Summary
This study evaluates the influence of different meteorologic forcing (based on different reanalysis datasets), subgrid-scale physics schemes, and terrain shading on simulated hydrometeorology. They find that physics configurations result in more variance in simulated hydrometeorological conditions, and that meteorological forcing has a smaller impact. This type of sensitivity study is important to understanding where and how to focus further model development and observational field campaigns (as the authors note), and this particular study evaluates some sensitivities that I have not previously seen addressed. In my view, this has the potential to be a highly valuable contribution, but I believe it could use some sharpening of its framing, earlier recognition of the problems across all model configurations with respect to streamflow simulation, and more quantitative comparisons of some of the results.

Response: Thank you for acknowledging the contribution and novelty of this paper. We appreciate the subsequent suggestions to sharpen the framing, recognize issues across all model configurations with respect to streamflow simulation, and look forward to developing more quantitative comparisons of some of the results.

Response after revision: Please find those responses after revision in blue

Major comments
One major comment is around framing: at times, the authors imply that these results show an optimal IPM configuration but this is never clearly evaluated. At other times, the authors note that validation against observations is not a major goal of this study – in which case, it cannot indicate an optimal IPM configuration. My recommendation is to avoid implying that an optimal configuration is identified here. On a related note, I think the poor simulation of streamflow by the IPM should be mentioned earlier (perhaps in the abstract) – while it’s ok that this is the case, having this result buried in Figure 7 felt a bit deceptive.

Response: We agree that framing is important and that the phrasing “optimal configuration” needs to be avoided. The manuscript can be reframed to avoid implying WRF configuration optimization by making sure that the reader is aware that the space of WRF configurations is not exhaustively or even parsimoniously sampled, given the infeasibility of evaluating all the WRF configurations. Of the configurations we investigated, we found that the BSU_CFSR exhibits the most skill with respect to the observations and observational products we sampled – this wording was modified accordingly. Furthermore, per this reviewer’s suggestion, we can present information about the streamflow simulation by the IPM earlier in this paper. We can also revise the paper to discuss the bias in streamflow simulation and report the quantitative measure of the biases in simulating streamflow.
Response after revision: We revised “optimal configuration” as “assessed several literature supported configurations”. We also revised the paper to discuss and report quantitative measures of bias. The abstract was revised as follows, “While the simulated discharge peaks are delayed earlier due to cold bias, discharge shows greater variance in response to the WRF simulations across subgrid-scale physics schemes (26%) rather than meteorological forcing (6%)”.

Similarly, the authors refer in the introduction to recent arguments by Lundquist that models may be outperforming observations. In my view, they then miss a relatively easy opportunity to contribute to this debate: adding a ParFlow-CLM run forced by PRISM and reporting the results in Figure 7 would provide a case study testing whether meteorological models or observations are indeed more accurate in this case (assuming we basically believe that ParFlow-CLM is not biasing the results so much as to invert this response). I’m loathe to be the reviewer who suggests the authors do a different study than the one they have done – but in this case, the introduction led in this direction, and one additional simulation would significantly enhance the value of the present work.

Response: We thank the reviewer for the insight regarding the opportunity to contribute to the debate highlighted in Lunquist et al, 2019, BAMS. We appreciate the suggestion and agree that ParFlow-CLM run forced by PRISM will enable us to make statements about whether, in this particular domain over this particular water year, using a state-of-the-science surface/subsurface hydrology model forced with observational-based products exhibits superior or inferior performance with respect to streamflow observations, as compared to that same hydrological model when it is forced with atmospheric process model simulations.

Response after revision: We have performed an Parflow-CLM simulation forced with PRISM and added these results into Figure 7 and provided a few new sentences in the main text regarding these results. The discharge simulated in ParFlow-CLM shows a similar behavior with the hydrological simulations forced by WRF models. The text following text has been added into Section 3.2, “We also forced ParFlow-CLM with PRISM precipitation and temperature fields by evenly distributing daily precipitation and temperature across a diurnal cycle of 24 hours within a day.”

