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Abstract. While substantial progress has been made to improve our understanding of biogenic isoprene emissions 15 

under unstressed conditions, there remain large uncertainties in isoprene emissions under stressed conditions. Here 16 

we use the US Drought Monitor (USDM) as a weekly drought severity index and tropospheric columns of 17 

formaldehyde (HCHO), the key product of isoprene oxidation, retrieved from the Ozone Monitoring Instrument (OMI) 18 

to derive top-down constraints on the response of summertime isoprene emissions to drought stress in the Southeast 19 

U.S. (SE US), a region of high isoprene emissions and prone to drought. OMI HCHO column density is found to be 20 

6.7% (mild drought) - 23.3% (severe drought) higher than that in no-drought conditions. A global chemical transport 21 

model, GEOS-Chem, with the MEGAN2.1 emission algorithm can simulate this direction of change, but the simulated 22 

increases at the corresponding drought levels are 1.1-1.5 times of OMI HCHO, suggesting the need for a drought-23 

stress algorithm in the model. By minimizing the model-to-OMI differences in HCHO to temperature sensitivity under 24 

different drought levels, we derived a top-down drought stress factor (γd_OMI) in GEOS-Chem that parameterizes using 25 

water stress and temperature. The algorithm led to an 8.6% (mild drought) - 20.7% (severe drought) reduction in 26 

isoprene emissions in the SE US relative to the simulation without it. With γd_OMI the model predicts a non-linear 27 

increasing trend in isoprene emissions with drought severity that is consistent with OMI HCHO and a single site’s 28 

isoprene flux measurements. Compared with a previous drought stress algorithm derived from the latter, the satellite-29 

based drought stress factor performs better in capturing the regional scale drought-isoprene responses as indicated by 30 

the close-to-zero mean bias between OMI and simulated HCHO columns under different drought conditions. The 31 

drought stress algorithm also reduces the model’s high bias in organic aerosols (OA) simulations by 6.60% (mild 32 

drought) to 11.71% (severe drought) over the SE US compared to the no-stress simulation. The simulated ozone 33 

response to the drought stress factor displays a spatial disparity due to the isoprene suppressing effect on oxidants, 34 

with an <1 ppb increase in O3 in high-isoprene regions and a 1-3 ppbv decrease in O3 in low-isoprene regions. This 35 
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study demonstrates the unique value of exploiting long-term satellite observations to develop empirical stress 36 

algorithms on biogenic emissions where in situ flux measurements are limited. 37 

1. Introduction 38 

Biogenic nonmethane volatile organic compounds (BVOCs) emitted by terrestrial ecosystems are of great importance 39 

to air quality, tropospheric chemistry, and climate due to their effects on atmospheric oxidants and aerosols (Atkinson, 40 

2000; Claeys et al., 2004; Pacifico et al., 2009). The dominant BVOC is isoprene (CH₂=C(CH3)CH=CH₂), comprising 41 

70% of the global total BVOC emitted from vegetation (Sindelarova et al., 2014). Isoprene emissions depend on 42 

vegetation/plant type, physiological status, leaf age, and meteorological conditions such as radiation, temperature, and 43 

soil moisture. These relationships provide the basic framework of isoprene emission models that are capable of 44 

coupling with meteorology and the land biosphere, the most widely used being the Model of Emissions of Gases and 45 

Aerosols from Nature (MEGAN) (Guenther et al., 1993, 2006, 2012, 2017). Recent work has shown stressed 46 

conditions - such as drought, heatwaves, and high winds - can induce large changes in isoprene emissions different 47 

from model predictions in the absence of those stress factors (Potosnak et al., 2014; Huang et al., 2015; Kravitz et al., 48 

2016; Seco et al., 2015; Otu-Larbi et al., 2020; Seco et al., 2022). As stressed conditions are rarely sampled by field 49 

campaigns due to their infrequent and irregular nature and hence poorly constrained, stress impacts on isoprene 50 

emissions are among the least understood aspects in our predictivity of BVOC-chemistry-climate interactions.  51 

A common stress for terrestrial vegetation worldwide is drought, characterized by low precipitation, high temperature, 52 

and low soil moisture (Trenberth et al., 2014). These conditions are primary abiotic stresses that will cause 53 

physiological impacts on plants affecting photosynthesis, stomatal conductance, transpiration, and leaf area. During 54 

short-term or mild droughts, the photosynthetic rate of plants quickly decreases due to limited stomatal conductance, 55 

while isoprene is not immediately impacted because of the availability of stored carbon and because the photosynthetic 56 

electron transport is not inhibited. Isoprene can even increase by several factors due to warm leaf temperatures which 57 

increases isoprene synthase activity (Potosnak et al., 2014; Ferracci et al., 2020). During prolonged or severe drought 58 

stress, after a lag related to photosynthesis reduction, isoprene emission eventually declines because of inadequate 59 

carbon availability. This conceptualized non-monotonic response of isoprene emission to drought has been 60 

demonstrated at the Missouri Ozarks AmeriFlux (MOFLUX) field site in Missouri (Potosnak et al., 2014; Seco et al., 61 

2015), the only available drought-relevant whole canopy isoprene flux measurements to date, and qualitatively 62 

supported by ambient isoprene concentrations monitored by regional surface networks (Wang et al., 2017). It is 63 

noteworthy that the MOFLUX data covered only two drought events (summer 2011 and summer 2012), while the 64 

surface sites are sparsely distributed with an urban focus. More recently, the isoprene concentration measurements 65 

during the Wytham Isoprene iDirac Oak Tree Measurements (WIsDOM) campaign showed that isoprene was up to 66 

four times higher than normal in responses to a combined heatwave and drought episode (June-October 2018) over a 67 

mid-latitude temperate forest in the UK (Ferracci et al., 2020; Otu-Larbi et al., 2020), which supports the enhanced 68 

isoprene emissions at the MOFLUX site under mild droughts. However, these observations offer only limited 69 

constraints on drought stress impacts on isoprene emissions.  70 
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With wide spatiotemporal coverage, satellite provides arguably the best platform to capture drought development and 71 

impacts. Satellite observations of tropospheric formaldehyde (HCHO) columns have been used as a proxy of isoprene 72 

emissions for more than a decade (Abbot et al., 2003; Palmer et al., 2003), as HCHO is formed promptly and in high 73 

yield from isoprene oxidation (Sprengnether et al., 2002). Previous applications of satellite HCHO products provided 74 

“top-down” estimates on seasonality, magnitude, spatial distribution, and interannual variability of isoprene emissions 75 

globally and regionally (e.g., Marais et al., 2016; Kaiser et al., 2018; Stavrakou et al., 2018). While most of these 76 

studies focused on unstressed conditions, recent efforts have shown that satellite HCHO registered drought signals on 77 

a monthly scale (Zheng et al., 2017; Naimark et al., 2021; Li et al., 2022; Opacka et al., 2022). These signals are yet 78 

to be exploited to constrain isoprene response to drought.  79 

The present study aims at improving the current quantification of satellite HCHO response to drought by accounting 80 

for sub-monthly variability of drought severity. We use a weekly time scale, the finest temporal scale of drought 81 

indices available, and separate five levels of drought severity defined by the US Drought Monitor. By comparison, 82 

previous investigations used binary classification (drought or not) on a monthly time scale. Our improvement in scale 83 

is expected to better capture the nonlinear response of isoprene emissions to drought severity as described above. The 84 

study region is the Southeast United States (SE US), which has large isoprene emissions due to substantial forest 85 

coverage and is also prone to drought due to large interannual variability in precipitation (Seager et al., 2009). In 86 

addition, the MOFLUX site is located in the SE US, which will allow us to evaluate if satellite-derived drought 87 

responses of HCHO are consistent with those from isoprene flux measurements at MOFLUX. Finally, we use these 88 

HCHO signals in conjunction with models to identify the model gaps in predicting isoprene responses to drought.  89 

2. Data and Method 90 

2.1 Drought index 91 

There are many types of drought indices focusing on different factors, including precipitation, temperature, 92 

evaporation, runoff, and the impact of drought on ecosystems and vegetation (Palmer, 1965; McKee et al., 1993; 93 

