), 

and the corresponding evaluation datasets, detailed in the following subsections. 

2.3 Evaluation Datasets 

The first product used here to evaluate the GEOS-S2S forecasts is the Modern-Era Retrospective analysis for Research and 

Applications, version 2 (MERRA-2; Section 2.3.1; Gelaro et al., 2017). MERRA-2 and GEOS-S2S output includes many 170 

compatible variables because the version of the GEOS AGCM in GEOS-S2S-2 is similar to the version used for the 

production of the MERRA-2 reanalysis.  

 

To further evaluate GEOS-S2S, we also use independent reanalysis and observational products (Table 1). To this end, for air 

temperature we use the fifth-generation atmospheric reanalysis from the European Centre for Medium-Range Weather 175 

Forecasts (ECMWF) reanalysis product (ERA5; Section 2.3.2; Hersbach et al., 2020). For precipitation, we use the Asian 

Precipitation Highly Resolved Observed Data Integration Towards Evaluation product (APHRODITE; Section 2.3.3; 

Yatagai et al., 2012). For snow cover, we use the Moderate Resolution Imaging Spectroradiometer (MODIS; Section 2.3.4; 

Hall et al., 2002) remotely sensed product. For SWE, we use the HMA Snow Reanalysis product (HMA-SR; Section 2.3.5; 

Margulis et al., 2019; Liu et al., 2021b). For soil moisture, we use the European Space Agency’s Climate Change Initiative 180 

data (ESA-CCI; Section 2.3.6; Dorigo et al., 2017). Lastly, for TWS, we use data from the NASA Gravity Recovery and 

Climate Experiment satellite mission (GRACE; Section 2.3.7; Tapley et al., 2004). We utilize information from different 

sources to make sure that evaluation results are not solely dependent on biases or uncertainties in a single reference product. 

The datasets used for evaluation in our study have their own biases and issues, particularly over the mountainous regions of 

our study. 185 

2.3.1 MERRA-2 

MERRA-2 is the most recent NASA global atmospheric reanalysis product and is generated using the GEOS atmospheric 

model and analysis (Gelaro et al. 2017). MERRA-2 output contains similar variables to GEOS-S2S and offers a rich product 

to apply systematic evaluation of the model forecasts. We obtain information from MERRA-2 on all the variables of interest 

listed in the previous section (Table 1) and for the same period (1981-2016; Bosilovich et al., 2016). The variables of interest 190 

include: 2-m air temperature (T2M from the “Single-Level Diagnostics” collection; GMAO 2015a), total precipitation 
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(PRECTOTCORR from the “Surface Flux Diagnostics” collection; GMAO 2015b), snow cover area fraction (FRSNO from 

the “Land Surface Diagnostics” collection and called fSCA for the remainder of this paper; GMAO 2015c), snow water 

equivalent (SNOMAS from the “Land Surface Diagnostics” collection and SWE for the remainder of this paper), soil 

moisture in the surface layer from 0-5 cm (GWETTOP from the “Land Surface Diagnostics” collection and SM for the 195 

remainder of this paper), and terrestrial water storage (TWLAND from the “Land Surface Diagnostics'' collection and TWS 

for the remainder of this paper). MERRA-2 uses observation-based precipitation data as forcing for the land surface 

parameterization (Reichle et al., 2017), which is available as part of the “Surface Flux Diagnostics”’ collection (GMAO 

2015b). This PRECTOTCORR variable in MERRA-2 is compared to the PRECTOT variable in the GEOS-S2S forecasts, 

and similarly it contains both liquid and solid precipitation (rainfall + snowfall). Like GEOS-S2S, SM is calculated at each 200 

grid cell by multiplying the GWETTOP variable with porosity. 

2.3.2 ERA5 2-m Air Temperature 

For our study, we obtain information on T2M from ERA5. ERA5 covers the period from January 1950 to present and is 

available from the Copernicus Climate Change Service at ECMWF. ERA5 embodies a detailed record of the global 

atmosphere, land surface and ocean waves (Hersbach et al., 2020). The surface analysis in ERA5 ingests station observations 205 

of T2M where available and under suitable, warm-season conditions (De Rosnay et al., 2014). For times and locations where 

T2M observations are assimilated, the ERA5 T2M estimates are therefore closer to observations. In HMA, however, this is 

not necessarily the case, owing to the topographically complex terrain and generally colder conditions.   

2.3.3 APHRODITE Precipitation 

APHRODITE’s gridded precipitation is a set of long-term, continental-scale, daily products that is based on a dense network 210 

of rain-gauge data for Asia. The data include information for many regions, including the Himalayas, South and Southeast 

Asia and mountainous areas in the Middle East from January 1951 until December 2015. We obtain information on the total 

precipitation from APHRODITE (version V1901; Yatagai et al., 2012) in our evaluation, which we utilize as the alternative 

observation for precipitation. The data are aggregated from daily to monthly time steps, and regridded from 0.05° to 0.5° 

resolution to match the model grid. There was no further quality control done on the data since this was already conducted 215 

by the data provider (Maeda et al., 2020). 

2.3.4 MODIS Snow Cover Area 

MODIS MOD10C1 Version 6 provides the daily (~10:30am local time) percentage of snow-covered land and cloud-covered 

land on the MODIS Climate Modeling Grid (posted at 0.05°; Hall and Riggs, 2016a). The MOD10C1 CMG dataset is 

generated from the Normalized Difference Snow Index snow cover of MOD10A1 (Hall and Riggs, 2016b) by mapping the 220 

500 m MOD10A1 observation types (snow, snow-free land, cloud, etc.) to 0.05° bins. Snow and cloud cover percentages are 

derived by calculating the ratio of 500 m snow and cloud cover observations to the total number of 500 m land observations 
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within each CMG grid cell. MOD10C1 also has basic quality assurance flags; data with a quality assurance flag other than 0, 

1 or 2 was not used in this analysis. Daily data between February 2000 and December 2016 are averaged to create monthly 

mean snow cover percentages.  225 

2.3.5 HMA-SR Snow Water Equivalent 

The HMA-SR assimilates Landsat- and MODIS-derived fractional snow-covered area to derive seasonal snow water 

equivalent in HMA where in situ data are limited (Margulis et al., 2019; Liu et al., 2021b). The method is a probabilistic data 

assimilation version of a snow reconstruction approach (Girotto et al., 2014), where SWE information is retrieved from the 

accumulation of melt events driven by energy forcings (i.e., downscaled global datasets for forcing a snow model) and 230 

observed snow cover area disappearance. The data product provides snow depth as well as SWE estimates from October 

1999 to September 2017. The data are aggregated from daily to monthly time steps, and regridded from 16 arc-seconds 

(~0.0044°) to 0.5° resolution to match the model grid. We used a non-seasonal snow mask to exclude grid cells with 

permanent snow and ice from the evaluation (Liu et al., 2021a). 

2.3.6 ESA-CCI Soil Moisture 235 

The ESA-CCI Programme on Global Monitoring of Essential Climate Variables produces an updated soil moisture product 

every year (Dorigo et al., 2017; Gruber et al., 2019; Preimesberger et al., 2020). The ESA-CCI SM product comprises of 

active, passive, and combined microwave satellite soil moisture datasets from 1978 to 2020. In this study, information on 

soil moisture in the surface layer from ESA-CCI (version 6.1) is utilized. While the contributing data products represent soil 

moisture at varying sensing depths depending on their characteristics (active/passive sensor, measurement frequency, etc),  240 

the merged ESA-CCI SM dataset is representative of the top ~0-5 cm of the soil. There are gaps in the original ESA-CCI 

data due to the quality control applied during post-processing, such as areas that are masked out for ice and snow (different 

time steps will have different masks applied). Furthermore, the product quality changes over time with the number and type 

of sensors integrated into the product, with more recent retrievals being generally of higher quality. 

