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Abstract.  

Mountain hydrology is controlled by interacting processes extending from the atmosphere through the bedrock. Integrated 

process models (IPM), one of the main tools needed to interpret observations and refine conceptual models of the mountainous 10 

water cycle, require meteorological forcing that simulates the atmospheric process to predict hydroclimate then subsequently 

impacts surface-subsurface hydrology. Complex terrain and extreme spatial heterogeneity in mountainous environments drive 

uncertainty in several key considerations in IPM configurations, and require further quantification and sensitivity analyses. 

Here, we present an IPM using the Weather Research and Forecasting (WRF) model which force an integrated hydrologic 

model, ParFlow-CLM, implemented over a domain centered over the East River Watershed (ERW), located in the Upper 15 

Colorado River Basin (UCRB). The ERW is a heavily-instrumented 300 km2 region in the headwaters of the UCRB near 

Crested Butte, CO, with a growing atmosphere-through-bedrock observation network. Through a series of experiments in 

water year 2019 (WY19), we use four meteorological forcings derived from commonly used reanalysis datasets, three subgrid-

scale physics scheme configurations in WRF, and two terrain shading options within WRF to test the relative importance of 

these experimental design choices on key hydrometeorological metrics including precipitation, snowpack, as well as 20 

evapotranspiration, groundwater storage, and discharge simulated by the ParFlow-CLM. Our hypothesis is that uncertainty 

from synoptic-scale forcings produce a much larger spread in surface-through-subsurface hydrologic fields than subgrid-scale 

physics scheme choice. Results reveal that WRF subgrid-scale physics configuration lead to larger spatiotemporal variance in 

simulated hydrometeorological conditions, whereas variance across meteorological forcing with common subgrid-scale 

physics configurations is more spatiotemporally constrained. Despite reasonably simulating precipitation, a delay in simulated 25 

discharge peak is due to a systematic cold bias across WRF simulations, suggested the need for bias correction.      D          

ischarge shows greater variance in response to the WRF simulations across subgrid-scale physics schemes (26%) rather than 

meteorological forcing (6%). Topographic radiation option has minor effects on the watershed-average hydrometeorological 

processes, but adds profound spatial heterogeneity to local energy budgets (+/-30 W/m2 in shortwave radiation and 1 K air 
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temperature differences in late summer).  This is the first presentation of sensitivity analyses that provide support to  help guide 30 

the scientific community to develop observational constraints on atmosphere-through-bedrock processes and their interactions.    

1. Introduction 

An improved predictive understanding of watershed dynamics and response to perturbations is particularly important for 

mountainous watersheds due to the multitude of natural services they provide even while those services are highly vulnerable 

to anthropogenic and natural environmental change (Hubbard et al., 2018; Siirila-Woodburn et al., 2021). The Upper Colorado 35 

River Basin (UCRB), which supports 40 million people and ecosystems, has experienced major hydrological change in recent 

decades (James et al., 2014). Discharge has decreased by ~9.3% per degree Celsius of warming, due to processes extending 

from the atmosphere through the subsurface (Milly and Dunne, 2020). Drought is common to the region, however, the current 

multi-decade drought is unprecedented in at least the last 1200 years (Williams et al., 2022). To better estimate how 

aridification of the UCRB might continue, processes that shape the water cycle in this region must be considered holistically, 40 

including atmospheric processes such as large-scale vapor transport, precipitation and radiation, land surface processes such 

as evapotranspiration and snowpack metamorphosis, and surface-through-subsurface hydrological processes. Atmospheric and 

land surface processes all interact and influence river discharge through riverine processes, infiltration, and subsurface flow 

and storage, but their impact varies depending on the temporal and spatial scales of analysis (Siirila-Woodburn et al., 2021). 

Unfortunately, there is a dearth of observational data that can constrain these processes at their respective scales                                                        45 

which has resulted in persistent model simulation biases in the predictive the mountainous hydrologic cycle with direct 

implications for water resource management (Sturm et al., 2017; Rhoades et al., 2018a,b,c; Xu et al., 2019). Lundquist et al. 

(2019) highlighted that calibrated models, which themselves have numerous deficiencies, have likely outpaced the skill of 

observationally-based gridded products in advancing the understanding of the integrated mountainous hydrologic cycle.                  

A wide range of physical based and statistical models have been used over the complex terrain of the western U.S. For example, 50 

Alder et al. (2019) and Rahimi et al. (2022) have evaluated the choice of downscaled climate data and the sensitivities of grid 

resolution. Buban et al. (2022) also investigated the use of PRISM as a reference dataset to assess climate model performance. 

Observational campaigns, combined with coordinated modeling activities, represent a potential path forward towards 

enhancing our predictive understanding of the hydrologic cycle in complex terrain and, ultimately, advancing model 

development that can better aid water resource management (Lundquist et al, 2019; Feldman et al., 2021).  55 

 

Here, we explore how modeling activities can best support that path forward. Process models provide an essential tool for 

quantifying linear and non-linear interacting processes across spatiotemporal scales that arise in mountains and can help to fill 

observational gaps. However, the processes that are represented in these process models are a mixture of fundamental physics 

and subgrid-scale parameterizations, many of which were not developed with a focus on performance in mountainous 60 

environments, and/or are based on decades-old field and laboratory data that do not adequately capture the range of 



3 
 

environmental conditions over which those processes occur. Advances in process modeling in complex terrain must recognize 

connections between processes in the atmosphere, at the surface and in the subsurface. At the same time, making connections 

between processes across the atmosphere-through-bedrock continuum is highly non-trivial (Meixner et al., 2016, Zhuang et 

al., 2022). Furthermore, snow processes must be resolved at much finer scales than atmospheric processes, such that snow 65 

process investigations and accurate snow process modeling requires high-resolution downscaling of WRF (e.g. Winstral and 

Marks, 2014). Cross-scale interactions in complex terrain are challenging to resolve at their native scales with currently 

available advanced computing resources (Siirila-Woodburn et al., 2021). While discipline-specific process models, such as 

those used to explore and predict atmospheric or subsurface processes have advanced scientific understanding in a myriad of 

ways through sustained engagement with extensive user communities (Gutowski et al., 2020), Integrated Process Models 70 

(IPMs), in which these discipline-specific process models are integrated, are relatively novel and are still being vetted for 

various scientific applications in complex terrain.  

      

Zhang et al. (2016) and Davison et al. (2017) demonstrated the utility of coupling process models built to explore discipline-

specific processes as a mechanism to advance interdisciplinary research. Furthermore, Camera et al (2020) discussed the one-75 

way vs. two-way coupling of IPM to understand process interactions in the mountainous hydrologic cycle. The capabilities 

and details of the IPM have been discussed in a series of findings. For example, Maina et al. (2020) explored how the horizontal 

resolution of atmospheric forcing datasets (40 km to 0.5 km) in the Cosumnes River watershed, California, simulated by a 

widely-used regional climate model (Weather Research and Forecasting (WRF; Powers et al., 2017), result in differences in 

surface and subsurface hydrologic metrics when used to force the integrated hydrologic model (ParFlow-CLM; Ashby and 80 

Falgout, 1996; Jones and Woodward, 2001; Maxwell, 2013, Maxwell et al., 2015), which has been widely applied in the UCRB 

(Maina et al., 2022; Foster and Maxwell, 2018; Pribulick et al., 2016). We expand upon those various sensitivity analyses in 

this study, including the influences of large-scale meteorological forcing and subgrid-scale physics schemes choice on the 

surface-through-subsurface response of the integrated hydrologic model. The goal of this work is to provide the mountain 

hydrology research community with assessed several literatures supported configurations IPM that can inform ongoing and 85 

future field campaigns and their process-modeling needs in the UCRB.    