Guttman, 1999; Vicente-Serrano et al., 2010; Chang et al., 2018). Drought indices also differ by time scale. As drought 94 

by definition is a prolonged period of water deficit, the shortest time scale of drought is weekly. Here we chose the 95 

United States Drought Monitor (USDM) drought index to identify drought periods. USDM’s weekly timescale and 96 

multiple drought severity levels (Svoboda et al., 2002) provide a better delineation of drought variability than the 97 

monthly or seasonal scale used in the previous analysis of drought signals in HCHO and isoprene (Wang et al., 2017; 98 

Naimark et al., 2021).  99 
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 100 

Figure 1. (a) Drought distribution for the second week of July 2012 based on USDM. The black star indicates the location 101 
of MOFLUX site. (b) Time series of drought frequency in the study area (black box in Figure 1a) for JJA from 2005 to 102 
2017. N0 (white) for wet and normal, D0 (light yellow) for abnormal drought, D1 (yellow) for moderate drought, D2 (orange) 103 
for severe drought, D3 (red) for extreme drought, and D4 (brown) for exceptional drought. 104 

The USDM is a composite drought index based on six key physical indicators including the Palmer Drought Severity 105 

Index (PDSI, Palmer, 1965), CPC Soil Moisture Model Percentiles (Huang et al., 1996), U.S. Geological Survey 106 

(USGS) Daily Streamflow Percentiles (http://water.usgs.gov.waterwatch/), Percent of Normal Precipitation (Willeke 107 

et al., 1994), Standardized Precipitation Index (SPI, McKee et al., 1993), and remotely sensed Satellite Vegetation 108 

Health Index (Kogan, 1995). Opinions of local experts are also considered (Svoboda et al., 2002). The USDM website 109 

(https://droughtmonitor.unl.edu/) provides weekly ArcGIS shapefiles of the polygons covering the whole US under 110 

five drought levels: D0 for abnormal drought, D1 for moderate drought, D2 for severe drought, D3 for extreme drought, 111 

and D4 for exceptional drought. We used the method of Chen et al. (2019) to rasterize and convert USDM shapefiles 112 

to 0.5° × 0.5° gridded indices with -1 indicating non-drought (N0) and 0-4 for D0-D4 drought, respectively. Figure 113 

1a displays the spatial distribution of gridded USDM indices for the second week of July 2012, which clearly depicts 114 

the extent and severity of the infamous 2012 Great Plains drought (Hoerling et al., 2014). Figure 1b shows the weekly 115 

time series of USDM indices averaged over SE US (75–100◦W, 25–40◦N, black box in Figure 1a) for the summer 116 

months (June, July, August; JJA) of 2005 -2017, our study period. During this period, abnormal drought (D0) appeared 117 

every summer, while extreme and exceptional drought (D3-D4) were mainly concentrated in 2006-2008 and 2010-118 

2012. This pattern is consistent with the long-term drought statistics from other drought indices such as SPEI and 119 

PDSI (Svoboda et al., 2015). 120 

2.2 OMI HCHO and NO2 product 121 

We used the Ozone Monitoring Instrument (OMI) v003 level 3 tropospheric formaldehyde (HCHO) column density 122 

(OMHCHOd) as described by Chance (2019). OMI was launched on NASA's Aura satellite in 2004 and has since 123 

provided daily global measurements of ozone (O3) and its precursors with a nadir spatial resolution of 24 × 13 km2. 124 

Since January 2009, OMI has been suffering from a major row anomaly. OMHCHOd data processing explored all 125 

level 2 OMHCHO observations to filter out pixels with bad formaldehyde retrievals, high cloud fractions (>30%), 126 

high SZA (>70°), and pixels affected by OMI’s row anomaly (Chance, 2019). The spatial resolution is 0.1° × 0.1°. 127 

Zhu et al. (2016) verified the OMHCHOd data using high-precision HCHO aircraft observations obtained during 128 
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NASA SEAC4RS activities in SE US from August to September 2013. They showed that OMI retrievals have accurate 129 

spatial and temporal distribution but were biased low by 37% relative to the aircraft. We corrected this underestimation 130 

by applying a uniform and constant factor of 1.5 to the OMHCHOd data, as did by Shen et al. (2019) in their long-131 

term analysis of OMI HCHO. Figure 2a presents the corrected OMHCHOd for the SE US averaged over JJA 2005-132 

2017, where higher levels of HCHO are clearly seen over forested regions in Missouri, Georgia, Arkansas, and Texas. 133 

OMHCHOd values shown hereafter are those with the correction factor applied. Although it is not known if the 134 

correction factor has temporal spatial variations during our study period, its application produced a good match 135 

between OMI and simulated HCHO columns under non-drought (N0) conditions (Figure 2c). To examine the 136 

concurrent changes of nitrogen oxides (NOx = NO2 + NO) under droughts, we also used the level 3 tropospheric 137 

column of NO2 from OMI during the same period (Nickolay et al., 2019). 138 

 139 

Figure 2. Mean 2005–2017 HCHO columns for June – August over the SE US of (a) OMI observation (OMHCHOd) and 140 
(b) GEOS-Chem simulation (GCHCHO_NoStress). (c) Scatterplot of spatial correlation between the two. The dashed line 141 
indicates the 1:1 agreement.  142 

2.3 GEOS-Chem chemical transport model  143 

We used the long-term simulation of the nested-grid GEOS-Chem global chemical transport model (version 12-02, 144 

http://www.geos-chem.org) to obtain daily mean results of modeled formaldehyde columns and isoprene emissions 145 

for North America during JJA 2005 – 2017. The simulation was driven by the Modern-Era Retrospective analysis for 146 

Research and Applications, Version 2 (MERRA-2) meteorological data from NASA’s Global Modeling and 147 

Assimilation Office (GMAO) with a horizontal resolution at 0.5° × 0.625°. Biogenic emissions were calculated using 148 

MEGAN2.1, which is the prevailing version of MEGAN implemented in most chemical and climate models. 149 

MEGAN2.1 has a soil dependence algorithm whose parameterization is based on plant wilting point threshold and 150 

soil moisture (Guenther et al., 2017). However, this factor is disabled in GEOS-Chem as in many other CTMs due to 151 

the unavailability of the required driving variables, such as wilting point and soil moisture, which cannot be simulated 152 

well in most models (Trugman et al., 2018). Thus, outputs from the standard GEOS-Chem simulations do not have 153 

http://www.geos-chem.org/


6 
 

drought effects on isoprene emissions and these outputs are referred to as NoStress_GC. Anthropogenic emissions 154 

over North America were from the 2011 National Emissions Inventory (NEI2011, http://www.epa.gov/air-emissions-155 

inventories) for the United States, with historical scale factors applied to each simulated year. Open fire emissions 156 

were from GFED4 (Giglio et al., 2013) for 2005–2017.  157 

To better match with OMI overpassing time, model HCHO outputs at 13:30 local time were sampled 158 

(GCHCHO_NoStress). Figure 2b shows GCHCHO_NoStress averaged over the same domain and period as 159 

OMHCHOd in Figure 2a. The scatter plot (Figure 2c) shows a good spatial correlation between the two (R2 = 0.88). 160 

This correlation is consistent with other studies comparing GEOS-Chem and OMI HCHO columns in SE US during 161 

non-drought periods (Kaiser et al., 2018).  162 

2.4 Observations of ozone, organic aerosol, LAI, and isoprene flux 163 

To evaluate how the drought stress factor changes the simulations of surface O3 and organic aerosol (OA), we adopted 164 

the gridded (1° × 1°) hourly O3 observations created by Schnell et al. (2014) using the modified inverse distance 165 

weighting method. The dataset aggregates several networks of O3 measurements including the US Environmental 166 

Protection Agency’s (EPA) Air Quality System (AQS), Clean Air Status and Trends Network (CASTNET), and 167 