2.3.7 GRACE Terrestrial Water Storage 245 

From 2002 to 2017, NASA's twin Gravity Recovery and Climate Experiment (GRACE) satellites monitored large-scale 

water storage changes all over the globe (Tapley et al., 2004; Rodell et al., 2009; Famiglietti et al., 2011; Massoud et al., 

2018, 2021, 2022). GRACE provided estimates of global mass change at monthly resolution and at a relatively coarse spatial 

resolution (~300 km).  Information on TWS from GRACE captures the dynamic signature of all water sources on the 

ground, such as surface reservoirs, lakes, rivers, glaciers, canopy water, soil moisture, snow, and groundwater. For our study, 250 

we utilize the GRACE mascon product (Loomis et al., 2019b), available from April 2002 - present.  
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2.4 Forecast Evaluation 

For the evaluation of all variables with MERRA-2, we use monthly averaged forecasts from 1981-2016. For the verification 

with the reference data products, we also utilize monthly averaged data, yet the time periods differ for each of the reference 

data products, depending on the availability and quality of the reference data. The length of record of each data product used 255 

is indicated in Table 1. 

2.4.1 Calculating Climatologies and Anomalies 

S2S forecasts can be assessed based on anomaly skill, i.e., the departure from expected normal conditions for a particular 

month (Kirtman et al., 2014). For this study, we remove the forecast climatology (i.e., the long-term mean value for each 

calendar month throughout the length of the available data record) for all analyzed variables. For an example of how this is 260 

estimated, consider the calculation of the 1-month lead anomaly that is initialized in January and has a forecast in February. 

For this, we take all the 1-month lead forecasts for February between 1981-2016 and calculate their mean. This climatology 

will be subtracted from the forecast of February conditions that were initialized in January (i.e., 1-month lead), to determine 

the anomaly for that forecast. The same procedure is applied on the 2-month and 3-month forecasts to develop their 

respective anomalies. For the evaluation datasets, monthly climatologies were created using the time intervals defined in the 265 

previous sections and Table 1 and subtracted from each respective dataset. 

2.4.2 Regridding and Masking 

All the data products listed above are remapped to a half degree resolution to match the grid size of the GEOS-S2S forecasts. 

For the case of higher-resolution data, such as MODIS (0.05 degree), the aggregation was done by computing the average 

across all the grid cells within each half degree grid cell in GEOS-S2S. For products with lower resolution, such as GRACE 270 

(1 degree posting), the data were re-gridded to half degree grids using bilinear interpolation. Furthermore, all the data is 

aggregated to monthly averages to facilitate the temporal comparisons with the S2S forecasts. There are cases where grid 

cells were excluded from the analysis for reasons such as availability or quality of the data. These excluded data were 

removed in the calculation of the evaluation metrics, which are described in the next section. 

2.4.3 Evaluation Metrics 275 

For evaluating the 1-, 2-, and 3-month forecasts from GEOS-S2S, we use the monthly anomalies from each data set (section 

2.4.1) and estimate the unbiased Root-Mean-Square-Error (ubRMSE) as well as the anomaly correlation (Ranom) between the 

model forecasts and the reference data. For the remainder of this paper, we use ubRMSE to refer to the error and we use 

Ranom to refer to the correlation of the S2S forecasts. 

 280 

The ubRMSE score is calculated as the RMSE of the anomaly forecasts from all grid cells and at all timesteps, as follows: 
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𝑢𝑏𝑅𝑀𝑆𝐸 = 	1/√𝑛 	∗ 	.		∑!,#,$ 	[	𝐺𝐸𝑂𝑆. 𝑆2𝑆%&'((𝑥, 𝑦, 𝑡) −	𝑅𝑒𝑓. 𝐷𝑎𝑡𝑎%&'((𝑥, 𝑦, 𝑡)	]) 	, (1) 

where 𝐺𝐸𝑂𝑆. 𝑆2𝑆!"#$  is the forecast anomaly from the S2S system at location (x,y) and at time (t), 𝑅𝑒𝑓. 𝐷𝑎𝑡𝑎!"#$ 

represents the respective anomaly of the reference data product used for the evaluation, and 𝑛 represents the number of 

elements in the calculation, which is a product of the number of grid cells and the number of time steps. For evaluation 285 

estimates that include masked-out grid cells, n is reduced to represent the total number of elements that are accounted for in 

the calculation. 

 

The Ranom score is calculated as the correlation of the anomaly of the S2S forecasts with the anomaly of the verification data. 

This score is estimated using the ‘corrcoef’ function in MATLAB  (Press et al., 1992), which also provides upper and lower 290 

limits that can be used for estimating the error bars around the correlation estimate. We report the error bars around the Ranom 

score by representing the interquartile range of the anomaly correlation from all the considered grid cells. The equation for 

the Ranom score used here is as follows: 

𝑅%&'( = 	1/(𝑛 − 1) 	∗ 	∑ (*+,-.-)-%&'((!,#,$)	
2)*+,

)(345.6%$%%&'((!,#,$)	
2-%.%

)&
789 , (2) 

where 𝜎/012 and 𝜎3!4! are the standard deviation of the S2S forecasts and the evaluation data sets, respectively.  295 

In this study, we also report on the ensemble spread of the GEOS-S2S forecasts. For estimating the ensemble spread for the 

S2S forecasts, we calculate the standard deviation of the ensemble members from GEOS-S2S for each grid cell and at each 

monthly time step. The ensemble spread estimated here is lead-time dependent. Since there are only 4 ensemble members at 

each time step and for each grid cell, the ensemble spread can be rather noisy. Therefore, we estimate the ensemble spread as 

the long-term mean of the standard deviation of the ensemble members at each grid cell. This helps reduce noise in the 300 

ensembles. 

3 Results 

In this section, we report the results of the evaluation, showing the skill of the GEOS-S2S hydrometeorological forecasts for 

the HMA region. For reference, Table 2 lists the ubRMSE and the Ranom for all variables when comparing the S2S forecasts 

to the reanalysis (MERRA-2, Section 2.3) and the reference data products (Section 2.4). Further discussion of the results is 305 

provided in Section 4. 

3.1 Difference in Skill Among Variables and Forecast Lead Times 

Table 2 and Figure 2 show the anomaly correlation for each variable and for each lead time considered, along with the error 

bars for each anomaly correlation assessment. The red error bars in Figure 2 indicate the spatial standard deviation of the 

anomaly correlation for each variable. The results indicate that across all variables, the forecast skill at 1-month lead is 310 
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higher than at 2-month lead, which is higher than at 3-month lead. For example, for T2M, the 1-month forecast anomaly 

correlation when compared to MERRA-2 is Ranom=0.24, for the 2-month forecast it is 0.13, and for the 3-month forecast it is 

0.11. And when compared to ERA5, the 1-month forecast anomaly correlation for T2M is Ranom=0.19, for the 2-month 

forecast it is 0.13, and for the 3-month forecast it is 0.10. Higher anomaly correlation for forecasts with shorter lead time is 

seen regardless of which data product was used for the evaluation, which is aligned with other studies that evaluate S2S 315 

forecasts (e.g., Deflorio et al., 2019; Molod et al., 2020).  

 

When comparing the S2S forecasts to MERRA-2, the variables with longer memory in the physical climate system, such as 

SM or TWS, have higher accuracy in the S2S forecasting system compared to variables that represent more quickly 

changing processes, such as T2M or PRECTOT (Figure 2a). When the reference data products are used in the evaluation 320 

(Figure 2B), results show that there is little evidence that variables with longer memory have higher forecast accuracy, since 

there is similar skill for forecasting most variables; for example, when evaluated against reference data the range of Ranom for 

all variables in the verification results is 0.13 to 0.24 for the 1-month lead forecasts.  

