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Abstract. In climatological research, the evaluation of climate models is one of the central research subjects. As an expression

of large-scale dynamical processes, global teleconnections play a major role in interannual to decadal climate variability. Their

realistic representation is an indispensable requirement for the simulation of climate change, both natural and anthropogenic.

Therefore, the evaluation of global teleconnections is of utmost importance when assessing the physical plausibility of climate

projections.5

We present an application of the graph-theoretical analysis tool δ-MAPS, which constructs complex networks on the basis

of spatio-temporal gridded data sets, here sea surface temperature and geopotential height in 500 hPa. Complex networks

complement more traditional methods in the analysis of climate variability, like the classification of circulation regimes or

empirical orthogonal functions, assuming a new non-linear perspective. While doing so, a number of technical tools and

metrics, borrowed from different fields of data science, are implemented into the δ-MAPS framework in order to overcome10

specific challenges posed by our target problem. Those are trend-EOFs, distance correlation and distance multicorrelation, and

the Structural Similarity Index.

δ-MAPS is a two-stage algorithm. In the first place, it assembles grid cells with highly coherent temporal evolution into

so-called domains. In a second step, the teleconnections between the domains are inferred by means of the non-linear distance

correlation. We construct two unipartite and one bipartite network for 22 historical CMIP6 climate projections and two century-15

long coupled reanalyses (CERA-20C and 20CRv3). Potential non-stationarity is taken into account by the use of moving time

windows. The networks derived from projection data are compared to those from reanalyses. Our results indicate that no single

climate projection outperforms all others in every aspect of the evaluation. But there are indeed models, which tend to perform

better/worse in many aspects. Differences in model performance are generally low within the geopotential height unipartite

networks, but higher in sea surface temperature and most pronounced in the bipartite network representing the interaction20

between ocean and atmosphere.

1 Introduction

The evaluation of general circulation models (GCM) is one of the key topics of climate sciences. This evaluation is indispens-

able in the assessment of uncertainties in the projection of climate change. At the same time, it serves as a guideline for further

model development.25
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Established methods of climate model evaluation include comparison of spatial and temporal means, and often also the

variability, of important climate parameters such as air temperature, precipitation, wind speed, geopotential height, radiation,

and energy fluxes between model output and observational/reanalysis data (Zhang et al., 2021). More elaborate evaluation

techniques assess the temporal evolution of global mean/sea surface/hemispheric temperature (Papalexiou et al., 2020) with

respect to increasing greenhouse gas concentration or regional trends (Duan et al., 2021).30

Acknowledging its importance for consistent climate simulation, Simpson et al. (2020) evaluate the atmospheric circulation

in terms of mean atmospheric fields, in combination with dynamical features like the jet stream, stationary waves and blocking.

In contrast, Kristóf et al. (2020) evaluated the positions of potential action centers of atmospheric teleconnections as a proxy

for circulation.

Another approach is taken by Brands (2022) and Cannon (2020), who both assess circulation biases in correspondence to the35

representation of circulation types. Whereas Brands (2022) uses Lamb weather types, the analysis in Cannon (2020) is based

on Principal Component Analysis (PCA) derived modes of variability. Such modes of variability, extracted by eigentechniques

from spatio-temporal gridded data, have been the objective of evaluation efforts in recent years as their spatial patterns are

supposed to reflect large scale dynamical processes in the climate system. For example, Fasullo et al. (2020) and Coburn and

Pryor (2021) have assessed the representation of six oceanic and atmospheric modes in terms of spatial and spectral accuracy,40

including an evaluation of the interaction between modes. Still, it has been recognized that eigenmethods suffer from a number

of limitations, because geometric constraints as linearity and normality, orthogonality and simultaneity do not correspond to

physical properties of the climate system (Monahan et al., 2009; Fulton and Hegerl, 2021; Hynčica and Huth, 2020; Lee et al.,

2019) and hinder their interpretation.

Besides, the evaluation of climate modes, such as El Niño Southern Oscillation (ENSO) or North Atlantic Oscillation (NAO),45

is usually done at the component level. But it is the coupling among those components, which defines the large scale variability

of climate at interannual and decadal time scales (Tsonis et al., 2008; Steinhäuser and Tsonis, 2014).

Complex network methods are able to account for non-linear, time-lagged, and high-order interactions in high-dimensional

data, and have been introduced in climate sciences by the beginning of the 21st century (for an overview see Dijkstra et al.

(2019)). Such networks investigate the interdependencies between all their constituent components, thereby unveiling dynam-50

ical features that could remain hidden to traditional analysis techniques. A rather fundamental property of climate networks is

their organization in terms of communities—clusters of strongly connected nodes forming semi-autonomous subcomponents

of the climate system with non-accidental similarity to many known modes of variability (Steinhäuser et al., 2009; Tsonis et al.,

2011; Tantet and Dijkstra, 2014), that interact dynamically in multiple ways. Such emergent property has been ascribed to the

mismatch between spatial and temporal scales on a sphere, which allows only a finite number of degrees of freedom (Yang55

et al., 2021).