 

Standalone WRF simulations have been widely investigated in complex terrain, and provide context for the unfilled gaps in 

IPM investigation and development in complex terrain. For example, several papers detailed the role of subgrid-scale physics 

configuration on precipitation and snowpack processes in the UCRB (Rasmussen et al., 2011; Liu et al., 2011; Liu et al., 2017; 90 

Rasmussen et al, 2020). Outside of the UCRB, Orr et al. (2017) found cloud microphysics schemes have significant impacts 

on monsoon precipitation simulation in the complex-terrain Himalayan regions, with the Morrison microphysics scheme 

producing the best agreement with observations. Conversely, Comin et al. (2018) found that the Morrison microphysics scheme 

produced excessive snowfall and exhibited poor performance when evaluated in the Andes, while the Goddard (WDM6) 

scheme exhibited the best performance with respect to observed snowfall. In terms of land surface process, Jin et al. (2010) 95 
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explored that land surface model complexity improves temperature simulation, but has a minimal impact on simulated 

precipitation. Additionally, Mallard et al. (2017) evaluated that the sensitivity of near-surface temperatures and precipitation 

to changes in land use representation is smaller than the model error for those fields, while Rudisill et al., (2021) found that 

the details of snow cover in the initial conditions of a WRF simulation in complex terrain are key to ensuring the skill of that 

simulation, not just in 2-meter air temperature but also in the surface energy budget. Meanwhile, Rahimi et al (2022) found 100 

minimal sensitivity of SWE in WRF simulations across the entire western United States to microphysics schemes, but found 

large effects due to model resolution. On the other hand, the effects of meteorological forcing as the lateral boundary conditions 

of WRF simulations have also been recognized. For instance, Xu et al. (2018) identified that the simulations of hydroclimate 

in California using WRF are largely driven by large-scale forcing datasets. Taken together, the published literature suggests a 

one-size-fits-all WRF model configuration for hydrological studies in complex terrain may not be possible. In other words, the 105 

WRF configuration is likely case- and region-specific, and could depend either on the representation of processes within the 

WRF simulation domain or the boundary conditions of WRF forced by the large-scale meteorological forcing. The options of 

subgrid-scale physics schemes and large-scale meteorological forcing datasets need to be fully tested to understand their 

sensitivities to atmospheric and hydrological processes in the ERW. 

 110 

Furthermore, few studies have assessed how these choices impact the subsequent simulation of surface-through-subsurface 

hydrologic processes. These types of analysis are needed because the WRF model can be configured in myriad ways for a 

given domain, and feedbacks to the surface and subsurface hydrology can yield a potentially large range of results. The 

aforementioned IPM study by Maina et al. (2020) showed that biases of 5-10% in basin-average surface water storage can 

result from forcing resolution differences in WRF alone, with localized differences in groundwater head by several meters. 115 

Schreiner-McGraw and Ajami (2020) show that water partitioning across four commonly used meteorological forcing datasets 

differs substantially within a Sierra Nevada watershed, and that the combination of precipitation uncertainty, soil 

parameterization, and topographic position all impact the severity to which these differences in forcing exert on the hydrology. 

However, neither standalone WRF nor WRF-Hydro explicitly simulate streamflow and three-dimensional groundwater 

processes. Groundwater in WRF-Hydro is highly simplified (shallow soil layers and a bucket model) while ParFlow simulates 120 

the full continuum of variably saturated flow in three dimensions. Therefore, one-dimensional land surface model alone cannot 

be used to better understand the configuration impacts on the greater hydrologic cycle, given the importance of lateral 

groundwater flow contributions to streamflow, especially in complex mountainous terrain. 

 

In spite of the range of WRF sensitivity investigations, the connections between uncertainty in a WRF configuration and its 125 

influence on surface-through-subsurface hydrology is underexplored and therefore the focus of this work. It should be noted 

that our investigation is not to explore general principles behind IPM uncertainty quantification and error propagation, but 

rather to present a concrete use-case to guide the advancement of atmosphere-through-bedrock modeling and its connections 

to mountainous hydrological science. Using an IPM, we address an outstanding question: does synoptic-scale meteorological 
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forcing or meso-to-micro scale atmospheric processes have a more direct effect on surface and subsurface hydrologic processes 130 

in a mountainous watershed?  

 

In order to answer this question, we undertake a series of experiments with different synoptic-scale meteorological forcing 

datasets, and different, plausible choices for meso-to-micro scale parameterizations in the IPM. This is informed by prior 

standalone WRF studies that have utilized different shortwave and longwave radiation, microphysical, and surface and 135 

planetary boundary layer schemes (Skamarock et al., 2019). Additionally, topographical shortwave shading effects are tested 

to understand how spatial heterogeneity in the surface radiation budget influences evapotranspiration and snowpack 

accumulation and ablation processes (Arthur et al., 2018). Then we explore how the surface and subsurface hydrology fields 

respond to these various experimental setup choices, especially discharge in the ERW of the UCRB (described below).  

 140 

With a discrete set of simulations, we establish the relative importance of these choices. We also establish the relative 

importance of subgrid-scale parameterizations that affect water and energy budgets. Our hypothesis is that synoptic-scale 

forcings produce a much larger spread in surface-through-subsurface hydrology fields than subgrid-scale physics scheme 

choice. If our hypothesis is confirmed, then scientific efforts to advance the predictive hydrology, through modeling, of the 

UCRB should prioritize improving large-scale weather products and analyses. Conversely, if the hypothesis is falsified, model 145 

subgrid-scale physics scheme choice produces more variability in hydrologic response, then scientific efforts should prioritize 

the development of smaller scale atmospheric and hydrological process representations affected by surface heterogeneity in 

the ERW.  

 

In this study, we also used the distributed hydrological model ParFlow-CLM to quantify streamflow and groundwater storage, 150 

since the hydrological processes included in WRF are over-simplified. Therefore, this article is organized as follows: first, we 

present details of study site and hydroclimate in the water year, as well as the IPM including the coupling between WRF and 

ParFlow-CLM and the justifications for using WRF and ParFlow-CLM as the atmospheric and surface-through-subsurface 

process models in the IPM, respectively. Then, we describe the WRF experiments that we performed to test the relative 

importance of synoptic-scale boundary forcing and meso-to-micro scale model subgrid-scale physics schemes for driving 155 

ERW integrated hydrological simulations. Next, we present the simulated discharge, evapotranspiration and groundwater 

storage using ParFlow-CLM, to quantify the responses to changing WRF configurations. We conclude by contextualizing 

these results in light of the ongoing field campaign activities in the ERW. 

