1	Effects of mild alternate wetting and drying irrigation and rice				
2	straw application on N_2O emissions in rice cultivation				
3	Kaikuo Wu ^{1,2} , Wentao Li ^{1,3} , Zhanbo Wei ^{1,2} , Zhi Dong ^{4,5} , Yue Meng ^{1,3} ,				
4	Na Lv ^{1,3} , Lili Zhang ^{1,2,6}				
5	¹ Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang				
6	110016, China				
7	² Engineering Laboratory for Green Fertilizers, Chinese Academy of				
8	Sciences, Shenyang 110016, China				
9	³ University of Chinese Academy of Sciences, Beijing 100049, China				
10	⁴ Institute of Tillage and Cultivation, Liaoning Academy of Agricultural				
11	Sciences, Shenyang 110161, China				
12	⁵ Liaoning Key Laboratory of Conservation Tillage in Dry Land,				
13	Shenyang 110161, China				
14	⁶ National Engineering Laboratory for Soil Nutrient Management,				
15	Shenyang 110016, China				
16	Correspondence: Lili Zhang (<u>llzhang@iae.ac.cn</u>)				
17					
18	Abstract. The shortage of water resources and the decline in soil organic				
19	matter (SOM) are <u>critical</u> <u>important</u> limiting factors affecting the				
20	improvement of improvement in rice productivity, while alternate wetting				
21	and drying (AWD) irrigation and recycling application of rice straw				

return are considered favourfavorable mitigation measures. However, theits impact of such measures on rice yield and greenhouse gas (GHG) emissions, especially nitrous oxide (N₂O) emissions, needs to be further clarified, to ensure that which is essential for the development of agronomic practisesmeasures for save water savings, conserve soil fertilization, and reduce GHG-reduction. Therefore, we explored the effects of mild AWD irrigation combined with on-site rice straw recyclingreturn on N₂O emissions and rice yield through rice pot experiment included two irrigation experiments. This methods (continuous flooding (CF) irrigation and mild AWD irrigation)-, two nitrogen (N) application levels (0 and 225 kg N ha⁻¹) and two rice straw (S) return levels (0 and 9000 kg ha⁻¹), for a total of 10 treatments, and each treatment had three replicates. ¹⁵N-urea and ¹⁵N-S were added to the soil, respectively. The results showed that N₂O emissions were primarily mainly affected by urea application and irrigation methods, withand urea application being most importantwas the main reason. Compared with CF irrigation, mild AWD irrigation increased cumulative N₂O emissions, with an average increase of 28.8%. In addition, adding rice straw to mild AWD irrigation further stimulated N₂O emissions by 18.1%. Under the condition of urea application, compared with CF irrigation, mild AWD irrigation increased the yield-scaled N₂O emissions by 17.9%, and the addition of rice straw further promoted the yield-scaled

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

N₂O emissions under mild AWD irrigation by 17.4% but reduced the global warming potential (GWP) (methane $(CH_4) + N_2O$) by 62.9%. Under the condition of urea application, compared with CF irrigation, mild AWD irrigation reduced the uptake of soil-derived N and aboveground biomass of rice, but did not reduce rice yield. Therefore, mild AWD irrigation combined with rice straw returning return may be a promising agronomic methodmeasure to maintainensure rice yield, reduce the greenhouse gaseseffect, and protect maintain or improve soil fertility.—

1 Introduction

Rice is athe staple food for more than half of the world's population, and ensuring rice production is crucial to food security (Tang and Cheng, 2018). More than 135 million hectares of rice are cultivated worldwide, and approximately 90% of paddy fields are submerged (Wang et al., 2017a). Feeding a growing population under water scarcity is will be a major challenge to Asia's food security in the coming decades (Lampayan et al., 2015). In China, more than 60% of freshwater resources are consumed by rice cultivation every year, which represents not only causes a great waste of freshwater and but also causes many environmental problems, such as nonpoint source pollution, eutrophication of water bodies, and GHG emissions (Liao et al., 2020). Therefore, it is urgent to

explore <u>new methods for managing</u> paddy field fertilization management measures that can ensure <u>high</u> rice yield, and reduced water waste and <u>environmental</u> pollution.

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

AWD irrigation is an effective water-conservsaving irrigation method that can save approximately 23% of fresh waterfreshwater resources compared with CF irrigation (Bouman and Tuong, 2001; Chu et al., 2014). There are usually two approachestypes of to alternate wetting and drying irrigation: severe AWD irrigation (soil water potential $\geq -30\pm 5$ kPa) and mild AWD irrigation (soil water potential \geq -15 \pm 5 kPa) (Zhou et al., 2017). Severe AWD irrigation could reduce rice yield by 22.6% due to water stress, but under mild AWD irrigation, rice yield can bewas stable or slightly increased (Carrijo et al., 2017; Zhou et al., 2017). Therefore, mild AWD irrigation may offerbe a more promising paddy field management model. Previous studies have shown that AWD irrigation can significantly reduce CH₄ emissions but considerably significantly promotes N₂O emissions, while GWP mitigation is dependent on the magnitude of the increase in the release of N_2O emissions (Lagomarsino et al., 2016; Liang et al., 2017; Kritee et al., 2018; Tan et al., 2018). Therefore, exploring the impact of mild AWD irrigation on GHG emissions, especially N₂O emissions, is conducive to reducing paddy field emissions and maximizing agricultural and environmental benefits.

Long-term cultivation without organic matter supplementation leads to serious degradation of cultivated land and reduction of freduction in soil organic matter (SOM) content (Zhou et al., 2021), which is not conducive to rice production and sustainable agricultural development (Chen et al., 2016). Straw return to the field is considered to be ana valuable important measure for improving SOM (Huang et al., 2021), and it is beneficial for reducing the environmental pollution caused by burning straw or discarding it randomly (Wang et al., 2018). In addition, rice straw return may also cause changes in paddy field GHG emissions (Naser et al., 2007; Ye et al., 2017; Sun et al., 2018; Yu et al., 2021), N use efficiency (Liu et al., 2021), and rice yield (Chen et al., 2016; Ku et al., 2019). Although there have been many studies on mild paddy AWD irrigation or rice straw return, few studies have focused on the effects of mild AWD irrigation combined with rice straw return on rice cultivation. Under the conventional fertilization mode, whether mild AWD irrigation combined with rice straw returning return can achieve the optimal goals of water saving, yield increase, and reduction of freduction in greenhouse gas emissions has remained unclearneeds to be further explored. Therefore, the purpose of this study was to investigate the effect of mild AWD irrigation combined with rice straw returning return on N₂O emissions and rice yield in rice cultivation, and to explore the supply of N to rice growth supply of from the soil, urea, and rice straw using to rice growth through

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

¹⁵N <u>labelinglabelling</u> technology. <u>Our initial</u> <u>We put forward the</u> <u>following hypotheses were that</u>: 1) Mild AWD irrigation would promote N₂O <u>emissionemissions</u> in rice cultivation; <u>and 2</u>) Mild AWD irrigation would maintain or promote rice yield.

