Influences of iron and manganese cycling on alkalinity in the redox stratified water column of Chesapeake Bay

Aubin Thibault de Chanvalon1,2, George W. Luther2, Emily R. Estes2, Jennifer Necker2, Bradley M. Tebo3, Jianzhong Su4,5, Wei-Jun Cai4

1Université de Pau et des Pays de l’Adour, E2S UPPA, CNRS, IPREM, Pau, France.
2School of Marine Science and Policy, University of Delaware, Lewes, Delaware, 19958 USA
3Division of Environmental and Biomolecular Systems, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Current address: Department of Chemistry, University of Washington, Seattle, WA 98195-1700
4School of Marine Science and Policy, University of Delaware, Newark, Delaware, 19716 USA
5State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou, China

Correspondence to: A. Thibault de Chanvalon (aubin.thibault-de-chanvalon@univ-pau.fr)

Abstract. The coastal alkalinity cycle dynamic in coastal environments controls the global burial of carbonate which modulates the ability of the ocean to trap anthropogenic CO2. Twelve high vertical resolution profiles from the temperate Chesapeake Bay estuary during two summers allow precise description of carbonate dynamics over the salinity and redox gradient along with the measurement of the speciation of most redox sensitive elements. In the presence of oxygen, carbonate dissolution, primary production and aerobic respiration are able to explain the evolution of total alkalinity (TA) versus dissolved inorganic carbon (DIC), once corrected for fresh and oceanic water mixing. A significant flooding event in 2018 prevented the trapping of atmospheric CO2 in the estuary and favoured carbonate dissolution to balance DIC consumption from photosynthesis. In oxygen depleted waters, a particularly high ratio of 2.4 mole of DIC is produced per 1 mole of alkalinity versus TA production. This substantial DIC occurred (ΔTAex/ΔDICex = 2.4), that increase relative to TA has not been previously reported in the literature, and that seemed invariant consistent over the two years. The stoichiometric analysis agrees with Mn measurements to explain stoichiometry of TA and DIC changes suggests this characteristic carbonate signature by the critical role of Mn produced by MnO2 reduction followed by Mn carbonate precipitation, while direct observation highlights important Mn recycling in the water column. Our results underline that Fe and Mn are a critical elements element of the alkalinity cycle dynamic in the river dominated environment, especially due to their ability to limit the H2S oxidation and by favouring sulphur burial.
1 Introduction

About a third (30%) of anthropogenic CO₂ emission is rapidly trapped by dissolution in the ocean as dissolved inorganic carbon (DIC) which is dominated by bicarbonate ions (HCO₃⁻; Friedlingstein et al., 2019). At the century time scale, atmosphere-ocean exchanges result in oceanic HCO₃⁻ enrichment not associated with a Ca²⁺ enrichment, in contrast to the HCO₃⁻ released from continental erosion silicate or carbonate weathering (preponderant at thousands to a million year scale, Urey, 1952). This disequilibrium corresponds to an excess of proton release compared to carbonate ions during CO₂ dissolution that is only balanced in the deep ocean by increasing Ca²⁺ production from carbonate dissolution, a process named the chemical carbonate compensation (Boudreau et al., 2018). However, in most shallow waters, where carbonate precipitation largely predominates over dissolution and accounts for 2/3 of buried carbonate (Smith and Mackenzie, 2016), other, localised processes may constrain the carbonate dynamic (Borges et al., 2006; Lohrenz et al., 2010). For example, some calcifying species may slow down their carbonate precipitation in case of pH decrease (so called biological carbonate compensation; Boudreau et al., 2018). As another example, in estuaries, the seasonality of river flow, temperature and continental erosion modulate CaCO₃ dissolution (e.g. Su et al., 2020b), atmospheric CO₂ exchanges (e.g. Borges et al., 2018) or respiratory activity (Abril et al., 2003; e.g. Abril et al., 2003). As recently highlighted (Middelburg et al., 2020), the transfer of carbonate particles over estuaries is poorly estimated due to a sparse dataset (Meybeck, 1987).