The comparison of such complex network-derived communities between climate simulations and observation/reanalysis

data sets was used for evaluation purposes first by Steinhäuser and Tsonis (2014). They assessed the community structure in

climatic fields finding rather low consistency between the model runs and the reference data set. Likewise, Fountalis et al.

(2015) assessed the community structure of model simulations, but complemented it with an evaluation of the interaction60
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strength of the communities with ENSO. The idea was further developed by Fountalis et al. (2018) and Falasca et al. (2019)

in their so-called δ-MAPS approach to comprise a whole network of all communities, which is evaluated with regards to the

distribution and size of communities, the interaction strength and the distribution of the links.

Note that there is another line of research into the evaluation of causal networks (for instance Vázquez-Patiño et al. (2019)

or Nowack et al. (2020)), which is somewhat different to the approach followed here.65

In the present article, we will explain (Sect. 3) and apply (Sect. 4) δ-MAPS (Fountalis et al., 2018) to construct functional

networks for sea surface temperature (SST) and geopotential height in 500 hPa (Z500) fields, as well as a cross-network

between SST and Z500, using GCM output data from the Coupled Model Intercomparison Project Phase 6 (CMIP6). We

compare the derived networks to analogous networks from reanalysis data, namely CERA-20C (Laloyaux et al., 2018) and

20CRv3 (Slivinski et al., 2019), to evaluate the capacity of the GCMs in reproducing complex non-linear processes in the70

atmosphere and the ocean.

This assessment is all the more instructive as it is not possible to tune the teleconnections directly. In nature and in models,

teleconnections emerge from the interplay of the governing equations under the condition of the boundaries. A model gets them

right, if and only if the model specifications are sufficiently well approximated and well balanced between model components.

2 Data75

The objective of the present study is to compare the interaction networks derived from CMIP6 GCM output from historical

simulations to reference networks derived from two century-long reanalyses in order to account for uncertainties in observations

and differences in construction methods as recommended by Hynčica and Huth (2020); Lee et al. (2019) and others: (i) the

Coupled Reanalysis for the 20th Century (CERA-20C) provided by the ECMWF (Laloyaux et al., 2018) (10 ensemble members

and ensemble mean), and (ii) from the NOAA-CIRES-DOE Twentieth Century Reanalysis version 3 (20CRv3) provided by80

the NOAA/OAR/ESRL PSL (Slivinski et al., 2019) (best estimate).

The presented study is intended to help the selection of physically plausible GCM runs for further dynamical downscaling

in the Coordinated Downscaling Experiment–European Domain (https://www.euro-cordex.net/). Therefore, the CMIP6 model

ensemble evaluated here follows the list of model runs under consideration in EURO-CORDEX, for which all necessary forcing

data had been provided at the time of writing, plus some extra models (Table 1).85

We consider the parameters sea surface temperature (SST) and geopotential height at 500 hPa (Z500). These are relatively

well-observed and smoothly varying fields suitable for the construction of networks. Steinhäuser et al. (2012) confirm good

network properties for SST and Z500 with many proximity-based correlation links as well as a large number of teleconnections.

In accordance, Donges et al. (2011) found the maximal link density for geopotential in about 4 to 6 km height, and Wiedermann

et al. (2017) detected the highest transitivity between SST and geopotential height in 500–300 hPa.90

From the coupled network perspective, it would be highly desirable to include further parameters into the analysis like sea

surface salinity, or, still more interesting, variables from the stratosphere and the deep ocean. Unfortunately, the observations
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Table 1.CMIP6 models

Model hist. exp. Reference Model hist. exp. Reference

ACCESS-CM2 r1i1p1f1 Bi et al. (2020) ACCESS-ESM1-5 r1i1p1f1 Ziehn et al. (2020)

BCC-CSM2-MR r1i1p1f1 Wu et al. (2019) CanESM5 r1i1p2f1 Swart et al. (2019)

CESM2 r2i1p1f1 Danabasoglu et al. (2020)CMCC-CM2-SR5 r1i1p1f1 Cherchi et al. (2019)

CMCC-ESM2 r1i1p1f1 Cherchi et al. (2019) CNRM-CM6-1 r1i1p1f2 Voldoire et al. (2019)

CNRM-ESM2-1 r1i1p1f2 Séférian et al. (2019) EC-Earth3 r1i1p1f1 Döscher et al. (2022)

EC-Earth3-Veg r1i1p1f1 Döscher et al. (2022) HadGEM3-GC31-LL r1i1p1f3 Roberts et al. (2019)

IPSL-CM6A-LR r1i1p1f1 Boucher et al. (2020) MIROC6 r1i1p1f1 Tatebe et al. (2019)

MIROC-ES2L r1i1p1f2 Hajima et al. (2020) MPI-ESM1-2-LR r1i1p1f1 Gutjahr et al. (2019)

MPI-ESM1-2-HR r1i1p1f1 Müller et al. (2018) MRI-ESM2-0 r1i1p1f1 Yukimoto et al. (2019)

NorESM2-LM r1i1p1f1 Seland et al. (2020) NorESM2-MM r1i1p1f1 Seland et al. (2020)

TaiESM1 r1i1p1f1 Lee et al. (2020) UKESM1-0-LL r1i1p1f2 Sellar et al. (2019)

of such parameters are only recently becoming more reliable and less sparse, such that the �delity of their reanalyses �elds is

impossible to verify.