2 Materials and methods

2.1 Experimental set-upsetup

AThe pot experiment was conducted in an open greenhouse at the Shenyang Experimental Station of the Institute of Applied Ecology, Liaoning Province, China (43 °32'N, 123 °23'E) from June 17th to October 27th, 2020. The test soil was an Alfisol with a total C content of 16.01 g/kg and a total N content of 1.36 g/kg.

The pot experiment <u>usedwas designed with</u> a <u>completely</u> random block design, including 30 pots (30 cm diameter × 20 cm height). This experiment included two irrigation methods, two N application levels, and two rice straw return levels, with three replicates of each combination, for a total of 30 rice pots (urea and straw were <u>labelledlabeled</u> with ¹⁵N, respectively). The two irrigation methods were CF irrigation and mild AWD irrigation. CF irrigation maintained a water level depth of approximately 3-5 cm throughout the rice-growing season. Mild AWD irrigation water management in the first 7 days was consistent with CF irrigation and <u>allowed to evaporate under monitoring; then it was naturally pursued. W when the soil negative pressure gauge reached -15</u>

kPa, it was sub-flooded to a depth of 3-5 cm again and then naturally 132 allowed to dryied up again. This step was repeated until harvest. CF and 133 mild AWD irrigation were halted 2 weeks before harvest. N was applied 134 at 0 kg N ha⁻¹ (CK (control check) and ¹⁵S (rice straw)) and 225 kg N ha⁻¹ 135 (106.13 mg kg⁻¹ dry soil) (¹⁵U (urea), U¹⁵S (urea + rice straw) and ¹⁵US 136 (urea + rice straw)). The abundance of urea ¹⁵N was 10.20%. Urea was 137 applied three times: base fertilizer 40% (June 17th), tiller topdressing 30% 138 (August 4th) and heading topdressing 30% (August 25th). Rice straw 139 return was applied at 0 kg ha⁻¹ (CK and ¹⁵U) and 9,000 kg ha⁻¹ (4.25 g kg⁻¹ 140 dry soil) (15S, U15S and 15US). The total N content of unlabelledlabeled 141 rice straw was 0.72%, and the isotope abundance of ¹⁵N was 0.59%. The 142 total N content of labelled rice straw was 0.73%, and the ¹⁵N 143 isotope abundance was 22.94%. The rice straw was ground and applied 144 together with the base fertilizer. Phosphate fertilizer was superphosphate 145 (150 kg P₂O₅ ha⁻¹), and potassium fertilizer was potassium chloride (185 146 kg K₂O ha⁻¹) as a one-time application of basic fertilizer. Every pot was 147 filled with 10.51 kg (9 kg dry soil) of sieved (2 mm) fresh soil. Two hills 148 of rice were planted in each pot. At maturity, the rice yield and 149 aboveground biomass were recorded after being oven dried (105 °C for 150 0.5 h and 60 C for 12 h). 151

2.2 Soil sample collection and analysis

152

153

At the regreening stage, tillering stage, jointing stage, booting stage,

filling stage, and maturity stage, five points were randomly selected from the 0-10 cm soil layer of each pot and mixed. The soil NH_4^+ -N and NO_3^- -N were extracted with 2 mol L^{-1} KCl solution (Wu et al., 2019), filtered and analysedanalyzed with a continuous flow analyseranalyzer (AA3, Bran + Luebbe, Germany). The extraction of soil 15 N-NH $_4^+$ -N was followed Yu et al. (2020). Soil microbial biomass N (MBN) was fumigated with chloroform, extracted with 0.5 mol L^{-1} K $_2$ SO $_4$ (soil: solution = 5 g: 20 ml) (Joergensen et al., 1996), and determined by a TOC analyseranalyzer (Elementar vario TOC Analyzer, Germany). The soil 15 N-NH $_4^+$ -N content, 15 N-MBN and 15 N of rice aboveground biomass were determined by a stable isotope ratio mass spectrometer (253 MAT, Thermo Finnigan, Germany).

2.3 Gas sampling and calculation

The static chamber method was used to determine the N_2O flux (Li et al., 2018a). The static chamber with a top seal made of transparent plexiglass consisted of two parts, namely, the base and the gas collecting chamber. The base had a diameter of 31 cm, a groove in the middle, and a height of 10 cm. The gas-collecting chamber had a diameter of 30 cm and a height of 70 cm. A small fan and a thermometer were installed in the gas-collecting chamber. N_2O was collected every two days in the first week after fertilization or irrigation and every seven days <u>duringon the</u> other <u>periodsdays</u>. N_2O was sampled at 8:00–11:00 a.m. each sampling

- day. Every pot was sealed with water when N₂O was collected. Three gas 176 samples were collected at 0, 30 and 60 min after the chamber was airtight, 177 and N₂O was collected with a 50 mL injector and then injected into 200 178 mL gasbags. 179
- The N_2O concentration was <u>analysed</u>analyzed <u>using</u>by a gas 180 chromatograph (Agilent 7890B, Gas Chromatograph, Delaware, USA). 181
- The calculation of N_2O fluxes was as follows (Li et al., 2018a): 182
- $F = \rho \times h \times dc/dt \times 273/(273 + T)$ 183

- where F is the N₂O flux ($\mu g \, m^{-2} \, h^{-1}$); ρ is the N₂O standard-state density 184 (1.964 kg m⁻³); h is the chamber height above the soil (m); c is the N₂O 185 concentration; dc/dt is the slope of the N₂O concentration curve, 186 estimated using a linear regression model (Vitale et al., 2017); 273 is the 187 gas constant; and T is the average air temperature inside the chamber 188 during N_2O collection (\mathcal{C}).
- Cumulative N₂O emissions (CE) were calculated using the following 190 formula according to Wang et al. (2011): 191

$$CE (kg N_2 O ha^{-1}) = \sum_{i=1}^{n} (\frac{F_i + F_{i+1}}{2})(t_{i+1} - t_i) \times 24 \times 10^{-2}$$

- where i is the various sampling times, t is the sampling date, n is the total 192 measurement time and 10^{-2} is the conversion factor. 193
- The contribution of ¹⁵N markers to NH₄+-N and MBN and the 194 calculation of the N source of the aboveground biomass of rice was 195

follow by followed Ma et al. (2015). Yield-scaled N₂O was calculated as the ratio between N₂O and rice yield (Li et al., 2018a).