Finally, it would have been useful to see more quantitative model evaluation, and some description of model evaluation in the methods. I had two specific concerns about the identification of BSU-CFSR2 as the “best” model and that used for the topographic radiation evaluation. First, I didn’t see a quantitative evaluation of models against PRISM to make this evaluation. Why not report an NSE or RMSE? Second, given the idea that PRISM is not necessarily more accurate than WRF, I’m not sure how important PRISM is as a benchmark here. Could you analyze the impact of topographic shading for two model configurations with very different results? Assuming you find similar results for a different configuration, it would just be helpful to have a sentence confirming that evaluating topographic results in a different WRF configuration had similar results.
Response: We agree with the reviewer and can report the quantitative measurements (e.g., RMSE against PRISM) in the revision. While uncertainty exists in the PRISM product, it has been evaluated against SNOTEL measurements and chosen as the benchmark for the assessments in this paper. Furthermore, there are a few SNOTEL sites that provide observations in the vicinity of the East River Watershed: the Butte station is within the Watershed, the Schofield Pass station is only a few km north of the East River Watershed northern boundary and captures some of the north-south gradient in snowfall while the Taylor Park Reservoir station is only a few km east of the East River Watershed and captures some of the east-west variability in snowfall.

As stated in the original version of the paper, the impacts of topographic shading had a minimal effect within the context of spatial-aggregated hydroclimate variables but had a significant effect for spatially resolved radiation fluxes which nonlinearly affect temperature and snowmelt. The topo_shading and slope_rad only redistribute the radiation flux on the topographic edges, but maintain the total surface energy budget at the watershed-scale. We can clarify and expand on these points in a revised manuscript.

Response after revision: We reported the quantitative measurements RMSE and R^2 for WRF precipitation and temperature simulations against PRISM in Table 1. We also clarified the 3D radiation effects in the text as, “The 3D radiation shading scheme does not significantly affect the total water balance, but rather the spatial distribution of radiation fluxes. Thus, despite having minimal impacts on the water balance, the scheme does have important localized impacts on SWE and surface energy budget spatial patterns”, and, “In summary, the simulations show that, while local spatial differences in surface radiation with and without realistic topography are apparent in Figure 6, the domain spatial averages (even for SWE) are the same between shaded and non-shaded formulations. This suggests that while there may be striking localized differences when shading is included, the impact of topographic shading on the entire water balance over a spatial domain like the ERW is negligible” in section 4.2.

Minor comments
Line 21 – Based on only the abstract, it’s not clear to me how the “spatiotemporal variance in simulated hydrometeorological conditions” is defined. I think you mean the model response varies more across the model structure options than meteorologic – but from this sentence, another possible interpretation is that spatiotemporal variance itself (e.g., the variance of some response variable across grid cells) is greater in certain physics schemes. Is there a way to avoid this ambiguity?

Response: We are referring to the variances of simulated hydrometeorological outputs over multiple subgrid-scale physical schemes or meteorological forcings in the WRF model. We can modify this sentence in the revised manuscript by clearly explaining the hydrometeorological variables that are used to analyze the numerical experiments in this study.
Response after revision: This sentence has now been revised as follows, “Results reveal that subgrid-scale physics configuration lead to larger spatiotemporal variance in simulated hydrometeorological conditions”
Line 27 – The conclusion that these findings provide guidance on the most accurate IPM was a bit of a jump from the prior sentences, which just described model sensitivity. To justify this, it would be better to describe what analysis supports this guidance (a calibration, I presume? Against what variables?). Alternatively, your concluding point could note that these sensitivity analyses show where more effort should be focused to constrain our process-based understanding.

