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Abstract. Mountain hydrology is controlled by interacting processes extending from the atmosphere through the bedrock. 

Integrated process models (IPM), one of the main tools needed to interpret observations and refine conceptual models of the 10 

mountainous water cycle, require meteorological forcing that simulates the atmospheric process to predict hydroclimate then 

subsequently impacts surface-subsurface hydrology. Complex terrain and extreme spatial heterogeneity in mountainous 

environments drive uncertainty in several key considerations in IPM configurations, and require further quantification and 

sensitivity analyses. Here, we present an IPM using the Weather Research and Forecasting (WRF) model coupled with an 

integrated hydrologic model, ParFlow-CLM, implemented over a domain centered over the East River Watershed (ERW), 15 

located in the Upper Colorado River Basin (UCRB). The ERW is a heavily-instrumented 300 km2 region in the headwaters 

of the UCRB near Crested Butte, CO, with a growing atmosphere-through-bedrock observation network. Through a series of 

experiments in water year 2019 (WY19), we use four meteorological forcings derived from commonly used reanalysis 

datasets, three subgrid-scale physics scheme configurations, and two terrain shading options within WRF to test the relative 

importance of these experimental design choices on key hydrometeorological metrics including precipitation, snowpack, as 20 

well as evapotranspiration, groundwater storage, and discharge simulated by the ParFlow-CLM. Results reveal that sub-grid 

scale physics configuration contributes to larger spatiotemporal variance in simulated hydrometeorological conditions, 

whereas variance across meteorological forcing with common sub-grid scale physics configurations is more spatiotemporally 

constrained. For example, simulated discharge shows greater variance in response to the WRF simulations across subgrid-

scale physics schemes (26%) rather than meteorological forcing (6%). Topographic radiation option has minor effects on the 25 

watershed-average hydrometeorological processes, but adds profound spatial heterogeneity to local energy budgets (+/-30 

W/m2 in shortwave radiation and 1 K air temperature differences in late summer). The findings from this study provide 

guidance on an IPM setup that most accurately represents atmospheric-through-bedrock hydrometeorological processes and 

can be used to guide future modeling and fieldwork in mountainous watersheds. 
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1. Introduction 30 

An improved predictive understanding of watershed dynamics and response to perturbations is particularly important for 

mountainous watersheds due to the multitude of natural services they provide even while those services are highly 

vulnerable to anthropogenic and natural environmental change (Hubbard et al., 2018; Siirila-Woodburn et al., 2021). The 

Upper Colorado River Basin (UCRB), which supports 40 million people and ecosystems that has experienced major 

hydrological change in recent decades (James et al., 2014). Discharge may have decreased by ~9.3% per degree Celsius of 35 

warming, due to processes extending from the atmosphere through the subsurface (Milly and Dunne, 2020). Drought is 

common to the region, however, the current multi-decade drought is unprecedented in at least the last 1200 years (Williams 

et al., 2022). To better estimate how aridification of the UCRB might continue, processes that shape the water cycle in this 

region must be considered holistically, including atmospheric processes such as large-scale vapor transport, precipitation and 

radiation, land surface processes such as evapotranspiration and snowpack metamorphosis, and surface-through-subsurface 40 

hydrological processes. Atmospheric and land surface processes all interact and influence river discharge through riverine 

processes, infiltration, and subsurface flow and storage, but their impact varies depending on the temporal and spatial scales 

of analysis (Siirila-Woodburn et al., 2021). Unfortunately, there is a dearth of observational data to constrain these processes 

at their relevant scales, leading to persistent biases in the predictive understanding of the mountainous hydrologic cycle with 

direct implications for water resource management (Sturm et al., 2017; Rhoades et al., 2018a,b,c; Xu et al., 2019). A recent 45 

study by Lundquist et al. (2019) highlighted that calibrated models, which themselves have numerous deficiencies, have 

likely outpaced the skill of observationally-based gridded products in advancing the understanding of the integrated 

mountainous hydrologic cycle. Fortunately, observational campaigns, combined with coordinated modeling activities, 

represent a potential path forward towards enhancing our predictive understanding of the hydrologic cycle in complex terrain 

(Feldman et al., 2021). 50 

 

Here, we explore how modeling activities can best support that path forward. Process models provide an essential tool for 

quantifying linear and non-linear interacting processes across spatiotemporal scales that arise in mountains and can help to 

fill observational gaps. However, the processes that are represented in these process models are a mixture of fundamental 

physics and subgrid-scale parameterizations, many of which were not developed with mountainous hydrologic cycle 55 

processes in theory, and/or are based on decades-old field and laboratory data. To further compound those issues, cross-scale 

interactions in complex terrain are challenging to resolve at their native scales with currently available advanced computing 

resources (Siirila-Woodburn et al., 2021). While discipline-specific process models, such as those used to explore and 

predict atmospheric or subsurface processes have advanced scientific understanding in a myriad of ways through sustained 

engagement with extensive user communities (Gutowski et al., 2020), Integrated Process Models (IPMs), in which these 60 

discipline-specific process models are coupled, are relatively novel and are still being vetted for various scientific 

applications in complex terrain. For example, Maina et al. (2020) explored how the horizontal resolution of atmospheric 
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forcings (40km to 0.5 km) in the Cosumnes River watershed, California, simulated by a widely-used regional climate model 

(Weather Research and Forecasting (WRF; Powers et al., 2017), result in differences in surface and subsurface hydrologic 

metrics when used to force the integrated hydrologic model (ParFlow-CLM; Maxwell et al., 2015). We expand that 65 

sensitivity analysis in this study, including model meteorological forcing and subgrid-scale physics configuration choice, and 

their influence on the surface-through-subsurface response of the integrated hydrologic model. The goal of this work is to 

provide the mountain hydrology research community with a properly-configured IPM that can inform ongoing and future 

field campaigns and their process-modeling needs in the UCRB.    