In anaerobic environments, sulphate consumption increases the observed alkalinity mainly due to the “charge transfer” from SO₄²⁻ to HCO₃⁻ (Hu and Cai, 2011). Although correct, this approach tends to neglect the roles of Fe and Mn oxides (Middelburg et al., 2020) since their transformation from (oxyhydr)oxides into sulphur or carbonate species does not change the charge they bear. However, metal oxides are critical since they are the main H₂S oxidation pathway that does not regenerate SO₄²⁻ but rather produces S⁰ instead (Findlay et al., 2014; Avetisyan et al., 2021). Their contribution depends on the solid phases buried in the sediment, but should also be revealed by the specific changes of alkalinity and inorganic carbon they produce.

To better constrain the carbonate cycle in temperate microtidal estuaries and the associated HCO₃⁻ dynamics, we sampled a stratified water column in the Chesapeake Bay a dozen times over two campaigns with a high vertical resolution (down to 10 cm). This protocol allows a precise description of carbonate dynamics over a redox gradient along with the measurement of the speciation of most redox sensitive elements. Such sampling can thus illustrate carbonate chemistry on transitioning from oxygenated waters to waters devoid of oxygen as usually only encountered in sediments or in anoxic lakes or seas (e.g. Black Sea). The original observed changes of alkalinity versus DIC-dissolved inorganic carbon changes are interpreted based on a typical geochemical reactions occurring along the redox gradient.
2 Materials and methods

2.1 Sampling

During two sampling campaigns from August 3rd to 9th, 2017 and July 28th to August 3rd 2018, eleven profile casts were conducted in a 25 m water depth unique station in the Chesapeake Bay with a water depth of 25 m (Station 858, 38°58.54'N; 076°22.22'W). The Susquehanna River is the main tributary of the bay representing on average 2/3 of the freshwater input (Zhang et al., 2015). Despite similar season, the two campaigns occurred at very different river flow with about 850 m3s$^{-1}$ in 2017 versus 8500 m3s$^{-1}$ in 2018 due to release of flood waters from the Conowingo Dam, which corresponds to flooding which occurs on average every 3.5 years (return period of 3.5 years, USGS survey).

Each CTD cast was performed during low or high tide slack periods. An oxygen sensor (Clark electrode, SBE Inc.; detection limit of 1 μM) and fluorescence sensor (Eco-FL Fluorometer, WETLabs) were part of the CTD Rosette to take measurements during sampling. Also, a submersible all plastic pump profiler was attached with the pump near the sensor orifices allowing measurement and sampling at a resolution of a few centimetres over 25 m water depth. Water was pumped to the deck within 1 minute and water passed through a flow through voltammetry system measuring continuously O$_2$, Mn(II), Fe(II), organically complexed Fe(III), FeS clusters, H$_2$S and polysulfides (Hudson et al., 2019). When redox interfaces were identified, samples were filtered through an acetate cartridge filter (pore size 0.45 μm) for pH and inorganic carbon parameters, which were processed onboard within a few hours after sampling in order to conserve chemical speciation. The pump profiler system was cleaned with DI deionised water (18 MΩ) onboard the deck of the ship after deployment. No coating effects were observed with the pump system.

