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Abstract. Precipitation nowcasting refers to the prediction of precipitation intensity in a local region and in a short timeframe

up to 6 hours. The evaluation of spatial and temporal information still challenges todays numerical weather prediction models.

The increasing possibilities to store and evaluate data combined with the advancements in the developments of artificial intelli-

gence algorithms make it natural to use these methods to improve precipitation nowcasting. In this work a Convolutional Long5

Short-Term Memory network (ConvLSTM) is applied to Radar data of the German Weather Service. The positive effectiveness

of finetuning a network pretrained at a different location and for different precipitation intensity thresholds is demonstrated.

Furthermore, in the framework of two case studies the skill scores for the different thresholds are shown for a prediction time

up to 100 minutes. The results highlight promising regional extrapolation capabilities for such neural networks for precipitation

nowcasting.10

1 Introduction

Precipitation nowcasting describes the detailed prediction of rainfall intensity in a local region and a short timeframe (WMO). It

is an essential product in many societal contexts, such as when high-impact weather associated with intense rainfall needs to be

forecast for traffic and transportation. Established approaches for precipitation nowcasting primarily make use of models based

on numerical weather prediction (NWP) and extrapolation of radar echo data (Sun et al., 2014). For probabilistic precipitation15

nowcasting, ensemble NWP is typically used to derive multiple realistic precipitation forecasts and thereby obtain an estimate

of the uncertainty in the forecast, but the precipitation is modelled using an advection equation relying on the radar echo data

(Bowler et al., 2006; Pulkkinen et al., 2019). This reliance on the advection model was introduced as a remedy to poor forecasts

of precipitation at a few hours lead-time, where non-Gaussianity of the field challenges the data assimilation in NWP (Buehner

and Jacques, 2020).20

Precipitation nowcasting can be understood as a spatiotemporal forecasting problem, or in other words, a task of making

predictions using data that contains both spatial and temporal attributes (Aggarwal, 2015). Such a framework fits with the recent

advancements in the deep learning domain, and in fact there has been an increasing usage of machine learning for precipitation

nowcasting, see e.g. Agrawal et al. (2019); Ayzel et al. (2020); Ravuri et al. (2021). These deep learning approaches include
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precipitation nowcasting with U-Net (Ronneberger et al., 2015), which uses only a Convolutional Neural Network (CNN)25

without any sort of memory. For example U-Net was used by Agrawal et al. (2019) to make predictions with one hour lead time

based on Doppler radar data. Similarly, Trebing et al. (2021) use U-Net as a base and introduce Convolutional Block Attention

Modules (CBAM) (Woo et al., 2018) into the network. This leads to improvements by focusing the model on important

attributes, such as the spatial region of the underlying data. One of the most recent approaches is RainNet (Ayzel et al., 2020)

which is loosely based on U-Net and SegNet (Badrinarayanan et al., 2016), the latter using a Fully Convolutional Neural30

network (FCN) (Long et al., 2014). This approach was tested on German weather data.

In the framework of this study we will consider an alternative method based on a the Convolutional LSTM Network (Con-

vLSTM) to tackle the challenge of precipitation nowcasting. Its applicability to precipiation nowcasting for the region of Hong

Kong has been demonstrated by Shi et al. (2015). The ConvLSTM is a Long Short-Term Memory network (LSTM), first in-

troduced in (Hochreiter and Schmidhuber, 1997), that uses convolutional layers to improve the processing of spatiotemporal35

correlations. This ConvLSTM predicts precipitation more accurately than state-of-the-art methods based on radar echo ex-

trapolation. Shi et al. (2017) introduced the Trajectory Gated Recurrent Unit (TrajGRU) as an approach to actively learn the

location-variant structure of the network. This development enables to capture certain location-variant motion patterns better

than the location-invariant ConvLSTM. In a recent development, Luo et al. (2021), introduced the pseudoflow spatial-temporal

LSTM (PFST-LSTM), which solves problems inherent to the Convolutional LSTM and GRU structures and outperforms older40

approaches, such as the TrajGRU, on the CIKM AnalytiCup 2017 and MovingMNIST++ data sets. Nevertheless, the present

work will focus on the method of Shi et al. (2017), who also used a standardized benchmark data set and introduced improved

error functions to measure the skill of the network.