2. Study Site 

This investigation focused principally on modeling and analysis of the ERW, a mountainous headwater catchment of the 160 

UCRB near Crested Butte, Colorado (Hubbard et al., 2018). This 300 km2 watershed of the Upper Colorado River Basin is at 
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a high-level, similar to other basins in the UCRB that it has very large gradients in precipitation (e.g., a factor of 2 range in 

precipitation between the northern and southern boundary of the ERW) and surface-through-subsurface hydrology. The ERW 

has a continental, subarctic climate with long, cold winters and short, cool summers. At an average elevation of 3266 meters 

above sea level, the watershed has a mean annual temperature of 0℃, and distinct winter and growing seasons that influence 165 

hydrologic and biogeochemical cycles. River discharges are driven primarily by snowmelt in late spring to early summer, with 

mid- to late-summer monsoonal rainfall inducing rapid but punctuated increases in streamflow. The ERW receives ~1200 

mm/yr of precipitation and we focus here on Water Year 2019 (Oct 1, 2018 - Sep 30, 2019).  

 

The ERW has become a mountainous community testbed for improving predictive understanding of multi-scale atmosphere-170 

through-bedrock system dynamics and is the center piece of such focused activities because it is one of two major tributaries 

that form the Gunnison River, which in turn accounts for nearly half of the Colorado River’s discharge at the Colorado–Utah 

border. In the past decade, several synthesis research efforts have been established in this region, including a wide range of 

fieldwork and modeling activities (Hubbard et al., 2018). The ERW has become one of the most heavily-instrumented 

mountainous watersheds in the world, which makes it an ideal location      for this research given the potentially large number 175 

of observational constraints available for the IPM efforts presented here. For example, The SAIL-based observations (Feldman 

et al., 2022) will be used in a future study to compare with IPM skill once the SAIL campaign is completed (2021-2023). 

Although a wide range of  precipitation, temperature and hydrological data have been collected, it is still challenging to use 

these to characterize atmospheric, surface and subsurface processes and their interactions at relevant scales.          .  

 180 

3. Methods 

3.1. WRF models 

The Weather Research & Forecasting (WRF) model version 4.0 is used in this study (Powers et al., 2017). WRF was chosen 

because of its widespread use in the investigation of atmospheric and land processes, and contextualizing observations in 

complex terrain (Rasmussen et al., 2011; Rasmussen et al., 2014). The WRF model is a fully coupled atmospheric and land 185 

surface model with a range of user-specific options for subgrid-scale physics schemes. WRF is a regional climate model that 

requires boundary and initial conditions provided by either global climate model (GCM) outputs or atmospheric reanalyses 

datasets. Our configuration of the WRF model is designed with three nested domains, with an outer, middle and inner domains 

at grid resolution of 4.5 km, 1.5 km and 0.5 km, respectively, centered around Crested Butte, Colorado where the East River 

watershed is located (Figure 1). All WRF simulations are initialized on Sep 15, 2018 but we discard the first 15 days of each 190 

simulation as spin-up.  
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While the stand-alone WRF model has been used extensively to advance the understanding of atmospheric processes, it has 

lower fidelity and applicability to investigate surface-through-subsurface hydrologic processes, and consequently is limited as 

an assessment and modeling tool for understanding integrated mountainous hydrologic cycle. Therefore, in order to provide 195 

an estimate of the entire hydrologic budget, we use a one-way coupling between WRF and an integrated hydrologic model, 

ParFlow-CLM (Maxwell et al., 2015, described in further detail below), that simulates the hydrological response of key 

variables not otherwise quantifiable in standalone WRF, such as discharge and groundwater storage.  

 

Figure 2 summarizes this approach graphically.  It shows that the one-way coupling enables an exploration of sensitivities of 200 

modeled hydrologic quantities (many of which can be observed) to combinations of atmospheric, surface, and sub-surface 

process representations.  We do not choose a single configuration of WRF or ParFlow-CLM for this one-way coupling, but 

rather explore the uncertainty in representing atmospheric processes for integrated mountainous hydrology by analysing 

simulations with multiple, plausible configurations with multiple, plausible meteorological forcings. We recognize that the 

output from WRF simulations may be dependent on initial conditions, which are inherently difficult to constrain (e.g., Walser 205 

and Schär, 2004), but the experimental configuration described here seeks to be insulated from that dependency by running 

WRF simulations with initial conditions derived from different meteorological forcings. 
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Figure 1. a): Three nested WRF domains D01 (4.5 km grid resolution, 201 by 201 grid cells or 900 by 900 km extent), D01 

(1.5 km grid resolution, 201 by 201 grid cells or 300 by 300 km extent), and D03 (0.5 km grid resolution, 201 by 201 grid cells 210 

or 100 by 100 km extent) and their associated elevations (left). The Global Multi-resolution Terrain Elevation Data 2010 

(GMTED2010) elevation data in meters above mean sea-level is used in the WRF simulation. b): the innermost ParFlow-CLM 
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domain and spatial extent of the East River Watershed (white line) and associated land cover type derived from the National 

Land Cover Dataset (NLCD) (Homer et al, 2020) and upscaled to 100 m (right). c) Topography and stream network in the 

ERW and other nearby watersheds.  215 

 

A major experimental design decision when simulating the integrated mountainous hydrologic cycle is the computational cost 

associated with the simulations (e.g., simulated years per actual day) that are determined by model horizontal, vertical, and 

timestep resolutions as well as subgrid scale physics parameterization complexity. The computational expense incurred here 

to explore the sensitivities of WRF configuration choices were significant: one simulated year requires approximately 100,000 220 

CPU hours on LBNL’s Lawrencium lr6 supercomputing system. As such, it was highly impractical to simulate the entire 

configuration space of meteorological forcing and subgrid-scale parameterization choice. A discrete sub-sample of 

configurations, as presented here, is used to isolate and systematically determine which combination of subgrid scale 

parameterization choice is superior for a given domain such as the ERW. We therefore adopted a parsimonious approach to 

explore the space of possible WRF configurations, described below.  225 

3.1.1. Subgrid-scale physics schemes 

Three well-established suites of subgrid scale physics schemes for WRF are evaluated in this study (Table 1). One scheme was 

developed by NCAR and is used for a wide range of simulations over domains extending across the entire Conterminous 

United States (CONUS) (Liu et al., 2017). Another scheme that we consider here has been used for decadal-length 

hydroclimate simulation over California (Huang et al., 2017; Xu et al., 2018; Ullrich et al., 2018), and since it was initially 230 

developed by researchers at the University of California, Davis, it is denoted as UCD here. More recently, Flores et al. (2016) 

and Rudisill et al. (2021) implemented a WRF configuration that focused on exploring land-atmosphere interactions in 

complex terrain. This configuration was developed by researchers at Boise State University, and is referred to as BSU here. 

We recognized that this study would be computationally constrained given our prioritization of the use of sub-km horizontal 

resolution IPM simulations, and this is why we did not exhaustively sample the model configuration matrix. 235 

 

Table 1: Microphysics, radiation, land surface model, surface layer, and planetary boundary layer schemes used for the three 

different WRF configurations of the IPM tested here. 