Response: We concur with the Reviewer that the language regarding IPM accuracy requires modification in the revised manuscript. The Reviewer’s suggestion to reframe the concluding point to highlight the fact that these sensitivity analyses do help guide the scientific community as it develops observational constraints on process-understanding is very well-taken and we would like to include it in the revised manuscript. To that point, our finding that the atmospheric drivers of uncertainty in discharge, ET and other hydrologic variables are associated with processes occurring within the study domain and not external to it (i.e., uncertainty in physical processes in the Upper Colorado River at the watershed scale dominates surface hydrological variable uncertainty over the uncertainty associated with large-scale dynamics that set the initial and boundary conditions of these watersheds) provides support for future research directions. We view our study as a first exploration of these topics and we look forward to working more in the coming years with hydroclimatic scientists interested in advancing the predictive understanding of Upper Colorado River water balance to improve regional, continental, or even Earth System scale dynamics modeling. The sensitivity analyses that we performed here do show the value of observational constraints on process-based understanding and where the scientific community should be focusing its efforts moving forward. We found definitively that the scientific community should be focusing on what is going on in the watersheds specifically, rather than focusing on improving large-scale meteorological prediction. It is a significant finding and can be emphasized in the revised manuscript in the context of discussing the development of observational constraints on process-models.

Future work (such as the use of more configurations, forcings, water years, and watershed locations) could help to support this hypothesis. Future works are going to be focusing on using a baseline configuration for future process-based research concurrent to SAIL, rather than a suite of configurations that we explored here. The reason for this is that we need to be sure to reference this manuscript for the WRF runs you are doing in support of SAIL.

Response after revision: The abstract was revised as “Our hypothesis is that synoptic-scale forcings produce a much larger spread in surface-through-subsurface hydrologic fields than subgrid-scale physics scheme choice. Results reveal that sub-grid scale physics configuration lead to larger spatiotemporal variance in simulated hydrometeorological conditions, whereas variance across meteorological forcing with common sub-grid scale physics configurations is more spatiotemporally constrained. While the simulated discharge peaks are delayed earlier due to model cold biases, discharge shows greater variance in response to the WRF simulations across subgrid-scale physics schemes (26%) rather than meteorological forcing
Topographic radiation option has minor effects on the watershed-average hydrometeorological processes, but adds profound spatial heterogeneity to local energy budgets (+/-30 W/m² in shortwave radiation and 1 K air temperature differences in late summer). This is the first presentation of sensitivity analyses that provide support to help guide the scientific community to develop observational constraints on atmosphere-through-bedrock processes and their interactions.

Line 34 – remove “that”
Response: We agree with the suggestion and look forward to revising the manuscript per this suggestion.

Response after revision: Remove “that”.

Line 35 – “may have”? Could you express the reason this is stated with uncertainty?
Response: This is an estimation from multiple sources mentioned in (Milly and Dunne, 2020). We look forward to revising the manuscript to clarify this point.

Response after revision: Removed “may have”.

Line 44 – Is “relevant” here meaning for larger-scales? Or respective relevant scales for each process?
Response: “relevant” means the observational datasets can be only used to improve the understanding of physical processes at their respective scale.

Response after revision: This sentence has been revised as follows, “there is a dearth of observational data that can constrain these processes at their respective scales, which has resulted in persistent model simulation biases in predicting the mountainous hydrologic cycle with direct implications for water resource management”.

Line 46 - Tying the motivation for this article to recent discussions about the relative skill of process-based atmospheric models vs gridded interpolated datasets provides a great motivation for the present study.

Response: We agree with the reviewer and can add the review of climate model assessments against a few reanalysis datasets, specifically in the complex-topography Rocky Mountains/UCRB regions.