While a standardized benchmark data set is good for testing machine learning models and comparing them against each

other, ideally one wants to use these recent advancements to predict precipitation in applied societal contexts. Users often face45

problems such as incomplete and smaller sample size of data, as well as regional differences in weather and precipitation.

In this work, the TrajGRU network is trained on a German weather data set and then compared to a network trained on the

standardized data set from Hong Kong. This latter pretrained network is then finetuned on the German weather data to evaluate

the possibilities of regional extrapolation of pretrained networks. Different approaches on finetuning and transfer learning have

been published. They usually depend strongly on the problem class. For image classification problems, (Girshick et al., 2014)50

showed how feature layers can be reused to save training time. In the medical domain, a variety of papers exists on transfer

learning for image segmentation using FCNs, as, e.g., in (Karimi et al., 2020) for brain or liver images. In this work, finetuning

will be used for the regional extrapolation of the network, following the hypothesis that such regional finetuning can outperform

and reduce the costs of training a region-specific network for precipitation nowcasting.

To test the hypothesis, the paper is structured as follows. In Sec. 2, after a short introduction to the German RADOLAN data55

set, the notwork model, its training as well as the technical settings to evaluate the effect of finetuning on the RADOLAN data

is summarized. For the evaluations the Critical Success Index (CSI) and the Heidke Skill Score (HSS) are used. An overview

on the skill scores, the error functions and the classifications of the precipitation intensities is given in Sec. 3. The results are

presented in Sec. 4, where first the scores of the model trained from scratch and the finetuned model are compared for the
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five precipitation thresholds. The results show that finetuning not only reaches the same performance of the network trained60

from scratch, and this significantly faster, but it is also able to improve it, especially for heavy rainfall events. In the second

part of Sec. 4, two case studies of precipitaion events are evaluated showing promising scores over a prediction time up to 100

minutes. Finally, the conclusion is given in Sec. 5.

2 Setup

2.1 Data65

The RADOLAN data set (radar online adjustment) provided by the German Weather Service (Deutscher Wetterdienst, DWD)

is used (Bartels et al., 2004; Winterrath et al., 2012). This data is a reflectivity composite of 17 radar stations in Germany, which

provides high definition data in both temporal and spatial resolution. The composite images are taken in a 5 minute interval, are

480 x 480 pixel in size and have a spatial resolution of 1 km per pixel. The years 2017 to 2021 are considered for this study. In

particular, the time period 06.04.2017–14.07.2017 is considered as test data set, 15.07.2017 – 07.10.2020 as training data and70

the data in the time frame 08.10.2020 – 30.03.2021 is taken for the validation. In total this data set contains 251,358 frames

over 1099 days. Recently, Kreklow et al. (2020) confirm that the RADOLAN data set has been improved during the last years.

Now, typical radar artefacts, orographic and winter precipitation as well as range-dependent attenuation are corrected.

2.2 Network model and its training

All experiments were run using the TrajGRU. This model is based on the Convolutional Gated Recurrent Unit (ConvGRU).75

The ConvGRU, similiar to the ConvLSTM, is a modified version of the Gated Recurrent Unit (GRU). All inputs and cells are

extended by two dimensions that represent the spatial information. Additionally, all matrix multiplications in the cell equations

are replaced by convolutional operators.

The TrajGRU aims to solve several issues with the older ConvLSTM model (Shi et al., 2015). The biggest problem is the

location invariance of the used convolutions. To understand this, let N h
i,j be the ordered neighboorhod set at location (i, j).80

These sets are defined by the convolution hyperparameters, for example kernel size, dilation and padding (Yu and Koltun,

2016). Because these hyperparameters are the same by default for each location (i, j), the convolution is location invariant.

However, many motion patterns are location variant and thus hard to grasp by the convolutions.