Subgrid-scale physics 
schemes 

NCAR (CONUS) BSU  UCD  

Microphysics Thompson Thompson WSM6 

Shortwave radiation RRTMG CAM RRTMG 

Longwave radiation RRTMG CAM RRTMG 



10 
 

Land surface model Noah Noah-MP Noah 

Surface layer Eta similarity Monin-Obukhov Revised MM5 

Planetary Boundary layer Mellor-Yamada-Janjic 
scheme 

Mellor-Yamada-Janjic 
scheme 

UW (Bretherton and 
Park) 

3.1.2. Meteorological forcing  

Each of these WRF configurations must specify a set of initial and lateral boundary conditions at the synoptic scale and, at 240 

least in the outer domain, are typically derived from high-resolution atmospheric reanalyses. The reanalysis from the National 

Centers for Environmental Prediction (NCEP), Climate Forecast System Reanalysis version 2 (CFSR2), The Modern-Era 

Retrospective analysis for Research and Applications - Version 2 (MERRA2), European Centre for Medium-Range Weather 

Forecasting Reanalysis version 5 (ERA5) were used in this study. 

 245 

ERA5 is the fifth generation ECMWF atmospheric reanalysis of the global climate on a 30 km grid resolution (Hersbach et al, 

2020), and combines model data with observations from across the world into a globally complete and consistent dataset. The 

CFSR2 is also global and is designed to provide an operational product for forecasting and analysis purposes at 0.3 degree grid 

resolution (Saha et al, 2010). The CFSR2 data were generated by an advanced assimilation schemes, atmosphere-land-ocean-

sea ice coupling, assimilates satellite radiances. MERRA2 is another atmospheric reanalysis based on data assimilation (Gelaro 250 

et al., 2017), which is the first long-term global reanalysis to assimilate space-based observations of aerosols and represent 

their interactions with other physical processes in the climate system. In addition, the NCEP FNL (NCEP, 2000) operational 

global analysis and forecast data are on a 0.25-degree grid resolution from the Global Data Assimilation System (GDAS) 

(Kleist et al, 2009). All meteorological forcing datasets are processed at 6-hourly by the WRF Preprocessing System (WPS).  

3.1.3 Topographic radiation 255 

Topographic effects for shortwave radiation flux calculations in complex terrain are evaluated (Arthur et al., 2018). One is the 

“slope_rad” namelist option, which modifies surface solar radiation flux according to terrain slope by correcting it based on 

the solar zenith angle relative to the local surface normal vector. This adjustment ensures that the solar radiation received at 

the surface in WRF is consistent with the geometric projection of incoming sunlight onto local, non-flat surfaces. The other 

namelist option, “topo_shading”, allows for shadowing of neighboring grid cells. When “topo_shading” is active, WRF 260 

determines if any topography intersects a line drawn between a given grid point and the location of the sun at the time-step of 

the WRF run. If so, a topographic shadow is cast on that grid point and the direct component of the incoming solar radiation 

is set to 0. In this study, simulations in which “slope_rad” and “topo_shading” are jointly enabled are termed “3DRad” and 

when jointly disabled are termed “no3DRad”, in the inner domain of the WRF simulation.  
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 265 

 
Figure 2. Conceptual framework for developing a set of different WRF configurations of the IPM to evaluate the sensitivities 

of subgrid-scale physics parameterization choice, meteorological forcing, and radiation scheme in the representation of 

mountain water and energy budgets.  

 270 

Table 2:  East River Watershed WRF experiment configurations. Three subgrid-scale physics schemes, four meteorological 

forcings, and the topographic radiation options were assessed. 

Subgrid-scale physics 

schemes 

Meteorological 

forcing 

Topographic  

radiation 

BSU CFSR2 3DRad_inner 

  no3DRad_inner 

 ERA5 3DRad_inner 

  no3DRad_inner 

 MERRA2 3DRad_inner 

 NCEP 3DRad_inner 

UCD CFSR2 3DRad_inner 
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 ERA5 3DRad_inner 

NCAR CFSR2 3DRad_inner 

 ERA5 3DRad_inner 

3.2 ParFlow-CLM description  

ParFlow is a physically based surface-subsurface hydrologic model that solves the coupled flow of saturated and variability-

saturated groundwater and overland surface water (Ashby and Falgout, 1996; Jones and Woodward, 2001; Maxwell, 2013). 275 

The three-dimensional form of Richards equation is used to solve for lateral and vertical groundwater flow in the subsurface 

and the kinematic wave approximation is used to solve two-dimensional overland flow. ParFlow is coupled to the land surface 

model, the Common Land Model (CLM), which calculates a coupled water energy balance at every surface cell of the domain 

(Dai et al., 2003) and incorporates spatially distributed vegetative processes by including specified land use types 

parameterized by the International Geosphere-Biosphere Program standard database. Hourly meteorological forcing derived 280 

from WRF drives ParFlow-CLM, and includes the following eight variables: precipitation, two-meter surface air temperature, 

longwave radiation, shortwave radiation, 10-meter east-west and south-north wind speeds, atmospheric pressure, and specific 

humidity. We also forced ParFlow-CLM with PRISM precipitation and temperature fields by evenly distributing daily 

precipitation and temperature across a diurnal cycle of 24 hours within a day             

 285 

The ParFlow-CLM subsurface domain is 30-meter deep at 100-meter horizontal resolution. The WRF outputs are re-grided 

using bilinear interpolation to match the ParFlow-CLM grid cells. The model parameters are based on a variety of geological 

and soil parameters, and calibrated using streamflow measurements. More details can be found in Foster et al. (2019) and 

Pribulick et al. (2016). The computational expense of ParFlow-CLM is also less substantial than that of WRF for this model 

configuration, but still requires high performance computing. Excluding the time for a multi-year initial condition spinup, a 290 

single water year of the ParFlow-CLM simulations on 64 cores on the NERSC’s Cori supercomputing system is approximately 

1,000 CPU hours.  

3.3 Reference Datasets 

The Parameter-elevation Relationships on Independent Slopes Model (PRISM) dataset (Daly et al., 2008) was used here as a 

point of comparison in evaluating model uncertainty across subgrid-scale physical schemes and meteorological forcing datasets 295 

for precipitation and temperature. PRISM uses observations from quality-controlled meteorological stations along with a 

topographic correction method against elevation based on empirical regressions to create daily gridded 800-meter total 

precipitation, and daily average, minimum and maximum two-meter surface temperature. Although PRISM was generated 

using statistical      models, it has been widely used for climate and hydrological model assessments (e.g., Lund     quist et al., 
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2020) and associated uncertainty analyses (e.g., Buban et al., 2020). In the assessment of subgrid-scale physics schemes and 300 

meteorological conditions, the percent difference in cumulative precipitation is compared against PRISM by calculating by 

(max - min)/min*100, where max and min are the maximum and minimum cumulative precipitation values from the 

simulations within each group, respectively.      