 70 

Standalone WRF simulations have been widely investigated in complex terrain, and provide context for the unfilled gaps in 

IPM investigation and development in complex terrain. For example, several papers detailed the role of subgrid-scale 

physics configuration on precipitation and snowpack processes in the UCRB (Rasmussen et al., 2011; Liu et al., 2011; Liu et 

al., 2017; Rasmussen et al, 2020). Outside of the UCRB, Orr et al. (2017) found cloud microphysics schemes have 

significant impacts on monsoon precipitation simulation in the complex-terrain Himalayan regions, with the Morrison 75 

microphysics scheme producing the best agreement with observations. Conversely, Comin et al. (2018) found that the 

Morrison microphysics scheme produced excessive snowfall and exhibited poor performance when evaluated in the Andes, 

while the Goddard (WDM6) scheme exhibited the best performance with respect to observed snowfall. In terms of land 

surface process, Jin et al. (2010) explored that land surface model complexity improves temperature simulation, but has a 

minimal impact on simulated precipitation. Additionally, Mallard et al. (2017) evaluated that the sensitivity of near-surface 80 

temperatures and precipitation to changes in land use representation is smaller than the model error for those fields, while 

Rudisill et al., (2021) found that the details of snow cover in the initial conditions of a WRF simulation in complex terrain 

are key to ensuring the skill of that simulation, not just in 2-meter air temperature but also in the surface energy budget. 

Meanwhile, Rahimi et al (2022) found minimal sensitivity of SWE in WRF simulations across the entire western United 

States to microphysics schemes, but found large effects due to model resolution. On the other hand, the effects of 85 

meteorological forcing as the lateral boundary conditions of WRF simulations have also been recognized. For instance, Xu et 

al. (2018) identified that the simulations of hydroclimate in California using WRF are largely driven by large-scale forcing 

datasets. Taken together, the published literature suggests a one-size-fits-all WRF model configuration for hydrological 

studies in complex terrain may not be possible. In other words, the WRF configuration is likely case- and region-specific, 

and could depend either on the representation of processes within the WRF simulation domain or the boundary conditions of 90 

WRF forced by the large-scale meteorological forcing. The options of subgrid-scale physics schemes and large-scale 

meteorological forcing datasets need to be fully tested to understand their sensitivities to atmospheric and hydrological 

processes in the ERW. 

 

Furthermore, few studies have assessed how these choices impact the subsequent simulation of surface-through-subsurface 95 

hydrologic processes. These types of analysis are needed because the WRF model can be configured in myriad ways for a 
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given domain, and feedbacks to the surface and subsurface hydrology can yield a potentially large range of results. The 

aforementioned IPM study by Maina et al. (2020) showed that biases of 5-10% in basin-average surface water storage can 

result from forcing resolution differences in WRF alone, with localized differences in groundwater head by several meters. 

Schreiner-McGraw and Ajami (2020) show that water partitioning across four commonly used meteorological forcings 100 

differs substantially within a Sierra Nevada watershed, and that the combination of precipitation uncertainty, soil 

parameterization, and topographic position all impact the severity to which these differences in forcing exert on the 

hydrology.  

 

In spite of the range of WRF sensitivity investigations, the connections between uncertainty in a WRF configuration and its 105 

influence on surface-through-subsurface hydrology is underexplored and therefore the focus of this work. It should be noted 

that our investigation is not to explore general principles behind IPM uncertainty quantification and error propagation, but 

rather to present a concrete use-case to guide the advancement of atmosphere-through-bedrock modeling and its connections 

to mountainous hydrological science. Using an IPM, we address an outstanding question: does synoptic-scale meteorological 

forcing or meso-to-micro scale atmospheric processes have a more direct effect on surface and subsurface hydrologic 110 

processes in a mountainous watershed?  

 

In order to answer this question, we undertake a series of experiments with different synoptic-scale meteorological forcings, 

and different, plausible choices for meso-to-micro scale parameterizations in the IPM. This is informed by prior standalone 

WRF studies that have utilized different shortwave and longwave radiation, microphysical, and surface and planetary 115 

boundary layer schemes (Skamarock et al., 2019). Additionally, topographical shortwave shading effects are tested to 

understand how spatial heterogeneity in the surface radiation budget influences evapotranspiration and snowpack 

accumulation and ablation processes (Arthur et al., 2018). Then we explore how the surface and subsurface hydrology fields 

respond to these various experimental setup choices, especially discharge in the ERW of the UCRB (described below). With 

a discrete set of simulations, we establish the relative importance of these choices. We can also establish the relative 120 

importance of subgrid-scale parameterizations that affect water and energy budgets. Our hypothesis is that if synoptic-scale 

forcings produce a much larger spread in surface and subsurface hydrology fields than subgrid-scale physics scheme choice, 

then predictive hydrology in the UCRB should prioritize improving large-scale weather products and analyses. Conversely, 

if model subgrid-scale physics scheme choice produces more variability in hydrologic response, then smaller scale 

atmospheric and hydrological processes affected by surface heterogeneity in the ERW should be prioritized for model 125 

development. Finally, we can establish if there are spatial and/or temporal patterns to differences between models and 

observations that point to model configuration choices and thereby motivate further, directed model development and 

sensitivity studies.  
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Therefore, this article is organized as follows: first, we present details of study site and hydroclimate in the water year, as 130 

well as the IPM including the coupling between WRF and ParFlow-CLM and the justifications for using WRF and ParFlow-

CLM as the atmospheric and surface-through-subsurface process models in the IPM, respectively. Then, we describe the 

WRF experiments that we performed to test the relative importance of synoptic-scale boundary forcing and meso-to-micro 

scale model subgrid-scale physics schemes for driving ERW integrated hydrological simulations. Next, we present the 

simulated discharge, evapotranspiration and groundwater storage using ParFlow-CLM, to quantify the responses to changing 135 

WRF configurations. We conclude by contextualizing these results in light of the ongoing field campaign activities in the 

ERW. 