The SST (Z500) data was remapped to a common grid of2:25� � 2:25� (2:5� � 2:5� ) resolution. Regions with sea ice are95

avoided in SST as well as circles of5� radius around the poles in Z500 because of possibly biased representation of the polar

vortices. The analysis is carried out for seasonal anomalies on the overlapping time period from 1901 to 2010.

3 Methods

The procedure used to assign an assessment score to each model run comprises a number of algorithmic stages that build

on each other. As they are not yet well-known in the climatological community, we present them in detail in the following100

subsections:

– Detrending with trend-EOF (Sect. 3.1)

– Network construction with� -MAPS (Sect. 3.2)

– Domain identi�cation (Sect. 3.2.1)

– Network of domains (Sect. 3.2.2)105

– Distance covariance and distance correlation (Sect. 3.3)

– Distance multivariance and distance multicorrelation (Sect. 3.3.1)

– Network comparison with structural similarity index and multivariate network quality score (Sect. 3.4)

4



3.1 Detrending with trend-EOF

Prior to the construction of the� -MAPS networks, the data has to be detrended to avoid the correlations being distorted by long-110

term trends. Although it is still the most widely used technique, linear detrending has been shown little appropriate to remove

the effects of external forcing (anthropogenic and natural) from climatic time series (Frankignoul et al., 2017), given its non-

linear structure and the dynamical response mechanisms including long-range memory. Conventional Empirical Orthogonal

Function (EOF) decomposition is not well suited for trend detection either for a number of reasons (Hannachi, 2007), which

often cause the spreading of long-term trends between several modes of internal variability. Instead, we will apply a non-115

parametric technique, so-called trend-EOF (Hannachi, 2007), which identi�es spatial patterns of trends de�ned as common

non-linear, but monotone increase. The method is based on the Singular Value Decomposition (SVD) of the matrix of inverse

ranks, instead of the direct observations as in conventional EOF-analysis. Since sequences of inverse ranks provide a robust

measure of monotonicity, trend-EOFs are able to separate patterns associated with monotone (non-linear) trends, albeit small,

from patterns not associated with trends.120

Trend-EOFs have been applied since in a number of studies (e.g. Barbosa and Andersen (2009), Li et al. (2011), Meegan Ku-

mar et al. (2021) among others). Fisher (2015) compared trend-EOFs, along with conventional EOFs, to a selection of other

PCA-based techniques, which are designed to extract space-time patterns maximizing criteria like persistence, predictability

or autocorrelation. In contrast to conventional EOFs, all the tested methods very robustly detect a leading EOF pattern with a

respective principal component (PC) that presents a distinct non-linearly increasing trend. We consider trend-EOFs therefore125

an appropriate technique for identifying anthropogenic Greenhouse Gas (GHG)-forced trends.

Let X = (( x it )) be the matrix of anomaly data at grid cellsi = 1 : : :n (numbered consecutively) and timest = 1 : : :T . The

time seriesx i at grid cell i is transformed to the vector of inverse ranksqi by settingqit equal to the time position of the

t th largest value inx i . The sequenceqi indeed re�ects the total monotonicity ofx i : in monotone series the inverse ranks are

ordered according to the trend. The stronger the trend inx i , the stronger the pattern inqi . By maximizing the correlation130

in Q = (( qit )) , we �nd a common trend that is shared (to some extent) by all grid cells, which makes sense in the light of

GHG-forced warming.

After centering and cosine weighting ofQ w.r.t. the corresponding latitude, the principal components and the loading

patterns are obtained by SDV:Q = U�V T . The trend is now concentrated in the �rst (few) principal component(s), strongly

distinguished by high eigenvalue(s) outstanding over the remaining low and slowly descending spectrum. If second or third135

order outstanding eigenvalues should be detected, they indicate additional, regionally con�ned independent trends, which are

generated by internal dynamical feedback processes. For our purpose of identifying regions with coherent time evolution, we

would therefore want to retain such regional trends and eliminate only the trend associated to the �rst trend-PC. Likewise,

regional trends caused by volcanic eruption are most probably not �ltered either by the �rst trend-EOF. However, the impacts

of 20th century eruptions lasted only for short time periods, and on the other hand they are not well represented in surface-140

input reanalyses like CERA-20C and 20CRv3 (Fujiwara et al., 2015). We therefore assume that our evaluations remain valid.