Environment Canada’s National Air Pollution Surveillance Program (NAPS). Following the same method, we created 168 

a gridded organic aerosol (OA) dataset using the organic carbon (OC) observations from the Interagency Monitoring 169 

of Protected Visual Environments (IMPROVE) network. A factor of 2.1 was used to convert OC to OA as suggested 170 

by other studies (Pye et al., 2017; Schroder et al., 2018). To examine the changes of leaf area index (LAI) under 171 

droughts, the MODerate resolution Imaging Spectroradiometer (MODIS) Collection 5 LAI products reprocessed by 172 

Yuan et al. (2011) with a resolution of 0.25° × 0.25° was used. These three datasets were further remapped through 173 

bilinear interpolation to match the spatial resolution of the USDM. The isoprene flux measurements at the MOFLUX 174 

site during 2012 May-September were used to derive a site-based drought stress algorithm. The site is located in the 175 

Ozarks region of central Missouri (38.74°N, 92.20°W, black star in Figure 1a). It is surrounded by a deciduous forest 176 

dominated by isoprene-emitting white and red oak species. The dataset is widely used to investigate isoprene emissions 177 

response to droughts (Potosnak et al., 2014; Seco et al., 2015; Jiang et al., 2018; Opacka et al., 2022).  178 

3. Observational Evidence of Drought Stress on Isoprene Emissions 179 

3.1 Changes of HCHO column densities with drought 180 

To reveal drought responses of HCHO, we sampled weekly-mean HCHO columns onto the gridded spatial and 181 

temporal locations of each USDM category and generated average HCHO distributions at each drought level over the 182 

SE US. The outputs are shown in Figure 3a for OMI and 3b for NoStress_GC, respectively. The processing of weekly-183 

mean HCHO data corresponds to the timing of USDM: a whole week includes Wednesday of the previous week to 184 

Tuesday of the present week. There are 12 consecutive weeks from June to August in each year of 2005-2017, giving 185 

a total of 156 weeks’ gridded HCHO data to be assigned to individual USDM categories by week and location. Figure 186 

3d shows the number of weeks underlying the gridded averages of HCHO for each USDM category. As severe 187 

http://www.epa.gov/air-emissions-inventories
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droughts are less frequent than mild droughts, some locations in SE US did not experience D2-D4 droughts during the 188 

study period and hence are shown as white in Figure 3. 189 

 190 

Figure 3. The mean spatial distributions of (a) OMI HCHO column density; (b) NoStress_GC HCHO column density, (c) 191 
NoStress_GC isoprene emissions, and (d) the number of weeks during JJA 2005 to 2017 in the southeast US under different 192 
USDM drought levels (N0, D0-D4). 193 
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OMI HCHO column density increases with increasing drought severity in almost all locations in the SE US (Figure 194 

3a). Relative to no-drought condition (N0), the mean HCHO column from OMI is 6.7%, 12.6%, 16.5%, 21.2%, and 195 

23.2% higher under D0 - D4 drought in the entire SE US, respectively. These HCHO changes are statistically 196 

significant at a 95% confident interval, indicating that the OMI HCHO products contain significant drought signals. 197 

The increasing rate of OMI HCHO with USDM is not linear, faster under mild droughts (D0-D2) and flattening under 198 

more severe droughts (D2-D4). This is qualitatively consistent with the conceptualized model of the nonlinear 199 

response of isoprene emissions to drought described before (Potosnak et al., 2014). 200 

Model HCHO column density also increases with increasing drought severity (Figure 3b). GCHCHO_NoStress is 201 

9.90%, 15.1%, 19.5%, 21.8%, and 29.1% higher under D0-D4 drought than that of N0, respectively. These increases 202 

are 1.1-1.5 times those of OMI under all drought levels. The model comparison against OMI HCHO also changes 203 

with drought severity. GCHCHO_NoStress has a minimal bias (0.05 × 1016 molec cm-2) under N0. As drought severity 204 

increases, the mean bias over the entire SE US increases to 0.10 × 1016 molec cm-2, 0.09 × 1016 molec cm-2, 0.11 × 205 

1016 molec cm-2, 0.08 × 1016 molec cm-2, and 0.15 × 1016 molec cm-2 under D0 - D4 levels, respectively. The spatial 206 

correlation between OMI and NoStress_GC degrades with USDM, with R2 being smaller than 0.65 under D0 - D4 207 

levels compared to R2 of 0.70 under N0. Worsening model performance with increasing drought severity suggests the 208 

model lacks a process that changes with drought. As isoprene accounts for more than 80% of the contribution of non-209 

methane VOCs to the HCHO column in the southeast US(Palmer et al., 2003; Millet et al., 2006), the missing process 210 

is most likely drought-induced changes in isoprene emissions.  211 

 212 
Figure 4. (a) Relative changes of regional-mean OMI HCHO column, NoStress_GC simulated HCHO colum, isoprene 213 
emissions, anthropogenic benzene emission, anthropogenic toluene emission, and MODIS leaf area index (LAI) under 214 
different drought levels in the southeast US. All data are scaled to their respective values at N0. The dotted lines are the 215 
arithmetic mean of all grids, and the solid lines are the corrected mean excluding the missing area. (b) Regional-mean 216 
tropospheric NO2 columns from OMI and NoStress_GC (solid lines), and their respective changes from non-drought (N0) 217 
conditions (dashed lines). Note the different scales between the solid and dashed lines. The calculation is based on the grids 218 
with the presence of all USDM levels.  219 

Figure 4a displays the relative changes in the regional mean HCHO column from OMI and NoStress_GC, emissions 220 

of isoprene and select anthropogenic VOCs from NoStress_GC, and MODIS LAI as a function of USDM indices, 221 

each scaled by its respective value at N0. The dotted line is the arithmetic mean of all available grids under each 222 

dryness category, and the solid line is the mean for those grids with valid data in all dryness categories (i.e., removing 223 
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white areas shown in Figure 3). In either calculation, NoStress_GC overestimates the relative increase of HCHO under 224 

D0-D4 by 10-50% compared to OMI. After correcting for no data areas at D2-D4, isoprene emissions in NoStress_GC 225 

are 22.7%, 29.6%, 40.3%, 54.5%, and 56.0% higher in D0-D4 than N0. Note that LAI is observed to decrease by 5-226 

10% per USDM level (Figure 4a), which makes the predicted increase of isoprene emissions with drought severity 227 

even more remarkable. This is likely caused by the increasingly higher temperature under droughts, given the 228 

exponential relationship of isoprene emissions with temperatures in MEGAN (Guenther et al., 2006).  229 

By comparison, the modeled increase of the HCHO column with drought is 12-25%, more buffered than that of 230 

isoprene emissions. This is mainly caused by the loss of HCHO to photolysis, which is expected to increase under 231 

droughts with clearer skies (Wang et al., 2017; Naimark et al., 2021). In addition, HCHO formation also depends on 232 

the abundance of oxidants, such as hydroxyl radicals (OH) and NOx, that oxidize isoprene. High isoprene emissions 233 

can suppress OH under the low-NOx conditions that prevail in part of the SE US (Wells et al., 2020), leading to the 234 

buffered response in HCHO. Previous studies (Travis et al., 2016; Kaiser et al., 2018) showed that the NEI2011 235 

anthropogenic inventory in the model were biased high in the SE US and a reduction of 60% of NOx emission was 236 

suggested. By comparing to OMI NO2 column, we found NoStress_GC indeed overestimates NO2 columns by ~42% 237 

in the SE US (Figure 4b), but the absolute bias in NO2 is nearly constant from N0 to D4 (solid lines in Figure 4b). 238 

NO2 column also shows an increasing trend from N0 to D4, yet with a much smaller rate (less than 9%) than HCHO. 239 

The model captures the relative change in NO2 column with USDM (dashed lines in Figure 4b), despite the high bias 240 

due to the NEI2011 inventory, which indicates that the changes in natural sources of NOx (e.g., biomass burning and 241 

soil NOx) with droughts are well represented by NoStress_GC. To further examine the effect of high bias of NOx on 242 

simulated HCHO, we conducted a sensitivity simulation of reducing the NEI2011 NOx emissions by 50% over the SE 243 

US during JJA 2011-2013. Most of the SE US was under droughts during the summertime of 2011-2012, while 2013 244 

was a less drought-stricken year (Figure 1). The sensitivity simulation resulted in a small reduction of the simulated 245 