2. Study Site 

This investigation focused principally on modeling and analysis of the ERW, a representative mountainous headwater 

catchment of the UCRB near Gothic, Colorado (Hubbard et al., 2018). This 300 km2 watershed of the Upper Colorado River 140 

Basin is at a high-level, representative of the UCRB that it has very large gradients in precipitation (e.g., a factor of 2 range 

in precipitation between the northern and southern boundary of the ERW) and surface-through-subsurface hydrology. The 

ERW has a continental, subarctic climate with long, cold winters and short, cool summers. At an average elevation of 3266 

meters above sea level, the watershed has a mean annual temperature of 0℃, and distinct winter and growing seasons that 

influence hydrologic and biogeochemical cycles. River discharges are driven primarily by snowmelt in late spring to early 145 

summer, with mid- to late-summer monsoonal rainfall inducing rapid but punctuated increases in streamflow. The ERW 

receives ~1200 mm/yr of precipitation and we focus here on Water Year 2019 (Oct 1, 2018 - Sep 30, 2019).  

 

The ERW has become a mountainous community testbed for improving predictive understanding of multi-scale atmosphere-

through-bedrock system dynamics and is the centerpiece of such focused activities because it is one of two major tributaries 150 

that form the Gunnison River, which in turn accounts for near half of the Colorado River’s discharge at the Colorado–Utah 

border. In the past decade, several synthesis research efforts have been established in this region, including a wide range of 

fieldwork and modeling activities (Hubbard et al., 2018). The ERW has become one of the most heavily-instrumented 

mountainous watersheds in the world, which makes it an ideal focus for this research given the potentially large number of 

observational constraints available for the IPM efforts presented here.   155 

3. Methods 

3.1. WRF models 
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The Weather Research & Forecasting (WRF) model version 4.0 is used in this study (Powers et al., 2017). WRF was chosen 

because of its widespread use in the investigation of atmospheric and land processes, and contextualizing observations in 

complex terrain (Rasmussen et al., 2011; Rasmussen et al., 2014). The WRF model is comprised of a fully coupled 160 

atmospheric and land surface model with a range of user-specific options for subgrid-scale physics schemes. WRF is a 

regional climate model that requires boundary and initial conditions provided by either global climate model (GCM) outputs 

or atmospheric reanalyses datasets. Our configuration of the WRF model is designed with three nested domains, with an 

outer, middle and inner domains at grid resolution of 4.5 km, 1.5 km and 0.5 km, respectively, centered around Crested 

Butte, Colorado where the East River watershed is located (Figure 1). 165 

 

While the stand-alone WRF model has been used extensively to advance the understanding of atmospheric processes, it has 

lower fidelity and applicability to investigate surface-through-subsurface hydrologic processes, and therefore is limited as an 

assessment tool for understanding integrated mountainous hydrologic cycle. Therefore, to provide an estimate of the entire 

hydrologic budget, we use a one-way coupling between WRF and an integrated hydrologic model, ParFlow-CLM (Maxwell 170 

et al., 2015, described in further detail below), in order to simulate the hydrological response of key variables not otherwise 

quantifiable in standalone WRF, such as discharge and groundwater storage.  

 
 

Figure 1. Left: Three nested WRF domains D01 (4.5 km grid resolution, 201 by 201 grid cells or 900 by 900 km extent), D01 175 

(1.5 km grid resolution, 201 by 201 grid cells or 300 by 300 km extent), and D03 (0.5 km grid resolution, 201 by 201 grid 
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cells or 100 by 100 km extent) and their associated elevations (left). The Global Multi-resolution Terrain Elevation Data 

2010 (GMTED2010) elevation data in meters above mean sea-level is used in the WRF simulation. Right: the innermost 

ParFlow-CLM domain and spatial extent of the East River Watershed (white line) and associated land cover type derived 

from the National Land Cover Dataset (NLCD) (Homer et al, 2020) and upscaled to 100 m (right).  180 

 

A major experimental design decision when simulating the integrated mountainous hydrologic cycle is computational cost 

associated with the throughput of the simulations (e.g., simulated years per actual day) that are determined by model 

horizontal, vertical, and timestep resolutions and subgrid scale physics parameterization complexity. Computational 

expenses for exploring the sensitivities of WRF configuration choice in this study were significant: one simulated year 185 

requires approximately 100,000 CPU hours on LBNL’s Lawrencium lr6 supercomputing system. As such, it was highly 

impractical to simulate the entire configuration space of meteorological forcing and subgrid-scale parameterization choice. A 

discrete sub-sample of configurations, as presented here, is used to isolate and systematically determine which combination 

of subgrid scale parameterization choice is superior for a given domain such as the ERW. We therefore adopted a 

parsimonious approach to explore the space of possible WRF configurations, described below.  190 

3.1.1. Subgrid-scale physics schemes 

Three well-established suites of subgrid scale physics schemes for WRF are evaluated in this study (Table 1). One scheme 

was developed by NCAR and is used for a wide range of simulations over domains extending across the entire Conterminous 

United States (CONUS) (Liu et al., 2017). Another scheme that we consider here has been used for decadal-length 

hydroclimate simulation over California (Huang et al., 2017; Xu et al., 2018; Ullrich et al., 2018), and since it was initially 195 

developed by researchers at the University of California, Davis, it is denoted as UCD here. More recently, Flores et al. 