For examples, those references can be included in the revision


Response after revision: A few additional references have been added, and the text is revised as follows, "A wide range of physics based and statistical models have been used over the complex terrain of the western U.S. For example, Alder et al. (2019) and Rahimi et al. (2022) have evaluated the choice of downscaled climate data and the sensitivities of grid resolution. Buban et al. (2022) also investigated the use of PRISM as a reference dataset to assess climate model performance. Observational campaigns, combined with coordinated modeling activities, represent a potential path forward towards enhancing our predictive understanding of the hydrologic cycle in complex terrain and, ultimately, advancing model development that can better aid water resource management (Lundquist et al, 2019; Feldman et al., 2021)."

Line 58 – “To further compound…” I think this is a good point, but could you provide an example?

Response: First, the snow processes cross-scale interactions are hard to manage and often necessitate downscaling of WRF to force snow process models at the scale they need to be run. One reference for this is Winstral and Marks, 2014 (Winstral, A., and Marks, D. (2014). Long-term snow distribution observations in a mountain catchment: assessing variability, time stability, and the representativeness of an index site. Water Resources Research, 50(1), 293-305. doi: 10.1002/2012WR013038). Also, Siirila-Woodburn et al. (2021) has provided detailed reviews of the challenges of managing the scales of subsurface process modeling with the scales of atmospheric process modeling.

Citations:

Response after revision: Several new references are provided in the paper and the text is revised as follows, “Additionally, advances in process modeling in complex terrain must recognize connections between processes in the atmosphere, at the surface and in the subsurface. At the same time, making connections between processes across the atmosphere-through-bedrock continuum is highly non-trivial. Furthermore, snow processes must be resolved at much finer scales than atmospheric processes, such that snow process investigations and accurate snow process modeling requires high-resolution downscaling of
WRF (e.g. Winstral and Marks, 2014). Cross-scale interactions in complex terrain are challenging to resolve at their native scales with currently available advanced computing resources (Siirila-Woodburn et al., 2021)."

Line 68 – I’m a little uncomfortable with “properly-configured” unless you feel this analysis truly fixes equifinality issues. Maybe “appropriately-configured”?

Response: We will reword “properly-configured” to “appropriately-configured”.
Response after revision: revised as “appropriately-configured”

Line 120 – “We can establish” leaves the reader uncertain if you did this or not.

Response: We will change “We can established” to “We establish”.
Response after revision: revised as “We establish”

Line 121-126 – This motivation is very nicely stated (although I don’t think it’s a hypothesis in the context of this study) – could you state this explicitly in the abstract?

Response: We agree with the reviewer on this point. We look forward to revising the manuscript to state the hypothesis of this paper by stating “Our hypothesis is that synoptic-scale forcings produce a much larger spread in surface-through-subsurface hydrology fields than subgrid-scale physics scheme choice.” We will then clarify the text to walk the reader through the implications if the hypothesis is confirmed or falsified by stating: “If our hypothesis is confirmed, then scientific efforts to advance the predictive hydrology, through modeling, of the UCRB should prioritize improving large-scale weather products and analyses. Conversely, if the hypothesis is falsified, model subgrid-scale physics scheme choice produces more variability in hydrologic response, so scientific efforts should prioritize development of smaller scale atmospheric and hydrological processes affected by surface heterogeneity in the ERW.”

We also look forward to explicitly stating this hypothesis in the abstract of the revised manuscript.

Response after revision: This hypothesis sentence has been added in the Abstract as follows, “Our hypothesis is that synoptic-scale forcings produce a much larger spread in surface-through-subsurface hydrologic fields than subgrid-scale physics scheme choice.”

Line 127 – Is “observations” here meant to refer to gridded reanalysis products? As the Lundquist paper points out, those are also models (generally statistical interpolations), so I’d suggest another word. I also note that this section doesn’t say anything about identifying an optimal model configuration, which is an outcome highlighted in the abstract.

Response: We agree with the reviewer that the “observations” here can be misleading, and can reword the revised manuscript with the following language: "regridded reanalysis products and
in-situ sensor measurements”. We also look forward to revising the manuscript to briefly summarize the objectives and outcomes of this paper at the end of the introduction section.