 

Snowpack Telemetry (SNOTEL) data have been widely used in snowpack assessment (Serreze et al, 1999; Fassnacht et al, 305 

2003), and we use three SNOTEL stations (Butte, Schofield Pass, Upper Taylor) within the WRF inner domain to assess the 

snowpack simulation skill of each IPM configuration. Significant heterogeneity is sampled by the three SNOTEL stations 

(within or near the ERW) due to the complex topography. For example, the Butte station is located downstream of the ERW 

and, on average, receives approximately 0.8 m of precipitation, and reaches 0.4 m in maximum snow water equivalent over 

the year. On the other hand, the Schofield Pass station is located upstream of the ERW and, on average, receives 1.2 m of 310 

precipitation and reaches 0.9 m in maximum snow water equivalent. In addition, we use the snow water equivalent product of 

the Airborne Snow Observatory (ASO; Painter et al, 2016) on 04/07/2019 to evaluate the spatial pattern skill of the snowpack 

simulation across WRF configurations (Figure S-8). The raw ASO product has 50-meter spatial resolution, and is regridded to 

the same grid resolution as WRF outputs (500 meters) for comparison purposes using bilinear interpolation, as documented in 

Oaida et al. (2019). Since the spatial resolution of ASO data are significantly finer than the WRF outputs, we acknowledge 315 

that the underestimation by ASO could be due to the point-to-grid errors (Oaida et al. 2019). Notably, ASO SWE estimates 

are lower than SNOTEL SWE measurements (ASO: 389 mm at Butte, 938 mm at Schofield Pass; SNOTEL: 490 mm at Butte, 

1260 mm at Schofield Pass).  In addition to SNOTEL station data, stream gauges measurement of discharge at the pumphouse, 

the outlet of the ERW, is used to evaluate the ParFlow-CLM simulation results.  

4. Results 320 

4.1 Sub-grid physical schemes vs meteorological forcings 

We start by presenting a number of time-series of spatial averages over the ERW for WY19. They indicate the gross 

performance of the IPM across the water year, and whether a configuration produces generally reasonable estimates relative 

to observational products. Figure 3 shows cumulative precipitation, two-meter surface air temperature, and snow water 

equivalent (SWE) aggregated over the ERW, and the in-situ assessments compared against two SNOTEL stations are in Figure 325 

S-3 For cumulative precipitation, each configuration produces amounts higher than PRISM (cumulative precipitation of 1201 

mm), and the UCD simulates the highest cumulative precipitation. For surface air temperature, the seasonal cycle and daily 

variability are captured by all configurations, however, exhibit systematic cold biases relative to PRISM (annual average two-

meter surface air temperature of 0.6 degrees Celsius). In terms of SWE, all model configurations concur in their representation 
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of the snowpack accumulation season and melt season in late spring and into summer, except UCD which simulates an earlier 330 

peak timing of SWE. 

 

The spread in cumulative precipitation when comparing across different meteorological forcing dataset is apparent (Figure 3). 

Although UCD and NCAR configurations show a greater difference in precipitation forced by ERA5 and CFSR2, the 

consistency across BSU configurations is notable, which also shows the closest agreement with PRISM. When comparing the 335 

relative roles of subgrid-scale physics scheme choices to meteorological forcings, the percent difference of cumulative 

precipitation, calculated with (maximum - minimum)/minimum*100, across BSU-CSFR2, UCD-CSFR2 and NCAR-CSFR2 

schemes is nearly 34% of the minimum cumulative precipitation simulated by BSU-CFSR2, compared to the 4.6% of the 

simulations across BSU configurations with different meteorological forcing (CSFR2, ERA5, MERRA2 and NCEP).  

 340 

BSU simulations are generally in agreement with PRISM. However, the UCD simulations are outliers relative to the other 

simulations, with cumulative precipitation of 1706 mm, or 42% higher at the end of the water year, with the most notable 

differences occurring in March through September. NCAR simulations show general agreement with PRISM and BSU 

throughout the water year, save for June through September. The two-meter surface air temperature time-series reveals that 

the UCD simulation is systematically colder throughout the winter and spring, regardless of which meteorological forcing 345 

dataset is used. The persistent cold bias simulated by the UCD, NCAR and BSU schemes has been found in previous WRF 

studies within western US mountain regions (Xu et al., 2018, Rudisill et al. 2021). The SWE time-series again shows a similar 

relationship with precipitation, with the outlier being UCD-ERA5, in terms of the seasonal timing of when snowpack peaks 

and melts (Figure S-1).  Comparing the monthly average between UCD-ERA5 (Figure S-4) and BSU-ERA5 (Figure S-5), the 

early snowmelt observed in the UCD scheme is likely a result of warmer temperatures at low-altitude region that melt the snow 350 

earlier in the water year. However, the high-altitude regions remain cold enough to maintain snowpack through early-mid 

summer.  
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 355 
Figure 3. a) Cumulative precipitation, b) two-meter surface air temperature and c) snow water equivalent (SWE) simulated 

within the ERW using an IPM with different subgrid-scale physics schemes and meteorological forcings. The cumulative 

precipitation and temperature results are compared relative to PRISM. 10-day moving averages of daily temperature are 

shown in b). The percent difference in cumulative precipitation across subgrid-scale physics schemes (black brackets) and 

meteorological forcing (green brackets), calculated by (maximum - minimum)/minimum*100, are provided on the right y-axis.   360 

 

In addition to the domain-averages, spatial heterogeneity due to land-surface cover and topographic effects are shown in Figure 

4. The systematic cold bias simulated throughout the water year appears to be an elevation-dependent phenomena with higher-

elevations exhibiting an enhanced cold bias compared with PRISM. However, the river valley and relatively lower-elevation 

areas at the southern edge of the ERW, which includes Crested Butte Mountain, stands out as these regions are warmer than 365 

the PRISM dataset. Figure 4b shows precipitation in BSU-CFSR2 is wetter in the western regions, and drier in the eastern, of 

the ERW in comparison against PRISM. Figure S-3 shows comparisons between PRISM and the IPM configurations and 
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indicates no biases that are persistent across seasons. During summer, the BSU-CFSR2 simulation consistently produces more 

precipitation than PRISM.  

 370 

Although the two-meter surface air temperature bias is evident, it doesn't vary significantly across either subgrid-scale physics 

scheme or meteorological forcing. Therefore, subsequent exploration in this study will be focused on precipitation. The bottom 

row in Figure 4 shows the grid-cell standard deviation of monthly precipitation across subgrid-scale physics schemes (i.e., 

UCD, NCAR and BSU simulations with CFSR2 meteorological forcing – bottom left) and BSU simulation driven by different 

meteorological forcing datasets (ERA5, CFSR2, MERR2 and NCEP – bottom right). Similar to the conclusions drawn from 375 

Figure 3, Supplementary Figure S-6      also shows the monthly spatial standard deviations across subgrid-scale physics schemes 

are generally greater than meteorological forcing, particularly in regions of higher-elevation during the winter season.  
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Figure 4. Upper row: Differences in spatial distributions of annual average two-meter surface air temperature (a) and 

cumulative precipitation (b) between the BSU-CFSR2 WRF configuration and PRISM. Lower row: For all schemes, the 

standard deviation of annual cumulative precipitation is plotted for subgrid-scale physics schemes (c) and meteorological 

forcings (d). The values in the parentheses are the domain average differences over the water year. The standard deviations 385 

are the total annual precipitation in each ensemble simulations using different subgrid-scale physics schemes or large-scale 

meterological forcings.  