2.2 Discrete Measurements

For each sample, all redox species were determined in the through flow voltammetry system using cyclic voltammetry with a 100 μm diameter Au/Hg amalgam PEEK microelectrode prepared according to Luther et al. (2008) connected to a DLK-60 electrochemical analyser from Analytical Instrument Systems Inc. The detection limit of this method is 0.2 μM for sulfide and polysulfides. Discrete samples for the determination of NO$_2^-$, Fe and Mn species were filtered through nylon luer-lock syringe filters (Millipore, 0.20 μm filters). Iron was measured based on the ferrozine method (Stookey, 1970): after HCl acidification and an optional reduction step with hydroxylamine hydrochloric (final concentration 0.7 M) for 1 hour, ammonium acetate (final concentration 0.5 M) and ferrozine (final concentration 1 mM) were added and absorbance at 562 nm was read with a diode array spectrophotometer (Hewlett Packard 8452B). Limit of detection is 100 nM for Fe(II). Shipboard nitrite determination was performed using the method of Grasshoff (1983). To 25 ml of sample, 0.5 ml of 58 mM sulfanilamide in 10% v/v HCl and 0.5 ml of a 44 mM N(1-naphthyl)ethylenediamine dihydrochloride solution were added. Samples with added reagents were shaken and left to sit for 15 min, followed by UV–Vis analysis at 540 nm using a 10-cm cell to increase detection limits. Calibration curves were constructed using sodium nitrite. Limit of detection is 10 nM for NO$_2^-$.
Dissolved manganese was determined by displacement of a Cd(II)-porphyrin complex with Mn(II) to form the Mn(II)-porphyrin complex (Ishii et al., 1982). Mn(III) species were identified based on slower reactivity with the Cd complex (Madison et al., 2011) as modified in Thibault de Chanvalon and Luther (2019). Alternatively, Mn(III) species were identified after HCl treatment (down to pH=1.5) followed by filtration in order to flocculate and eliminate the dissolved manganese bound to humic material by filtration (Oldham et al., 2017b). Limit of detection is 50 nM for Mn(II). MnOx was measured on 20 mL samples of suspended material retained on 0.2 µm filters by the Leucoberbelin blue (LBB) method (Jonæs et al., 2019). Four millilitres of a reagent solution ([LBB]= 78 μM, [acetic acid]=14mM) react with the filter and the absorbance is read at 624 nm. KMnO₄ was used to calibrate the LBB method which allows the calculation of the electron equivalents obtained from particulate MnOx. Results are given in as MnO₂ equivalent with a limit of detection of 0.1 µM and an uncertainty below 5%.

The DIC samples were preserved in 250-mL borosilicate glass bottle with 50 μL saturated HgCl₂ solution. The total alkalinity (TA) samples were not poisoned to prevent HgS precipitation and H⁺ release in anoxic and low salinity waters (Cai et al. 2017). The DIC samples were measured by a nondispersive infrared analyzer (AS-C3, Apollo Scitech) within a week (Huang et al., 2012). The total alkalinity (TA) was analyzed by Gran titration in an open-cell setting (AS-ALK2, Apollo Scitech) inboard within 24 h of collection (Cai et al. 2010a). The DIC samples were measured by a nondispersive infrared analyzer (AS-C3, Apollo Scitech) within a week (Huang et al., 2012). The precision for DIC and TA was about 0.1%. Both DIC and TA measurements were calibrated against certified reference materials (CRMs Batch 163 and Batch 173 provided by Andrew Dickson of the Scripps Institution of Oceanography). The pH samples were measured onboard at 25 °C within 1 h of collection using an Orion Ross glass electrode, and calibrated with NIST standard buffers. The pCO₂, calcite saturation and TA were calculated from measured DIC and TA with pH via an excel sheet implemented with values from Millero (1995) and further validated using CO2sys program. The measured TA was found highly correlated to TAcalculated with CO2sys using pH and DIC as input value (r² = 0.995 and 0.998, slope = 1.03) suggesting 0.995 and 1.017 for 2017 and 2018 campaign respectively) and their difference was always below 30 µM with an average of 7.5 µM for 2017 and of 22.2 µM in 2018. These results suggest low effect of contribution of non-carbonate species (e.g. nitrite, ammonium or organic alkalinity matter (Cotovicz Jr. et al., 2016)) and measured TA was used for the interpretation.

2.3 Models of biogeochemical process on TA and DIC

2.3.1 Observed changes induced by biogeochemical process

To distinguish TA and DIC changes produced by identification of biogeochemical processes from scatter plots: the river/ocean mixing hammer, the excess of TA and DIC, noted TAex and DICex have to be calculated. This excess corresponds to the cumulative effects from all unknown biogeochemical processes observed, how and the spear.