2.4 Statistical analysis

All analyses were performed using SPSS Statistics 16.0 (SPSS, Inc., Chicago, USA). One-way ANOVA was conducted to test the treatment effects with Duncan's test. Significant differences were set at alpha = 0.05. Univariate analysis of variance was used to analyseanalyze the response of cumulative N_2O emissions to irrigation method, N level and rice straw application (Table 2). Tables and figures were prepared with Excel 2016 (Microsoft Corp., USA) and Origin 8 (Origin Lab Corp., USA), respectively. The data in the figures and tables are the average value \pm standard error.

3 Results

$3.1 N_2O$ flux

Three higher N_2O flux peaks appeared after basal fertilizer and two topdressing treatments (Figure 1), and the N_2O flux peak after basal fertilizer application was significantly larger than the last two peaks. After basal fertilizer was applied, the N_2O flux peaks of CF irrigation and mild AWD irrigation were similar. After the first topdressing, the N_2O flux peak of mild AWD irrigation was significantly greater than that of CF irrigation, about approximately 1.4 and 9.1 times under the U and US treatments, respectively. In contrast, the N_2O flux peak of CF irrigation

after the second topdressing was 3.5 and 1.6 times higher than that of mild AWD irrigation under the U and US treatments, respectively. In addition to the above three peaks, the N₂O flux of CF irrigation was close to zero, and mild AWD irrigation had a lower flux peak with alternating wet and dry conditions. The flux of N₂O ranged from -103.93 ug m⁻²-h⁻¹ to 2,770.50 µg m⁻² h⁻¹. The N₂O flux appeared negative in the late stage of rice growth. The N₂O fluxes of CF irrigation and mild AWD irrigation were similar in the later stage of rice growth, indicating that drainage had little effect on it. During the entire rice growth cycle of rice, the N₂O flux of the CK and S treatments was low. There were significant differences in the peak N₂O fluxes between the different treatments. Compared with CK, the application of rice straw alone significantly promoted the N₂O flux on the first day after CF irrigation and mild AWD irrigation. Compared with U, the addition of rice straw in CF irrigation reduced the N₂O flux, while the addition of rice straw in mild AWD irrigation increased the N₂O flux. 3.2 Soil NH₄⁺-N, NO₃⁻-N and MBN concentrations The soil NH₄⁺-N, NO₃⁻-N, and MBN concentrations varied with the growing stage of rice (Fig. 2A, 2C and Fig. 3A). The soil NH₄+-N concentration first increased and then decreased. The NH_4^+ -N concentration under CF irrigation and mild AWD irrigation was low in the late <u>rice</u> growth period-of rice (Fig. 2A). The concentration of NO₃-N

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

in CF-irrigated soil showed a trend of first increasing and then decreasing

and was at a low level in the later growth period of rice, while the concentration of NO₃-N in mild AWD irrigation showed a trend of first decreasing and then increasing, with repeated then decreasesing and then increasesing (Fig. 2C). The concentration of MBN in CF-irrigated soil first decreased and then increased and then decreased to a lower level, while the concentration of MBN in mild AWD-irrigated soil decreased with the growth stage of rice (Fig. 3A).

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

There were significant differences in the NH₄⁺-N, NO₃⁻-N, and MBN concentrations between the different treatments. In CF irrigation and mild AWD irrigation, the U treatment had a higher NH₄⁺-N concentration in the early stage of rice growth, while the other treatments had no significant difference, but as rice grew, the NH₄⁺-N concentration of the US treatment increased, which was significantly greater than that of the U, S and CK treatments (Fig. 2A). In CF irrigation, the NO₃-N concentration of the U treatment was slightly higher than that of the other treatments, and all treatments had little variancedifference. In mild AWD irrigation, the NO₃-N concentration of the US treatment was significantly higher than that of the U, S and CK treatments. The U treatment had a higher NO₃-N concentration than the S and CK treatments in the later stage of rice growth (Fig. 2C). The US treatment in CF irrigation and mild AWD irrigation had the highest MBN concentration during the rice growth period (Fig. 3A).

Figure 2B shows that the NH₄⁺-N in CF irrigation and mild AWD irrigation mainly came from urea rather than rice straw, and the combined application of urea and rice straw further promoted the release of NH₄⁺-N from urea. Regardless of CF irrigation or mild AWD irrigation, rice straw N was difficult to utilize by microorganisms in the first year under single rice straw application, but rice straw and urea combined application significantly promoted the utilization of rice straw N by microorganisms. Urea combined with rice straw application may be more easily utilized by microorganisms than urea applied alone (Fig. 3B).

3.3 Sources of aboveground biomass N in rice

As shown in Fig. 4, under CF irrigation and mild AWD irrigation, compared with CK, a single application of rice straw did not increase the aboveground N absorption of rice, while the U and US treatments significantly promoted the aboveground N absorption of rice. Under mild AWD irrigation, the US treatment reduced N uptake in rice shoots compared with the U treatment. The U and US treatments under CF irrigation promoted the N uptake of the aboveground rice more than those under mild AWD irrigation.

With different irrigation methods, the effects of urea and rice straw addition on the N absorption of the aboveground rice were <u>varieddifferent</u>.

Compared with the CK and S treatments, the U and US treatments under CF irrigation significantly promoted the absorption of soil N by rice,

while only the S and U treatments had significant differences under mild
AWD irrigation. Compared with mild AWD irrigation, the U and US
treatments under CF irrigation significantly promoted the absorption of
soil N by rice. Regardless of the irrigation and fertilization method, the
soil was the main source of N in the aboveground parts of rice, followed
by urea and finally rice straw (Fig. 4).

290 3.4 Cumulative N_2O emissions, rice agronomic properties and 291 yield-scaled N_2O emissions

In addition to the CK treatment, compared with CF irrigation, mild AWD irrigation significantly promoted the accumulation of N_2O during the rice growth period, with an average increase of 28.8% (Table 1). Under CF irrigation, there was no significant difference in the accumulation of N_2O between S and CK or between US and U. However, the addition of rice straw under mild AWD irrigation significantly increased the accumulation of N_2O by 18.1% (Table 1). Compared with the CK and S treatments, the U and US treatments significantly promoted cumulative N_2O emissions under the two irrigation modes. As shown in Table 2, irrigation methods, N application level, and rice straw return affected cumulative N_2O emissions, of which the N application level had the greatest impact. The interaction between irrigation level and N fertilizer or rice straw significantly affected cumulative N_2O emissions.