The TrajGRU layer takes the current and previous state to generate a local neighborhood set for each location
∑L

l=1(pl,i,j , ql,i,j)

in each timestamp, where L is the chosen maximum number of local links, thus making it location variant. Optical flows - vector85
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Figure 1. Comparison of the different connection structures. Adapted from Shi et al. (2017).

fields which represent a motion pattern (Gibson, 1950) - are used to store the indices of the locations:

Ut,Vt = γ(xt,Ht−1) (1)

zt = σ(Wxz ∗xt +
L∑

l=1

W l
hz ∗warp(Ht−1,Utl,Vtl)) (2)

rt = σ(Wxr ∗xt +
L∑

l=1

W l
hr ∗warp(Ht−1,Utl,Vtl)) (3)

H ′
t = f(Wxh ∗xt + rt ◦ (

L∑

l=1

W l
hh ∗warp(Ht−1,Utl,Vtl))) (4)90

Ht = (1− zt) ◦H ′
t + zt ◦Ht−1 (5)

Here W denotes the weights, x the input, H the output state, t the current timestep, ◦ the Hadamard product. z denotes the

GRU update gate, r the reset gate, H the saved and H ′ the new information. γ is a small neural network, which generates the

optical flows stored in Ut and Vt. The warp function selects the locations that are pointed out by Ut and Vt from Ht−1 through

a bilinear sampling kernel (Ilg et al., 2016). This makes it possible to learn the connection structure through the subnetwork γ.95

Figure 1 shows a comparison of the ConvLSTM and TrajGRU connection structures.

The complete TrajGRU model can be described as an autoencoder, a neural network which first encodes an input sequence

to a fixed size, to decode it afterwards and output it as a prediction (Bank et al., 2020). For both encoder and decoder, multiple

TrajGRU layers are stacked on top of each other.

In the following, the term finetuning is used to denote the action of taking a model which was already trained on data to100

some degree, and then training it again on different data while keeping the weights from the previous training. This procedure

was shown to improve generalization and reduce training time of networks (Yosinski et al., 2014). The goal is to extrapolate

regional differences from one data set to another, without training a completely new network for the considered location.
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Table 1. Rainfall distribution in the data sets. For the evaluation of the HKO-7 data see Shi et al. (2017).

Rainfall Rate (mm/h) HKO-7 (%) RADOLAN (%) Description

0≤ r < 0.5 90.25 96.54 Very light

0.5≤ r < 2 4.38 2.38 Light

2≤ r < 5 2.46 0.77 Light to moderate

5≤ r < 10 1.35 0.22 Moderate

10≤ r < 30 1.14 0.08 Moderate to heavy

30≤ r 0.42 0.02 Heavy

2.3 Experimental setup

To evaluate the effect of finetuning on the German RADOLAN data, a TrajGRU trained with random weight initialization is105

compared to one that uses pretrained weights. The latter model was pretrained on the original data set HKO-7, which contains

radar echo data collected from 2009 to 2015 by the Hong Kong Observatory, as explained in Shi et al. (2017), while the former

was trained using only German RADOLAN data. From now on, we will use the term "trained from scratch" to refer to the

randomly initialized model and the term "finetuned model" to refer to the model that uses pretrained weights.

Both models follow the autoencoder structure described by Shi et al. (2017), with three TrajGRU layers in both encoder and110

forecaster that use 192, 192 and 64 filters respectively. We train both models for 100,000 iterations using the Adam optimizer,

an extension of the stochastic gradient descent method (Kingma and Ba, 2014), with a learning rate of 10−4, that decreases by

γ = 0.1 on iteration 30,000 and 60,000. Both models use an input of 5 frames to predict the next 20. All 20 output frames are

weighted equally in the evaluation.