 

Quantitative statistics of the aggregated domain-average precipitation and temperature simulations for the WRF simulation 

across subgrid-scale physical schemes and large-scale meteorological forcings are presented in Table 3. Although NCAR-390 

CFSR has a higher R2 than other simulations, NCAR-ERA5 has a very low R2.  The BSU simulations provide a closer 

approximation of cumulative precipitation to PRISM.  Specifically, BSU does better in simulating extreme precipitation events 

(i.e., 95th percentile).  Therefore, we conclude that BSU WRF subgrid-scale physics schemes outperform the UCD and NCAR 

WRF subgrid-scale physics schemes in simulating both precipitation and temperature. On the other hand, the differences in 

precipitation and two-meter surface air temperatures across the four meteorological forcings are not statistically significant, 395 

and their standard deviations are much smaller than the differences in simulations across subgrid-scale physical schemes. 

While there are many metrics of model skill when selecting a meteorological forcing to simulate the hydrological processes in 

the ERW, we choose BSU-CFSR for the topographic radiation study in the next subsection due to its better match with PRISM, 

using our skill measures, in simulating both precipitation and two-meter surface air temperature.  

      400 

Table 3. Quantitative measures of precipitation and temperature of the WRF simulations among sub-grid physical schemes 

and meteorological forcings. R2 are the coefficient of determination for simulations and PRISM daily time series.  

      Total Precipitation (mm) Temperature (K) Precipitation_R2 Temperature_R2 
95th percentile of daily 
precipitation (mm) 

UCD-ERA5 1,706 -3.14 0.26 0.79 20.84 

UCD-CFSR 1,568 -2.82 0.42 0.82 21.09 

NCAR-ERA5 1,435 -2.80 0.16 0.82 19.40 

NCAR-CFSR 1,308 -2.50 0.50 0.85 18.10 

BSU-ERA5 1,273 -2.31 0.32 0.86 17.70 

BSU-CFSR 1,267 -2.23 0.42 0.87 18.45 
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BSU-MERRA 1,296 -2.20 0.36 0.87 19.51 

BSU-NCEP 1,249 -2.41 0.42 0.86 16.68 

PRISM 1,202 0.59   17.61 

 

4.2. 3D topographic radiation effects 

Based on the assessment of simulated precipitation and two-meter surface air temperature compared with PRISM, the BSU-405 

CFSR2 configuration is selected as a baseline to further explore the influence of topographic radiation scheme effects. The 

difference caused by turning on and off the 3D topographic radiation effects is similar in other WRF configurations; therefore, 

only the BSU-CFSR is presented. Figure 5 shows daily ERW spatial average time series over the water year for the major 

mountainous water and energy budget variables. By isolating the impacts of subgrid-scale physics schemes and meteorological 

forcings across IPM simulations, it is easier to systematically intercompare cause-and-effect across different topographic 410 

radiation options. Consistent with previous findings, all configurations still overestimate cumulative precipitation and are too 

cold relative to PRISM.  

 

 
Figure 5. Spatial-average cumulative precipitation, two-meter surface air temperature and snow water equivalent (SWE) (first 415 

row), shortwave and longwave radiation, and latent and sensible heat (second row) over the ERW as simulated by the IPM 

configurations with and without realistic topographic radiation effects, along with, where available, estimates from PRISM. 

3DRad indicates a simulation with topo_shading and slope_rad turned on in the WRF inner domain but not the outer WRF 
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domains, no3DRad indicates a simulation with top_shading and slope_rad turned off in both the inner and outer WRF 

domains. 10-day moving averages are shown in b) temperature, and radiation variables (d, e, f, g). 420 

 

Figure 6 shows the seasonally-resolved shortwave radiation, two-meter surface air temperature, latent heat flux and SWE for 

different configurations of shortwave radiation in the simulation with and without topo_shaing and slope_rad options in the 

inner domain. While no3DRad does not adjust the SWdown (incoming shortwave radiation), 3DRad simulation recalculates 

the SWdown based on the shadows cast by nearby topography. Spatial differences in IPM-simulated shortwave radiation 425 

(Figure 6b) are seen in the northeast and western portions of the ERW, when topographic effect of shortwave radiation is 

included. As a result, a corresponding change in the spatial pattern of simulated two-meter surface air temperature and latent 

heat flux are seen, which are driven by the change in downwelling shortwave radiation with topographic shading (Figures 6a 

and 6d). Topographic shading makes a difference locally in LH flux, by redistributing the energy flux and thus affecting LH 

flux spatial distribution. Nevertheless, the domain averaged LH flux remains unchanged between cases. The resulting pattern 430 

change in SWE (Figure 6c) shows that the northern and northeastern sections of the ERW, where snowpack are concentrated, 

are sensitive to shortwave radiation. This is expected and consistent with previous findings that included topographic effects 

in shortwave radiation and found distinct spatial patterns of hydrologic variable sensitivity due to both shadows and surface 

reflection that produce time-varying effects on net surface radiation (Lee et al., 2015; Palazzi et al., 2019; Gu et al., 2020; Hao 

et al., 2021). 435 

 

Although Figure 5 shows that realistic shortwave radiation produces small effects on the seasonal cycle of the surface energy 

and mass budgets when averaged over the entire watershed, including annual average SWE (Figure 5c), Figure 6c shows that 

mountains and valleys have different amounts of SWE. Furthermore, seasonal patterns show simulated latent heat is diminished 

at lower elevations from March to May, when snowmelt occurs in the valley, and the remaining snowpack in the mountains 440 

and late snowmelt in 3DRad simulation causes lower latent heat flux shown in July (Figure S-7). The 3D radiation shading 

scheme does not significantly affect the total water balance, but rather the spatial distribution of radiation fluxes. Thus, despite 

having minimal impacts on water impacting on the water balance, the scheme does have important localized impacts on SWE 

and surface energy budget spatial patterns. The 3DRad simulation has less SWE in the valleys during the accumulation season 

but more SWE at higher elevations during the melt season, which is a direct result of the differences in shortwave radiation 445 

redistribution. Figure S-5 also shows that the latent heat differences in north-facing and south-facing sides are most apparent 

in the snowmelt and warm seasons. This is consistent with previous findings (Lee et al., 2015; Palazzi et al., 2019; Gu et al., 

2020; Hao et al., 2021), that a more realistic treatment of shortwave radiation, which includes shadows and projected insolation 

on sloped surfaces, results in lower shortwave insolation on the surface at this time of year. The lower shortwave radiation 

should, in turn, decrease the energy available for the IPM to produce snowmelt. In summary,  the simulations show that, while      450 

local spatial differences in surface radiation with and without realistic topography are apparent in Figure 6, the domain spatial 

averages (even for SWE) are the same between shaded and non-shaded formulations. This suggests that while it may be striking 
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localized differences when shading is included, the impact of topographic shading on  the entire water balance over a spatial 

domain like the ERW is negligible.        
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Figure 6. Topographic radiation differences (3dRad minus no3dRad) annual average two-meter surface air temperature, 

shortwave (SW) and latent heat flux, and snow water equivalent (SWE) over the ERW. The values in the parentheses are the 

ERW average differences over the water year, which are small and consistent with Figure 5.  