HCHO column and the change was nearly constant among the USDM levels (Figure S1a-b), ranging from -0.04×1016 246 

molec cm-2 (2.6%) to -0.05×1016 molec cm-2 (3.5%). This rules out the possibility that the high NOx bias in the model 247 

is the reason for the overestimation of HCHO under droughts. Given the suppression effect of isoprene on OH and the 248 

well-captured NO2 relative changes under droughts, the overestimation of HCHO columns by the model is unlikely 249 

to be caused by model chemistry, and more likely by the overestimation of isoprene emissions under drought 250 

conditions. 251 

While oxidation of anthropogenic VOCs also produces HCHO, using benzene and toluene as indicator species, we 252 

found no change in anthropogenic VOC emissions with drought in the model (Figure 4a). This insensitivity rules out 253 

anthropogenic VOCs as a key driver of model overestimation of HCHO under drought conditions. If anything, we 254 

expect anthropogenic VOC emissions to increase during drought due to higher evaporative emissions driven by higher 255 

temperature and more fossil fuel consumption driven by more demand for space cooling. Wildfires are another 256 

important source that can lead to high HCHO levels, but their contributions to HCHO are more likely to be 257 

underpredicted in GEOS-Chem partly due to insufficient hydrocarbon emissions and the underrepresented fire plume 258 

chemistry (Alvarado et al., 2020; Liao et al., 2021; Zhao et al., 2022). A deeper planetary boundary layer (PBL) is 259 
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expected under droughts primarily caused by a larger sensible height flux released from dry soil (Miralles et al., 2014). 260 

Indeed, the MERRA-2 PBL height used in our simulation increases by 12.42%, 17.79%, 20.99%, 26.21%, and 29.52% 261 

from D0 to D4 relative to the value of 1589 m at N0 in the SE US during the midday (13:30 LT). Considering the 262 

PBL heights in MERRA-2 agree well with observations with only an overall 200 m low bias (Guo et al., 2021), we 263 

do not expect mixing heights to be the main cause of the high bias of HCHO column under drought conditions. To 264 

further quantify the effects of wildfires and PBL on the changes of HCHO column with drought, we conducted two 265 

additional sensitivity tests: (1) turning off the GFED4 wildfire emission inventory during 2011-2013 JJA, and (2) 266 

keeping PBL constant as in 2013 (normal year) during 2011-2012 (drought years) JJA. The results in Figure S1c-d 267 

show overall negligible changes in HCHO column in the SE US, which verifies our assumptions above. 268 

In summary, the model overestimates HCHO increases during drought as compared to OMI. This overestimation is 269 

attributed to the model overestimation of isoprene emissions during drought. Drought stress effect on isoprene 270 

emissions is thus required in GEOS-Chem to resolve the discrepancy in HCHO responses to drought between OMI 271 

and the model.  272 

3.2 Isoprene flux measurement 273 

To further evaluate isoprene emissions in NoStress_GC, we compared the isoprene flux measurements at the 274 

MOFLUX site (Potosnak et al., 2014; Seco et al., 2015) with predicted isoprene emissions at the model grid that 275 

contains the site. At the time of writing, the MOFLUX site is the only long-term, canopy-level, biogenic isoprene flux 276 

measurement site in the Northern midlatitude that sampled droughts. The site experienced multiple drought levels in 277 

the summer of 2012, which allows for the model-observation comparison across different drought severities as shown 278 

in Figure 5. The abnormal dry conditions (D0) started in early June, which developed to moderate drought (D1) in 279 

late June, worsened to severe drought (D2) and extreme drought (D3) in July-August, and bounced back to D2 in 280 

September (Figure 5a). The model generally captures the daily variability of isoprene emissions with a statistically 281 

significant correlation coefficient (R) of 0.67, but its biases differ by USDM levels. The model underestimates isoprene 282 

flux from N0 (bias of -1.81 mg/m2/hr) to D1 (bias of -2.89 mg/m2/hr), has a minimal bias (-0.47 mg/m2/hr) at D2, and 283 

changes to an overestimate at D3 (bias of 1.2 mg/m2/hr) (Figure 5b). While differences are expected when comparing 284 

a single-point flux measurement with the grid-mean model prediction, such differences most likely result in a 285 

systematic bias that should not relate to the temporal variability of drought. The fact that the model bias changes from 286 

being underpredicting to overpredicting as drought severity increases further confirms the importance of the model 287 

lack of a drought suppression effect on isoprene emissions during severe to exceptional droughts (D3 and D4). This 288 

is qualitatively consistent with that of the HCHO biases described above.  289 
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 290 
Figure 5. (a) Comparison of daily time series of isoprene emissions observed at the MOFLUX site (OBS) and simulated by 291 
MEGAN2.1 in GEOS-Chem (GC). The background is color-coded according to the USDM drought severity. R and MB at 292 
the upright corner show the correlation coefficient and mean bias, respectively. (b) Boxplot of isoprene emissions separated 293 
by USDM drought levels. The upper and lower whiskers represent the 90% and 10% quantiles, respectively. 294 

4. Drought Stress Algorithm 295 

The MEGAN2.1 isoprene emission routines in GEOS-Chem use a simplified mechanistic representation of the major 296 

environmental factors controlling biogenic emissions (Guenther et al., 2012), in which the isoprene emission factor 297 

γ2.1 is the product of a canopy-related normalization factor (CFAC) multiplied by other factors representing light (γPAR), 298 

temperature (γT), leaf age (γAGE), LAI (γLAI), carbon dioxide (CO2) inhibition (γCO2), and soil moisture (γSM): 299 

γ2.1 =   C𝐹𝐹𝐹𝐹𝐹𝐹γ𝑃𝑃𝑃𝑃𝑃𝑃γ𝑇𝑇γ𝐴𝐴𝐴𝐴𝐴𝐴γ𝐿𝐿𝐿𝐿𝐿𝐿γ𝐶𝐶𝐶𝐶2γ𝑆𝑆𝑆𝑆 =  γ0γ𝑆𝑆𝑆𝑆       (1) 300 

where γ0 is the product of the non-drought factors. Because of the lack of reliable soil moisture databases, γSM is 301 

always set to be one in GEOS-Chem as in many other chemical transport models, which means no water stress term 302 

in the standard model configuration (i.e., NoStress_GC). We show above that NoStress_GC overestimates isoprene 303 

emissions and consequently HCHO column densities under drought conditions in the SE US. In this section, we 304 

describe the approach whereby observational constraints from the MOFLUX isoprene flux measurement and OMI 305 

HCHO were separately used to derive a drought stress factor γd which replaces γSM in Equation (1) to simulate the 306 

response of isoprene emissions to drought in MEGAN2.1 implementation of GEOS-Chem (hereafter referring to as 307 

GC/MEGAN2.1). The drought stress factor γd derived from the MOFLUX isoprene flux measurement is denoted as 308 

γd_MOFLUX and that from OMI HCHO as γd_OMI. Their corresponding simulations are referred to as 309 

MOFLUX_Stress_GC and OMI_Stress_GC, respectively. In either algorithm, the underlying assumption is that the 310 

GEOS-Chem model has no significant bias in predicting isoprene fluxes or HCHO columns due to factors other than 311 

isoprene emissions under drought conditions. The assumption is reasonable because the GEOS-Chem model uses 312 
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reanalysis meteorology, state-of-the-science isoprene oxidation schemes, time-specific anthropogenic emissions and 313 

fire emissions, and natural emissions calculated online using model meteorology as described in Section 2.3. The 314 

discussion in Section 3.1 validated some aspects of the assumption such as NOx emissions, wildfire emissions, and 315 