 

Figure 3 shows the S2S forecast evaluation based on different subregions within the HMA domain. In Figure 3A-B, the 325 

ubRMSE of each box is normalized by the absolute value of the climatological mean of that climate variable in that region, 

then it is normalized again by all the skill values for that climate variable. For example, the ubRMSE of the West region 1-

month forecast for T2M is divided by the absolute value of mean T2M in the West region (this is done to eliminate the 

impact of the magnitude of each climate variable in each region), then this is compared with each of the other normalized 

ubRMSE values of T2M for all subregions and all lead times (this is done to get a sense of which regions have more or less 330 

skill in their forecasts compared to the other regions). So in these figures, if a box is blue (red), that climate variable in that 

subregion for that lead time has a lower (higher) normalized error when compared to that same climate variable in other 

subregions and lead times. These figures show that, for example, most variables in the East region (Inner Tibetan Plateau) 

have a lower normalized error when compared to the other regions. Conversely, nearly all the variables in the South region 

(India) have a higher normalized error than other regions. Then, in Figures 3C-D, we show the original ubRMSE values for 335 

each subregion at all lead times, separated by climate variable. In these figures, errors can be compared for each region. For 

instance, fSCA and SWE have the highest error in the West region (Karakoram and Hindu Kush). Also, PRECTOT, SM, and 

TWS have the lowest error in the East (Inner Tibetan Plateau) region.  

3.2 Annual Cycles 

Figure 4 shows the annual cycle, averaged over HMA, of all data products considered in this study. For T2M (Figure 4A), 340 

the GEOS-S2S forecasts, MERRA-2, and ERA5 all have very similar annual cycles; this is persistent across lead times. The 

peak of the T2M annual cycle occurs during the summer months (June, July, August) reaching 290-295 K, and the low 

occurs during the winter months (December, January February) dropping to 273-275 K. GEOS-S2S PRECTOT forecasts 
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(Figure 4B) have a wet bias compared to the MERRA-2 and APHRODITE products across nearly the entire annual cycle. 

The peak of all products occurs in the summer months (JJA) reaching ~4-4.5 mm day-1 for the S2S forecasts and 3.5-4 mm 345 

day-1 for the evaluation products, and a low in the winter months (NDJF) dropping to 0.5-0.75 mm day-1 for the S2S 

forecasts and 0.25-0.5 mm day-1 for the evaluation products.  

 

GEOS-S2S fSCA forecasts have more snow cover compared to the MERRA-2 and MODIS products, with a consistently 

higher mean and amplitude in the S2S forecasts (Figure 4C).  As expected, the peak of all fSCA products occurs in the 350 

winter months (DJF) and the low in the summer months (JAS), however the magnitude and amplitude are different between 

the products. The peak fSCA in the S2S forecasts reaches ~0.23-0.25 and the low is about 0.05 for the S2S forecasts, and for 

the evaluation products the peak is only about 0.1-0.15 with lows that are less than 0.03. Furthermore, the annual cycle of 

fSCA in MERRA-2 is consistently the lowest out of all the products. For SWE (Figure 4D), the GEOS-S2S forecasts have a 

different annual mean and amplitude for the various lead times and in comparison to the evaluation products. The peak SWE 355 

in the S2S forecasts occurs in the spring months (March and April), reaching a high of about 0.02 m for the 1-month lead 

forecasts, 0.025 m for the 2-month lead forecasts, and 0.03 m for the 3-month lead forecasts. For the HMA-SR product, the 

seasonality has a higher amplitude and magnitude, reaching a peak of ~0.03 m in the spring months. For MERRA-2, the 

annual cycle of SWE is consistently lower compared to the other products, reaching a peak of ~0.005 m in February. All 

products show a minimum SWE of less than 0.005 m in the summer months.  360 

 

For SM, the annual cycle of the GEOS-S2S forecasts is like that of the MERRA-2 product but is substantially different from 

the annual cycle of the ESA-CCI data (Figure 4E). The peak SM in the S2S forecasts occurs in the fall (~October) and 

reaches ~0.25 m3 m-3 and the low occurs in the spring (around May) and drops to about 0.12 m3 m-3. This is similar in 

MERRA-2, with a peak of just over 0.2 m3 m-3 that occurs in November and a low of just under 0.15 m3 m-3 that occurs in 365 

May. For the ESA-CCI, the peak SM reaches ~0.27 m3 m-3 and is observed in the summer months (JJAS) and the low drops 

to 0.17 m3 m-3 and is observed in the early spring (March). Similarly, for TWS (Figure 4D), the annual cycle of the GEOS-

S2S forecasts is like that of the MERRA-2 product but is substantially different from the annual cycles of the GRACE data. 

The peak of the TWS anomaly in the S2S forecasts and in MERRA-2 occurs in the late summer (ASO) and reaches ~0.05 m 

and the low occurs in the spring (April and May) and drops to about -0.02 m. For GRACE, the peak TWS reaches a high of 370 

0.05 m in the summer (JJA) and drops to a low of -0.05 m in the spring (March-April). Therefore, there is a 1–2-month 

temporal lag as well as a difference in the mean and amplitude of the annual cycles of the different products of SM and TWS 

between the various products considered. 

3.3 Error by Forecast Month 

The S2S forecast skill depends on various factors, such as the lead time or the variable of interest. Our results in Figures 5 375 

and 6 show that skill also depends on the month that is forecasted. We observe this behavior in GEOS-S2S when compared 
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to both MERRA-2 (Figure 5) and reference data products (Figure 6). Note, the y-axes in Figures 5 and 6 are different so that 

the seasonality in each figure is properly portrayed. Figures 5 and 6 show the area-averaged error based on the forecast 

month of interest for each variable. As an example, the three bars for the month of April include the 1-month, 2-month, and 

3-month forecasts, which are the forecasts initialized in March, February, and January respectively. These results can be 380 

suitable for those interested in understanding the errors of a forecast for a specific month, say April, using forecasts that were 

made 1 to 3 months prior.  

 

We find that GEOS-S2S forecasts of T2M have less skill in the winter season with ubRMSE greater than 2 K around 

February and more skill in the summer season with ubRMSE of less than 1.5 K around August (Figures 5A and 6A). Errors 385 

in the precipitation forecasts are higher in the summer (July-August) compared to the winter months (December-January), 

with ubRMSE that is greater than 2 mm day-1 in the summer and less than 0.5 mm day-1 in the winter (Figures 5B and 6B).  

 

For the snow variables, forecasts of fSCA have higher errors in the winter season (December-February) with ubRMSE close 

to 0.1, and less error in the summer season (July-August) with ubRMSE of less than 0.01 (Figures 5C and 6C). For SWE, 390 

results are different when comparing the S2S forecasts with MERRA-2 and with the HMA-SR product. Figure 5D shows 

that when comparing the S2S forecasts of SWE to MERRA-2, there are higher errors in the spring (March-April) with 

ubRMSE of 1-1.5 cm and lower errors in the summer (August-September) with ubRMSE of less than 0.1 cm, with the 

forecast lead time impacting the amount of error. Yet, Figure 6D shows that when comparing the S2S forecasts of SWE to 

the HMA-SR product, there are higher errors in the summer months (July-August) with ubRMSE of 4 cm and lower errors in 395 

the fall (October-November) with ubRMSE close to 1 cm.  

 

Errors in the SM forecasts are higher in the summer (July-August) compared to the winter months (February-April), with 

ubRMSE values up to 0.03 m3 m-3 in the summer and as low as 0.01 m3 m-3 in the winter and spring (Figures 5E and 6E), and 

with the forecast lead time impacting the magnitude of error. For TWS forecasts, results are different when comparing the 400 

S2S forecasts with MERRA-2 and with the GRACE data. Figure 5F shows that when comparing the S2S forecasts of TWS 

to MERRA-2, there are higher errors in the summer (around August) with ubRMSE that is over 4 cm and lower errors in the 

winter (around February) with ubRMSE as low as 2 cm, with the forecast lead time impacting the magnitude of error. Yet, 

Figure 6F shows that when comparing the S2S forecasts of TWS to the GRACE data, there are higher errors in the spring 

months (around April) with ubRMSE greater than 15 cm and lower errors in the winter (around February) with ubRMSE 405 

below 10 cm. 

3.4 Spatial Patterns: Climatology, Ensemble Spread, and Forecast Error 

This section focuses on the spatial aspect of the evaluation. Figures 7-12 show, for each variable, the GEOS-S2S ensemble 

mean climatology (1981-2016), the ensemble spread, the ubRMSE versus MERRA-2, and the ubRMSE versus the reference 
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data products. The top rows of these figures show the results for the 1-month forecasts, and the middle and bottom rows 410 

show the differences in the 2-month and 3-month forecasts with respect to the 1-month forecasts. 