Yosinski et al. (2014) have shown that many deep neural networks learn more general features in their first layers, while115

learning more specific ones in their last layers. For the autoencoder structure used by our models, this would mean that the outer

layers learn general features that we hypothesize to be applicable across the world, while the inner layers learn more specific

regional features. Because of this we freeze the weights of the outermost TrajGRU layer of both encoder and forecaster for

the finetuned model and only train the two innermost layers on the German RADOLAN data afterwards. Other finetuning

configurations were tested, such as freezing more layers or none at all, but displayed worse performance.120

3 Metrics for skill evaluation

Because of the highly imbalanced rainfall distribution in both the German RADOLAN and HKO-7 data as shown in Table 1,

a weighted loss function is considered, which is the sum of the Balanced Mean Squared Error (B-MSE) and Balanced Mean

Absolute Error (B-MAE) as proposed by Shi et al. (2017), which assign a specific weight w(r) to each pixel according to its
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rainfall rate r. The error functions are calculated as follows:125

B-MSE =
1
N

N∑

n=1

480∑

i=1

480∑

j=1

wn,i,j(xn,i,j − x̂n,i,j)2 (6)

B-MAE =
1
N

N∑

n=1

480∑

i=1

480∑

j=1

wn,i,j |xn,i,j − x̂n,i,j | , (7)

where N is the total amount of frames and wn,i,j is the calculated weight of pixel x at position (i, j) in frame n given by:

w(r) =





1, r < 2

2, 2≤ r < 5

5, 5≤ r < 10

10, 10≤ r < 30

30, r ≥ 30 .

(8)

Additionally we calculate two skill scores to evaluate the actual precipitation nowcasting performance: The Critical Success130

Index (CSI) and the Heidke Skill Score (HSS) (Hogan et al., 2010). Both measure how accurate a prediction is compared to

the ground truth. The CSI measures what portion of rain events was predicted correctly, while the HSS measures the accuracy

of made predictions compared to a random one. The CSI and HSS are calculated as follows:

CSI =
TP

TP + FN + FP
(9)

HSS =
TP ·TN −FN ·FP

(TP + FN)(FN + TN) + (TP + FP )(FP + TN)
. (10)135

For both scores 1 would be a perfect prediction, while 0 means no improvement.

The CSI and the HSS are calculated for different thresholds of the rain rate R (0.5 mm/h, 2 mm/h, 5 mm/h, 10 mm/h and

30 mm/h). For this purpose, each pixel of the prediction and ground truth image gets converted to a binary 0 or 1, based on

the current threshold. After this the true positives (TP) (prediction = 1, ground truth = 1), false negatives (FN) (prediction = 0,

ground truth = 0), false positives (FP) (prediction = 1, ground truth = 0) and true negatives (TN) (prediction = 0, ground truth140

= 0) are calculated.

4 Results

4.1 Statistical comparison of the model trained from scratch and the finetuned model

The highest scores of the model trained from scratch and the finetuned model are summarized in Table 2. The finetuned model

consistently reaches better results across all scores and measurements. Table 4 shows the results of the Welch t-test (Welch,145

1947). It can be recognized that for several of the different skill scores thresholds the difference between the finetuned model

and the model trained from scratch are statistically significant (p < 0.05). Moreover, Table 3 shows that the finetuned model is
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Table 2. RADOLAN training results: Comparison of the scores for the model from scratch and the finetuned model. The best results are

marked in bold font.

Model
CSI HSS

B-MAE B-MSE
r ≥ 0.5 r ≥ 2 r ≥ 5 r ≥ 10 r ≥ 30 r ≥ 0.5 r ≥ 2 r ≥ 5 r ≥ 10 r ≥ 30

Scratch 0.5839 0.4866 0.3709 0.288 0.13182 0.7179 0.6385 0.5278 0.4365 0.2319 7079 1990

Finetuned 0.5853 0.4879 0.3718 0.2883 0.151 0.7189 0.6401 0.5286 0.4367 0.251 7038 1968

Table 3. RADOLAN training results: Number of iterations until the models reached the best score of the model trained from scratch. The

best scores are marked in bold font.