(2016) and Rudisill et al. (2021) implemented a WRF configuration that focused on exploring land-atmosphere interactions 

in complex terrain. This configuration was developed by researchers at Boise State University, and is referred to as BSU 

here. 

 200 

 

Table 1: Microphysics, radiation, land surface model, surface layer, and planetary boundary layer schemes used for the 

three different WRF configurations of the IPM tested here. 

Subgrid-scale physics 
schemes 

NCAR (CONUS) BSU  UCD  

Microphysics Thompson Thompson WSM6 

Shortwave radiation RRTMG RRTM RRTMG 
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Longwave radiation RRTMG RRTM RRTMG 

Land surface model Noah Noah-MP Noah 

Surface layer Eta similarity Monin-Obukhov Revised MM5 

Planetary Boundary 
layer 

Mellor-Yamada-Janjic 
scheme 

Mellor-Yamada-Janjic 
scheme 

UW (Bretherton and 
Park) 

3.1.2. Meteorological forcing  

Each of these WRF configurations must specify a set of initial and lateral boundary conditions at the synoptic scale and, at 205 

least in the outer domain, are typically derived from high-resolution atmospheric reanalyses. The reanalysis from the 

National Centers for Environmental Prediction (NCEP), Climate Forecast System Reanalysis version 2 (CFSR2), The 

Modern-Era Retrospective analysis for Research and Applications - Version 2 (MERRA2), European Centre for Medium-

Range Weather Forecasting Reanalysis version 5 (ERA5) were used in this study. 

 210 

ERA5 is the fifth generation ECMWF atmospheric reanalysis of the global climate on a 30 km grid resolution (Hersbach et 

al, 2020), and combines model data with observations from across the world into a globally complete and consistent dataset. 

The CFSR2 is also global and is designed to provide an operational product for forecasting and analysis purposes at 0.3 

degree grid resolution (Saha et al, 2010). The CFSR2 data were generated by an advanced assimilation schemes, 

atmosphere-land-ocean-sea ice coupling, assimilates satellite radiances. MERRA2 is another atmospheric reanalysis based 215 

on data assimilation (Gelaro et al., 2017), which is the first long-term global reanalysis to assimilate space-based 

observations of aerosols and represent their interactions with other physical processes in the climate system. In addition, the 

NCEP FNL (NCEP, 2000) operational global analysis and forecast data are on a 0.25-degree grid resolution from the Global 

Data Assimilation System (GDAS) (Kleist et al, 2009). All meteorological forcing datasets are processed at 6-hourly by the 

WRF Preprocessing System (WPS).  220 

3.1.3 Topographic radiation 

Topographic effects for shortwave radiation flux calculations in complex terrain are evaluated (Arthur et al., 2018). One is 

the “slope_rad” namelist option, which modifies surface solar radiation flux according to terrain slope by correcting it based 

on the solar zenith angle relative to the local surface normal vector. This adjustment ensures that the solar radiation received 

at the surface in WRF is consistent with the geometric projection of incoming sunlight onto local, non-flat surfaces. The 225 

other namelist option, “topo_shading”, allows for shadowing of neighboring grid cells. When “topo_shading” is active, WRF 

determines if any topography intersects a line drawn between a given grid point and the location of the sun at the time-step 

of the WRF run. If so, a topographic shadow is cast on that grid point and the direct component of the incoming solar 
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radiation is set to 0. In this study, simulations in which “slope_rad” and “topo_shading” are jointly enabled are termed 

“3DRad” and when jointly disabled are termed “no3DRad”, in the inner domain of the WRF simulation.  230 

 

 
Figure 2. Conceptual framework for developing a set of different WRF configurations of the IPM to evaluate the sensitivities 

of subgrid-scale physics parameterization choice, meteorological forcing, and radiation scheme in the representation of 

mountain water and energy budgets.  235 

 

Table 2:  East River Watershed WRF experiment configurations. Three subgrid-scale physics schemes, four meteorological 

forcings, and the topographic radiation options were assessed. 

Subgrid-scale physics 

schemes 

Meteorological 

forcing 

Topographic  

radiation 

BSU CFSR2 3DRad_inner 

  no3DRad_inner 

 ERA5 3DRad_inner 

  no3DRad_inner 

 MERRA2 3DRad_inner 

 NCEP 3DRad_inner 
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UCD CFSR2 3DRad_inner 

 ERA5 3DRad_inner 

NCAR CFSR2 3DRad_inner 

 ERA5 3DRad_inner 

3.2 ParFlow-CLM description  

ParFlow is a physically based surface-subsurface hydrologic model that solves the coupled flow of saturated and variability-240 

saturated groundwater and overland surface water (Ashby and Falgout, 1996; Jones and Woodward, 2001; Maxwell, 2013). 

The three-dimensional form of Richards equation is used to solve for lateral and vertical groundwater flow in the subsurface 

and the kinematic wave approximation is used to solve two-dimensional overland flow. ParFlow is coupled to the land 

surface model, the Common Land Model (CLM), which calculates a coupled water energy balance at every surface cell of 

the domain (Dai et al., 2003) and incorporates spatially distributed vegetative processes by including specified land use types 245 

parameterized by the International Geosphere-Biosphere Program standard database. Hourly meteorological forcing derived 

from WRF drives ParFlow-CLM, and includes the following eight variables: precipitation, two-meter surface air 

temperature, longwave radiation, shortwave radiation, 10-meter east-west and south-north wind speeds, atmospheric 

pressure, and specific humidity. Computational expenses for ParFlow-CLM are also less substantial than that of WRF for 

this model configuration, but still require high performance computing. Excluding the time for a multi-year initial condition 250 

spinup, a single water year of the ParFlow-CLM simulations on 64 cores on the NERSC’s Cori supercomputing system is 

approximately 1,000 CPU hours.  