As total concentrations, TA and DIC are conservative during mixing and can be easily calculated as which means that they obey to the deviation from the river-ocean mixing line after identification of riverine and oceanic endmembers. In contrast, pH and law:
\[C = C_A \chi + C_B (1 - \chi) \]
\((1) \)

With \(C_A \) and \(C_B \) the concentration at the two endmember locations A and B; \(C \) is the concentration of the mixture and \(\chi \) is the contribution of endmember A relatively to the contribution of endmember B. In case of two water masses at the locations A and B, respectively, any pairs of elements conservative by mixing whose concentrations of individual C species are not conservative. The oceanic endmember selected in this study, C and D can be defined by the endmember \(C_A, D_A \) at the location A and \(C_B, D_B \) at the location B obeys the equation 2:

\[C = C_B - D_B \frac{C_A - C_B}{D_A - D_B} + D \frac{C_A - C_B}{D_A - D_B} \]
\((2) \)

Equation (2) demonstrates that mixing of two conservative elements between two endmembers results in a straight line passing through the points of coordinates \((C_A;D_A)\) and \((C_B;D_B)\). This “endmember driven” interpretation is illustrated in Fig. 1a and stands on the implicit assumption that the endmembers are stable over time—they should be hammer-fixed nails. In an environment where at least one of the endmembers changes too fast, equation 2 is not as valuable. Endmember changes can occur due to processes external to the system studied, such as a river endmember varying according to weathering inputs and biogeochemical reactions in rivers and drainage basins (Officer, 1979; Boyle et al., 1974).

Figure 1: Theoretical scatter plot of two species (dashed and dotted line) conservative by mixing. A) two possible “endmember driven” interpretations. B) two “reaction driven” interpretations. A segment, as represented by the dashed line, can be interpreted as a conservative mixing between two endmembers as described in A), the hammer-fixed nails interpretation, or as the result of a geochemical signature as indicated by the arrow in B), the spear interpretation. A curve, as represented by the dotted line, can be interpreted as an excess (from biogeochemical process or additional source) superimposed to a mixing as described by the arrow in A), the bow interpretation, or as a succession of multiple geochemical reactions as described by the arrows in B), the spears interpretation.

In the case of an estuary with stable endmembers and without significant lateral effluents, any deviation from the mixing line signals the occurrence of one or more biogeochemical processes easily identified in a scatter plot; the bow interpretation (the arrow between the dashed and the dotted line in Figure 1A). Due to the different rate of mixing and rate of reaction and because these variables are not separated in the differential equation describing this behaviour, mathematics alone does not help further in the interpretation. However, the difference between the observation and the mixing prediction is indicative of
the non-conservation production or removal of the element(s) being studied. In our case, this deviation is measured using the observed TA and DIC vs those predicted from their conservative behaviour based on salinity as described by equations 1 and 2. These deviations are usually called the excess of TA (or TAex) and the excess of DIC (or DICex). In our case, the oceanic endmember was the one proposed by Su et al. (2020a) for both DIC and TA. However, the upstream estuary endmember from Su et al. (2020a) corresponded to the Chesapeake Bay in 2016 with a river flow of only 226 m3/s. The two August campaigns described here are characterised by much higher river flow. Since large The oceanic endmember varies mainly with season (Cai et al., 2020) and a change of 50 µM results in 5% uncertainty on the slope of the mixing line. Large variations exist in the upstream estuary endmember mainly due to changes of weathering intensity and riverine discharge (Meybeck, 2003; Joesoef et al., 2017). we slightly modify the TA and a one-off endmember of Su et al. (2020a) has to improve the fit with the in situ measurements with that the lowest measured salinity (Fig. A1). Such changes were not necessary for DICex calculation. The upstream endmember is not a river endmember (Su et al., 2020a) but corresponds to a salinity above 1.5 preventing any interpretation for biological activity in the fresh water part of the estuary (Meybeck et al., 1988).