Model
CSI HSS

B-MAE B-MSE
r ≥ 0.5 r ≥ 2 r ≥ 5 r ≥ 10 r ≥ 30 r ≥ 0.5 r ≥ 2 r ≥ 5 r ≥ 10 r ≥ 30

Scratch 88000 88000 88000 88000 94000 88000 88000 88000 88000 94000 85000 88000

Finetuned 32000 32000 50000 50000 13000 32000 32000 50000 50000 13000 50000 31000

a lot faster in achieving the best score than the model trained from scratch has. The full training results are visualized in Fig. 2

and in Fig. 3. They show the Mean Critical Success Index and the Mean Heidke Skill Score with their corresponding standard

deviation over 100,000 training iterations and for the five different rain rate thresholds 0.5 mm/h, 2.0 mm/h, 5.0 mm/h, 10150

mm/h and 30 mm/h. In general, the CSI as well as the HSS clearly indicate better results of the finetuned model for at least

the first 50,000 iterations. In the range of 50,000 to 100,000 iterations, the finetuned model shows slightly higher scores. We

remark the different scaling of the ordinates in Fig. 2 and Fig. 3. In order to compare the skills of the finetuned model and the

model from scratch over the last iterations, the Critical Success Index and the Heidke Skill Score over last 35,000 iterations

are additionally represented as box plots, see Fig. 4 and Fig. 5. They confirm the slightly better scores for the finetuned model155

across all thresholds.

While the differences between the scores of both models are relatively small for most of the rain rate thresholds, there is a

significant difference in scores for heavy rain events with r ≥ 30. The finetuned model shows a 14.5% increase on the CSI with

r ≥ 30 (∆ = 0.0192), and a 8.2% increase on the HSS with r ≥ 30 (∆ = 0.0191). This can be explained by the unbalanced

distribution of the rainfall events between the data sets. The HKO-7 data set has a significantly higher amount of heavy rainfall160

events compared to RADOLAN (cf. Table 1). Yosinski et al. (2014) show that transfering features between networks can

improve generalization on data, even after finetuning the network. This could be an explanation, why the finetuned model has

such a big increase in performance for heavy rainfall events over the model trained from scratch.
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Table 4. Welch t-test (Welch, 1947) results between the fintuned and trained from scratch models, using the last 35000 iterations. Value sets

indicating statistical significance are marked via bold font.

t-test
CSI HSS

B-MAE B-MSE
r ≥ 0.5 r ≥ 2 r ≥ 5 r ≥ 10 r ≥ 30 r ≥ 0.5 r ≥ 2 r ≥ 5 r ≥ 10 r ≥ 30

t statistic -1.2402 -2.4049 -3.1831 -1.4366 -6.0669 -1.2289 -2.5295 -3.0331 -1.2648 -6.2450 0.0617 0.8884

p-value 0.2190 0.0189 2.18e-3 0.1553 6.15e-8 0.2232 1.37e-2 3.40e-3 0.2102 2.91e-8 0.951 0.3774

Figure 2. Mean Critical Success Index with standard deviation over all iterations for five different rain rate thresholds.

4.2 Case studies

We compare the model output for the real truth in the frame of two case studies. Using the the RADOLAN data set, we consider165

frontal systems at 4 May 2017, 14:40:00 UTC and at 12 May 2017, 07:40:00 UTC. These are two exemplary dates of clusters

of mainly moderate precipitation crossing Germany, where the data is not part of the training data set of the model. The results

of the two case studies are shown in Fig. 6 (a) and (b). The first row of each example is the input data depicted in color scale,

the second row depicts the raw input data, the third row shows the ground truth and the fourth row is the model prediction.

Each frame, or column, represents a 5 minute timestep. Overall, the location of the precipitation cells are predicted correctly,170
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Figure 3. Mean Heidke Skill Score with standard deviation over all iterations for five different rain rate thresholds.

as well as the regions of intense precipitation. While the the precipitation around the outer boundaries of precipitating cells is

slightly underestimated by the TrajGRU, the rainfall in regions of intense precipitation is overestimated. This could be caused

by the blurred edges of the predictions that are inherent to the convolutional RNN approach (Shi et al., 2015).