3.3 Reference Datasets 

The Parameter-elevation Relationships on Independent Slopes Model (PRISM) dataset (Daly et al., 2008) was used as the 

reference dataset to assess model performance of precipitation and temperature in this study. PRISM uses observations from 255 

quality-controlled meteorological stations along with a topographic correction method against elevation based on empirical 

regression to create daily gridded 800-meter total precipitation, and daily average, minimum and maximum two-meter 

surface temperature. 

 

Snowpack Telemetry (SNOTEL) data have been widely used in snowpack assessment (Serreze et al, 1999; Fassnacht et al, 260 

2003), and we use three SNOTEL stations (Butte, Schofield Pass, Upper Taylor) within the WRF inner domain to assess the 

snowpack simulation skill of each IPM configuration. Significant heterogeneity is sampled by the three SNOTEL stations 

(within or near the ERW) due to the complex topography. For example, the Butte station is located downstream of the ERW 

and, on average, receives approximately 0.8 m of precipitation, and reaches 0.4 m in maximum snow water equivalent over 
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the year. On the other hand, the Schofield Pass station is located upstream of the ERW and, on average, receives 1.2 m of 265 

precipitation and reaches 0.9 m in maximum snow water equivalent. In addition, we use the snow water equivalent product 

of the Airborne Snow Observatory (ASO; Painter et al, 2016) on 04/07/2019 to evaluate the spatial pattern skill of the 

snowpack simulation across WRF configurations (Figure S-6).  Notably, ASO SWE estimates are lower than SNOTEL SWE 

measurements (ASO: 389 mm at Butte, 938 mm at Schofield Pass; SNOTEL: 490 mm at Butte, 1260 mm at Schofield Pass). 

In addition to SNOTEL station data, stream gauges measurement of discharge at the pumphouse, the outlet of the ERW, is 270 

used to evaluate the ParFlow-CLM simulation results.  

4. Results 

We start by presenting a number of time-series of spatial averages over the ERW for WY19.  They indicate the gross 

performance of the IPM across the water year, and whether a configuration produces generally reasonable estimates relative 

to observational products.  Figure 3 shows cumulative precipitation, two-meter surface air temperature, and snow water 275 

equivalent (SWE). For cumulative precipitation, each configuration produces amounts higher than PRISM (cumulative 

precipitation of 1201 mm), and the UCD simulates the highest cumulative precipitation. For surface air temperature, the 

seasonal cycle and daily variability are captured by all configurations, however, exhibit systematic cold biases relative to 

PRISM (annual average two-meter surface air temperature of 0.6 degrees Celsius). In terms of SWE, all model 

configurations concur in their representation of the snowpack accumulation season and melt season in late spring and into 280 

summer, except UCD which simulates an earlier peak timing of SWE. 

 

The spread in cumulative precipitation when comparing across different meteorological forcing dataset is apparent (Figure 

3). Although UCD and NCAR configurations show greater difference in precipitation forced by ERA5 and CFSR2, the 

consistency across BSU configurations is notable, which also shows the closest agreement with PRISM. When comparing 285 

the relative roles of subgrid-scale physics scheme choice to meteorological forcing, the percent difference of cumulative 

precipitation, calculated with (maximum - minimum)/minimum*100, across BSU-CSFR2, UCD-CSFR2 and NCAR-CSFR2 

schemes is nearly 34% of the mininum cumulative precipitation simulated by BSU-CFSR2, compared to the 4.6% of the 

simulations across BSU configurations with different meteorological forcing (CSFR2, ERA5, MERRA2 and NCEP).  

 290 

BSU simulations are generally in agreement with PRISM. However, the UCD simulations are outliers relative to the other 

simulations, with cumulative precipitation of 1706 mm, or 42% higher at the end of the water year, with the most notable 

differences occurring in March through September. NCAR simulations show general agreement with PRISM and BSU 

throughout the water year, save for June through September. The two-meter surface air temperature time-series reveals that 

the UCD simulation is systematically colder throughout the winter and spring, regardless of which meteorological forcing 295 

dataset is used. The persistent cold bias simulated by the UCD, NCAR and BSU schemes has been found in previous WRF 
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studies within western US mountain regions (Xu et al., 2018, Rudisill et al. 2021). The SWE time-series again shows a 

similar relationship with precipitation, with the outlier being UCD-ERA5, in terms of the seasonal timing of when snowpack 

peaks and melts (Figure S-4).   

 300 

 

 
Figure 3. Cumulative precipitation, two-meter surface air temperature and snow water equivalent (SWE) simulated within 

the ERW using an IPM with different subgrid-scale physics schemes and meteorological forcings. The cumulative 

precipitation and temperature results are compared relative to PRISM. 10-day moving averages of daily temperature are 305 

shown in b). The percent difference in cumulative precipitation across subgrid-scale physics schemes (black brackets) and 

meteorological forcing (green brackets), calculated by (maximum - minimum)/minimum*100, are provided on the right y-

axis.   
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In addition to the domain-averages, spatial heterogeneity due to land-surface cover and topographic effects are shown in 310 

Figure 4. The systematic cold bias simulated throughout the water year appears to be an elevation-dependent phenomena 

with higher-elevations exhibiting an enhanced cold bias compared with PRISM. However, the river valley and relatively 

lower-elevation areas at the southern edge of the ERW, which includes Crested Butte Mountain, stands out as these regions 

are warmer than the PRISM dataset. Figure 4b shows precipitation in BSU-CFSR2 is wetter in the western regions, and drier 

in the eastern, of the ERW in comparison against PRISM. Figure S-3 and S-4 show comparisons between PRISM and the 315 

IPM configurations and indicates no biases that are persistent across seasons. During summer, the BSU-CFSR2 simulation 

consistently produces more precipitation than PRISM.  