3.4.1 Evaluation of Temperature and Precipitation 

As expected, T2M is generally higher at lower elevations, for example in India and Pakistan, and it is much cooler in the 

mountains and at higher elevation, for example in the Himalayas and the Inner Tibetan Plateau (Figure 7A). The ensemble 

spread of T2M (Figure 7B) is low compared to the ubRMSE (Figure 7C and 7D), indicating that most ensemble members 415 

forecast similar T2M values. The ubRMSE is larger in regions where the spread is higher, indicating that the spatial patterns 

of the ensemble spread and ubRMSE are similar. The ubRMSE values relative to MERRA-2 and ERA5 show a similar 

magnitude throughout most of the domain, with ubRMSE values of up to ~3 K (Figure 7C and 7D). However, for the Inner 

Tibetan Plateau, there is more agreement with MERRA-2 (ubRMSE of ~2 K) than with the ERA5 product (ubRMSE of ~3 

K). The 2-month (Figure 7E) and 3-month (Figure 7I) forecasts show a progressively warmer Indian subcontinent but are 420 

cooler in the remainder of the domain compared to the 1-month forecast. Furthermore, the ensemble spread (Figure 7F and 

7J) and ubRMSE (Figure 7G, 7H, 7K, and 7L) generally increase with increasing lead times, except for the Pakistan region. 

Notably, the increase in ensemble spread and error with increasing lead time is greatest in India and less pronounced for the 

Tibetan Plateau. These results reinforce the findings from Figure 3 that show the evaluation based on subregions.  

 425 

The mean climatology of precipitation is much wetter in parts of the domain with higher gradients of elevation, with greater 

than 15 mm day-1 in the mountain ranges (e.g., Himalayas) and less than 5 mm day-1 for other parts of the domain (Figure 

8A). Furthermore, for these same regions, the ensemble spread of PRECTOT is also much higher compared to other parts of 

the domain (Figure 8B), with a mean ensemble spread up to 6 mm day-1. The comparisons with MERRA-2 (Figure 8C) and 

APHRODITE (Figure 8D) both show a similar magnitude of error throughout most of the domain. The largest errors in 430 

PRECTOT forecasts are in the Indian subcontinent and in the Himalayas (ubRMSE up to 5 mm day-1). This result matches 

the spatial interpretation of the subregion analysis shown in Figure 3C-D. The 2-month (Figure 8E) and 3-month (Figure 8I) 

forecasts show a drier Indian subcontinent and are somewhat wetter in regions with high elevation when compared to the 1-

month forecast. This difference tends to propagate to other variables shown in later figures, i.e., higher fSCA and SWE 

values in the mountains and lower SM and TWS values in the Indian subcontinent for 2- and 3-month compared to 1-month 435 

forecasts. Furthermore, the ensemble spread is generally higher in the mountain regions and lower over the Indian 

subcontinent with increasing lead time (Figure 8F and 8J). For the error in precipitation, there are regions with higher error 

in forecasts with longer lead times, such as in India, and other regions where the error is lower with longer lead times, such 

as in Southeast Asia (Figure 8G, 8H, 8K, and 8L). 
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3.4.2 Evaluation of Snow Cover Area and Snow Water Equivalent 440 

Snow cover is generally only found in the regions of the domain with high elevation (Figure 9A), and there is much more 

snow-covered area in the north-western parts of the domain (e.g., Hindu Kush and Karakoram). The ensemble spread of 

fSCA (Figure 9B) is high for much of the domain where there is snow cover, including the Himalayas and the Inner Tibetan 

Plateau. The 2-month (Figure 9E) and 3-month (Figure 9I) forecasts show higher amounts of fSCA for much of the domain 

compared to the 1-month forecasts (Figure 9A), which could be attributed to the fact that at longer lead times the forecasts 445 

are colder and wetter at higher elevations (Figures 7-8 panels A, E, and I). The comparison with MERRA-2 (Figure 9C) and 

MODIS (Figure 9D) both show that errors are present where there is snow cover, where the grid cells that have no snow 

cover are masked out. This result matches the spatial interpretation of the subregion analysis shown in Figure 3C-D. The 

error compared to MERRA-2 (ubRMSE close to 0.2) is noticeably higher than the error compared to MODIS (ubRMSE 

close to 0.1), especially for regions with high fSCA. This shows that GEOS-S2S fSCA is closer to what is shown in MODIS 450 

than to the MERRA-2 product, which supports the results from Figure 4C. Additionally, the ensemble spread (Figure 9F and 

9J) and the forecast errors (Figure 9G, 9H, 9K, and 9L) generally increase in the mountain regions with increasing lead time.  

 

Similarly, the mean climatology of SWE (Figure 10A) indicates that snow is present in the regions of the domain with high 

elevation, specifically in the major mountain ranges. Consequently, the ensemble spread of SWE (Figure 10B) is also high in 455 

these locations (mean spread up to 0.05 m) and very low elsewhere in the domain (mean spread less than 0.01 m). The 2-

month (Figure 10E) and 3-month (Figure 10I) forecasts show higher amounts of SWE in the major mountain ranges, which 

again could be attributed to the fact that at longer lead times the forecasts are colder (Figure 7E and 7I) and wetter (Figure 

8E and 8I) in regions with high elevation gradients. The ubRMSE maps vs. MERRA-2 (Figure 10C) and HMA-SR (Figure 

10D) show that errors are higher where there is more snow, which is expected. Again, this result matches the spatial 460 

interpretation of the subregion analysis shown in Figure 3C-D. Here, the error compared to HMA-SR is considerably higher 

(ubRMSE up to 0.1 m) than the error compared to MERRA-2 (ubRMSE up to 0.04 m), especially for regions with high 

SWE. And like fSCA, the ensemble spread (Figure 10F and 10J) and the forecast errors (Figure 10G, 10H, 10K, and 10L) 

are generally higher with increasing lead times, particularly in the major mountain ranges. 

3.4.1 Evaluation of Soil Moisture and Terrestrial Water Storage 465 

The mean climatology of SM (Figure 11A) shows that soil moisture is high in India and Southeast Asia (~0.4 m3 m-3) and is 

low in the western and northern parts of the domain (~0.1 m3 m-3). There are lower SM values for forecasts with increasing 

lead times for the Indian subcontinent (Figure 11E and 11I). This could be attributed to the fact that at longer lead times the 

forecasts are hotter (Figure 7E and 7I) and have less precipitation (Figure 8E and 8I) across the Indian subcontinent. 

However, for Myanmar and Southeast Asia, longer lead times produce higher SM values. The ensemble spread of SM 470 

(Figure 11B) is lower for the 1-month forecasts and increases in magnitude for longer lead times (Figure 11F and 11J). The 
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ubRMSE maps vs. MERRA-2 (Figure 11C) and ESA-CCI (Figure 11D) report higher errors over regions with higher soil 

moisture values (ubRMSE of up to 0.06 m3 m-3). This result matches the spatial interpretation of the subregion analysis 

shown in Figure 3C-D. Furthermore, the error increases with lead time (Figure 11G, 11H, 11K, and 11L), especially in India 

when compared to MERRA-2 (Figure 11G and 11K). However, when compared to ESA-CCI, the forecast error decreases 475 

with lead time for the western and northern parts of the domain (figure 11H and 11L). Additional data gaps are shown in 

these figures due to snow covered and frozen grid cells being masked out in the S2S forecasts and due to quality control 

applied during post-processing of the ESA-CCI product.  

 

The mean climatology of TWS (Figure 12A) shows that water storage is higher in Myanmar and Southeast Asia and is lower 480 

in the other parts of the domain. The ensemble spread of TWS (Figure 12B) is higher in the regions with high elevation 

gradient (e.g., Himalayan Mountain range). Additionally, the spread of TWS is lower for the 1-month forecasts and increases 

in magnitude with lead time (Figure 12F and 12J). The evaluation of GEOS-S2S forecasts of TWS show that the forecasts 

are much closer to MERRA-2 (Figure 12C, ubRMSE less than 0.1 m) than to GRACE (Figure 12D, ubRMSE up to 0.3 m). 