 460 

4.3. Hydrological and streamflow responses 

We have evaluated the aforementioned WRF configurations subgrid-scale physical scheme and large-scale meteorological 

forcings in representing precipitation, temperature, snowpack and radiation fluxes, and their impacts on the integrated water 

budget within the ParFlow-CLM. We also evaluated the simulated discharge from ParFlow-CLM forced by PRISM as a 

comparison with WRF forcings. Figure 7 shows the simulated hydrologic output from the ParFlow-CLM model for watershed 465 

outlet discharge (top row) and watershed-average groundwater storage (bottom row). Discharge at the watershed outlet (see 

exact location on Figure 1) shows a different timing across the  various WRF subgrid-scale physics scheme configurations and 

large-scale meteorological forcings that lead to a temporal shift in simulated streamflow, where the daily averaged time series 

(left) shows only minor differences through time. However, cumulative discharge by year-end reveals substantial differences 

(right), especially after peak snowmelt where estimates of cumulative discharge begin to diverge. Differences across the WRF 470 

configurations are especially large; the difference across the three subgrid-scale physics scheme configurations with ERA5 

(UCD, NCAR, and BSU) varies by 26% by year-end. Differences across meteorological forcing (using the BSU physics 

configuration as a control, shown in green) are also noteworthy, although smaller, approximately 6%. These results are 

consistent with variation of simulated precipitation in WRF described earlier, confirming that for this basin, meteorological 

forcing drives less variance on hydrologic response than subgrid-scale physics scheme configuration. 475 
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Figure 7. Time-series of ParFlow-CLM simulations of discharge rate (a), cumulative discharge (b), groundwater storage per 

unit area of the watershed (c), and cumulative average unsaturated groundwater storage per area of the watershed (d) for the 480 

IPM configurations described in Table 2. The brackets on the far-right indicate the percent difference of cumulative discharge 

and unsaturated groundwater storage per area (b and d, respectively) for WRF simulations across different meteorological 

forcings (green) and subgrid-scale physics schemes (black). 
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In addition to the variance of cumulative discharge with WRF simulations across different conditions, a comparison to 485 

observed discharge is also shown on Figure 7, which for all scenarios suggest a delayed snowmelt response in the IPM. While 

the objective of this study is not to replicate the observations, but rather determine sensitivity across IPM configuration choice, 

the mismatch in streamflow response suggests a systematic cold-bias from the WRF input into ParFlow-CLM which is 

consistent with the discussion surrounding Figure 3 in relationship to PRISM. An early-fall peak in simulated discharge is also 

seen in all WRF simulations, and not in observed discharge, although a significant increase in SNOTEL precipitation was 490 

measured in October of that year (see Figure S-1, S-2). This further supports a temperature bias, albeit opposite that of the 

cold-bias discussed previously, where precipitation around that October storm-event falling as rain (as opposed to snow) leads 

to a sharp increase in discharge. A sensitivity analysis of the BSU-ERA5 model run for a lower precipitation year (water year 

2018, which was nearly half the precipitation of 2019), showed better agreement with observed discharge, which suggests the 

bias in timing may be a function of accumulated precipitation and/or snowmelt, and is reserved for future studies (not shown). 495 

 

Basin-average groundwater storage, shown in Figure 7c in area-normalized units, shows a strong annual signal for all WRF 

configurations with minimal differences across IPM configurations. Here all groundwater, inclusive of saturated or unsaturated 

storage, is considered. The cumulative, area-normalized annual groundwater storage, when accounting for only vadose zone 

storage (Figure 7d), which is most responsive to sub-annual differences in precipitation inputs, is meaningful in this context 500 

because it relates a cumulative impact on near-surface groundwater storage due to IPM configuration. Similar to year-end 

cumulative discharge, year-end departures in vadose zone groundwater storage across the different simulations are evident. 

Differences across the IPM configurations of subgrid-scale physics schemes are larger than the difference across the forcing 

simulations (4% versus 2%, respectively). While the differences in groundwater signals are not as pronounced as the discharge 

signals, streamflow signals are very reactive, noisy, and change quickly, whereas groundwater signals are the product of slower 505 

processes via infiltration and vadose zone dynamics, often at longer timescales, which result in very different temporal signals 

as compared to streamflow.                          

 

Figure 8 shows maps of standard deviations in annual total evapotranspiration (ET) simulated by ParFlow-CLM across IPM 

configurations (top row), as well as the cell-binned relationship of those standard deviations of annual ET with land use and 510 

cover type, as well as elevation (bottom). Consistent with variations shown in the simulated discharge and groundwater storage, 

Parflow-CLM simulates greater variations of ET under WRF configurations driven by different subgrid-scale physics schemes 

(Figure 8a), compared to the simulations conducted with different meteorological forcings (Figure 8b). These results suggest 

that locations populated by high-water demanding vegetation (namely evergreen and deciduous forests) at mid-elevations 

result in the highest ET variability across IPM configurations. Conversely, low-water demanding vegetation (barren/sparsely 515 

vegetated land and grasses), which reside across a range of elevations in the study domain, result in the lowest variability in 

annual ET across IPM configurations. These differences in water demand essentially magnify any differences in atmospheric 

conditions.  
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      520 

 
Figure 8. Pixel-level standard deviation in annual total evapotranspiration (ET) over the ParFlow-CLM domain from WRF 

with different subgrid-scale physics schemes (a,c) or meteorological forcing (b,d). The ERW outline is overlain in white in the 
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upper row, a-b. The standard deviation of simulated ET from ParFlow-CLM across different physics schemes (c) and 

meteorological forcing (d) are presented in the lower row, c-d. For each pixel in a-b, the relationship between annual ET 525 

standard deviation, elevation (y-axis), and land cover type (colors) are shown as scatter plots on the bottom row, c-d. See 

Figure 1 for maps of land cover types. Subgrid-scale physics schemes (a,c) have more variance compared to meteorological 

forcings (b,d), especially for mid-elevations and in evergreen forests.  