 

Although the two-meter surface air temperature bias is evident, it doesn't vary significantly across either subgrid-scale 

physics scheme or meteorological forcing, subsequent exploration will be predominantly focused on precipitation. The 320 

bottom row in Figure 4 shows the grid-cell standard deviation of monthly precipitation across subgrid-scale physics schemes 

(i.e., UCD, NCAR and BSU simulations with CFSR2 meteorological forcing – bottom left) and BSU simulation driven by 

different meteorological forcing datasets (ERA5, CFSR2, MERR2 and NCEP – bottom right). Similar to the conclusions 

drawn from Figure 3, Supplementary Figure S-4 also shows the monthly spatial standard deviations across subgrid-scale 

physics schemes are generally greater than meteorological forcing, particularly in regions of higher-elevation during the 325 

winter season.  
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Figure 4. Upper row: Differences in spatial distributions of annual average two-meter surface air temperature (a) and 330 

cumulative precipitation (b) between the BSU-CFSR2 WRF configuration and PRISM. Lower row: For all schemes, the 
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standard deviation of annual cumulative precipitation is plotted for subgrid-scale physics schemes (c) and meteorological 

forcings (d). The values in the parentheses are the domain average differences over the water year.  

 

Based on the assessment of simulated precipitation and two-meter surface air temperature compared with PRISM, the BSU-335 

CFSR2 configuration is selected as a baseline to further explore the influence of topographic radiation scheme effects. Figure 

5 shows daily ERW spatial average time series over the water year for the major mountainous water and energy budget 

variables. By isolating the impacts of subgrid-scale physics schemes and meteorological forcings across IPM simulations, it 

is easier to to systematically intercompare cause-and-effect across different topographic radiation options. Consistent with 

previous findings, all configurations still overestimate cumulative precipitation and are too cold relative to PRISM.  340 

 

 
Figure 5. Spatial-average cumulative precipitation, two-meter surface air temperature and snow water equivalent (SWE) 

(first row), shortwave and longwave radiation, and latent and sensible heat (second row) over the ERW as simulated by the 

IPM configurations with and without realistic topographic radiation effects, along with, where available, estimates from 345 

PRISM. 3DRad indicates a simulation with topo_shading and slope_rad turned on in the WRF inner domain but not the 

outer WRF domains, no3DRad indicates a simulation with top_shading and slope_rad turned off in both the inner and outer 

WRF domains. 10-day moving averages are shown in b) temperature, and radiation variables (d, e, f, g). 

 

Figure 6 shows the seasonally-resolved shortwave radiation, two-meter surface air temperature, latent heat flux and SWE for 350 

different configurations of shortwave radiation in the simulation with and without topo_shaing and slope_rad options in the 

inner domain. While no3DRad does not adjust the SWdown, 3DRad simulation recalculates the SWdown based on the 
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shadows cast by nearby topography. Spatial differences in IPM-simulated shortwave radiation (Figure 6b) are seen in the 

northeast and western portions of the ERW, when topographic effect of shortwave radiation is included. As a result, a 

corresponding change in the spatial pattern of simulated two-meter surface air temperature and latent heat flux are seen, 355 

which are driven by the change in downwelling shortwave radiation with topographic shading (Figures 6a and 6d). The 

resulting pattern change in SWE (Figure 6c) shows that the northern and northeastern sections of the ERW, where snowpack 

are concentrated, are sensitive to shortwave radiation. This is expected and consistent with previous findings that included 

topographic effects in shortwave radiation and found distinct spatial patterns of hydrologic variable sensitivity due to both 

shadows and surface reflection that produce time-varying effects on net surface radiation (Lee et al., 2015; Palazzi et al., 360 

2019; Gu et al., 2020; Hao et al., 2021). 

 

Although Figure 5 shows that realistic shortwave radiation produces small effects on the seasonal cycle of the surface energy 

and mass budgets when averaged over the entire watershed, including annual average SWE (Figure 5c), Figure 6c shows that 

mountains and valleys have different amounts of SWE. Furthermore, seasonal patterns show simulated latent heat is 365 

diminished at lower elevations from March to May, when snowmelt occurs in the valley, and the remaining snowpack in the 

mountains and late snowmelt in 3DRad simulation causes lower latent heat flux shown in July (Figure S-5). The 3DRad 

simulation has less SWE in the valleys during the accumulation season but more SWE at higher elevations during the melt 

season, which is a direct result of the differences in shortwave radiation redistribution. Figure S-5 also shows that the latent 

heat differences in north-facing and south-facing sides are most apparent in the snowmelt and warm seasons. This is 370 

consistent with previous findings (Lee et al., 2015; Palazzi et al., 2019; Gu et al., 2020; Hao et al., 2021), that a more 

realistic treatment of shortwave radiation, which includes shadows and projected insolation on sloped surfaces, results in 

lower shortwave insolation on the surface at this time of year. The lower shortwave radiation should, in turn, decrease the 

energy available for the IPM to produce snowmelt. 
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 375 
Figure 6. Topographic radiation differences (3dRad minus no3dRad) annual average two-meter surface air temperature, 

shortwave (SW) and latent heat flux, and snow water equivalent (SWE) over the ERW. The values in the parentheses are the 

ERW average differences over the water year, which are small and consistent with Figure 5.  

https://doi.org/10.5194/egusphere-2022-437
Preprint. Discussion started: 27 June 2022
c© Author(s) 2022. CC BY 4.0 License.