The differences between the prediction and ground truth of each sample are shown in Fig. 7 (a) and (b). Regarding both

case studies, a small increase of the absolute values of differences with time can be recognized. The differences of the boarders175

of the precipitating cells are slightly negative, i.e. the precipitation intensity is underestimated. Furthermore, concerning the

regions of intense precipitation in Fig. 7 (a), the results of Fig. 6 are confirmed, where intense precipitation seems to be slightly

overestimated.

Fig. 8 (a)–(d) shows the skill scores with respect to the prediction time in minutes. The scores of the rain rate of the thresholds

0.5 mm/h, 2 mm/h, 5 mm/h, 10 mm/h are depicted. Regarding the CSI of the 0.5 mm/h threshold in Fig. 8 (a) and (c), a score180

of 0.729 for the 15 minute prediction time, a score of 0.5662 for the 60 minute prediction time and for the 90 minute prediction

time still a score of 0.5268 is reached. Particularly for the lower thresholds, a slow decrease of the scores with prediction time

can be observed. Stronger decreases at high thresholds can be explained by the small number of data points of high precipitation

intensities.

Ravuri et al. (2021) develop an observations-driven approach for probabilistic nowcasting using deep generative models185

(DGMs) and compared it to the probabilisitc method PySTEPs (Pulkkinen et al., 2019) regarding UK data. Ravuri et al. (2021)
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Figure 4. Critical Success Index boxplots over the last 35,000 iterations for five different rain rate thresholds.

consider the precipitation intensity thresholds 1 mm/h, 4 mm/h, 8 mm/h and a prediction interval up to 90 min. Overall,

comparing the CSI over the prediction time of Ravuri et al. (2021) with the CSI shown in Fig. 8 (a) the finetuned TrajGRU

provides slightly higher scores across the whole time period.

Focusing on the CSI of the 2 mm/h threshold in Fig. 8 (a) and comparing it with the CSI for the 1 mm/h threshold evaluated190

by Ravuri et al. (2021), the scores are comparable for a prediction time of 4 minutes. After 80 minutes prediction time the

CSI of the 2 mm/h threshold obtained with the finetuned TrajGRU shows values greater than 0.4, while the CSI of PySTEPS

in Ravuri et al. (2021) are smaller than 0.4. Such small differences in the results can be recognized across all thresholds.

Especially for longer prediction times the scores of the finetuned TrajGRU are slightly higher. Overall, as Ravuri et al. (2021)

we find that the scores decrease with increasing precipitation thresholds. This can be explained by the decreasing sample sizes195

at increasing precipitation thresholds. E.g. one cause of the low scores of the 10 mm/h threshold could be the small sample

size of only 132 pixels above that threshold across all 20 predicted frames. Both works show skillfull predictions compared to

previous works, but as Ravuri et al. (2021) state, heavy rainfall at long lead times are hard to predict. But still, as discussed in

the previous paragraph, the positive effect of finetuning is clearly visible for higher precipitation intensities.

Furthermore, Ayzel et al. (2020) considered radar data of Germany, evaluating the models RainNet and Rainymotion for200

the intensity thresholds 0.125 mm/h, 5 mm/h and 15 mm/h. The authors also observe a decrease of the score with increasing

thresholds. The Rainnet model shows clearly higher scores than the model of persistence. Regarding the 5 mm/h threshold

of the RainNet model analysed in Ayzel et al. (2020), after a couple of minutes the CSI is about 0.6, but it decreases fast
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Figure 5. Heidke Skill Score boxplots over the last 35,000 iterations for five different rain rate thresholds.

and reaches values only slightly greater than 0.2 after a 60 minutes prediction time. In comparison, the finetuned TrajGru in

Fig. 8 (a) starts with a CSI slightly below 0.6, but the CSI decreases slower. After 60 minutes the CSI still reaches values205

only slightly below 0.4 and after a prediction time of 100 minutes the CSI is still above 0.3. We remark that in the second

example, shown in 8 (c), the skill scores for the higher thresholds, are smaller, which can be explained with a small data basis

at low thresholds. Fig. 4 confirms statistically that the finetuned model improves the scores for extreme precipitation threshold.