PBL.  316 

4.1 MOFLUX-based Drought Stress Algorithm 317 

The γd_MOFLUX was derived following Jiang et al. (2018) by implementing photosynthesis and water stress parameters 318 

with a formula of: 319 

γ𝑑𝑑_𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =  γ0γ𝑑𝑑_𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 �
γ𝑑𝑑_𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =  1 (𝛽𝛽𝑡𝑡  ≥  0.3)
γ𝑑𝑑_𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =  𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐/𝛼𝛼 (𝛽𝛽𝑡𝑡  <  0.3,𝛼𝛼 = 77)     (2) 320 

where Vcmax is the maximum carboxylation rate by photosynthetic Rubisco enzyme and βt represents the water stress 321 

ranging from zero (fully stressed) to one (no stress). This simplified method intends to use the decreased 322 

photosynthetic enzyme activity to physiologically represent the variation in isoprene emissions under drought stress 323 

via dividing Vcmax by an empirical parameter α when the water stress is below a threshold.  324 

Since the default GEOS-Chem does not have these photosynthetic parameters, we adopted the ecophysiology module 325 

created by Lam et al. (2022) that is based on the photosynthesis calculation in the Joint UK Land Environmental 326 

Simulator (JULES; Best et al., 2011; Clark et al., 2011) as an online component in GEOS-Chem so that it simulates 327 

photosynthesis rate and bulk stomatal conductance dynamically and consistently with the underlying meteorology that 328 

drives GEOS-Chem. The outputs of Vcmax and βt from the ecophysiology module were passed to MEGAN2.1 in GEOS-329 

Chem to parameterize the drought stress according to Equation 2. In addition to GEOS-Chem meteorology, the 330 

ecophysiology module uses soil parameters from the Hadley Centre Global Environment Model version 2 – Earth 331 

System Model (HadGEM2-ES). In general, the implementation of the ecophysiology module much improved the 332 

simulated stomatal conductance and dry deposition velocity relative to site observations on average for seasonal 333 

timescales, but the βt computed has not been calibrated to intermittent drought conditions. Instead of adopting the 334 

values of Vcmax and βt from Jiang et al. (2018) which were based on the Community Land Model, we need to determine 335 

the βt threshold and the α value specific to GEOS-Chem with the ecophysiology module of Lam et al. (2022). To 336 

calibrate βt, we first examined the statistical distribution of βt at the MOFLUX grid (Figure S2) during May-September 337 

2011 and 2012 when multiple USDM drought categories occurred. Then we decided on a value of 0.3 as the threshold 338 

βt below which the drought stress will be triggered in the model because this value is greater than 75% quantile of all 339 

the βt values from D0 to D3, thus capturing most of the drought conditions.  340 

We note the observed isoprene flux at MOFLUX is consistently higher than predicted values during the non-drought 341 

period (e.g., N0 in Figure 5a). This systematic bias is expected because we compare the single-point observations with 342 

grid-mean isoprene emission fluxes. To correct the systemic bias, we scaled down the model isoprene emissions at 343 

the MOFLUX grid by a factor of 1.42, which is the ratio of the average hourly isoprene fluxes between observations 344 

and simulations at the MOFLUX grid during non-drought conditions (βt > 0.3). The factor of 1.42 was applied to 345 
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downscale modeled isoprene fluxes at the MOFLUX grid during the entire time series, including drought conditions. 346 

The resulted time series are shown in Figure 6a. Based on the downscaled model prediction, we derived that α=77 347 

under drought conditions (βt < 0.3), which minimized the mean bias under drought conditions between the modeled 348 

and observed isoprene fluxes at the MOFLUX grid.  349 

Figure 6b shows the comparison of the hourly NoStress_GC and MOFLUX_Stress_GC isoprene emissions with 350 

observations in May-September 2012. The overall mean bias is reduced from 2.05 mg/m2/hr to 0.01 mg/m2/hr despite 351 

the fact that the stress factor is only applied to drought conditions. The correlation coefficient (R) and index of 352 

agreement (IOA) also increase from 0.77 to 0.85 and from 0.80 to 0.93, respectively. All the changes in the comparison 353 

metrics indicate the model simulations are improved considerably based on the single-point measurement.  354 

 355 
Figure 6. (a) Hourly time series of isoprene emissions at the MOFLUX site from observations (black line) and simulations 356 
with (MOFLUX_Stress_GC; blue line) and without drought stress (NoStress_GC; red line; after downscaling). The dots 357 
color-coded by USDM levels represent the daily values of βt (right axis). The dashed line indicates the threshold of 0.3. (b) 358 
Comparison of isoprene emissions between observations (Obs) and simulations with (MOFLUX_Stress_GC; blue-bordered 359 
triangle) and without (NoStress_GC; black-bordered circle) drought stress. Data are color-coded by USDM levels.  360 
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4.2 OMI-based Drought Stress Algorithm 361 

 362 
Figure 7. Response of HCHO/LAI ratio (1016 molec cm-2) to temperature (K) in different drought levels averaged over JJA 363 
2005-2017. The colored solid line is the modelled NoStress_GC HCHO/LAI ratio, and the black dashed line is the observed 364 
HCHO/LAI ratio from OMI. The exponentially fitted formulas and the resulted coefficient of determination (R2) are 365 
labelled in each subplot. 366 

Isoprene emission increases exponentially with temperatures below ~310 K (Guenther et al., 2006) in the absence of 367 

other stress factors such as drought. Indeed, an exponential relationship between biogenic isoprene emission per unit 368 

LAI and temperature is predicted by MEGAN2.1 at all USDM levels (Figure S3). However, the predicted temperature 369 

sensitivity is found to increase substantially with drought severity with no sign of plateauing or slow-down even under 370 

the most severe drought conditions when MOFLUX measurements measured a decrease in isoprene emissions (c.f. 371 

Figure 5). Similarly, we found NoStress_GC overestimates HCHO sensitivities to high temperatures (> 300 K) under 372 

drought conditions (D0-D4) (Figure 7), but no such overestimation is seen under non-drought (N0) or low temperature 373 

conditions during drought (< 300 K). This indicates the role of drought stress on isoprene emissions is likely through 374 

suppressing the dependence of emissions on temperatures during drought. Leaf level measurements conducted during 375 

the 2012 drought at the MOFLUX site provide independent evidence of drought suppression of the isoprene response 376 

to increasing temperature for less drought-resilient tree species (Geron et al., 2016). Taking advantage of these 377 

empirical observations, we derived the OMI-based drought stress algorithm by minimizing the differences in HCHO 378 

column sensitivities to temperatures between OMI and GEOS-Chem under drought conditions as shown in Figure 7. 379 

When calculating the relationships between HCHO column densities and temperatures, we first scaled HCHO column 380 

by LAI on a grid-by-grid basis to account for the regional differences in isoprene emissions due to different vegetation 381 

coverage as well as the effect of LAI changes with drought (c.f. Figure 4). Each point in Figure 7 represents the mean 382 
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HCHO/LAI ratio, denoted as Ω, within each 1K temperature interval. We used exponential functions (𝑙𝑙𝑙𝑙Ω = 𝑘𝑘𝑘𝑘 + 𝑏𝑏) to 383 

separately fit the temperature (T) dependence of HCHO/LAI ratio (Ω) under different drought levels (Figure 7) for 384 

both the model and OMI. The resulting formulas were listed in Table 1 and the R2 of most fitting lines is greater than 385 

0.9. 386 

Table 1. Fitted exponential formulas of NoStress_GC and OMI HCHO/LAI ratio (𝛀𝛀, 1016 molec cm-2) to surface air 387 
temperature (T, K), and fitted value of HCHO/LAI ratio at 290K, 300K, and 310K. 388 

USDM 
NoStress_GC HCHO/LAI (Ω, 1016 molec cm-2) OMI HCHO/LAI (Ω, 1016 molec cm-2) 

Fitting Formula 290K 300K 310K Fitting Formula 290K 300K 310K 

N0 𝑙𝑙𝑙𝑙Ω = 0.104𝑇𝑇 − 31.42 0.25 0.72 2.03* 𝑙𝑙𝑙𝑙Ω = 0.101𝑇𝑇 − 30.78 0.26 0.72 1.97* 