As shown in Table 1, compared with CF irrigation, mild AWD

treatment but had no effect on other treatments. Regardless of whether CF irrigation or mild AWD irrigation was applied, there was no significant difference in the rice aboveground biomass between S and CK or between US and U. Compared with the CK and S treatments, the U and US treatments significantly promoted the rice aboveground biomass under the two irrigation modes. Irrigation level had no effect on rice yield under all treatments. Regardless of CF irrigation or mild AWD irrigation, rice yield under the U and US treatments was significantly higher than that under the CK and S treatments, but there was no difference between the former two and the latter two.

In addition to the CK treatment, compared with CF irrigation, mild AWD irrigation significantly promoted yield-scaled N₂O emissions during the rice growth period. Under urea application conditions, compared with CF irrigation, mild AWD irrigation increased yield-scale N₂O emissions by 17.9%, and the addition of rice straw further promoted yield-scale N₂O emissions by 17.4% under mild AWD irrigation conditions (Table 1). Regardless of CF irrigation or mild AWD irrigation, yield-scaled N₂O emissions under the U and US treatments were significantly higher than those under the CK and S treatments. Rice straw addition had no effect on the yield-scaled N₂O emissions under CF irrigation but significantly increased the yield-scaled N₂O emissions

under mild AWD irrigation.

4 Discussion

328

329

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

4.1 Effects of irrigation methods, N levels, and rice straw return on N_2O emissions

N₂O emission isemissions are significantly affected by water-filled pores and mineral N (NH₄⁺-N and NO₃⁻-N) content (Allen et al., 2010). The N_2O emission peak in CF irrigation occurred only after N application, while mild AWD irrigation caused other N₂O emission peaks, which might have been caused by the change in soil moisture conditions by mild AWD irrigation (Zhou et al., 2020). The peak of N₂O after fertilization may be due to the fact that because a large amount of N application increases the soil inorganic N concentration (Fig. 2A and 2C), which in turn promotes the generation of N₂O, which mainly comescomes from the denitrification process (Wang et al., 2017b; Yano et al., 2014). During the denitrification process, it is easier for microorganisms to use NO₃-N as an electron acceptor (Fig. 2C), which affects the reduction process of N₂O, resulting in an increase in the ratio of N₂O/N₂ in the denitrification products (P érez et al., 2000). Our results showed a negative N₂O emission flux at the later stage of rice growth, which may be due to the decrease of surface soil N₂O concentration due to the strengthening of the N₂O reduction process or the weakening of the N₂O diffusion process in the soil profile, which allowed atmospheric N₂O to diffuse back into the soil

(Chapuis-Lydie et al., 2007). Mild AWD irrigation promoted cumulative N₂O emissions by 28.8% on average, which was as proposed in ourthe same as Hypothesis hypothesis 1. Similar results were found in previous studies, which may be due to the increased N₂O produced by nitrification and denitrification due to water level alternation (Liang et al., 2017; Zhou et al., 2020) and temperature change (Wu et al., 2019) of mild AWD irrigation. In order to To reduce N₂O emissions from paddy fields, researchers generally regulate N₂O production by optimizing N management (Liang et al., 2017), applying inhibitors to control the N supply rate of N fertilizers (Wu et al., 2019)., etc. In both CF and mild AWD irrigation, there was no obvious N₂O emission peak at the later growth stage of rice, which may have been due to the decrease in soil inorganic N content (Fig. 2A and 2C) and microbial biomass (Fig. 3A). Compared with CK and S, N fertilizer application (U and US) significantly increased N₂O cumulative emissions and was the most notable important factor of N₂O generation (Table 2), mainly because N fertilizer application provided sufficient substrates for soil nitrification and denitrification to generate N₂O (Fiedler et al., 2017; Wu et al., 2021). The peak of N₂O emissions after base fertilizer application was larger than that after two topdressing, which might have been due to a higher N application rate and simultaneous nitrification and denitrification in initial flooding (Mathieu et al., 2006; Wang et al., 2017b). The peak of N₂O

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

emissions after the two topdressing treatments with CF irrigation was similar, while the peak of N₂O emissions afterof the first topdressing treatment with mild AWD irrigation was significantly larger than that following of the second topdressing treatment. This may be because the soil environment (temperature, moisture, etc.) changed little in long-term flooding under CF irrigation (Lagomarsino et al., 2016; Verhoeven et al., 2018; Congreves et al., 2019), while the variations difference in the soil environment of the two top dressings under mild AWD irrigation changed the utilization of fertilizer N by microorganisms (Fig. 3B). Therefore, reducing the amount of the first top dressing under mild AWD irrigation and maintaining flooding for approximately one week after fertilization may benefit beneficial to N₂O reduction (Liao et al., 2020). The negative value of N₂O emissions appeared at the later stage of rice growth, indicating that the paddy field could also become a sink for N₂O (van Groenigen et al., 2015), which might be caused by the lack of N supply at the later stage. Increasing the second topdressing might be beneficial for alleviating N deficiency (Liao et al., 2020).

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

<u>Unlike the Different from CF</u> irrigation, the addition of rice straw under mild AWD irrigation conditions promoted N₂O emissions (Table 1), probably because the alternation of wet and dry conditions promoted the decomposition of rice straw (Andren et al., 1993; Buchen et al., 2016; Chen et al., 2016), which was beneficial to the growth of microorganisms

(Fig. 3A), and thus promotinged the production of N₂O (Said-Pullicino et

al., 2014; Wang et al., 2018; Wu et al., 2021). In addition, compared with

U and S, US promoted microbial absorption of urea and rice straw N (Fig.

3B), which also proved that US treatment was more conducive to the

398 growth of microorganisms.

397

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

4.2 Effects of irrigation methods, N levels, and rice straw return on rice production and yield-scaled N₂O emissions

The change in irrigation method did not cause differences in rice yield (Table 1), but under the US treatment, mild AWD irrigation significantly reduced the aboveground biomass of rice and the uptake of soil N by rice (Table 1 and Fig. 4), which was consistent with our Hypothesis hypothesis 2. Previous studies have also shown that mild AWD irrigation can stabilize or increase rice yield. This may be because mild AWD irrigation can promote the transport of nutrients from stems and leaves to grains during the reproductive growth stage of rice, while inhibiting ineffective tillering and increasing the number of effective panicles, thereby reducing the excessive vegetative growth of rice (Carrijo et al., 2017; Li et al., 2018b; Liao et al., 2020; Zhang et al., 2009). This may also be an important reason for the decrease in the uptake of soil N by rice under AWD irrigation. Urea application was a key factor in improving rice yield (Wang et al., 2017a) but also aggravated soil N uptake by rice, and soil was the largest source of N for rice in all

treatments (Fig. 4). Compared with U, under CF irrigation and mild AWD irrigation, US reduced the uptake of soil-derived N by rice, and the trend was more obvious under mild AWD irrigation, although. Although the trend was not significant, rice straw return may be an effective way to maintain long-term soil fertility (Fig. 4).