Response after revision: Since the discussion of observation vs. reanalysis products are beyond the scope of this paper, we revised this sentence as follows, “Our hypothesis is that synoptic-scale forcings produce a much larger spread in surface-through-subsurface hydrology fields than subgrid-scale physics scheme choice. If our hypothesis is confirmed, then scientific efforts to advance the predictive hydrology, through modeling, of the UCRB should prioritize improving large-scale weather products and analyses. Conversely, if the hypothesis is falsified, model subgrid-scale physics scheme choice produces more variability in hydrologic response, then scientific efforts should prioritize the development of smaller scale atmospheric and hydrological process representations affected by surface heterogeneity in the ERW.”

Line 141 – “representative” is a bit of a tough argument to make – consider “similar to many other basins in…”

Response: We agree with the reviewer and look forward to revising the manuscript with the suggested language.

Response after revision: Revised as suggested.

Line 141 – “near” should be “nearly”

Response: We agree with the reviewer and look forward to revising the manuscript with the suggested language.

Response after revision: Revised as suggested.

Line 153 – You noted a lack of observations earlier, which disconnects somewhat with the “heavily-instrumented” claim here. I think this could be mitigated by noting that the instrumentation is intense at this site, but it’s extremely difficult to observe many processes with high accuracy at relevant scales.

Response: We agree with the reviewer and look forward to comparing our simulations with the precipitation, temperature and ET observations measured by the in-situ instrumentation in the East River watershed. We will add this to the manuscript with the suggested language by noting the mismatch in scales directly measured by instrumentation.

Response after revision: The text has now been revised as follows to avoid any misunderstanding, “The ERW has become one of the most heavily-instrumented mountainous watersheds in the world, which makes it an ideal location for this research given the potentially large number of observational constraints available for the IPM efforts presented here. Although a wide range of precipitation, temperature and hydrological data have been collected, it is still
challenging to use these to characterize atmospheric, surface and subsurface processes and their interactions at relevant scales”.

Figure 1- As I read through the rest of the paper, I found I needed a more detailed study area map for the ERW specifically – with elevation and streamlines, perhaps?

Response: We appreciate the sentiments of the reviewer and will now include a Google Earth overlay of watershed boundaries and streams in the revised manuscript as an additional Supplementary Material figure.

Response after revision: As shown in the figure above, we now have added a subplot of satellite imagery with watershed demarcations in Figure 1c.

Line 254 – I have trouble understanding why PRISM was used to assess model performance for meteorological fields, given the comments in the Lundquist et al. (2019) paper you cited. It seems fine to compare against PRISM, but perhaps not to “assess model performance.”

Response: We included PRISM here as a reference dataset because it is one of the most widely-used gridded observationally-based datasets at sufficient resolution (800 meters) to evaluate the heterogeneity of the UCRB. At the same time, we recognize the very issues that Lundquist et al. (2019) raised about this dataset, since those issues were strong factors in motivating the research described in this manuscript. We look forward to revising the
Response after revision: This sentence has been revised in the following way, “The Parameter-elevation Relationships on Independent Slopes Model (PRISM) dataset (Daly et al., 2008) was used here as a point of comparison in evaluating model uncertainty across subgrid-scale physical schemes and meteorological forcing datasets for precipitation and temperature.”

Line 266 – Could you note the spatial resolution of the ASO product used here? At 50 m, point-to-grid errors could be one reason for the apparent underestimation by ASO relative to SNOTEL.

Response: The raw ASO product has 50 meters spatial resolution. The ASO product is regridded to the same grid resolution as WRF outputs (500 meters) for comparison purposes. and look forward to addressing this issue in the revision. We recognize the research on gridding SWE data (e.g., Fassnacht et al, 2003, doi: https://doi.org/10.1029/2002WR001512 and Dozier, 2011, doi:https://doi.org/10.1029/2011EO430001) and have followed the approach of the linear interpolation of the ASO data as documented in Oaida et al, 2019, doi:https://doi.org/10.1175/JHM-D-18-0009.1 and look forward to including this detail in the revised manuscript.