18 
 

 

To understand how the aforementioned WRF configurations and forcings impact the integrated water budget, Figure 7 shows 380 

the simulated hydrologic output from the ParFlow-CLM model for watershed outlet discharge (top row) and watershed-

average groundwater storage (bottom row). Discharge at the watershed outlet (see exact location on Figure 1) shows general 

agreement across the different WRF subgrid-scale physics scheme configurations and meteorological forcings, where the 

daily averaged time series (left) shows only minor differences through time. However, cumulative discharge by year-end 

reveals substantial differences (right), especially after peak snowmelt where estimates of cumulative discharge begin to 385 

diverge. Differences across the WRF configurations are especially large; the difference across the three subgrid-scale physics 

scheme configurations with ERA5 (UCD, NCAR, and BSU) varies by 26% by year-end. Differences across meteorological 

forcing (using the BSU physics configuration as a control, shown in green) are also noteworthy, although smaller, 

approximately 6%. These results are consistent with variation of simulated precipitation in WRF described earlier, 

confirming that for this basin, meteorological forcing drives less variance on hydrologic response than subgrid-scale physics 390 

scheme configuration. 
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Figure 7. Time-series of ParFlow-CLM simulations of discharge rate (a), cumulative discharge (b), groundwater storage 

per unit area of the watershed (c), and cumulative average unsaturated groundwater storage per area of the watershed (d) 395 

for the IPM configurations described in Table 2. The brackets on the far-right indicate the percent difference of cumulative 

discharge and unsaturated groundwater storage per area (b and d, respectively) for WRF simulations across different 

meteorological forcings (green) and subgrid-scale physics schemes (black). 

 

A comparison to observed discharge is also shown on Figure 7, which for all scenarios suggest a delayed snowmelt response 400 

in the IPM. While the objective of this study is not to replicate the observations, but rather determine sensitivity across IPM 

configuration choice, the mismatch in streamflow response suggests a systematic cold-bias from the WRF input into 
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ParFlow-CLM which is consistent with the discussion surrounding Figure 3 in relationship to PRISM. An early-fall peak in 

simulated discharge is also seen in all WRF simulations, and not in observed discharge, although a significant increase in 

SNOTEL precipitation was measured in October of that year (see Figure S-1, S-2). This further supports a temperature bias, 405 

albeit opposite that of the cold-bias discussed previously, where precipitation around that October storm-event falling as rain 

(as opposed to snow) leads to a sharp increase in discharge. A sensitivity analysis of the BSU-ERA5 model run for a lower 

precipitation year (water year 2018, which was nearly half the precipitation of 2019), showed better agreement with 

observed discharge, which suggests the bias in timing may be a function of accumulated precipitation and/or snowmelt, and 

is reserved for future studies (not shown). 410 

 

Basin-average groundwater storage, shown in Figure 7c in area-normalized units, shows a strong annual signal for all WRF 

configurations with notable, but minimal differences across IPM configurations. Here all groundwater, inclusive of saturated 

or unsaturated storage, is considered. The cumulative, area-normalized annual groundwater storage, when accounting for 

only vadose zone storage (Figure 7d), which is most responsive to sub-annual differences in precipitation inputs, is 415 

meaningful in this context because it relates a cumulative impact on near-surface groundwater storage due to IPM 

configuration. Similar to year-end cumulative discharge, year-end departures in vadose zone groundwater storage across the 

different simulations are evident. Differences across the IPM configurations of subgrid-scale physics schemes are slightly 

larger than the difference across the forcing simulations (4% versus 2%, respectively). While the differences in groundwater 

signals are not as pronounced as the discharge signals, the slower, more muted-nature of infiltration and impacts on deeper 420 

aquifer reserves relative to discharge would likely be more notable for multi-year simulations and/or in more water-limited 

environments (or water years) where plant-water use demands are higher.  

 

Figure 8 shows maps of standard deviations in annual total evapotranspiration (ET) simulated by ParFlow-CLM across IPM 

configurations (top row), as well as the cell-binned relationship of those standard deviations of annual ET with land use and 425 

cover type, as well as elevation (bottom). Consistent with variations shown in the simulated discharge and groundwater 

storage, Parflow-CLM simulates greater variations of ET under WRF configurations driven by different subgrid-scale 

physics schemes (Figure 8a), compared to the simulations conducted with different meteorological forcings (Figure 8b). 

These results suggest that locations populated by high-water demanding vegetation (namely evergreen and deciduous 

forests) at mid-elevations result in the highest ET variability across IPM configurations. Conversely, low-water demanding 430 

vegetation (barren/sparsely vegetated land and grasses), which reside across a range of elevations in the study domain, result 

in the lowest variability in annual ET across IPM configurations. These differences in water demand essentially magnify any 

differences in atmospheric conditions.  
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 435 
Figure 8. Pixel-level standard deviation in annual total evapotranspiration (ET) over the ParFlow-CLM domain from WRF 

with different subgrid-scale physics schemes (a,c) or meteorological forcing (b,d). The ERW outline is overlain in black in 

the upper row, a-b. The relationship between annual ET, elevation, and land cover type are shown as scatter plots on the 

bottom row, c-d. See Figure 1 for maps of land cover types.  
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5. Discussion and Conclusions 440 