The �rst trend-PCu 1 is now transformed back to physical space by projectionw 1 = X u 1, and the corresponding spatial
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pattern is composed of the regression coef�cients between the trend-PCw 1 and the anomaly time series of the original �eld

x i ; i = 1 : : :n.

To allow for an annual cycle in the trend patterns, we extend the trend-EOFs in analogy to season-reliant EOFs (Wang145

and An (2005), see also cyclo-stationary EOFs in Yeo et al. (2017)),Q = ( QMAM jQJJAjQSONjQDJF) (seasonally centered,

inverse ranks calculated for each season individually), which extract a recurrent sequence of seasonal trend patterns with one

associated trend-PC for the magnitude of the whole cycle as opposed to one common pattern for all seasons as in non-seasonal

EOF analysis or four individual patterns with their associated individual PCs as in seasonal EOFs, respectively. At this stage it

would be possible to apply a secondary SVD to the seasonal warming patterns to obtain a smoother annual cycle. While such150

procedure seems undue for seasonal data, it would be a reasonable approach in the case of monthly data. Instead of applying

two sequential EOFs toQ, a tensor decomposition like HOSVD (De Lathauwer et al., 2000) would serve this purpose more

elegantly.

After having detrended the time series, we are able to standardize the seasonal variances without the interference of the

seasonal trends, which would otherwise bias our estimates. On their part, seasonally varying variances could degrade the155

estimated correlations between grid cells in the �rst stage of the� -MAPS algorithm, giving increased weight to seasons with

higher variance. In turn, thespatialcomponent of the variance will be important in the second stage of� -MAPS, therefore we

augment the deseasonalized time series again with their overall (non-seasonal) variance.

3.2 Network construction with � -MAPS

3.2.1 Domain identi�cation160

To infer the functional interactions within and between spatio-temporal gridded datasets of climatological parameters, we adopt

the� -MAPS algorithm proposed by Fountalis et al. (2018). This algorithm is rooted in network sciences/graphical modelling,

in which graphs are used to express the dependence structure between random variables. A graph or network consists of a set

of nodes connected by a set of edges, which describe the interactions between the nodes. Networks can be classi�ed depending

on their topology: simple networks like lattices and fully-connected networks; complex networks like scale-free and small-165

world networks. Small-world networks are often observed in climate and other earth sciences, in the human brain and in social

networks. Their nodes are strongly clustered into semi-autonomous components and the average shortest path length between

any two nodes is small.

In contrast to structural networks or �ow networks, where the edges are physically observable (like wired connections or

trajectories of particles, respectively), functional networks are inferred from the behaviour of the nodes. We consider the grid170

cells of a selected climatological �eld as the nodes of the graph. The spatial embedding is naturally given by the locations of

the grid cells. In Fountalis et al. (2018) the edges of a fully-connected grid cell-level network are de�ned using the unpruned

Pearson correlation%of the time series as association measure between any pair of nodes. Based on this weighted network,

the� -MAPS algorithm identi�es semi-autonomous componentsD1 : : :DK , called domains. A domain is a spatially contiguous

set of grid cells with highly correlated temporal activity. Fountalis et al. (2018) propose an iterative algorithm that alternately175
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expands and merges a preliminary set of domain-seedsS (neighborhoods with locally maximal correlation,3 � 3 grid cells in

our case) so as to �nd the maximum possible sets of grid cells that satisfy the homogeneity constraint� : Let D be a spatially

contiguous set of grid cells with cardinalityjD j

� � %D :=
1

jD j(jD j � 1)

X

i 6= j 2 D

%ij (1)

where%ij is the correlation between the time series at grid cellsi andj and� is a chosen parameter to regulate the number180

and size of the domains. The domains are expanded to neighboring grid cells (one at a time) as long as%D � � . Two domains

D i andD j are merged if they contain at least one pair of adjacent grid cells and their union still satis�es the threshold� . The

algorithm stops, when no more domains can be merged or expanded.

The number of domainsK generated by this algorithm is not prede�ned. Overlapping domains are allowed in� -MAPS,

because grid cells might be in�uenced by more than one physical process. If a grid cell does not satisfy the homogeneity185

constraint with any of its neighbors, it remains unassigned. Deviating from Fountalis et al. (2018), we use Spearman's Rank

correlation to determine the similarity between grid cells to allow for monotone, yet non-linear association. Furthermore, we

set the threshold� for minimal average correlation within a domain to equal a selected high quantile of all pairwise correlations

(our � is not based on a signi�cance test, therefore there is no need to correct for auto-correlation). Lower thresholds allow the

domains to expand and merge further resulting in a smaller number of spatially larger domains, which means lower parcellation,190

and vice versa. In Sect. 4, we will choose� so as to produce "intuitive" domains evocative of known teleconnection patterns.