Response after revision: Text was added and revised as follows to demonstrate the uncertainty of the ASO product in our model-to-observation comparisons, “The raw ASO product has 50 meters spatial resolution, and is regridded to the same grid resolution as the WRF outputs (500 meters) for comparison purposes using bilinear interpolation, as documented in Oaida et al. (2019). Since the spatial resolution of the ASO data is significantly finer than the WRF outputs, we acknowledge that the underestimation by ASO could be due to point-to-grid errors.”

Line 272 - Results section would be easier to follow with if subheadings were included.

Response: We can add subtitles as “4.1. Subgrid-scale physical schemes vs meteorological forcings”, and “4.2. 3D topographic radiation effects”.

Response after revision: Added subsection subheading as suggested.

Figure 3 caption – would read more easily if you noted a-c in your descriptions of which variables are identified. The statistics used to evaluate these differences are essentially introduced in this caption; could you move that to the methods?

Response: We agree with the reviewer and can add labels in the captions, and also to describe the statistical methods in the methods section.
Response after revision: We have added a-c) captions as suggested by the reviewer.

Figure 3 – I’m surprised the UCD configurations melt so much earlier when they don’t appear to be warmer. Is it possible that the spatial averages here obscure spatial differences that would explain why the UCD simulations melt earlier? Figure S-4 kind of gets at this, but I think it needs more interpretation for the reader.

Response: We agree with the reviewer that the spatial average visualization does not show the importance of locally specific spatial differences and, therefore, is unable to explain the physical reasoning of earlier snowmelt. We can create another supplement figure of the locally specific spatial differences in the UCD configuration simulation, and add a brief discussion of the physical reasons that may have given rise to an earlier snowmelt.

Response after revision: To address the reviewers concerns, we now provide Figure S-4 which compares the difference in monthly precipitation and temperature against PRISM, and the monthly snow water equivalent in the UCD-ERA5 WRF simulation. We have also added additional analysis in Section 4.1 to help provide readers with physical intuition for the simulated early snowmelt. The following sentences were added to the manuscript to discuss these important points brought up by the reviewer, “Comparing the monthly average between UCD-ERA5 (Figure S-4) and BSU-ERA5 (Figure S-5), the early snowmelt observed in the UCD scheme is likely a result of warmer temperatures at low-altitude region that melt the snow earlier in the water year. However, the high-altitude regions remain cold enough to maintain snowpack through early-mid summer.”

Line 319 – run-on sentence.

Response: We can modify this sentence for clarity.

Response after revision: This sentence has now been broken up and revised as follows, “Although the two-meter surface air temperature bias is evident, it doesn’t vary significantly across either subgrid-scale physics scheme or meteorological forcing. Therefore, subsequent exploration in this study will be focused on precipitation.”

Figure 4 – Nice figure. Could you again add an introduction to these statistics in the methods so we know how you’re evaluating variance earlier? Why do c and d have only two points marked on the x-axis?

Response: Thank you for the kudos about this figure! We look forward to revising the manuscript accordingly. The x-extents of a-d are identical; we can add the additional tick-marks to avoid confusion.

Response after revision: The specific methods used to generate the statistics mentioned by the reviewer have now been added to the Figure 4 caption, “The standard deviations are the total
annual precipitation in each ensemble simulation, using either different subgrid-scale physics schemes or large-scale meteorological forcings." Further, additional tickmarks have now been added to Figure 4c and 4d.

Line 335 – Were there any quantitative statistics provided to determine that BSU-CFSR2 agreed best with PRISM?

Response: We look forward to adding to the revised manuscript the quantitative statistic of RMSE (Root Mean Squared Error), as suggested earlier by the reviewer, for precipitation, temperature and SWE across all experiments to quantify how the BSU-CFSR2 configuration compared to the other configurations in terms of its agreement with PRISM.