The errors compared to GRACE are 3-4 times higher in many regions, especially for the Indian subcontinent, Myanmar, and 485 

Southeast Asia (Figure 12D). Again, this result matches the spatial interpretation of the subregion analysis shown in Figure 

3C-D. When compared to MERRA-2, forecasts with longer lead time (Figure 12G and 12K) have higher errors, yet when 

compared to GRACE, there is no consistent change in the error with longer lead times (Figure 12H and 12L), with some 

regions such as in India having less error with longer lead times. 

4 Discussion 490 

4.1 Role of Model Initialization and Hydrologic Persistence 

S2S forecasting for HMA is in its infancy. Skill has historically been somewhat low and, as shown in our results, certain 

variables have high forecast skill while others are more difficult to forecast. When comparing the S2S forecasts with 

MERRA-2, Figures 2A and 3A show that the snow variables, SM, and TWS have relatively higher skill at early lead time (1-

month), and for SM and TWS, this skill can persist for forecasts at longer lead time (2-3 months). This could be because 495 

GEOS-S2S and MERRA-2 have similar land conditions during initialization, both modeling systems are quite similar, and 

because these variables have longer persistence and memory in the physical system. When evaluating the S2S forecasts 

against MERRA-2, forecast skill is highest in long-memory variables (snow and soil moisture related) and lower in near 

surface atmospheric variables (T2M and precipitation). In all instances, forecast skill decreases rapidly with increasing 

forecast lead time. When comparing the S2S forecasts with reference data products (Figures 2B and 3B), the decline in 500 

forecast skill across lead times is slower and the anomaly correlations are not consistently statistically different across lead 

times. 
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Another reason that could explain the skill in certain variables is the role of better land surface initial conditions. For 

example, fSCA, SWE, SM, and TWS vary more slowly compared to T2M or PRECTOT, and their initial conditions play an 505 

important role in the skill of 1-month forecasts. This can be inferred in our results. For example, in Figure 2A the forecast 

skill relative to MERRA-2 is higher for these variables, perhaps due to similar initialization in the GEOS-S2S and MERRA-

2 systems. However, in Figure 2B, the forecast skill relative to the reference data products is not as high. Furthermore, in a 

more regional sense, it is possible that improvements in model initialization for SWE and SM may translate to improvements 

in forecast skill for the West and East subregions (Karakoram and Inner Tibet Plateau); the evidence for this is shown in 510 

Figure 3AB where higher skill can be seen in the 1-month forecast for SWE and SM for these regions when evaluated 

against MERRA-2 compared to the evaluation against the other observations. Enhancements in forecast skill due to 

improved model initialization for these processes with slower temporal dynamics has been shown in other studies as well 

(Getirana et al., 2020; Zhou et al., 2021). Therefore, forecast skill in shorter memory variables (T2M, PRECTOT) may 

increase with improvements in resolution and process representation, and gains in forecast skill for longer memory variables 515 

(fSCA, SWE, SM, and TWS) may be achieved with improved land surface initial conditions, and if successful, increased 

forecast skill in 1-month lead time can propagate through to longer leads. 

4.2 Reliability of S2S Forecasts 

Other than looking at the forecast error to determine whether a forecast was skillful or not, the spread of the forecast 

ensemble is another metric that gives indication of reliability when preparing for impacts of weather events. For instance, a 520 

smaller spread in the S2S forecasts for a given region might be an indication of higher skill for that variable in that region. 

The results shown in this study, such as those in Supplementary Figures S1-S3, provide a benchmark of information 

regarding the forecast skill as well as the ensemble spread in the GEOS-S2S seasonal forecasts. Generally, one can compute 

the spread/error ratio with the goal of that being close to 1; if it is larger than 1 (more spread than error) this is considered 

“underconfident”, and if it is less than 1 this is considered “overconfident” (Fortin et al., 2014). For the reliability plots in 525 

Figures S1-S3, almost all the maps are blue, indicating that the forecasts are overconfident, meaning there is a smaller spread 

compared to what the error is. However, for SM (Figure S3) this is the opposite, with red indicating that the forecasts are 

underconfident, meaning there is a larger spread compared to what the error is. Furthermore, for PRECTOT, fSCA, and 

SWE (Figures S1-S2), there are regions in the Karakoram, Himalayas, and Inner Tibetan Plateau that also show red, 

indicating that the forecasts are underconfident. Is it important to note, however, that there are limitations to using this 530 

reliability metric, including the fact that one can have a "perfect" ensemble prediction system with low correlation between 

skill and spread (c.f., Hopson 2014), in which case the reliability of the forecasts would be difficult to capture. 
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4.3 The Role of Model Characteristics 

4.3.1 Resolution 

For parts of the domain with high elevation and high topographic variability, many of the variables including PRECTOT, 535 

fSCA, SWE, and TWS had large errors (Figures 8C-D, 9C, and 10D) as well as large ensemble spreads (Figures 8B, 9B, 

10B, and 12B). This is an indication of the difficulties of accurately forecasting climate for regions of high elevation and 

complex topography. This could be because of the coarse spatial resolution of the GEOS-S2S simulations with topography 

posted at a 0.5-degree resolution (i.e., ~ 50 km). The topographic smoothness in the model can impact the simulations in 

various ways, such as limited orographic effects or issues associated with the formation and propagation of weather events. 540 

To confirm this argument, Cannon et al., (2017) discussed the effects of topographic smoothing on the simulation of winter 

precipitation in HMA and found that precipitation distributions in topography that is represented in experiments with coarser 

resolution are biased relative to a simulation with more realistic topography. Furthermore, Zhou et al., (2021) used optimized 

land initial conditions from GEOS-S2S, and they were able to downscale outputs of soil moisture to 5 km resolution and 

assess the forecast time horizon out to 9 months. Therefore, resolution can have a contribution to forecast skill, and it is 545 

possible that improved resolution in the S2S forecasts can help to enhance the forecast skill of certain variables.  

4.3.2 Seasonality: Representing the Monsoon and Other Atmospheric Processes  

S2S forecast skill largely depends on getting the seasonal signature in the forecasting system correctly. In our results, there 

are seasonal patterns in the GEOS-S2S forecast skill (Figures 4-6), and the simulated seasonality and the annual cycle of the 

hydrometeorological variables is generally well captured. For example, T2M and PRECTOT errors vary in relation to the 550 

Indian monsoon season (JJAS). Precipitation error tends to increase in these months (Figure 5B and 6B) due to higher 

amounts of precipitation and because monsoon representation in the S2S system is not ideal. T2M error decreases in these 

months (Figure 5A and 6A) because air temperature is most strongly related to ENSO during the monsoon season (Zhou et 

al., 2019) and GEOS-S2S tends to capture ENSO rather well (Molod et al., 2020; Hackert et al., 2020; Lim et al., 2021). In a 

regional sense, Figure 3AB show that errors in precipitation are generally higher for the South subregion, possibly due to the 555 

difficulties of accurately forecasting monsoon activity, which can impact precipitation in the Indian subcontinent more than 

other surrounding regions. For snow variables, fSCA and SWE have low errors when snow is low during the warmest 

months (Figure 5CD and Figure 6C). An exception is shown in Figure 6D, where forecast errors for SWE are higher during 

the warm months and lower in the fall, which could be due to the forecasts accumulating SWE more rapidly in the S2S 

system than what is shown in the HMA-SR reanalysis product. Another explanation for this could be the role of westerly 560 

disturbances, which bring enhanced precipitation during the winter months for the west and northern parts of HMA (Cannon 

et al., 2016), where in our analysis the precipitation forecasts for these regions are underconfident (Figure S1) and larger 

errors for fSCA (Figure 3CD and Figure 9CD) and SWE (Figure 3CD and Figure 10CD) can be expected in these regions. 

For SM and TWS, error patterns in Figure 5EF and Figure 6EF may be related to monsoon representation in the S2S system, 
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but the errors can also be associated with the observational difference in the seasonal cycles shown in Figures 4E and 4F. 565 

Overall, improving the representation of monsoon and westerly dynamics in GEOS-S2S may improve forecast skill, 

particularly during and following the monsoon season. 