D0 𝑙𝑙𝑙𝑙Ω = 0.091𝑇𝑇 − 27.83 0.27 0.67 1.66 𝑙𝑙𝑙𝑙Ω = 0.085𝑇𝑇 − 25.92 0.26 0.60 1.40 

D1 𝑙𝑙𝑙𝑙Ω = 0.108𝑇𝑇 − 32.83 0.24 0.71 2.10 𝑙𝑙𝑙𝑙Ω = 0.100𝑇𝑇 − 30.56 0.23 0.64 1.74 

D2 𝑙𝑙𝑙𝑙Ω = 0.110𝑇𝑇 − 33.33 0.24 0.71 2.14 𝑙𝑙𝑙𝑙Ω = 0.098𝑇𝑇 − 29.97 0.24 0.65 1.75 

D3 𝑙𝑙𝑙𝑙Ω = 0.118𝑇𝑇 − 35.72 0.24 0.78 2.56 𝑙𝑙𝑙𝑙Ω = 0.121𝑇𝑇 − 36.62 0.20 0.67 2.23 

D4 𝑙𝑙𝑙𝑙Ω = 0.125𝑇𝑇 − 37.59 0.26 0.90 3.13 𝑙𝑙𝑙𝑙Ω = 0.115𝑇𝑇 − 34.62 0.26 0.83 2.60 

* Asterisk indicates that the temperature does not reach this value in actual data and is an extrapolated value. 389 

As the fitting equations suggest, both NoStress_GC and OMI HCHO/LAI ratios increase with temperature under all 390 

conditions, but the former shows a higher sensitivity to temperature under drought conditions. This can be clearly seen 391 

from the higher HCHO/LAI ratios of NoStress_GC (ΩGC; solid lines) than those of OMI (ΩOMI; dashed lines) 392 

especially when the temperature is greater than 300 K under D0-D4. To better explain this, we also calculated the 393 

fitted value of HCHO/LAI at three temperatures of 290K, 300K, and 310K in Table 1. Since it is difficult for the N0 394 

condition to reach a temperature of 310K, the values were extrapolated and marked with an asterisk in the table. The 395 

results show that the model overestimates the temperature dependence at all drought levels. At 290K, all biases 396 

between ΩOMI and ΩGC are less than 0.05 × 1016 molec cm-2. At 310K, the bias between the two is 0.06 × 1016 molec 397 

cm-2 (3.0%) at N0 but increases by more than a factor of 4 to 0.26 × 1016 molec cm-2 (18.6%), 0.36 × 1016 molec cm-2 398 

(20.7%), 0.39 × 1016 molec cm-2 (22.3%), 0.33 × 1016 molec cm-2 (14.8%), and 0.53 × 1016 molec cm-2 (20.4%) at D0-399 

D4 drought, respectively. As isoprene emission is a fixed function of temperature in MEGAN2.1, the overdependence 400 

of HCHO column on temperature is caused by the previous two weeks’ temperatures being higher under drought, 401 

which leads to a higher value of 𝛾𝛾𝑇𝑇 reflecting the temperature “memory” effects on isoprene emissions (Figure S4). 402 

Based on the fitted formulas in Table 1, the ratio between 𝛺𝛺𝑂𝑂𝑂𝑂𝑂𝑂
𝛺𝛺𝐺𝐺𝐺𝐺

 under each level from D0 to D4 can be derived by: 403 
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 𝛺𝛺𝑂𝑂𝑂𝑂𝑂𝑂
𝛺𝛺𝐺𝐺𝐺𝐺

 =  𝑒𝑒
𝑘𝑘𝑂𝑂𝑂𝑂𝑂𝑂𝑇𝑇 + 𝑏𝑏𝑂𝑂𝑂𝑂𝑂𝑂

𝑒𝑒𝑘𝑘𝐺𝐺𝐺𝐺𝑇𝑇 + 𝑏𝑏𝐺𝐺𝐺𝐺
 =  𝑒𝑒(𝑘𝑘𝑂𝑂𝑂𝑂𝑂𝑂 − 𝑘𝑘𝐺𝐺𝐺𝐺)𝑇𝑇 𝑒𝑒(𝑏𝑏𝑂𝑂𝑂𝑂𝑂𝑂 − 𝑏𝑏𝐺𝐺𝐺𝐺)        (3) 404 

where kOMI (kGC) and bOMI (bGC) represent the slopes and interpolations of the formulas in Table 1 for OMI (GC) 405 

HCHO column; T is surface temperature, and e is the exponential constant. By averaging the values of kOMI-kGC and 406 

bOMI-bGC from D0 to D4, we can obtain: 407 

 𝛺𝛺𝑂𝑂𝑂𝑂𝑂𝑂
𝛺𝛺𝐺𝐺𝐺𝐺

= 380.10𝑒𝑒−0.02𝑇𝑇 (𝛽𝛽𝑡𝑡  <  0.6,𝑇𝑇 > 300 𝐾𝐾)        (4) 408 

where βt < 0.6 represents the 75% quantile of the βt values from D0 to D4 for the whole SE US study region in JJA 409 

2005-2017 (Figure S2).  410 

The formula of γd_OMI is thus: 411 

γ𝑑𝑑_𝑂𝑂𝑂𝑂𝑂𝑂 =  γ0γ𝑑𝑑_𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 �
γ𝑑𝑑_𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =  1 (𝛽𝛽𝑡𝑡  ≥  0.6 𝑜𝑜𝑜𝑜 𝑇𝑇 ≤ 300𝐾𝐾)

γ𝑑𝑑_𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =  𝛺𝛺𝑂𝑂𝑂𝑂𝑂𝑂
𝛺𝛺𝐺𝐺𝐺𝐺

= 380.10𝑒𝑒−0.02𝑇𝑇 (𝛽𝛽𝑡𝑡  <  0.6,𝑇𝑇 > 300𝐾𝐾)    (5) 412 

Note the threshold of βt in equation 5 is different from the value used by γd_MOFLUX because all the SE US grids were 413 

considered in deriving βt for γ𝑑𝑑_𝑂𝑂𝑂𝑂𝑂𝑂 . Another difference is that the factor is activated only if the temperature is higher 414 

than 300K when significant biases between ΩOMI and ΩGC are found (Figure 7).  415 

 416 

Figure 8. Boxplot of HCHO column statistical distributions for OMI observations (black) and different GEOS-Chem 417 
simulations: without drought stress (NoStress_GC; red) and with drought stress factors derived from MOFLUX 418 
observations (MOFLUX_Stress_GC; blue) and from OMI HCHO constraints (OMI_Stress_GC; pink). 419 

Figure 8 compares the statistical distributions of HCHO column densities from OMI, NoStress_GC, 420 

MOFLUX_Stress_GC, and OMI_Stress_GC during May-September 2012 over the SE US. Compared to OMI, 421 

NoStress_GC simulation has a mean high bias of 0.02×1016 molec cm-2 - 0.24×1016 molec cm-2 during D0-D4. The 422 

γd_OMI algorithm reduces the high bias to -0.05×1016 molec cm-2 - 0.11×1016 molec cm-2. By contrast, the γd_MOFLUX 423 

algorithm reduces the HCHO simulations too much over the SE US and causes an overall underestimation of 0.02×1016 424 
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molec cm-2 - 0.25×1016 molec cm-2. The γd_MOFLUX algorithm also narrows the statistical distribution of HCHO as 425 

indicated by the smaller boxes and shorter whiskers compared to OMI. This suggests that the γd_MOFLUX algorithm 426 

based on the single-site observations is incapable of representing the drought stress over the SE US, possibly because 427 

the MOFLUX site has thin soil layers and thus is vulnerable to water stress (Opacka et al., 2022). Isoprene emissions 428 

measured here are therefore more sensitive to droughts and the same extent of drought stress is likely too strong to be 429 

applied to other regions in the SE US. As a result, the γd_OMI algorithm is used in the next section to further evaluate 430 

how this algorithm would change the responses of atmospheric compositions to droughts.  431 

5. Changes in Simulated Biogenic Isoprene Emissions, HCHO, O3, and OA 432 

In this section, we evaluated the changes in biogenic isoprene emissions and HCHO column densities by running a 433 

long-term (2005-2017, JJA) simulation, after adding the OMI-based drought stress factor for isoprene emissions γd_OMI 434 

in GEOS-Chem. Since isoprene is an important precursor for the formation of tropospheric O3 and OA, maximum 435 

daily 8-hour average (MDA8) O3, and OA changes were also examined. We used the ComplexSOA mechanism in 436 