Response after revision: The quantitative measurements requested by the reviewer have now been added to Table 3, with a new paragraph of text describing them as follows, “Quantitative statistics of the aggregated domain-average precipitation and temperature simulations for the WRF simulation across subgrid-scale physical schemes and large-scale meteorological forcings are presented in Table 3. Clearly, BSU subgrid-scale physical schemes outperform the UCD and NCAR schemes in both simulations of precipitation and temperature. On the other hand, the differences in precipitation and two-meter surface air temperatures across the four meteorological forcings are not statistically significant, and their standard deviations are much smaller than the differences in simulations across subgrid-scale physical schemes. While there are many metrics of model skill when selecting a meteorological forcing to simulate the hydrological processes in the ERW, we choose BSU-CFSR for the topographic radiation study in the next subsection due to its better match with PRISM, using our skill measures, in simulating both precipitation and two-meter surface air temperature.”

Figure 6 – Some panels appear not to use their full color scale (e.g., Temperature). Is that due to outlier pixels? There’s a lot of wasted white-space in these maps – why not use the full plotting area for each map?

Response: We can adjust the extent of the plotting area according to this comment.

Response after revision: As suggested by the reviewer, the extent of the plotting area has now been enlarged in the subplots.

Line 380 – This paragraph describes Figure 7, but the next paragraph also seems to introduce Figure 7 as though it’s a new topic?

Response: This paragraph describes the variance of simulated streamflow across experiments, and the next paragraph introduces the comparison against in-situ streamflow observations. We look forward to revising the manuscript to add a better transition sentence to aid the reader in separating these paragraphs.
Response after revision: A section subheading has now been added to break up the two subsections. The text has been revised as follows, “With the evaluation of the aforementioned WRF configurations and forcings on precipitation, temperature, snowpack and radiation fluxes, their impacts on the integrated water budget was evaluated in the ParFlow-CLM.”

Line 401 – “The objective of this study is not to replicate the observations…” In that case, I strongly recommend changing the final sentence in the abstract, because that implies you’re identifying the best model configuration.

Response: We agree with the reviewer and can revise the abstract to not explicitly state that the objective of this paper is to identify the optimal model configurations but rather an exercise of sensitivity analysis where one configuration will perform the best.

Response after revision: The last sentence in the abstract has been changed in the following way, “This is the first presentation of the sensitivity analyses that provide support to help guide the scientific community to develop observational constraints on atmosphere-through-bedrock processes and their interactions.”

Line 413 – Are the differences notable or minimal? I would say minimal. Maybe better to describe quantitatively – you could note the among-model variance vs the seasonal variance?

Response: The reviewer is correct that the differences are minimal. Since this is a snow-dominated watershed and streamflow is predominantly controlled by snowmelt, the seasonal variance is not comparable with the among-model variances. We can revise the manuscript to describe the intra-model configuration variance in different seasons.

Response after revision: This sentence has now been revised as follows, “Basin-average groundwater storage, shown in Figure 7c in area-normalized units, shows a strong annual signal for all WRF configurations with minimal differences across IPM configurations.”

Line 417 – “are slightly larger…” The differences are twice as big for the subgrid-scale physics schemes but are small in both cases; I would suggest rephrasing to clarify.

Response: We agree with the reviewer and look forward to removing the word “slightly” in the revised manuscript to avoid any misunderstanding.

Response after revision: Removed “slightly” as suggested.

Line 420 – What is meant by “more muted-nature”? I think this sentence speculating about differences in groundwater signals across years would be better in the discussion.

Response: We can re-word this sentence and perhaps use the wording “less noisy” opposed to “more muted” to avoid any confusion. What’s meant here is that streamflow signals are very reactive, noisy, and change quickly, whereas groundwater signals are the product of slower
processes via infiltration and vadose zone dynamics, often at longer timescales, which result in very different temporal signals as compared to streamflow.