In our study, mild AWD irrigation, urea application and rice straw return all increased yield-scaled N₂O emissions (Table 1), mainly due to improved soil aeration and increased inorganic N and rice straw decomposition, resulting in more N₂O production (Andren et al., 1993; Buchen et al., 2016; Chen et al., 2016; Lagomarsino et al., 2016; Fiedler et al., 2017; Verhoeven et al., 2018; Congreves et al., 2019; Wu et al., 2021). Although mild AWD irrigation had higher yield-scaled N₂O emissions than CF irrigation, the GWP (CH₄ + N₂O) under mild AWD irrigation was significantly lower than that under CF irrigation and decreased by 8.1%, 57.9%, 11.8% and 62.9% under CK, S, U and US, respectively (Table S1). Therefore, mild AWD irrigation combined with rice straw return may be a promising agronomic measure that not only maintainsensures rice yield, and slows the greenhouse effects (CO₂) emissions are not considered), andbut also reduces soil fertility consumption.

5 Conclusions

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

The effects of irrigation methods, N levels and rice straw return on

N₂O emissions were explored through pot experiments using with rice. We found that N₂O emissions were mainly affected by urea application and irrigation methods, withand urea application being the most importantwas the main reason. Compared with CF irrigation, mild AWD irrigation increased cumulative N₂O emissions, with an average increase of 28.8%. In addition, adding rice straw to mild AWD irrigation further stimulated N₂O emissions by 18.1%. Under the condition of urea application, compared with CF irrigation, mild AWD irrigation increased the yield-scaled N₂O emissions by 17.9%, and the addition of rice straw further promoted the yield-scaled N₂O emissions under mild AWD irrigation by 17.4% but reduced the GWP ($CH_4 + N_2O$) by 62.9%. Under the condition of urea application, compared with CF irrigation, mild AWD irrigation reduced the— uptake of soil-derived N and aboveground biomass of rice, but did not reduce rice yield. Therefore, mild AWD irrigation combined with rice straw returning return may offerbe a promising agronomic measure to maintain high ensure rice yield, reduce the greenhouse effects, and maintain or improve soil fertility.

455

456

457

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

Data availability. Original data are available upon request. Material necessary for this study's findings is presented in the paper.

Author contributions. Kaikuo Wu, Wentao Li, Zhanbo Wei and Zhi
Dong conceived and designed the experiments; Yue Meng and Na Lv

- performed the experiments; Kaikuo Wu analyzed the data; Kaikuo Wu and Lili Zhang wrote the paper and all authors approved submission of the paper. All authors have read and agreed to the published version of the manuscript.
- Competing interests. The authors declare that they have no conflict of interest.
- Acknowledgements. The authors thank the editors and reviewers for their constructive comments and suggestions.
- Financial support. This work was Supported by the Strategic Priority
 Research Program of the Chinese Academy of Sciences (XDA28090200),
 the National Scientific Foundation Project of China (31971531), the
 Liaoning "Take the Lead" Project of 2021: Black soil region protection
 and farmland soil fertility improvement technology (2021JH1/10400039),
 the K.C.Wong Education Foundation (Research and application of

environmental-friendly polymer compound fertilizers 20221-513), and

476 Review statement.

the Youth Start-up Fund (2022000008).

477

478

474

475

References

- Allen, D.E., Kingston, G., Rennenberg, H., Dalal, R.C., and Schmidt, S.:

 Effect of nitrogen fertilizer management and waterlogging on nitrous
- oxide emission from subtropical sugarcane soils, Agr. Ecosyst.

- Environ., 136, 209-217, 2010.
- Andren, O., Rajkai, K., and Katterer, T.: Water and temperature dynamics
- in a clay soil under winter wheat: influence on straw decomposition
- and N immobilization, Biol. Fert. Soils, 15, 1-8, 1993.
- Bouman, B.A.M., and Tuong, T.P.: Field water management to save water
- and increase its productivity in irrigated lowland rice, Agr. Water
- 488 Manage., 49, 11-30, 2001.
- Buchen, C., Lewicka-Szczebak, D., Fuß, R., Helfrich, M., Flessa, H., and
- Well, R.: Fluxes of N₂ and N₂O and contributing processes in
- summer after grassland renewal and grassland conversion to maize
- cropping on a Plaggic Anthrosol and a Histic Gleysol, Soil Biol.
- Biochem., 101, 6-19, 2016.
- Carrijo, D.R., Lundy, M.E., and Linquist, B.A.: Rice yields and water use
- under alternate wetting and drying irrigation: A meta-analysis, Field
- 496 Crop. Res., 203, 173-180, 2017.
- Chapuis-Lydie, L., Wrage, N., Metay, A., Chotte, J., and Bernoux, M.:
- Soils, a sink for N₂O? A review, Global Change Biol., 13, 1-17,
- 499 2007.
- 500 Chen, A., Xie, X., Dorodnikov, M., Wang, W., Ge, T., Shibistova, O., Wei,
- W., and Guggenberger, G.: Response of paddy soil organic carbon
- accumulation to changes in long-term yield-driven carbon inputs in
- subtropical China, Agr. Ecosyst. Environ., 232, 302-311, 2016.