In Falasca et al. (2020), the identi�cation of domains was further re�ned: grid cells are assigned to a common domain

if their time varying complexity (quanti�ed by recurrence entropy) evolves coherently. Coherent evolution of complexity

re�ects coherent dynamical evolution and is thus an even stronger indicator for semi-autonomous component organisation than

correlation between the original climatological time series. But for complexity time series to construct, the proposed recurrence195

measure has to be evaluated on moving time windows (100 year windows over 6000 years of monthly values in Falasca et al.

(2020)). Unfortunately, our time series are not long enough to detect complexity changes by means of recurrence entropy (nor

to actually occur in the real climatological �elds), so we have to stick to the original de�nition of� -MAPS in Fountalis et al.

(2018).

The �rst stage of� -MAPS is a local community detection algorithm, where the criterion to maximize is the number of grid200

cells assigned to a minimum number of communities under the conditions (i)%D � � , (ii) D is spatially contiguous, and (iii)

D contains a seeds 2 S (Fortunato and Hric, 2016). As this problem is NP-hard (solvable in polynomial time, Fountalis et al.

(2018)), the greedy algorithm of Fountalis et al. (2018) only approximates one possible solution. Even though, it is able to

detect meaningful communities of any size (no preferred scale) and independently from the network structure in other spatial

regions.205

3.2.2 Network of domains

Subsequently, the domains identi�ed above serve as super-nodes in the second stage of� -MAPS. A functional weighted

network is inferred between the domains on the basis of a dependence measure (in Fountalis et al. (2018) the lagged Pearson
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correlation is used; we will use distance correlation, see Sect. 3.3). The time series of a domain is de�ned as

x D = ( xD 1 : : :xDT ); xDt =
1

P
i 2 D cos' i

X

i 2 D

x it cos' i (2)210

where' i is the latitude of grid celli . In contrast to Falasca et al. (2019), we use the means instead of the sums of the grid cells

for domain time series. We do so, because otherwise the variances of the domains would grow with their size, something that

would hinder interpretation. On the other hand, the spatial correlation within the domains, the precondition for grid cells to

form a domain, impedes the decrease of the variance of the domain mean following the Central Limit Theorem at the rate of
p

jD j. Instead, the variances of the domain means are of comparable magnitude regardless of the domain size.215

Every possible link with every possible lag� L � l � L is tested for signi�cance, which constitutes a multiple-testing prob-

lem such that the cumulative probability of type I errors increases. One way to control the false discovery rate FDR to be

smaller than a prede�ned level� was proposed by Benjamini (2010): thep-levels of the individual tests are ordered ascend-

ingly, p(1) � � � � � p( 1
2 K (K � 1)(2 L +1)) , and the hypothesis (H0: link is insigni�cant) is rejected only for those tests, where

p(k ) < 2k�
K (K � 1)(2 L +1) .220

The network consists of two mapsD andW . D : set of nodes (grid cells)�! power set of domainsP (D1 : : :DK ), which

assigns one/several/no domains to every grid cell, andW : set of pairs of domainsf D1 : : :DK g � f D1 : : :DK g �! maximal

(lagged) dependence2 R, which assigns every pair of domains a link that equals the maximal (lagged) dependency between

them (we allow lags up to 10 seasons).

The distinction between grid cells that are dependent within the same domain and grid cells that are dependent across two225

different domains allows� -MAPS to differentiate between local diffusion phenomena and remote interactions as for instance

an atmospheric bridge or an oceanic tunnel (Liu and Alexander, 2007).

Since the techniques to construct the� -MAPS network are statistical, long time series are convenient in order to obtain

robust estimates of the dependence measures. In the case of non-stationarity, such estimates would be biased and re�ect only a

temporal average connectivity between the components of the network. The time dependence can be addressed using evolving230

networks, which are constructed over sliding time windows (see for instance Kittel et al. (2021) and Novi et al. (2021)). The

present study considers a time-constant network for the period 1901-2010, and a shorter period network for 1951-2010, where

more observations are available for assimilation into the reanalyses. To investigate the temporal evolution, a third network is

constructed for 1901-1955.

The complex networks framework offers a lot more approaches in order to exploit the richness of the data, as for instance235

multi-scale, causal, and multi-layer networks. Wavelet multi-scale networks were proposed for investigating interactions in the

climate system simultaneously at different temporal scales, revealing features which usually remain hidden when looking at

one particular time scale only (Agarwal et al., 2018, 2019). Interactions between processes evolving on different time scales are

investigated by Jajcay et al. (2018). Moreover, as the number of identi�ed domains within a climatological �eld is drastically

smaller than the number of original grid cells, this also opens up the possibility of investigating the causal relationships between240

them (Nowack et al., 2020), although the basic assumption of causal networks inference, that the dependence structure can be

represented by a directed acyclic graph, is questionable in the climate context. The construction of both dependence based and
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causal networks can naturally be extended to cross-networks, which include multiple �elds (Feng et al., 2012; Ekhtiari et al.,

2021).