Compared However, it corresponds to Su et al. (2020a), a larger water mass pool, less sensitive to short term changes and thus more likely to satisfy the condition of stability of the endmember.

In case of a water mass isolated from any exchange, including air-water exchanges, but submitted to a given reaction with C and D being the reactants, E and F the reaction products, and α being the stoichiometry of species (equation 3), the variation of the species C and D obeys equation 4, with ν the rate of the reaction, which can be determined in equation 5,

$$a_C C + a_D D = a_E E + a_F F$$

$$\frac{dC}{dt} = -a_C \nu \text{ and } \frac{dD}{dt} = -a_D \nu$$

$$\frac{dC}{dD} = \frac{a_C}{a_D}$$

Equation 5 indicates that the ratio of small variations over time of two species is equal to the ratio of the stoichiometry of the reactions governing their transformations, whatever the exact rate of the reaction is. In our case, in a plot representing TAex versus DICex, the local slope change associated is mostly insignificant (TAex/DICex differs by less than 0.2) and represents the ΔTAex/ΔDICex over time would be equal to the stoichiometry of the occurring reactions, which corresponds to the “reaction driven” interpretation or the spear interpretation as illustrated in Fig. 1B. The uncertainty of our description. The ΔTAex/ΔDICex is equal to the sum of the relative uncertainty of ΔTAex and ΔDICex. Posing ΔTA as the change of TA measured, ΔS the change of salinity and sml TA, the slope of the mixing line for TA, we have ΔTAex = ΔTA – sml $TA \times \Delta S$. Uncertainty on ΔTA and ΔS are negligible to the relative uncertainty of slope ml and posing $\delta(x)$ the uncertainty on x, we get:

$$\frac{\delta (\Delta TAex/\Delta DICex)}{\Delta TAex/\Delta DICex} = \frac{\delta (\Delta TAex)}{\Delta TAex} + \frac{\delta (\Delta DICex)}{\Delta DICex} = \frac{\delta(sml_TA)}{sml_TA} + \frac{\delta(sml_DIC)}{sml_DIC} = 0.1$$

6
However, if the temporal evolution of water masses is visible in space, it requires that some mixing occur which puts into question the validity of equation 5 defined for time variations alone. By the way, equation 6 describes the behaviour of a solute, conservative by mixing, in case of turbulent diffusion mixing (sometimes called eddy diffusion or diffusive like mixing) superimposed on a chemical reaction as described in equation 3, with D the effective diffusion coefficient:

\[
\frac{dC}{dt} = -D \frac{d^2C}{dx^2} + \alpha C v
\]

(7)

Assuming steady state, i.e. \(\frac{dC}{dt}=0 \), applying equation 7 to two different species sharing the same reactions at rate \(v \), we can express the rate of the reaction as

\[
-\frac{v}{D} = 1 \frac{d^2C}{dx^2} \frac{1}{\alpha C} D \frac{d^2D}{dx^2}
\]

By integration with respect to \(x \), it becomes equation 8:

\[
\frac{dC}{dx} = \alpha \frac{C D}{D} \frac{dD}{dx} + G
\]

(8)

This is valuable at any position, with \(G \) being the constant rising from the integration. If, at the initial location, mixing is negligible then equation (5) is valuable, so \(G=0 \) and equation (8) is equivalent to equation (5), but particularly valuable in the case of turbulent diffusion mixing at steady state.