- 504 Chu, G., Chen, T., Wang, Z., Yang, J., and Zhang, J.: Morphological and
- physiological traits of roots and their relationships with water
- productivity in water-saving and drought-resistant rice, Field Crop.
- Res., 162, 108-119, 2014.
- 508 Congreves, K.A., Phan, T., and Farrell, R.E.: A new look at an old
- concept: using ¹⁵N₂O isotopomers to understand the relationship
- between soil moisture and N₂O production pathways, Soil, 5,
- 511 265-274, 2019.
- Fiedler, S.R., Augustin, J., Wrage-Mönnig, N., Jurasinski, G., Gusovius,
- B., and Glatzel, S.: Potential short-term losses of N₂O and N₂ from
- high concentrations of biogas digestate in arable soils, Soil, 3,
- 515 161-176, 2017.
- 516 Huang, W., Wu, J.F., Pan, X.H., Tan, X.M., Zeng, Y.J., Shi, Q.H., Liu, T.J.,
- and Zeng, Y.H.: Effects of long-term straw return on soil organic
- carbon fractions and enzyme activities in a double-cropped rice
- paddy in South China, J. Integr. Agr., 20, 236-247, 2021.
- Joergensen, R.G., and Mueller, T.: The fumigation-extraction method to
- estimate soil microbial biomass: Calibration of the k(EN) value, Soil
- Biol. Biochem., 28(1), 33-37, 1996.
- Kritee, K., Nair, D., Zavala-Araiza, D., Proville, J., Rudek, J., Adhya,
- T.K., Loecke, T., Esteves, T., Balireddygari, S., Dava, O., Ram, K., S,
- R.A., Madasamy, M., Dokka, R.V., Anandaraj, D., Athiyaman, D.,

- Reddy, M., Ahuja, R., and Hamburg, S.P.: High nitrous oxide fluxes
- from rice indicate the need to manage water for both long- and
- short-term climate impacts, P. Natl. Acad. Sci. USA, 115, 9720-9725,
- 529 2018.
- Ku, H.H., Ryu, J.H., Bae, H.S., Jeong, C., and Lee, S.E.: Modeling a
- long-term effect of rice straw incorporation on SOC content and
- grain yield in rice field, Arch. Agron. Soil Sci., 65, 1941-1954, 2019.
- Lagomarsino, A., Agnelli, A.E., Linquist, B., Adviento-Borbe, M.A.,
- Agnelli, A., Gavina, G., Ravaglia, S., and Ferrara, R.M.: Alternate
- wetting and drying of rice reduced CH₄ emissions but triggered N₂O
- peaks in a clayey soil of central Italy, Pedosphere, 26, 533-548,
- 537 2016.
- Lampayan, R.M., Faronilo, J.E., Tuong, T.P., Espiritu, A.J., de Dios, J.L.,
- Bayot, R.S., Bueno, C.S., and Hosen, Y.: Effects of seedbed
- management and delayed transplanting of rice seedlings on crop
- performance, grain yield, and water productivity, Field Crop. Res.,
- 183, 303-314, 2015.
- Li, J.L., Li, Y.e, Wan, Y.F., Wang, B., Waqas, M.A., Cai, W.W., Guo, C.,
- Zhou, S.H., Su, R.S., Qin, X.B., Gao, Q.Z., and Wilkes, A.:
- Combination of modified nitrogen fertilizers and water saving
- irrigation can reduce greenhouse gas emissions and increase rice
- yield, Geoderma, 315, 1-10, 2018a.

- Li, Z., Li, Z., Muhammad, W., Lin, M.H., Azeem, S., Zhao, H., Lin, S.,
- Chen, T., Fang, C.X., Letuma, P., Zhang, Z.X., and Lin, W.X.:
- Proteomic analysis of positive influence of alternate wetting and
- moderate soil drying on the process of rice grain filling, Plant
- Growth Regul., 84, 533-548, 2018b.
- Liang, K., Zhong, X., Huang, N., Lampayan, R.M., Liu, Y., Pan, J., Peng,
- B., Hu, X., and Fu, Y.: Nitrogen losses and greenhouse gas
- emissions under different N and water management in a subtropical
- double-season rice cropping system, Sci. Total Environ., 609, 46-57,
- 557 2017.
- Liao, B., Wu, X., Yu, Y., Luo, S., Hu, R., and Lu, G.: Effects of mild
- alternate wetting and drying irrigation and mid-season drainage on
- 560 CH₄ and N₂O emissions in rice cultivation, Sci. Total Environ., 698,
- 134212, 2020.
- Liu, J., Jiang, B., Shen, J., Zhu, X., Yi, W., Li, Y., and Wu, J.: Contrasting
- effects of straw and straw-derived biochar applications on soil
- carbon accumulation and nitrogen use efficiency in double-rice
- cropping systems, Agr. Ecosyst. Environ., 311, 107286, 2021.
- 566 Ma, Q., Wu, Z., Shen, S., Zhou, H., Jiang, C., Xu, Y., Liu, R., and Yu, W.:
- Responses of biotic and abiotic effects on conservation and supply
- of fertilizer N to inhibitors and glucose inputs, Soil Biol. Biochem.,
- 569 89, 72-81, 2015.

- Mathieu, O., Henault, C., Leveque, J., Baujard, E., Milloux, M.J., and
- Andreux, F.: Quantifying the contribution of nitrification and
- denitrification to the nitrous oxide flux using ¹⁵N tracers, Environ.
- 573 Pollut., 144, 933-940, 2006.
- Naser, H.M., Nagata, O., Tamura, S., and Hatano, R.: Methane emissions
- from five paddy fields with different amounts of rice straw
- application in central Hokkaido, Japan, Soil Sci. Plant Nutr., 53,
- 577 95-101, 2007.
- Pérez, T., Trumbore, S.E., Tyler, S.C., Davidson, E.A., Keller, M., and de
- Camargo, P.B.: Isotopic variability of N₂O emissions from tropical
- forest soils, Global Biogeochem. Cy., 14, 525-535, 2000.
- Said-Pullicino, D., Cucu, M.A., Sodano, M., Birk, J.J., Glaser, B., and
- Celi, L.: Nitrogen immobilization in paddy soils as affected by redox
- conditions and rice straw incorporation, Geoderma, 228, 44-53,
- 584 2014.
- Sun, L., Ma, Y., Li, B., Xiao, C., Fan, L., and Xiong, Z.: Nitrogen
- fertilizer in combination with an ameliorant mitigated yield-scaled
- greenhouse gas emissions from a coastal saline rice field in
- southeastern China, Environ. Sci. Pollut. Res. Int., 25, 15896-15908,
- 589 2018.
- Tan, X., Shao, D., and Gu, W.: Effects of temperature and soil moisture
- on gross nitrification and denitrification rates of a Chinese lowland