 

Our results confirm those from recent studies, such as Deoras et al. (2021), who compared the predictions of the Indian 

Monsoon low pressure system in various S2S prediction models on a time scale of 15 days to ERA-Interim and MERRA-2 570 

reanalysis data. Their study found that most models were able to predict basic features, however all S2S models 

underestimate the frequency of the low-pressure systems and that precipitation biases increased with forecast lead time. Hsu 

et al. (2021) simulated the East Asian winter monsoon on S2S timescales for 45-day hindcasts using the Model for 

Prediction Across Scales (MPAS). Their evaluation results revealed that MPAS can simulate the climatological 

characteristics of the monsoon reasonably, with a surface cold bias for temperature and a positive rainfall bias over East 575 

Asia. However, they also found that a biased sea surface temperature may modify the circulation over the Western Pacific 

and affect the simulated occurrence frequency of cold events near Taiwan during winter. Furthermore, climate models are 

notoriously known to simulate a double Intertropical convergence Zone (ITCZ), in which excessive precipitation is produced 

on both sides of the equator and especially in the Southern Hemisphere tropics (Hwang and Dargan 2013; Zhang et al., 

2019). This is a problem that has been persistent in climate model simulations and can impact the results of S2S forecasts in 580 

the HMA region. 

4.3.3 Representation of Land Processes 

Differences in the level of the S2S forecast skill relative to MERRA-2 and to the other reference products (Table 2 and 

Figure 2) could be due to certain physical processes that are seen in the signatures of the reference data products but under-

represented in the frameworks of GEOS-S2S and MERRA-2. Characterizing hydrometeorological conditions in HMA, 585 

through both observations and modeling, is difficult owing to the scarcity of in-situ observations and the complex orographic 

conditions that impede accurate retrievals of satellite estimates and due to properly representing these processes in the model 

simulations (Su et al., 2013; Ghatak et al., 2018; Loomis et al., 2019a; Yoon et al., 2019; Gerlitz et al., 2020). These 

challenges are reflected in the wide range of GEOS-S2S forecast skill when compared to MERRA-2 and reference datasets 

(i.e., as seen in Figures 2, 4-12). 590 

 

For example, ESA-CCI data of SM are probably of limited quality in the topographically complex HMA region, and 

GRACE TWS data shows the signature from rivers, lakes, glacier mass changes, and groundwater pumping that are included 

in GRACE data but not fully represented in the GEOS-S2S modeling framework. Some regions within HMA, particularly 

the Indian subcontinent, are known for intense over-pumping of groundwater, which has led to extreme levels of 595 

groundwater depletion and has played a prominent role in the loss of freshwater storage for these regions (Tiwari et al., 

2009; Xiang et al., 2016; Girotto et al., 2017). This dynamic is captured in the GRACE data but not in the GEOS-S2S 
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forecasts (i.e., compare Figure 7C and Figure 7D). More realistic representation of the various water budget components 

within GEOS-S2S, such as surface water or groundwater pumping, is likely to contribute to improved skill in the S2S 

forecasts.  600 

 

Appropriate representation of seasonal snow along with temperatures and antecedent precipitation are critical to realistically 

forecast the HMA energy and water cycles. GEOS-S2S forecasts tend to underestimate temperature and overestimate 

precipitation relative to both MERRA-2 and the reference observations during all months and nearly all lead times (Figure 

4A-B); this cumulatively impacts snow cover and volume (Figure 4C-D). MERRA-2 corrected precipitation has a known dry 605 

bias (Figure 4B; Yoon et al., 2019), which limits fSCA and SWE accumulation in the MERRA-2 product (Figure 4C-D). 

GEOS-S2S is initialized with similar land conditions to MERRA-2, resulting in low fSCA and SWE during winter 1-month 

lead forecasts; however, GEOS-S2S atmospheric physics increases precipitation as forecasts continue for 2- and 3-month 

lead forecasts, with more extensive snow cover and higher snow volume (Figure 4C-D), resulting in a seasonal cycle that 

more closely approximates MODIS and the HMA-SR. This results in a relatively constant regional ubRMSE for all lead 610 

times when compared to MODIS and the HMA-SR (Figure 6C-D) and localized improvements in ubRMSE with lead time 

across the Hindu Kush and Karakoram (Figure 9H-L and Figure 10H-L). 

 

Despite the improvement in the absolute magnitude of snow volume due to increasing precipitation, limitations in the snow 

depletion curve used within GEOS-S2S and MERRA-2 result in more extensive snow coverage regionally and more limited 615 

reduction in fSCA relative to SWE in the Hindu Kush (Figure 9H-L and Figure 10H-L). Both GEOS-S2S and MERRA-2 

systems use a globally consistent linear relationship between SWE and fSCA with the minimum SWE needed to fully cover 

a pixel in snow; that is fSCA=1 if SWE is greater than 26 mm (Stieglitz et al., 2001; Toure et al., 2018). This prescription 

was developed based on studies in the northeastern USA and oversimplifies the relationship between SWE and fSCA in 

mountainous regions (e.g., Schneider et al., 2021) and results in too much snow cover in the GEOS-S2S forecasts (Figure 620 

4C). Considering the regional pattern of the SWE-fSCA relationship, in addition to improvements in topography (section 

4.2.1) and inclusion of regionally important processes like surface albedo evolution, through assimilation (Girotto et al., 

2020) or directly modeling aerosol deposition on snow (Sarangi et al., 2019, 2020), will likely improve snow forecasting and 

associated runoff from snow melt within GEOS-S2S 

4.4 S2S Forecasting for Society’s Needs  625 

There are various efforts in the broader community (e.g., Arendt et al., 2017), that are aimed at addressing climate change 

impacts on natural hazards (such as flooding or landslides) in the HMA region. S2S predictions for HMA from GEOS-S2S 

can potentially provide useful information for the local populations, for example by potentially providing forecasts with 

several months lead time that can be beneficial in preparing for local natural hazards (Bekaert et al., 2020; Stanley et al., 

2020). Different subregions within HMA can benefit in different ways from S2S forecasts, based on the varying needs of 630 
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local populations. Studies that utilize numerical methods and state-of-the-art model initialization to enhance S2S prediction 

skill are beginning to emerge. For example, Gerlitz et al. (2020) provided a review of seasonal forecasts of water availability 

in Central Asia. Their review showed that exceptionally skillful discharge forecasts for the agriculturally relevant vegetation 

season can be derived by means of statistical models taking remote sensing-based estimations of snow coverage in the 

Central Asian mountain regions as independent covariates, and they found that the consideration of global climate indices, in 635 

particular El Niño, allows to extend the forecast lead-times. Therefore, there is reason to believe that improvements in S2S 

forecast skill can generally be achieved.  

 

In our study, the modest levels of forecast error provide a sense of trust in the model forecasts in the context of S2S 

forecasting skill. For example, when compared to MERRA-2, the anomaly correlation for forecasts at 1-month lead was 640 

above 0.18 for all variables and as high as 0.62 (for SM). Relative to the reference data products, the anomaly correlation for 

forecasts at 1-month lead was above 0.13 for all variables and as high as 0.24 (for fSCA). Compared to other S2S evaluation 

studies, these results for HMA are promising. For instance, de Andrade et al., (2019) showed that anomaly correlation of 

global precipitation forecasts at lead time of 1 to 4 weeks was greatly reduced with lead time for a variety of S2S models, 

and by week 4 the anomaly correlation was consistently below 0.2 for all models. This skill level is comparable to the results 645 

presented here for the GEOS-S2S forecasts in the HMA region. Therefore, the GEOS-S2S forecasts for HMA shown in our 

study generally have acceptable skill at 1-month lead time compared to other S2S studies. For this study, we use multiple 

sources of observed and verification data to estimate the forecast skill since relying on solely one source of information may 

be misleading. Here, we used two different products for each climate variable to get a sense of the uncertainty in the forecast 

skill for each variable. We are not aware of a merged data product for the HMA region, which would be extremely valuable 650 

for an evaluation study like this, but perhaps the combination of MERRA-2 data with other verification data products is a 

good alternative.  