However, a statistical analysis would be wishful to confirm an improving CSI over the prediction time for higher thresholds as

shown by the case study in Fig. 8 (a). It can be recognized that the HSS, shown in Fig. 8 (b) and (d), provides higher scores210

than the CSI depicted in Fig. 8 (a) and (c).

5 Conclusion

The deep learning algorithm TrajGRU (Trajectory Gated Recurrent Unit) for precipitation nowcasting is applied to radar data

of the German Weather Service focusing on the evaluation of the effectiveness of finetuning of the RNN-based network. A

pretrained network is finetuned for application on regionally different data and compared to a network trained from scratch215

on the new region. The TrajGRU is developed by Shi et al. (2017), who improved their own Convolutional Long Short-Term

Memory (LSTM) network for radar data (Shi et al., 2015) by the inclusion of error functions. The authors demonstrate its

applicability to a standardized data set of the Chinese Weather Service. Here, the scores CSI and HSS are evaluated for different
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Figure 6. Two samples from the finetuned TrajGRU on RADOLAN data selected outside of the training data set for the 4th (a) and 12th (b)

of May 2017. The first row for each panel respectively is the input data in color scale over the borders of Germany. The second row is the

raw input data. The third row is the ground truth. The fourth row is the model prediction.
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Figure 7. Two samples from the finetuned TrajGRU on RADOLAN data selected outside of the training data set for the 4th (a) and 12th (b)

of May 2017. It shows the difference between prediction and ground truth. The color black represents true negatives, so pixels where no rain

event occurred and no prediction was made.

thresholds of precipitation intensities (0.5 mm/h, 2 mm/h, 5 mm/h, 10 mm/h and 30 mm/h). For all thresholds, we find that

a finetuned network pretrained at a different location reaches similar performance than a fully newly trained network for the220

region of interest, but is significantly faster. In some cases finetuning can actually increase performance over a model trained

from scratch, showing that features transfer very well between data sets, even if taken from entirely different regions. The

positive effect of finetuning is especially distinct for extreme precipitation events. Yosinski et al. (2014) show that transfering

features between networks can improve generalization on data, even after finetuning the network. This could be an explanation,

why the finetuned model has such a big increase in performance for heavy rainfall events over the model trained from scratch.225

Furthermore, two case studies underline the effectiveness of the finetuned TrajGRU model. Comparing the here obtained

results with recent publications on deep learning algorithms to precipitation nowcasting based on radar data (Ayzel et al., 2020;

Ravuri et al., 2021) the finetuned TrajGRU shows slightly higher scores with less decrease with prediction time. While Chen

et al. (2020); Ayzel et al. (2020) show that their models are suitable to predict precipitation up to 60 minutes (Chen et al., 2020;

Ayzel et al., 2020), we achieve comparable scores for a 100 minute prediction time. A statistical analysis of the prediction time230

for more than the here presented two case studies would be wishful for future research.

To further optimize the results in future studies, different finetuning methods and finetuning hyperparameters could be taken

into account. Moreover, different data sets covering further regions should be investigated. Future work could also include

analyzing the ability to generalize and feature transfer between different approaches to precipitation nowcasting with deep

learning. Overall, the here presented results of the finetuned TrajGRU highlight promising regional extrapolation capabilities235

for such neural networks for precipitation nowcasting and suggest further investigations of this method to finally improve

precipitation nowcasting.
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Figure 8. CSI and HSS skill scores over five thresholds for both samples for the 4th (a, b) and 12th (c, d) of May 2017, broken down by

prediction time.

Code and data availability. The current version of the source code is available on GitHub: https://github.com/Nakroma/Precipitation-Nowcasting

(Beutler, 2022a) under the MIT license. The exact version of the code used to produce the results used in this paper is archived on Zenodo at

https://doi.org/10.5281/zenodo.6636422 (Beutler, 2022b), the input data that is available at https://doi.org/10.5281/zenodo.6634851 (Beutler,240

2022c) and the weights of the compared models are available at https://doi.org/10.5281/zenodo.6634844 (Beutler, 2022d).
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