- paddy field soil, Paddy Water Environ., 16, 687-698, 2018.
- Tang, D., and Cheng, Z.: From Basic Research to Molecular Breeding -
- Chinese Scientists Play A Central Role in Boosting World Rice
- Production, Genom. Proteom. Bioinf., 16, 389-392, 2018.
- van Groenigen, J.W., Huygens, D., Boeckx, P., Kuyper, T.W., Lubbers,
- I.M., Rütting, T., and Groffman, P.M.: The soil N cycle: new insights
- and key challenges, Soil, 1, 235-256, 2015.
- Verhoeven, E., Decock, C., Barthel, M., Bertora, C., Sacco, D., Romani,
- M., Sleutel, S., and Six, J.: Nitrification and coupled
- nitrification-denitrification at shallow depths are responsible for
- early season N₂O emissions under alternate wetting and drying
- management in an Italian rice paddy system, Soil Biol. Biochem.,
- 120, 58-69, 2018.
- Vitale, L., Polimeno, F., Ottaiano, L., Maglione, G., Tedeschi, A., Mori,
- M., De Marco, A., Di Tommasi, P., and Magliulo, V.: Fertilizer type
- influences tomato yield and soil N₂O emissions, Plant Soil Environ.,
- 608 63, 105-110, 2017.
- 609 Wang, B., Shen, X., Chen, S., Bai, Y., Yang, G., Zhu, J., Shu, J., and Xue,
- Z.: Distribution characteristics, resource utilization and popularizing
- demonstration of crop straw in southwest China: A comprehensive
- evaluation, Ecol. Indic., 93, 998-1004, 2018.
- Wang, J., Zhao, Y., Zhang, J., Zhao, W., Müller, C., and Cai, Z.:

- Nitrification is the key process determining N use efficiency in
- paddy soils, J. Plant Nutr. Soil Sc., 180, 648-658, 2017a.
- Wang, J.Y., Jia, J.X., Xiong, Z.Q., Khalil, M.A.K., and Xing, G.X.: Water
- regime-nitrogen fertilizer-straw incorporation interaction: Field
- study on nitrous oxide emissions from a rice agroecosystem in
- Nanjing, China, Agr. Ecosyst. Environ., 141, 437-446, 2011.
- Wang, L., Sheng, R., Yang, H., Wang, Q., Zhang, W., Hou, H., Wu, J., and
- Wei, W.: Stimulatory effect of exogenous nitrate on soil denitrifiers
- and denitrifying activities in submerged paddy soil, Geoderma, 286,
- 623 64-72, 2017b.
- Wu, K., Zhang, Z., Feng, L., Bai, W., Feng, C., Song, Y., Gong, P., Meng,
- Y., and Zhang, L.: Effects of corn stalks and urea on N₂O production
- from corn field soil, Agronomy-Basel, 11, 2009, 2021.
- 627 Wu, K.K., Gong, P., Zhang, L.L., Wu, Z.J., Xie, X.S., Yang, H.Z., Li,
- W.T., Song, Y.C., and Li, D.P.: Yield-scaled N₂O and CH₄ emissions
- as affected by combined application of stabilized nitrogen fertilizer
- and pig manure in rice fields, Plant Soil Environ., 65, 497-502,
- 631 2019.
- Yano, M., Toyoda S., Tokida T., Hayashi K., Hasegawa T., Makabe A.,
- Koba K., and Yoshida N.: Isotopomer analysis of production,
- consumption and soil-toatmosphere emission processes of N₂O at
- the beginning of paddy field irrigation, Soil Biol. Biochem., 70,

- 636 66-78, 2014.
- Ye, R., and Horwath, W.R.: Influence of rice straw on priming of soil C
- for dissolved organic C and CH₄ production, Plant Soil, 417,
- 639 231-241, 2017.
- 640 Yu, C., Xie, X., Yang, H., Yang, L., Li, W., Wu, K., Zhang, W., Feng, C.,
- Li, D., Wu, Z., and Zhang, L.: Effect of straw and inhibitors on the
- fate of nitrogen applied to paddy soil, Sci. Rep-UK, 10, 21582,
- 643 2020.
- 644 Yu, C., Zhang, L., Yang, L., Bai, W., Feng, C., Li, W., Wu, K., Li, D., and
- Wu, Z.: Effect of a urea and urease/nitrification inhibitor
- combination on rice straw hydrolysis and nutrient turnover on rice
- growth, Bioresources, 16, 3059-3074, 2021.
- Zhang, H., Xue, Y.G., Wang, Z.Q., Yang, J.C., and Zhang, J.H.: An
- Alternate Wetting and Moderate Soil Drying Regime Improves Root
- and Shoot Growth in Rice, Crop Sci., 49, 2246-2260, 2009.
- Zhou, Q., Ju, C.X., Wang, Z.Q., Zhang, H., Liu, L.J., Yang, J.C., and
- Zhang, J.H.: Grain yield and water use efficiency of super rice under
- soil water deficit and alternate wetting and drying irrigation, J. Integr.
- Agr., 16, 1028-1043, 2017.
- Zhou, S., Sun, H., Bi, J., Zhang, J., Riya, S., and Hosomi, M.: Effect of
- water-saving irrigation on the N_2O dynamics and the contribution of
- exogenous and endogenous nitrogen to N_2O production in paddy soil

using ¹⁵N tracing, Soil Till. Res., 200, 104610, 2020.

Zhou, Y., Li, X., and Liu, Y.: Cultivated land protection and rational use in China, Land Use Policy, 106, 105454, 2021.

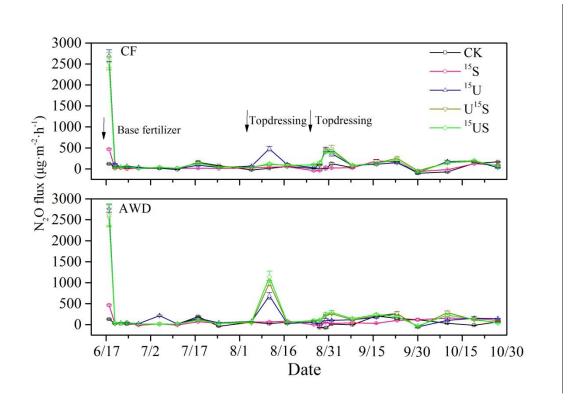
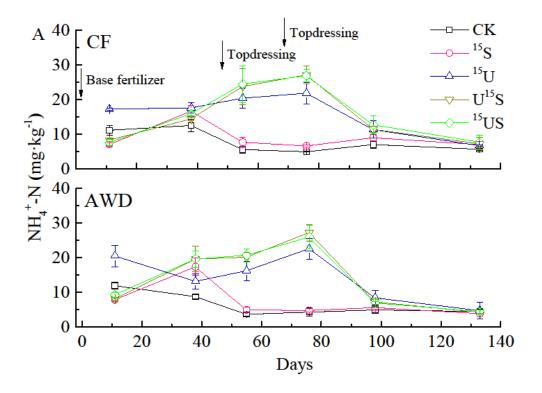
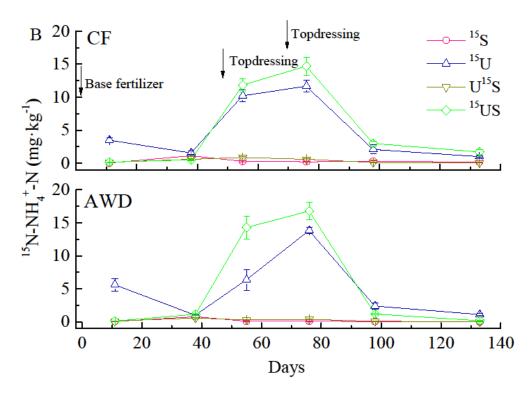




Fig. 1 Effects of different treatments on nitrous oxide (N_2O) flux. Bars represent standard errors (n=3), the same below.