3.3 Distance covariance and distance correlation245

As physical processes in climate are highly dynamical and mostly non-linear (Donges et al., 2009), we decided to substitute

the Pearson correlation in the second step of network inference by a non-linear dependence measure: distance correlation

proposed by Székely et al. (2007). To begin with, distance covariance, calculated from the pairwise Euclidean distances within

each sample, is an analogue to the product-moment covariance, but it is zero if and only if the random vectors are independent.

The intuition of distance covariance is that if there exists a dependence between the random variablesX andY , then for two250

similar realizations ofX , sayxs andx t , the two corresponding realizations ofY , ys andyt , should be similar as well. Note

that the opposite (xs, x t unsimilar =) ys, yt unsimilar) is true for linear dependence, but not true in general.

Unlike the widely used information measures, distance covariance has a compact representation, is computationally fast, and

reliable in a statistical sense for sample sizes common in climatology, because it is not necessary to estimate the density of the

samples. We use the unbiased version of distance covariance given in Székely and Rizzo (2014). Let(x t ); (yt ), t = 1 : : :T be a255

statistical sample from a pair of real or vector valued random variablesX; Y . First, compute all pairwise Euclidean distances:

ast = kxs � x t k2 and bst = kys � yt k2;

and perform a double centering for alls 6= t

Ast = ast �
1

T � 1

X

u

asu �
1

T � 1

X

v

avt +
1

(T � 1)(T � 2)

X

uv

auv

Bst = bst �
1

T � 1

X

u

bsu �
1

T � 1

X

v

bvt +
1

(T � 1)(T � 2)

X

uv

buv :260

Then distance covariance dCov is de�nded as

dCov(X;Y ) :=
1

T(T � 3)

X

st

Ast Bst (3)

Distance variance dVar and distance correlation dCor are de�ned analogously to moment variance and moment correlation,

resepctively:

dVar(X ) = dCov(X;X ) and dCor(X;Y ) :=
dCov(X;Y )

p
dVar(X )dVar(Y )

(4)265

Distance correlation has a number of desirable properties:

1. 0 � dCor(X;Y ) � 1

2. dCor(X;Y ) = 0 () X; Y independent

3. dCor(X;Y ) = 1 () Y is a linear transformation ofX
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Distance correlation is furthermore robust against auto-dependence (K. Fokianos and M. Pitsillou, 2018), which eliminates270

the need to correct for autocorrelation, as it was done in Fountalis et al. (2018). The correction of autocorrelation involves the

estimation of a rather large number of autocorrelation coef�cients. This might add to statistical uncertainty and its expendebility

is therefore statistically advantageous.

An ef�cient test of distance correlation based on the� 2-distribution was proposed by Shen et al. (2022), which is universally

consistent, and valid for� � 0:05:275

�( X;Y ) =

8
<

:

1 if T dCor(X;Y ) � F � 1
� 2

1 � 1(1 � � )

0 else
(5)

Distance correlation is de�ned between vectors of arbitrary dimension. One way to take advantage of this property in the

construction of networks would be to assign the measurement of more than one climatological variable to every node, e.g. sea

surface temperature and salinity, or 500 hPA geopotential height and temperature.

We will apply distance correlation in the network inference between the domains, but not in the construction of the domains.280

The reason is that in domain construction we are looking for similar temporal behavior between grid cells. We choose Spear-

man's Rank correlation, because it accounts for non-linear, yet monotone association. In contrast, in network inference we are

expressly interested in non-linear dependence including non-monotonicity.

3.3.1 Distance multivariance and distance multicorrelation

Distance correlation has also been generalized to distance multivariance/multicorrelation by Böttcher et al. (2019) to measure285

the dependence between an arbitrary numbern of random variables in the sense of Lancaster interaction (Lancaster, 1969;

Streitberg, 1990). The Lancaster interaction� F quanti�es the fraction of dependence between them that is not explained by

factorization, theirsynergy. For n = 3 , let F123 be the 3-dimensional joint distribution function ofX 1;X 2;X 3, F12, F13 and

F23 the pairwise joint andF1, F2 andF3 the marginal distribution functions. Then the Lancaster interaction is de�ned as

� F = F123 � F1F23 � F2F13 � F3F12 + 2F1F2F3290

the fraction ofF123 that is not explained by pair-wise dependence. Lancaster interaction excludes, in particular, linear depen-

dence as this is indeed explained by pair-wise dependence.