GEOS-Chem (Pye et al., 2010; Marais et al., 2016) which includes more detailed pathways of isoprene to secondary 437 

organic aerosols such as aqueous-phase reactive uptake and the formation of organo-nitrates.  438 

Figure 9 shows the changes in biogenic isoprene emissions resulting from adding γd_OMI drought stress in GEOS-439 

Chem. Here we expanded the maps to the entire contiguous US to examine whether the drought stress algorithm can 440 

impose large changes on other US regions although such changes need to be interpreted with caution. The numbers at 441 

each panel indicate the means of isoprene emissions of NoStress_GC and the mean differences (MD) relative to the 442 

OMI_Stress_GC over the SE US. As expected, the biggest decrease in isoprene emissions is found in the SE US with 443 

the regional-mean emissions reduced by 0.17×10-10 kg m-2 s-1 (8.60%), 0.35×10-10 kg m-2 s-1 (14.24%), 0.43×10-10 kg 444 

m-2 s-1 (16.57%), 0.49×10-10 kg m-2 s-1 (17.49%), 0.58×10-10 kg m-2 s-1 (18.66%), and 0.65×10-10 kg m-2 s-1 (20.74%) 445 

from N0 to D4, respectively (Figure 9c). Despite lowering emissions relative to NoStress_GC, OMI_Stress_GC 446 

simulates an increase of isoprene emissions under drought conditions compared to non-drought in the SE US; the 447 

respective increases are 0.28×10-10 kg m-2 s-1 (15.20%), 0.34×10-10 kg m-2 s-1 (18.40%), 0.49×10-10 kg m-2 s-1 (26.47%), 448 

0.69×10-10 kg m-2 s-1 (37.46%), and 0.65×10-10 kg m-2 s-1 (35.23%) from D0 to D4 relative to N0 (Figure 9c). This 449 

increase results from the top-down constraints by the corresponding changes in OMI HCHO column densities with 450 

USDM and consequently exhibits the behavior of non-uniform increases with drought severity (e.g., peak increase of 451 

37.5% at D3, followed by a ~2% reduction at D4), which is consistent with the MOFLUX flux measurements.  452 

For other regions, such as California and Minnesota, biogenic isoprene emissions decreased slightly by less than 453 

0.5×1010 kg m-2 s-1. The smaller effect of the drought stress factor imposed on regions other than the SE US is 454 

understandable because of the lower isoprene emissions. 455 
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 456 

Figure 9. Simulated biogenic isoprene emissions during JJA 2005-2017 by USDM dryness category by NoStress_GC (a), 457 
OMI_Stress_GC minus NoStress_GC (b), and statistical distributions of SE US isoprene emissions between the two 458 
simulations (c). Numbers at the bottom-left corner of each panel indicate the SE US (black box) regional mean of biogenic 459 
isoprene emissions for NoStress_GC (left column), and mean differences (MD) between OMI_Stress_GC and NoStress_GC 460 
(middle column).  461 
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 462 

Figure 10. Mean HCHO column densities during JJA 2005-2017 by USDM dryness category for OMI (a), NoStress_GC 463 
minus OMI (b), and OMI_Stress_GC minus NoStress_GC (c). Numbers at the bottom-left corner of each panel indicate the 464 
SE US (black box) regional mean of OMI HCHO column (left column), mean bias (MB), and root mean square error 465 
(RMSE) in HCHO column densities between NoStress_GC and OMI (middle column), and mean differences (MD) and root 466 
mean square deviation (RMSD) between OMI_Stress_GC and NoStress_GC (right column). MD and RMSD are calculated 467 
in the same way as MB and RMSE; the different names are used to distinguish between model-to-model comparison and 468 
model-to-observation comparison, respectively.  469 

The changes in the HCHO column are shown in Figure 10. Different from the overestimation in the SE US, 470 

NoStress_GC underestimates HCHO column densities in the western US compared to OMI (Figure 10b). This 471 

negative bias should be interpreted with care because the scaling factor of 1.5 (c.f. section 2.2) is derived over the SE 472 

US and may not hold in other regions. For the SE US overall, the drought stress factor reduces modeled HCHO 473 

columns by 0.08×1016 molec cm-2 (5.43%), 0.10×1016 molec cm-2 (6.46%), 0.12×1016 molec cm-2 (7.22%) and 474 

0.13×1016 molec cm-2 (7.62%), 0.16×1016 molec cm-2 (8.91%) under D0-D4, respectively, relative to NoStress_GC 475 

(Figure 10c). This leads to a better agreement with OMI as OMI_Stress_GC has nearly zero MB under D0-D4 (Figure 476 

S5; MB = -0.05×1016 molec cm-2 ~0.02×1016 molec cm-2). The RMSE is also reduced by 3%-13% relative to the 477 

NoStress_GC simulation compared to observations. The changes in both metrics indicate that the drought algorithm 478 
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considerably improves the model performance in capturing the biogenic isoprene response to drought as evidenced by 479 

HCHO column. Similar to the changes in biogenic isoprene emissions, the OMI_Stress_GC only slightly decreases 480 

HCHO column densities (<5%) compared to the NoStress_GC simulation in other US regions.  481 

 482 

Figure 11. Same as Figure 10 but for surface maximum daily 8-hour average (MDA8) O3. 483 

Figure 11a displays the observed MDA8 O3 changes with USDM. Similar to the changes of the HCHO column with 484 

USDM levels, O3 in the SE US exhibits a gradual increase, relative to the mean of 41.74 ppbv at N0, of 4.70 ppbv, 485 

7.26 ppbv, 9.01 ppbv, 10.26 ppb, and 10.36 ppbv under D0-D4, respectively. This is consistent with our previous 486 

study (Li et al., 2022; Lei et al., 2022) which investigated O3 changes with drought severity in more detail. The 487 

NoStress_GC simulation has a high bias in MDA8 O3 across all USDM categories (Figure 11b). High positive bias 488 

is a common issue of surface O3 simulations in chemical transport models, which is a research question and can be 489 

attributed to the uncertainties in various processes, such as NOx emissions, isoprene oxidation pathways, O3 dry 490 

deposition velocity, boundary layer dynamics (Fiore et al., 2005; Lin et al., 2008; Squire et al., 2015; Travis et al., 491 

2016; Travis and Jacob, 2019). Despite the systematic high bias, NoStress_GC captures the increasing trend of MDA8 492 

O3 with increasing dryness but with a respectively smaller increment (relative to N0) of 3.62 ppbv, 5.67 ppbv, 7.01 493 

ppbv, 7.41 ppbv, and 7.41 ppbv under D0 to D4. This discrepancy between NoStress_GC and observations can also 494 
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be inferred from the fact that the MB between model and observations decreases from 14.53 ppbv at N0 to 11.67 ppbv 495 

at D4 (Figure 11b). Figure 11c shows the difference in MDA8 O3 between OMI_Stress_GC and NoStress_GC. In 496 

the SE US where isoprene emissions are the highest and reduced the most by the drought stress algorithm, 497 

OMI_Stress_GC shows a small increase in MDA8 O3 of less than 1 ppbv. This increase in O3 can be explained by an 498 

increase of OH resulting from reducing isoprene emissions under low-NOx conditions in the SE US (Wells et al., 499 

2020). For the SE US study domain as a whole, the change in MDA8 ozone was negligible but negative (regional 500 

mean of -0.5 ppbv). Although the drought factor does not reduce the overall high bias, it makes the model more 501 

consistent with the observed increment in MDA8 O3 for the subregion with increased O3 (e.g., 90–94◦W, 32–35◦N) as 502 

drought severity increases. Since NOx has a high positive bias from the NEI2011 inventory (Figure 4), the 503 

improvement of MDA8 in these regions is likely to be underestimated. Over northeastern Texas, Oklahoma, and 504 

Kansas where isoprene emission is also reduced by the drought algorithm yet from a much lower emission base 505 

compared to other SE US areas, OMI_Stress_GC simulates 1-3 ppbv lower MDA8 O3 under drought conditions (D0-506 

D4), leading to a better agreement with observations. For regions with lower isoprene and higher NOx concentrations, 507 