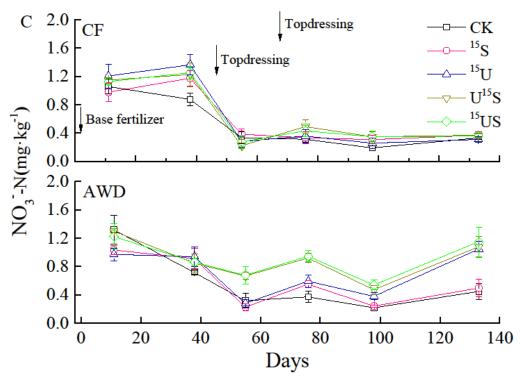
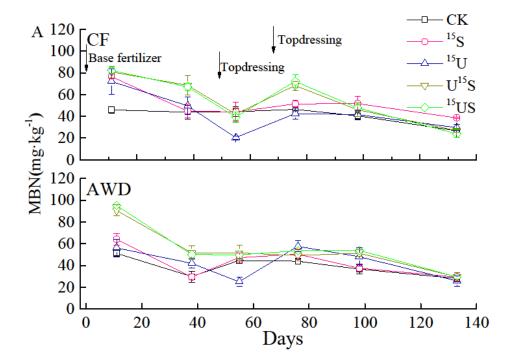



Fig. 2 Changes in soil ammonium nitrogen (NH_4^+ -N) concentration (A), the contribution of ^{15}N markers to NH_4^+ -N (B) and changes in soil nitrate nitrogen (NO_3^- -N) concentration (C) during the growth period of rice (n=3).

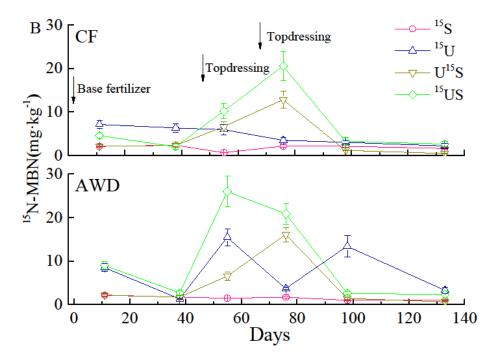


Fig. 3 Changes in the concentration of microbial biomass N (MBN) (A) in the soil during the rice growth period and the contribution of 15 N markers to MBN (B) (n=3).

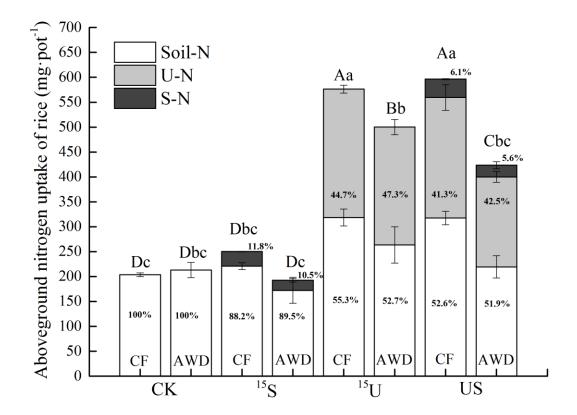


Fig. 4 The source of nitrogen in the aboveground biomass of rice at the maturity stage (n=3). CF: continuous flooding irrigation, AWD: mild alternate wetting and drying irrigation, Soil-N: Soil derived nitrogen, U-N: Urea derived nitrogen, S-N: Rice straw derived nitrogen. Different capital letters indicate significant differences in total nitrogen uptake of rice above ground (P < 0.05), and different lower case letters indicate significant differences in soil nitrogen supply (P < 0.05).

Table 1 Effects of different treatments on cumulative nitrous oxide (N_2O) emissions, rice aboveground biomass, rice yield and yield-scaled N_2O emission. The values denote means \pm standard errors (n=3). Different lowercase letters indicate significant differences (P < 0.05).

Treaments		Cumulative N ₂ O emissions	Rice aboveground biomass	Rice yield	Yield-scaled N ₂ O emission
		kg ha ⁻¹	g pot ⁻¹	g pot ⁻¹	g kg ⁻¹
	CK	1.48±0.06 ef	37.11 ±2.53 f	21.63±1.81 b	0.24±0.01 d
	¹⁵ S	1.24±0.05 f	37.99±2.69 f	20.91±1.63 b	0.21±0.03 d
CF	¹⁵ U	4.02±0.30 c	82.54±10.39 ab	36.56±2.75 a	0.39±0.04 c
	$U+^{15}S$	3.89±0.09 c	87.58±7.70 a	35.98±1.72 a	0.38±0.02 c
	¹⁵ U+S	3.76±0.02 c	80.99±19.54 abc	35.85±2.50 a	0.37±0.03 c
_	CK	1.64±0.15 e	45.31±3.07 ef	22.92±1.07 b	0.25±0.02 d
	¹⁵ S	2.07±0.17 d	34.78±4.86 f	20.42±0.46 b	0.36±0.02 c
AWD	¹⁵ U	4.48±0.12 b	64.44±7.33 bcd	34.81±1.64 a	0.46±0.03 b
	$U+^{15}S$	5.05±0.28 a	62.92±2.49 cde	34.50±1.76 a	0.53±0.01 a
	¹⁵ U+S	5.29±0.25 a	60.44±6.74 de	34.85±1.18 a	0.54±0.03 a

Table 2 Cumulative nitrous oxide (N_2O) emissions in response to irrigation method, nitrogen level, and straw returning. * indicated significant treatment effects within a main category (P < 0.05), *** indicated significant treatment effects within a main category (P < 0.001).

Factors	Cumulative N ₂ O emissions		
Irrigation method (I)	88.576***		
Nitrogen level (N)	1525***		
Straw (S)	6.393*		
I×N	6.275*		
I×S	26.288***		
N×S	1.426		
I×N×S	0.178		