Response after revision: This sentence has now been revised as follows, “streamflow signals are very reactive, noisy, and change quickly, whereas groundwater signals are the product of slower processes via infiltration and vadose zone dynamics, often at longer timescales, which result in very different temporal signals as compared to streamflow.”

Figure 8 – Is this color gradient perceptually uniform? It appears not to be (e.g., see Figure 1b in Cramer et al., 2020). It would be helpful to see a perceptually uniform palette here if possible.

Response: We can replace with the perceptually uniform color bar for the plots, based on the suggestions in Cramer et al. (2020).

Response after revision: The figure color bar has now been replaced with a perceptually uniform gradient.

Line 448 – “with an eye towards how to represent…” Without calibration or serious validation efforts, I don’t think this study tells us about how to represent these interactions in models. I do think it tells us about where the most important uncertainties are, though (in your next sentence).

Response: Here we mean that by evaluating the model uncertainties for simulating precipitation, temperature, and streamflow, we are able to identify the which process within the model has the most important uncertainties. We can revise this sentence accordingly.

Response after revision: We removed the following phrasing in the sentence, “with an eye towards how to represent”, and revised the sentence to read as follows, “In this paper, we present a number of numerical experiment results that are informative for the scientific community to better understand atmosphere-through-bedrock process interactions, and the uncertainties of those interactions between climate and hydrological model experimental setup choices”

Line 454 – I don’t remember a prior discussion of boundary conditions – is this referring to boundary conditions at the land surface driven by differences in the subgrid-scale physics schemes?

Response: Here we mean the large-scale forcing dataset used as the initial and boundary conditions in the WRF model. We can revise this sentence and explicitly mention that in the revised manuscript.

Response after revision: The sentence has now been revised to, “This result also shows that the large-scale meteorological forcing of the IPM simulation”
Line 456 – This would be more convincing if statistics on BSU-CFSR2 vs other models were presented. How does identifying this configuration allow researchers to prioritize process studies and observational constraints? What would these be, specifically?

Response: We agree with the reviewer and look forward to adding the quantitative statistics RMSE for the experiments against the PRISM observationally-based dataset.

Response after revision: As mentioned in an earlier comment to the reviewer, the quantitative statistics are now presented in Section 4.1 and Table 3 in the manuscript.

Figure S6 – Could you use a different color scheme that doesn't have a diverging gradient? I think the diverging gradient is most appropriate for your maps showing differences (e.g., value scales that center on zero).

Response: We agree with the reviewer and can revise the color scale.

Response after revision: The color scale in Figure S6 has now been updated using an non-diverging gradient.

Line 467 – “Latent heat is posited…” by whom? Are you? I think you could state with more confidence than “posit” that other energy balance components (including but not exclusively latent) mediate the influence of shortwave spatial variability on temperature spatial variability.

Response: We agree with the reviewer and can revise this sentence as “Latent heat buffers differences in the shortwave radiation contribution to the radiation budget.”

Response after revision: We have revised this sentence as follows to be more confident in causality, “Latent heat buffers differences in the shortwave radiation contribution to the radiation budget.”

Line 470 – You lost me here. This paragraph is ostensibly about how terrain shading algorithms affect radiation flux? How does this affect our ability to extrapolate findings from one mountainous watershed to another? The multiple “if” statements in here are also a little confusing – did the present study show these things or not?

Response: This paragraph discusses the systemic cold bias in our current IPM configuration, and the limitations of one-way vs. two-way coupling between WRF and ParFlow-CLM. We will revise this paragraph to be more clear and to the point.

Response after revision: The sentence has been revised, with more clarity in mind, as follows, “At the same time, the systemic cold bias and limitations of one-way feedback in this study is potentially indicative of challenges in extrapolating findings from one mountainous watershed to another.”
References