In spite of previous efforts to characterize the sensitivity of WRF simulations to model configuration choices, the mountain 

climate and hydrology scientific community has not sufficiently explored the implications of those choices for surface and 

subsurface hydrology in high-altitude complex terrain. Here, we used an IPM produced by coupling WRF and ParFlow-

CLM to assess the hydrometeorology of the ERW which is characterized by strong hydrological gradients indicative of 

mountain environments of the UCRB. 445 

 

In this paper, we present a number of numerical experiment results that are informative for the scientific community to better 

understand atmosphere-through-bedrock process interactions, with an eye towards how to represent those interactions in 

climate and hydrological models. First, the uncertainties associated with meteorological forcing choice are less important 

than subgrid-scale physics scheme choice, at least in the ERW. This finding has important implications for IPM in complex 450 

terrain, since it reveals that the differences in reanalysis products are less consequential for initializing and forcing IPMs than 

atmospheric configurations, and that efforts to advance IPMs such as collecting observations and using them to evaluate 

physical process parameterizations at the sub-HUC-8 scale could help to better constrain model performance. This result also 

shows that the boundary conditions of the IPM simulation are less important in driving the magnitude and spatial variability 

of key hydrometeorological variables than the details in choosing and optimizing atmospheric subgrid-scale physics schemes 455 

(e.g., microphysics or boundary layer turbulence). Ultimately, we found that the BSU-CFSR2 configuration produced the 

most accurate recreation of WY2019 in the ERW which allows researchers, in this case, to prioritize process studies and the 

development of associated observational constraints within the ERW. However, further investigation is need to evaluate the 

systemic cold bias across IPM configurations, particularly at higher elevations, and the consequence of delayed snowmelt 

and timing of discharge peaks.  460 

 

In the investigation of topographical and slope gradient effects on shortwave radiation, our study shows those considerations 

in WRF are essential in redistributing radiation flux over regions of complex terrain, even though the differences in spatial-

average performance over ERW is minimal. This is because the spatial redistribution of shortwave radiation leads to 

approximately +/- 30 W/m2 difference in the east/west facing slopes that lead to +/- 1 K difference in two-meter surface air 465 

temperature in August and September (when snowpack is nonexistent). Throughout most of the water year when snowpack 

exists, the spatial heterogeneity of temperature differences are less apparent than for shortwave radiation. Latent heat is 

posited to buffer differences in the shortwave radiation contribution to the radiation budget, and causes early snowmelt in the 

high elevation mountains in those simulations with topographical and slope gradient shortwave radiation effects turned on. 

At the same time, this finding is potentially indicative of challenges in extrapolating findings from one mountainous 470 

watershed to another. If atmospheric process details are significant for surface and subsurface hydrological modeling and if 

the findings regarding atmospheric processes in one study area are marginally or completely irrelevant to other mountainous 
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watersheds, then additional field work would be needed in mountainous hydrology research to address this issue, given that 

the extrapolation of fieldwork results remains a central challenge for field-based research and modeling activities.  

 475 

A limitation of our study, given the computational constraints of running IPMs, is that it was infeasible to explore the full 

parameter spaces of WRF and ParFlow-CLM exhaustively; thus, our conclusions are limited to the selected subgrid-scale 

physics schemes and meteorological forcing datasets analyzed. Additional work is needed to improve the systemic cold bias 

in two-meter surface air temperature throughout all experiments as this may have been the major driver in the delayed 

snowmelt and peak discharge simulated by the IPM. Another methodological constraint is that our WRF and Parflow-CLM 480 

experiments were only one-way coupled instead of two-way coupled, which ignores potentially important feedbacks from 

the subsurface hydrology to the atmosphere via ET and the radiation budget. For example, Givati et al. (2016) reported that 

simulated precipitation was improved with two-way coupling in WRF-Hydro compared to WRF-only and Forrester et al. 

(2018) showed that boundary layer dynamics were impacted in IPM simulations in regions where shallow water tables exist.   

 485 

Future work will include integration of data, either indirectly through IPM benchmarking or directly through data 

assimilation into the IPM, from a recently deployed atmospheric observatory in the ERW as part of the Surface Atmosphere 

Integrated Field Laboratory (SAIL) Campaign, which will run from September, 2021 to June, 2023. SAIL is collecting a 

wide-array of observations with the intent to advance understanding of precipitation, snow, aerosol, aerosol-cloud 

interaction, and radiation processes in complex terrain and establish the minimum-but-sufficient level of process 490 

understanding to develop a robust predictive understanding of seasonal surface water and energy budgets in the ERW 

(Feldman et al., 2021). SAIL is working in conjunction with the Watershed Function Scientific Focus Area (WF-SFA) and 

partners including the National Oceanic and Atmospheric Administration (NOAA)’s Study for Precipitation, the Lower 

Atmosphere, and Surface for Hydrometeorology (SPLASH), the United States Geological Survey’s Next Generation Water 

Observing System (NGWOS), the National Science Foundation’s Sublimation of Snow (SOS) project, and numerous state 495 

and local agencies and organizations, including the Rocky Mountain Biological Laboratory, to develop a wide range of 

hydrometeorological datasets to constrain atmosphere, surface, and subsurface processes simultaneously. Together, these 

resources are contributing to the establishment of a highly-instrumented and studied UCRB watershed. Our study highlights 

that the benchmarking provided by these data collections will be critical in addressing the systemic IPM cold bias by 

providing a more constrained estimate of radiation budgets in complex terrain that ultimately shape snowmelt and discharge. 500 

 

Data Availability: All WRF model output files can be found at 

https://portal.nersc.gov/archive/home/z/zexuanxu/Shared/www/IPM 

Please notify corresponding author Zexuan Xu (zexuanxu@lbl.gov) if you used our data. 

 505 
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