5. Discussion and Conclusions 

5.1 Scientific Findings 530 

In spite of previous efforts to characterize the sensitivity of WRF simulations to model configuration choices, the mountain 

climate and hydrology scientific community has not sufficiently explored the implications of those choices for surface and 

subsurface hydrology in high-altitude complex terrain. Here, we used an IPM with one-way feedbacks from WRF to ParFlow-

CLM to assess the hydrometeorology of the ERW which is characterized by strong hydrological gradients indicative of 

mountain environments of the UCRB. 535 

 

In this paper, we present a number of numerical experiment results that are informative for the scientific community to better 

understand atmosphere-through-bedrock process interactions, and the uncertainties of those      interactions between      climate 

and hydrological model experimental setup choices. First, the uncertainties associated with meteorological forcing choice are 

less important than subgrid-scale physics scheme choice, at least in the ERW. This finding has important implications for IPM 540 

in complex terrain, since it reveals that the differences in reanalysis products are less consequential for initializing and forcing 

IPMs than atmospheric configurations, and that efforts to advance IPMs such as collecting observations and using them to 

evaluate physical process parameterizations at the sub-HUC-8 scale could help to better constrain model performance. This 

result also shows that the large-scale meteorological forcing of the IPM simulation are less important in driving the magnitude 

and spatial variability of key hydrometeorological variables than the details in choosing and optimizing atmospheric subgrid-545 

scale physics schemes (e.g., microphysics or boundary layer turbulence). Ultimately, we used the BSU-CFSR2 configuration 

to recreate      WY2019 in the ERW which allows researchers, in this case, to prioritize process studies and the development 

of associated observational constraints within the ERW. However, further investigation is needed to evaluate the systemic cold 

bias across IPM configurations, particularly at higher elevations, and the consequence of delayed snowmelt and timing of 

discharge peaks.  550 

 

We recognize that numerous works in meteorological disciplines have demonstrated that “physical parameterization is much 

more important than lateral or initial conditions” (e.g., Solman and Pessacg, 2012; Pohl et al., 2011)). However, our findings 

are not redundant with the published literature, as those references either evaluated large-scale meteorological processes or did 

not focus on high-altitude complex terrain regions, which are central to our study. Additionally, most IPM studies to date do 555 
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not show how the range of reasonable IPM configurations (based on configurations that have been presented in the published 

literature) affects water management relevant processes such as discharge, ET and subsurface hydrology. With our set of one-

way atmosphere-through-bedrock process modeling results, we now show how choices in atmospheric process model 

configurations impact the surface and subsurface hydrology. Specifically, we evaluate and quantify the sensitivity of discharge, 

ET, and subsurface hydrology to IPM configurations, and we also address how 3D topographic radiation schemes affect both 560 

the spatial distribution and spatial average aspects of the mountainous hydrologic budget. 

 

In the investigation of topographical and slope gradient effects on shortwave radiation, our study shows those considerations 

in WRF are essential in redistributing radiation flux over regions of complex terrain, even though the differences in spatial-

average performance over ERW is minimal. This is because the spatial redistribution of shortwave radiation leads to 565 

approximately +/- 30 W/m2 difference in the east/west facing slopes that lead to +/- 1 K difference in two-meter surface air 

temperature in August and September (when snowpack is nonexistent). Throughout most of the water year when snowpack 

exists, the spatial heterogeneity of temperature differences is less apparent than for shortwave radiation. Latent heat is       

buffers differences in the shortwave radiation contribution to the radiation budget, and causes early snowmelt in the high 

elevation mountains in those simulations with topographical and slope gradient shortwave radiation effects turned on. At the 570 

same time, the systemic cold bias and limitations of one-way feedback in this study is potentially indicative of challenges in 

extrapolating findings from one mountainous watershed to another. If atmospheric process details are significant for surface 

and subsurface hydrological modeling and if the findings regarding atmospheric processes in one study area are marginally or 

completely irrelevant to other mountainous watersheds, then additional field work would be needed in mountainous hydrology 

research to address this issue, given that the extrapolation of fieldwork results remains a central challenge for field-based 575 

research and modeling activities.  

 

5.2 Limitations and Future Works 

A limitation of our study, given the computational constraints of running IPMs, is that it was infeasible to explore the full 

parameter spaces of WRF and ParFlow-CLM exhaustively; thus, our conclusions are limited to the selected subgrid-scale 580 

physics schemes and meteorological forcing datasets analyzed. Additional work is needed to improve the systemic cold bias 

in two-meter surface air temperature throughout all experiments as this may have been the major driver in the delayed snowmelt 

and peak discharge simulated by the IPM.  

 

Another methodological constraint is that our WRF and Parflow-CLM experiments were only one-way instead of two-way 585 

feedbacks, which ignores potentially important feedbacks from the subsurface hydrology to the atmosphere via ET and the 

radiation budget. For example, Givati et al. (2016) reported that simulated precipitation was improved with two-way coupling 

in WRF-Hydro compared to WRF-only and Forrester et al. (2018) showed that boundary layer dynamics were impacted in 

IPM simulations in regions where shallow water tables exist.  On the other hand, ParFlow-CLM is essential in our experiment 
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for quantifying hydrological responses, including streamflow and groundwater storage. Although other fully-coupled 590 

integrated hydrology model (e.g., WRF-Hydro) provides some insights into streamflow, it still uses a simplified and prescribed 

stream network. Groundwater storage in WRF-Hydro is also highly simplified by using a bucket model while ParFlow-CLM 

simulates the full 3D continuum of variable saturation in three dimensions. Importantly, in a similar fashion as the hierarchy 

of climate models approach oft used in the climate community (Jeevanjee et al., 2017), we would also like to assess one-way 

coupling performance of our IPM prior to assessing two-way coupling IPM performance. 595 

 

The East River watershed is already highly instrumented due to the presence of the long-standing Rocky Mountain Biological 

Laboratory (RMBL), the SNOTEL network, the United States Geological Survey’s Next Generation Water Observing System 

(NGWOS), the National Science Foundation’s Sublimation of Snow (SOS) project, and DOE Watershed Science Focus Area 

project which has been adding instrumentation to the watershed over the last ~7 years. While these observations focus primarily 600 

on surface and subsurface processes, the East River watershed has become even more instrumented in recent years (2021-

2023) through the support of the U.S. DOE (SAIL campaign) and U.S. NOAA (SPLASH campaign) deployments of a 

comprehensive set of atmospheric instrumentations (e.g., radar and radiation measurements). Future work will include 

integration of data, either indirectly through IPM benchmarking or directly through data assimilation into the IPM, from the 

SAIL campaign. SAIL is collecting a wide-array of observations with the intent to advance understanding of precipitation, 605 

snow, aerosol, aerosol-cloud interaction, and radiation processes in complex terrain and establish the minimum-but-sufficient 

level of process understanding to develop a robust predictive understanding of seasonal surface water and energy budgets in 

the ERW (Feldman et al., 2021). SAIL aims to develop a wide range of hydrometeorological datasets to constrain atmosphere, 

surface, and subsurface processes simultaneously. Together, these resources are contributing to the establishment of a highly-

instrumented and studied UCRB watershed. We look forward to building upon the knowledge learned from this manuscript to 610 

compare the most appropriately configured IPM to SAIL and SPLASH campaign observations. Our study highlights that the 

benchmarking provided by these data collections will be critical in addressing the systemic IPM cold bias by providing a more 

constrained estimate of radiation budgets in complex terrain that ultimately shape snowmelt and discharge. 

 

Data Availability: All WRF model output files can be found at 615 

https://portal.nersc.gov/archive/home/z/zexuanxu/Shared/www/IPM 

Please notify corresponding author Zexuan Xu (zexuanxu@lbl.gov) if you used our data. 
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