 

Results shown here, and from the GEOS-S2S system in general, can help the community benchmark the S2S forecasting 

skill for the HMA region, and for specific subregions within HMA, and can also help the community synthesize areas of 655 

model improvements that can potentially enhance the forecast skill or expand the time horizon of skillful forecasts. Other 

areas of enhancing the S2S forecasts could be achieved by the assimilation of land surface observations during the 

initialization period, for variables such as surface soil moisture (Koster et al., 2011) or snow-covered area (Senan et al., 

2016). More accurate representation of initial conditions could lead to improved forecast accuracy at the 1-month lead time, 

but it is possible that a gain in skill can persist for 2- and 3-month lead times, and perhaps longer. Given the confluence of 660 

water resource needs from the local population and the complexity of the hydrologic cycle in HMA, further investment for 

improving S2S forecasts can be extremely useful for this region, and such improvements can potentially be felt globally. 



22 
 

5 Conclusions 

We showed here an evaluation of the GEOS-S2S forecasting system in the HMA region, utilizing various products such as 

reanalysis data as well as data sets obtained from satellites or model data fusion products. The hydrometeorological variables 665 

in our evaluation results included 2-m air temperature (T2M), total precipitation (PRECTOT), fractional snow cover area 

(fSCA), snow water equivalent (SWE), surface soil moisture (SM), and terrestrial water storage (TWS). The main data 

product used for the evaluation was the MERRA-2 reanalysis product, which provided information to compare all the 

considered variables in GEOS-S2S. For further verification, we used separate data for the evaluation of each variable, 

including ERA5 for T2M, APHRODITE for PRECTOT, MODIS for fSCA, HMA-SR for SWE, ESA-CCI for SM, and 670 

GRACE for TWS. We showed various aspects of the model evaluation, such as the skill based on variables, lead time, or 

observation used for the evaluation. To gain a more regional point of view, we showed the evaluation based on specific 

subregions. We also displayed the climatology of the GEOS-S2S ensemble mean, the ensemble spread, and the mean error 

for each variable.  

 675 

Choice of evaluation datasets heavily impacted our results. For example, when compared to MERRA-2, variables with 

longer memory in the physical climate system, such as soil moisture and TWS, had higher accuracy in the S2S forecasting 

system compared to variables representing quickly changing processes, such as temperature or precipitation. This was true 

when comparing the S2S forecasts to the MERRA-2 reanalysis because of similar initialization and model architecture as 

used in GEOS-S2S. However, this finding was not conclusive when reference data products were used in the evaluation. 680 

Finally, we provided potential avenues for model improvements that can help enhance the forecasts, such as higher 

resolution topography representation as well as more realistic representation of surface water and groundwater pumping. 

These improvements can help, for example, with forecasts of TWS since the model does not have groundwater pumping 

whereas the GRACE signature includes this process. Other paths to improvement could be the assimilation of observations 

for the initialization of land surface state variables, such as soil moisture or snow cover.  685 

 

Our results shown here benchmark the GEOS-S2S system’s ability to forecast HMA on the 1-3 month timescale. We showed 

that, when compared to MERRA-2, the anomaly correlation for forecasts at 1-month lead was above 0.18 for all variables 

and as high as 0.62 (for SM). Relative to the reference data products, the anomaly correlation for forecasts at 1-month lead 

was above 0.13 for all variables and as high as 0.24 (for fSCA). Compared to other S2S evaluation studies, these results for 690 

HMA are promising. The reported results should motivate future improvements in the forecasts, such as model initialization, 

model physics, or more realistic orographic representation, that will be helpful for climate adaptation, natural hazard 

mitigation, and water resources planning for the population of HMA.   
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6 Code Availability 

MATLAB code and other scripts to process the GEOS-S2S outputs are available on request, and scripts to plot and evaluate 695 

the data and produce all analysis in this study are available upon request from Dr. Massoud.    

7 Data Availability 

The GEOS-S2S-V2 data is available on the Discover server of NCCS. GEOS-S2S-V2 forecast output data are presently 

available at https://gmao.gsfc.nasa.gov/gmaoftp/gmaofcst/. The file specification document that elaborates on the available 

output from GEOS-S2S is available online (from https://gmao.gsfc.nasa.gov/pubs/docs/Nakada1033.pdf). MERRA-2 data 700 

can be downloaded at no cost from (https://disc.gsfc.nasa.gov/datasets?project=MERRA-2), ERA5 data from 

(https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-means?tab=overview), MODIS 

data from (https://modis.gsfc.nasa.gov/data/), HMA-SR data from (https://nsidc.org/data/HMA_SR_D/versions/1), ESA-CCI 

from (https://esa-soilmoisture-cci.org/), and GRACE data from (https://earth.gsfc.nasa.gov/geo/data/grace-mascons).  
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 1175 

 
Figure 1: Topography and ocean bathymetry using the NOAA National Geophysical Data Center’s ETOPO1 Global Relief Model. 
The map shows the elevation (m) for the HMA domain. The topography shown in this map is not the same as the topography used 
by GEOS-S2S, which has a coarser representation of the actual topography in the HMA region. In this figure, countries are in 
black text, mountain ranges in white text, and main rivers that are in major basins in blue text. Four subregions are defined for 1180 
additional analysis, where the West region shown in red includes the Hindu Kush and Karakoram mountains, the South region 
includes the Indian subcontinent, the East region includes the Inner Tibet Plateau, and the Central region includes the Himalayas. 
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Figure 2: Anomaly correlation skill between variables for the GEOS-S2S forecasts when evaluated against MERRA-2 (Figure 2A) 1185 
and against reference data products (Figure 2B). The evaluation of the 1-month lead forecasts is shown in the first bar (blue), 2-
month in the second bar (green), and 3-month in the third bar (black). The red error bars indicate the spatial standard deviation 
of the anomaly correlation for each variable. The reference data that are used in Figure 2B are listed in Table 1. 
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 1190 

 
Figure 3: A) Portrait diagram visually depicting the S2S forecast skill when evaluated against MERRA-2, comparing the skill 
between the different subregions (e.g. West region 1-month forecast for T2M). Values in each box are the ubRMSE normalized by 
the absolute value of the climatological mean of that variable in that region (i.e. divided by the absolute value of mean T2M for the 
West region), normalized again by all the skill values for that climate variable (i.e. compare each metric with the normalized 1195 
ubRMSE values of T2M for all subregions and all lead times). This means that if a box is blue (red), that climate variable in that 
subregion for that lead time has a lower (higher) normalized error when compared to that same climate variable in other 
subregions and lead times. B) Same as A) but when evaluating against other observations. C) Errors shown here are the original 
ubRMSE values for each subregion when evaluating against MERRA-2, shown for all lead times and separated by climate 
variable.  D) Same as C) but when evaluating against other observations.    1200 
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Figure 4: Annual cycle for each variable, averaged over the HMA domain. The annual cycles from the GEOS-S2S forecasts are 
shown for all lead times (blue, green, and black curves), and those estimated from the MERRA-2 reanalysis (red) and the 
reference data products (pink) are shown for comparison.  
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Figure 5: The expected error (ubRMSE) based on which month is forecasted. Shown here are results for 1-month (blue, first bar), 
2-month (green, second bar), and 3-month (black, third bar) lead times for each variable. For example, the three bars for the 
month of April include the 1-month, 2-month, and 3-month forecasts, which are the forecasts initialized in March, February, and 
January respectively. The results displayed in this figure use MERRA-2 as the evaluation target.  1210 
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Figure 6: Same as Figure 5, but the results displayed in this figure use the reference data products as the evaluation target. The 
data that are used in this figure are: ERA5 for T2M, APHRODITE for PRECTOT, MODIS for fSCA, HMA-SR for SWE, ESA-
CCI for SM, and GRACE for TWS.  1215 
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Figure 7: Screen-level (2-m) air temperature (T2M) metrics in HMA. Figure 7A shows the climatology (long term mean) from the 
GEOS-S2S 1-month forecast for the hindcast period (1981-2016). Figure 7B shows the ensemble spread from the GEOS-S2S 1-
month forecast, calculated as the standard deviation of the model ensemble at each grid cell. Figures 7CD show the ubRMSE when 1220 
comparing the GEOS-S2S 1-month forecast to MERRA-2 and ERA5, respectively. The bottom two rows of figures show the 
differences in the climatology, ensemble spread, and ubRMSE between the 2-month (Figures 7E-H) and 3-month (Figures 7I-L) 
forecasts compared to the 1-month forecast shown in the top row. Note, to calculate the difference shown in the bottom two rows, 
the 1-month maps in the top row are subtracted from the corresponding 2- and 3-month maps (i.e., 2-month maps minus 1-month 
maps and 3-month maps minus 1-month maps, respectively). Therefore, red in the subfigures indicates higher values (i.e., hotter 1225 
temperature, larger spread, or larger error) in the 2- and 3-month forecasts, and blue indicates lower values compared to the 1-
month forecasts. The units for these plots are in [K].  
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Figure 8: As in Figure 7, but for precipitation (PRECTOT) in [mm day-1] and vs. APHRODITE in the right column. Here, red in 1230 
the subfigures indicates lower values (i.e., less precipitation, smaller spread, or smaller error) in the 2- and 3-month forecasts and 
blue indicates higher values compared to the 1-month forecasts.  
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Figure 9: As in Figure 7, but for fractional snow cover area (fSCA) [unitless] and vs. MODIS in the right column. Grid cells that 1235 
are masked out (in white) show areas with no-data-values. Here, red in the subfigures indicates lower values (i.e., less snow cover, 
smaller spread, or smaller error) in the 2- and 3-month forecasts and blue indicates higher values compared to the 1-month 
forecasts.  