O3 formation is more sensitive to the changes in isoprene, which explains the reduction in MDA8 O3 caused by the 508 

drought stress factor.  509 

 510 

Figure 12. Same as Figure 10 but for organic aerosol (OA). 511 
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The changes in OA with USDM are shown in Figure 12. Observed OA in the SE US shows an average increase 512 

(relative to N0) of 0.12 µg/m3, 0.32 µg/m3, 0.34 µg/m3, 0.31 µg/m3, and 0.45 µg/m3 under D0 to D4, respectively. The 513 

extremely high values over the northwest states (e.g., Washington and Montana) are likely associated with higher 514 

wildfire emissions under droughts (Wang et al., 2017). The NoStress_GC simulation considerably overestimates OA 515 

in the SE US with an MB of 1.52 µg/m3 (50.83%) at N0 and the overestimation becomes even higher to 2.02-2.90 516 

µg/m3 (64.95%-85.58%) at D0-D4 (Figure 12b), thus causing an overprediction of the drought-OA relationship. 517 

Zheng et al (2020) reported a similar level of overestimation and attributed this to the overdependence of isoprene-518 

derived secondary organic aerosol (SOA) on sulfate. As isoprene is one of the dominant sources of OA in the SE US 519 

(Xu et al., 2015; Budisulistiorini et al., 2016), our analysis suggests that the model overestimation of isoprene 520 

emissions under drought conditions is another reason for this high OA bias in the SE US. Indeed, the drought stress 521 

factor greatly improves the OA simulation by reducing the MB by 0.30 µg/m3 (6.60%), 0.46 µg/m3 (8.98%) 0.60 522 

µg/m3 (10.07%), 0.67 µg/m3 (10.85%), 0.62 µg/m3 (10.88%), 0.74 µg/m3 (11.71%) under N0 to D4 over the SE US 523 

relative to NoStress_GC, thus lowering the MB to be within 1.22-2.18 µg/m3 (40.82% - 65.52%; Figure S5) compared 524 

with observations. We also examined the change of three major SOA components in Figure S6. Anthropogenic SOA 525 

(ASOA) barely changes; isoprene SOA (ISOA) decreases the most as expected since the drought stress factor is 526 

applied to isoprene emissions only. Interestingly, terpene SOA (TSOA) also shows a slight decrease, suggesting 527 

positive feedback between ISOA and TSOA.  528 

In summary, the OMI-based drought stress factor shows good performance in correcting the overestimation of 529 

biogenic isoprene in default GEOS-Chem simulations under drought conditions. The drought stress factor was 530 

constrained by the observed exponential fitting between the HCHO to LAI ratio and temperature, not by observed 531 

HCHO columns directly. It nearly eliminates the high HCHO bias compared with OMI observations in the SE US 532 

under drought conditions, which consequently improves the simulation of OA. MDA8 O3 slightly increases in the 533 

areas with high isoprene emissions, leading to no improvement in model bias but a better agreement with the observed 534 

O3 increment with drought severity. Places with lower isoprene emissions show an MDA8 O3 reduction of 1-3 ppbv, 535 

indicating the region-specific O3 responses to the changes of isoprene due to the nonlinearity of O3 chemistry.  536 

6. Conclusions 537 

Using long-term (JJA 2005-2017) weekly USDM drought index and OMI HCHO column data over the SE US, we 538 

revealed a step-increase pattern of HCHO by 6.7%, 12.6%, 16.5%, 21.2%, and 23.2% from D0 to D4 relative to non-539 

drought conditions (N0), respectively, which indicates the increasingly higher isoprene emissions with drought on a 540 

regional scale although the rate of increase decreases under severe droughts. Compared with OMI observations, the 541 

GEOS-Chem simulated HCHO column density exhibits a similar pattern, but the changes are 1.1-1.5 times higher 542 

with a respective increase of 9.90%, 15.1%, 19.5%, 21.8%, and 29.1% from D0 to D4. Since there are no big changes 543 

in anthropogenic VOCs under droughts, biogenic isoprene emissions are the key drivers for the increase of HCHO, 544 

and a drought stress factor is missing in the MEGAN2.1 biogenic inventory in the default GEOS-Chem simulations 545 

causing the overestimation of the HCHO changes in response to droughts. 546 
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The MOFLUX site provides the only long-term ground-based isoprene flux observations covering multiple drought 547 

severities. We developed a drought stress algorithm based on the MOFLUX site following Jiang et al. (2018), and the 548 

algorithm improves the HCHO simulation at the MOFLUX grid while underestimating HCHO after all the SE US 549 

grids are included. By comparison, the OMI-based drought stress algorithm derived from the different HCHO-550 

temperature sensitivities between OMI and GEOS-Chem can reflect better spatial coverage and nearly removes the 551 

positive bias between OMI and the default simulations seen from a test simulation in May-September 2012 over the 552 

SE US.  553 

The long-term simulation with the OMI-based drought stress factor can significantly reduce the biogenic isoprene 554 

emissions by 0.35×10-10 kg m-2 s-1 (14.24%), 0.43×10-10 kg m-2 s-1 (16.57%), 0.49×10-10 kg m-2 s-1 (17.49%), 0.58×10-555 
10 kg m-2 s-1 (18.66%) and 0.65×10-10 kg m-2 s-1 (20.74%) from D0 to D4, respectively, which consequently leads to a 556 

better agreement between OMI and simulated HCHO column. Despite lowering emissions relative to the no-stress 557 

simulation, OMI_Stress_GC simulates a non-uniform trend of increasing isoprene emissions with drought severity 558 

that is consistent with OMI HCHO and MOFLUX. Relative to N0, the simulated increase in isoprene emissions is 15-559 

18% under D0-D1, increasing to 26% at D2 and peaking at 37% at D3, followed by a slight decrease to 35% at D4.  560 

The observed MDA8 O3 and OA over the SE US show a similar increase pattern with HCHO. The OMI-based drought 561 

stress algorithm also helps reduce the mean bias of OA by 0.30 µg/m3 (6.60%), 0.46 µg/m3 (8.98%) 0.60 µg/m3 562 

(10.07%), 0.67 µg/m3 (10.85%), 0.62 µg/m3 (10.88%), 0.74 µg/m3 (11.71%) from N0 to D4 over the SE US compared 563 

with the high positive bias of more than 2.02 µg/m3 (50.83%) without the drought stress. By contrast, the MDA8 O3 564 

response to the reduced biogenic isoprene caused by the drought stress factor presents a spatial disparity due to the 565 

nonlinear O3 chemistry. Places with high isoprene emissions show an increase of MDA8 O3 by less than 1 ppbv, which 566 

slightly improves the simulated drought-O3 relationship. For the regions with low isoprene emissions in the SE US, 567 

the drought stress factor reduces MDA8 O3 by 1-3 ppbv.  568 

This study reveals an increasingly higher level of biogenic isoprene under drought conditions over the regions with 569 

high vegetation coverage. As drought is predicted to become more frequent in a warming climate (Cook et al., 2018), 570 

it is essential to update current biogenic emission inventories by adding a drought stress factor and to improve the 571 

constraints of isoprene chemistry in the climate chemistry models in order to have a better projection of air quality in 572 

the future. We demonstrate the feasibility of applying satellite data to the development of drought stress algorithms 573 

when ground-based measurements are limited. Our attempt here is a top-down approach and used temperature as the 574 

only parameter to adjust isoprene emissions under drought conditions. The water stress threshold in our algorithm is 575 

used only as a triggering parameter; that is, it is used to determine whether a grid is in drought or not and thus can be 576 

replaced with other drought-identifying approaches. One issue with our approach is the type of temperature data to be 577 

used in the algorithm. Ideally, it should be leaf temperature because this is what regulates stomata at the process level. 578 

However, leaf temperature is not readily available from meteorological fields that drive CTMs. MEGAN uses 2 m air 579 

temperature to parameterize isoprene emissions, and thus our algorithm uses the same temperature. More biogenic 580 
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emission flux observations covering different vegetation types and drought severities will be helpful to better depict 581 

the relationships between biogenic VOCs and drought stress.  582 
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