The concept of higher-order dependence is related to joint cumulants and higher-order moments, in that� n (X 1 : : :X n ) =
R

x1 : : :xn d� F (Streitberg, 1990). Joint cumulants are traditionally applied in multiple-point statistics and hyper-spectral

analysis to describe non-linear interaction and non-gaussian multidimensional distributions. Climate science has seen only295

a small number of implementations, including the contributions of C. A. L. Pires related to teleconnections (e.g. Pires and

Hannachi (2017, 2021)). As a feature of complex systems, higher-order interactions have already been recognized as critical

for the emergence of complex behavior such as synchronization and bifurcation in scienti�c �elds as diverse as social networks

science, ecology, molecular biology, quantum physics, neurosciences, epidemics, geodesy, image processing and genetics

(Battiston et al., 2020), and tools for the construction of hypergraphs (graphs with links that comprise more than two nodes)300

are increasingly available. To our knowledge, hypergraphs have not yet been introduced in climatology.
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Distance multivariance is de�ned analogously to distance variance (Equation 3) and is a strongly consistent estimator of

Lancaster interaction (Böttcher et al., 2019). Forn = 3 , with Cst the analogue toAst andBst for a third random variableZ :

dMvar(X;Y;Z ) =
1

T(T � 3)

X

st

Ast Bst Cst (6)

and likewise distance multicorrelation with a slightly differing normalisation:305

dVar3(X ) := dMvar(X;X;X ) and dMcor(X;Y;Z ) =
dMvar(X;Y;Z )

�
dVar3(X ) � dVar3(Y ) � dVar3(Z )

� 1=3
(7)

Obviously, distance covariance between two random variables is covered by distance multivariance forn = 2 . Signi�cance

tests for distance multivariance are also given in Böttcher et al. (2019). As the asymptotic test is conservative and furthermore,

in the case of non-zero pairwise dependence, the test statistic is not guaranteed to diverge, it is convenient to choose a larger

FDR level than the usually employed signi�cance levels between0:1 and0:01.310

3.4 Comparison of networks with structural similarity index and multivariate network quality score

This study aims at comparing the interaction networks derived from CMIP6 model output to the selected reference networks.

Our metric of comparison netSSIM is a modi�cation of the netCorr criterion for functional networks developed by Falasca

et al. (2019). netCorr is a sophisticated metric, which evaluates the differences in topology and connectivity, combined in the

adjacency matrixM of each network, simultaneously. LetM = (( M ij ))n
i;j =1 be a square matrix of dimensionn (number of315

grid cells) with

M ij :=

8
>>><

>>>:

0 if D (x i ) = ; or D(x j ) = ;

1
jf W (D (x i ) ;D (x j )) > 0gj

P

D k 2 D ( x i ) ;D l 2 D ( x j )

W (D k ;D l ) if ; 6= D(x i ) 6= D(x j ) 6= ;
(8)

where we setW (D k ;D l ) = dCor(x D k ;x D l ). Alternatively, M could be rearranged in a 4-modal hypermatrix or tensor made

of the Kronecker product of the lat-lon �eld times itself containing the dependencies between the grid cells.

Apart from replacing Pearson by distance correlation, our de�nition ofM differs from the one in Falasca et al. (2019)320

in three aspects. Firstly, our links are undirectional, because distance correlation is much less sensitive to temporal lag than

Pearson correlation. The distance correlation coef�cients for lags� 10� L � 10 differ only marginally from the value for

L = 0 . So although we do constructM using maximum lagged distance correlation, we do not venture to infer the direction of

the interaction from it. Secondly, we have de�nedW (D k ;D k ) = 1 , causingM ij = 1 if x i andx j pertain to the same domain

(and no other) to emphasize that grid cells within one domain are more strongly linked to each other than to the grid cells of325

other domains. Thirdly, we setM ij the average of the links between domains thatx i andx j belong to instead of the maximum

as a means to account for overlapping domains. We do not apply any weighting to this average, because the mean internal rank

correlation within each domain, i.e. the bond of a grid cell to its domains, is equally� � by construction.
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netCorr between two networks measures the spatial correlation between the respective adjacency matrices, not considering

the overall level and variability within the networks. We propose to augment netCorr to netSSIM. SSIM is the Structural Simi-330

larity Index, a measure very popular in image processing, which combines terms for brightness (mean), contrast (variance) and

structure (pattern correlation) of images (Wang et al., 2004). It was introduced to the hydrological/meteorological community

by Mo et al. (2014). LetX;Y be two gridded �elds:

SSIM(X;Y ) :=
2� X � Y + c1

� 2
X + � 2

Y + c1
�

2� X � Y + c2
� 2

X + � 2
Y + c2

�
� XY + c3

� X � Y + c3
(9)

where� X , � Y are the means,� 2
X , � 2

Y are the variances and� XY is the Pearson covariance betweenX andY , and small335

constantsc1 = c2 = c3 (we choose0:00001) to ensure regularity. The SSIM ranges from� 1 to 1, it equals1 only in case of

identity and� 1 for an anti-analogue (equal mean and variance, but correlation= � 1). SSIM = 0 means no similarity. Note

that the SSIM is not invariant under translation and rotation, which corresponds to our requirements, because we want the

teleconnections to sit in the right place. SSIM is not a distance metric, but a distance metric can be constructed from it (Brunet

et al., 2011).340

Falasca et al. (2019) recommend the use of their netCorr criterion always in combination with a criterion comparing the

strength of the interaction, which they de�ne as the sum of the links of a particular domain in terms of covariance. We argue

that the strength is a criterion that intermingles the distribution of interactions between the domains with the variances of the

domains, which, in turn, are determined by the size of the domains and the variances of the included nodes. We therefore prefer

to evaluate the interactions on their own using the netSSIM. The evaluation of the variances (or standard deviations) of model345

output data is a task that is already routinely performed in conventional evaluation setups.