  



47 
 

 1240 
Figure 10: As in Figure 7, but for snow water equivalent (SWE) in [m] and vs. HMA-SR in the right column. Grid cells that are 
masked out (in white) show areas with no-data-values. Here, red in the subfigures indicates lower values (i.e., less snow water, 
smaller spread, or smaller error) in the 2- and 3-month forecasts and blue indicates higher values compared to the 1-month 
forecasts.  
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Figure 11: As in Figure 7, but for soil moisture (SM) in [m3 m-3] and vs. ESA-CCI in the right column. Grid cells that are masked 
out (in white) show areas with no-data-values. Here, red in the subfigures indicates lower values (i.e., less soil moisture, smaller 
spread, or smaller error) in the 2- and 3-month forecasts and blue indicates higher values compared to the 1-month forecasts.  
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Figure 12: As in Figure 7, but for terrestrial water storage (TWS) in [m] and vs. GRACE in the right column. Here, red in the 
subfigures indicates lower values (i.e., less TWS, smaller spread, or smaller error) in the 2- and 3-month forecasts and blue 
indicates higher values compared to the 1-month forecasts.  
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Tables 

Table 1: The list of all data products used, including the GEOS-S2S V2 forecasting system, the MERRA-2 reanalysis product, and 
the various reference data products. The information in this table includes the period of data availability, the period used in the 
evaluation, the variables used in this study, the original spatial and temporal resolution, and the main reference for each data set. 
GEOS-S2S-V2, MERRA-2, and ERA5 data are provided up until the present day and production of these data sets occurs in near-1260 
real-time, where quality-assured monthly updates are typically published within 3 months of data production. GRACE data is 
originally provided at 3 degrees spatial resolution, but the version used here is posted at 1-degree spatial resolution. 

Data Product Available 
period 

Evaluation 
period 

Variables 
Evaluated 

Spatial 
Resolution 

Temporal 
Resolution 

Reference 

GEOS-S2S-V2 01/1981-
12/2021 

01/1981-
12/2016 

All variables 0.5 Degrees Daily Nakada et al., 2018 

MERRA-2 01/1980-
12/2021 

01/1981-
12/2016 

All variables 0.625x0.5 
Degrees 

Hourly Gelaro et al., 2017 

ERA5 01/1979-
12/2021 

01/1981-
12/2016 

T2M 31 kilometers 3 hours Hersbach et al., 2020 

APHRODITE 01/1998-
12/2015 

01/1998-
12/2015 

PRECTOT 0.05 Degrees Daily Yatagai et al., 2012 

MODIS 02/2000-
12/2016 

02/2000-
12/2016 

fSCA  0.05 Degrees Daily Hall et al., 2002 

HMA-SR 10/1999-
09/2017 

01/2000-
12/2016 

 SWE 500 meters Daily Liu et al., 2021b 

ESA-CCI 01/1978-
12/2020 

01/2000-
12/2016 

 SM 0.25 Degrees Daily Dorigo et al., 2017 

GRACE 04/2002-
10/2017 

04/2002-
12/2016 

TWS 3 Degrees Monthly Tapley et al., 2004 
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Table 2: The unbiased RMSE (ubRMSE) and the anomaly correlation (Ranom) for all variables when comparing the GEOS-S2S 
forecasts to the reanalysis (‘MERRA-2’) and the reference data products (‘Reference data’). The reference data that are used here 
are: ERA5 for T2M, APHRODITE for PRECTOT, MODIS for fSCA, HMA-SR for SWE, ESA-CCI for SM, and GRACE for 
TWS (Section 2.3). 

    ubRMSE     Ranom   

GEOS-S2S vs MERRA2 1-month 2-month 3-month  1-month 2-month 3-month  

T2M [K] 1.61 1.74 1.77 0.24 0.13 0.11 

PRECTOT [mm day-1] 1.06 1.08 1.08 0.18 0.08 0.06 

fSCA [-] 0.035 0.041 0.041 0.31 0.07 0.04 

SWE [m] 0.002 0.003 0.004 0.32 0.09 0.05 

SM [m3 m-3] 0.019 0.023 0.025 0.62 0.40 0.28 

TWS [m] 0.025 0.032 0.035 0.55 0.35 0.25 

    ubRMSE     Ranom   

GEOS-S2S vs Reference data 1-month 2-month 3-month  1-month 2-month 3-month  

T2M [K] 1.78 1.87 1.90 0.19 0.13 0.10 

PRECTOT [mm day-1] 1.03 1.06 1.06 0.16 0.06 0.04 

fSCA [-] 0.048 0.051 0.052 0.24 0.11 0.06 

SWE [m] 0.021 0.021 0.022 0.13 0.06 0.06 

SM [m3 m-3] 0.021 0.020 0.020 0.14 0.10 0.03 

TWS [m] 0.101 0.103 0.104 0.13 0.09 0.07 
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Supplementary Information 

 1275 

 
 
Figure S1: These plots show the reliability of the S2S forecasts for T2M and PRECTOT, calculated as the ensemble spread divided 
by the ubRMSE, information that can be found in Figures 7-8. For these plots, blue indicates the forecasts are overconfident for 
that region, meaning there is a smaller spread compared to what the error is. Red shows the opposite, indicating that the forecasts 1280 
are underconfident for that region, which means there is a larger spread compared to what the error is. The rows of plots show the 
1-month (top), 2-month (center), and 3-month (bottom) forecasts.  
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Figure S2: These plots show the reliability of the S2S forecasts for fSCA and SWE, calculated as the ensemble spread divided by 
the ubRMSE, information that can be found in Figures 9-10. For these plots, blue indicates the forecasts are overconfident for that 
region, meaning there is a smaller spread compared to what the error is. Red shows the opposite, indicating that the forecasts are 
underconfident for that region, which means there is a larger spread compared to what the error is. The rows of plots show the 1-1290 
month (top), 2-month (center), and 3-month (bottom) forecasts. 
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Figure S3: These plots show the reliability of the S2S forecasts for SM and TWS, calculated as the ensemble spread divided by the 1295 
ubRMSE, information that can be found in Figures 11-12. For these plots, blue indicates the forecasts are overconfident for that 
region, meaning there is a smaller spread compared to what the error is. Red shows the opposite, indicating that the forecasts are 
underconfident for that region, which means there is a larger spread compared to what the error is. The rows of plots show the 1-
month (top), 2-month (center), and 3-month (bottom) forecasts. 
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