We apply the (latitude weighted) SSIM to two adjacency matricesM (Equation 8) constructed from the signi�cant distance

correlations in two reference and/or model networks. In this way, we calculate netSSIM indices for the unipartite networks for

SST and Z500, and for the cross-networks between the SST and Z500 domains.

Alternatively, we could calculate the SSIM between adjacency matrices in a point-wise manner, comparing the slices of the350

4-modal hyper-matrices that correspond to the links of one individual grid cell to all others and then taking the weighted mean

of all point-wise SSIMs.

Finally, we de�ne a Network Quality Score (NQS) by applying an exponential transform to the netSSIMs, which projects

them to the interval[0;1] (recall that the netSSIM lives on[� 1;1]). The same transform was used in Sanderson et al. (2015)

and Brunner et al. (2020) to construct quality scores from error measures, which are later fed into a model selection algorithm.355

NQS:= exp
n

� (1 � netSSIM)2
o

(10)

In order to combine the three NQSs wrt. SST, Z500 and SST–Z500, we take the geometric mean (equal to the exponential of

the arithmetic mean of the squared differences(1 � netSSIM)2). This shall be the Multivariate Network Quality Score MNQS:

360

MNQS:= ( NQSSST� NQSZ500 � NQSSST-Z500)
1
3 = exp

�
�

1
3

k1 � netSSIMk2
�

(11)
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The MNQS corresponds to the exponential transform of the squared Euclidean distance between the 3-dimensional vector-

netSSIM to the ideal vector-netSSIM value(1;1;1), which would be attained by a network identical to the reference, normal-

ized with the distance between(1;1;1) and the value(0;0;0) indicating no similarity.

Any other vector norm could be utilized for the construction of MNQS, for instance anL p-norm withp 6= 2 or some weight-365

ing of the directions. netSSIMs for additional parameters can be incorporated into the MNQS in a straight forward way. Finally,

the considered models can be ranked with respect to these scores.

The netSSIM is also useful, when exploring the differences between networks in more detail. As mentioned above, the

slices ofM wrt. a single grid cell or domain can be compared one by one. It is further possible to calculate the netSSIM for

all pairwise links in a certain region, excluding the rest of the globe, or for all links from one region to another. This way,370

differences across models or time periods can be tracked down directly to their origin.

4 Results and discussion

We will demonstrate the functioning of every sub-procedure considering the CERA-20C ensemble mean over the whole period

1901–2010 as an example. All procedures are furthermore applied to the periods 1901–1955 and 1951–2010. Individual runs

of CERA-20C as well as 20CRv3 and CMIP6 model realisations will be discussed depending on special interest.375

4.1 Detrending with trend-EOF

Trend-EOFs (Hannachi, 2007), as introduced in Sect. 3.1, produce time series of common change (in SST and Z500) generated

from the trend-PCs in the inverse-rank space, and the respective trend-loading patterns (four seasonal trend-loading patterns per

trend-PC in the case of season-reliant/cyclo-stationary trend-EOFs), indicating regions of stronger/weaker change. As expected,

the increase in SST is concentrated in the �rst trend-PC (the leading eigenvalues are 30 to 50 times higher than the trailing380

ones), the other trend-PCs showing no secular trend. Figure 1(a) depicts the global mean sea surface temperature anomaly

(GMSSTa) (wrt. the base period 1961–1990) in the CERA-20C ensemble mean, the forced temperature increase estimated by

the �rst trend-EOF and the detrended anomalies. For comparison, we show the same plot for linearly detrended SSTs in Figure

S1. The grid cell-wise detrended anomalies are deseasonalized with regard to variance.

The GMSSTa derived from trend-EOFs in all runs of CERA-20C (not shown) as well as in the ensemble mean show a very385

similar evolution among each other and to Zhu et al. (2018), the breakpoints in temperature increase postulated therein at 1942,

1975 and 2004 clearly discernible. Likewise, the physical space-loading patterns of the ensemble mean (Figure 1(b)) and all

runs of CERA-20C are very similar to each other and resemble the leading modes extracted using slow feature analysis and

dynamical mode decomposition in Fulton and Hegerl (2021), identi�ed as warming trends.

Analogous plots for geopotential height anomalies in 500 hPa for the CERA-20C ensemble mean can be found in Figure390

1(c) and (d). Unfortunately, we were not able to �nd any comparable study in the literature, where Z500 was analysed for

trend over the 20th century. Gillett et al. (2013), Knutson and Ploshay (2021), Garreaud et al. (2021), and Raible et al. (2005)

considered SLP trends over different time periods and regions. Although not fully comparable, there is a certain similarity.
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