Therefore, away from atmospheric exchanges, in case of turbulent diffusion mixing and steady-state, TAex and DICex correspond to an excess from a sum of biogeochemical reactions spread all over the estuary and water column that can therefore be decomposed into several components induced by reaction zones. In each zone, the local ΔTAex/ΔDICex ratio will equal the apparent stoichiometry of a combination of the biogeochemical reactions occurring in this zone. In case of multiple localised geochemical reactions, ΔTAex and ΔDICex simultaneous reactions in the same zone, by posing \(\alpha_i^j \) the stoichiometry of the \(i^{th} \) reaction concerning the reagent \(C \) and \(\nu_i^j \) the reaction rate of the \(i^{th} \) reaction, we obtain:

\[
\alpha_i v = \sum_i \alpha_i^j \nu_i^j
\]

To maintain a global reaction rate independent to the species we have

\[
\nu = \sum_i \nu_i^j
\]

so

\[
\alpha_i = \frac{1}{\nu} \sum_i \alpha_i^j \nu_i^j
\]

(9)

Equation 9 indicates that the apparent stoichiometry in a given zone corresponds to the sum of the stoichiometric coefficients of each reaction weighted by the relative rate of each reaction. Therefore, to estimate the relative rate of each
reaction to the observed local changes of TAex, DICex and AOU or H2S, a linear combination of reactions is calculated. This combination has to fit 3 equations (one for each parameter) which allows a maximum of 3 reactions to be used to solve the system. A limited number of reactions is selected as candidates based on the discussion (see Table 1 and sections 4.2 and 4.3).

Then, the system is solved with the minimum possible reactions and the weighted coefficients, v_i/v, are calculated.

2.3.2 TA changes indicated by reactions’ stoichiometry

The simplest way to calculate the TA changes induced by individual, localised, geochemical reactions (ΔTAex) is to do a direct look to reaction stoichiometry. Indeed, it is possible to mathematically separate acid active and acid inactive species. Active species are defined as species forming acid-base couples whose one form is able to exchange protons during the titration of a sample down to pH 4.5 either as electron donor or as acceptor, such as NH$_3$ or HCO$_3^-$ while inactive species include Cl$^-$, SO$_4^{2-}$ and Ca$^{2+}$ among others.

Writing z, the charge held by a species, the electroneutrality of water can be written as Eq. (1):

$$\sum z_{ inactive} + \sum z_{ active} HCl + B^- \rightarrow BH + Cl^-$$

The total alkalinity (TA) corresponds to the quantity of acid added to titrate a solution down to pH 4.5 (Dickson, 1981). It can be described by the equation (10), with the example of HCl as acid and B^- any titrated base:

$$0 = \sum z_{ inactive} + \sum z_{ active} HCl + B^- \rightarrow BH + Cl^-$$

The total alkalinity (TA) corresponds to the quantity of acid added to titrate a solution down to pH 4.5 (Dickson, 1981), according to Eq. (2), with the example of HCl as acid and B^- any titrated base:

$$HCl + B^- \rightarrow BH + Cl^-$$

Assuming a complete reaction, the quantity of acid added is equal to the negative charges initially present in the sample consumed from the active positive charges added to the species pool (Cl$^-$ is inactive). Indeed, the titration transfers the charges from the acid active pool to the acid inactive pool initially present in the sample. Thus, the total alkalinity corresponds to the loss of negative charges (or gain of positive charges) for active species initially present in the sample produced by the pH change from the initial pH = pHini to pH = 4.5 (Eq. (3)). Writing $z^p_{i pH}$, the charges held by any species i, initially present in the sample at a given pH, we get equation (11):

$$TA = \sum p_{initial} \sum z_{initial} + \sum p_{measured} \sum z_{measured} = \sum z^p_{i pH=4.5} - \sum z^p_{i pHini}$$

Equation (1) can be reorganized and combined with Eq. (3) leading to Eq. (4).

However, the electroneutrality of water induces:

$$\sum z_{ inactive} = -\sum z_{ active} = -\sum z_{ measured} = -\sum z_{ initial} \sum z^p_{i pHini} = 0$$
The total alkalinity (TA) is given by the sum of charges at each species present in the sample at pH = 4.5. For example, in a 0.0020 M NaOH solution, its TA is simply 0.0020 M as at pH = 4.5, \(TA = (Na^+ + H^+) - \left(OH^- \right) = 0.0020 + 10^{4.5} - 10^{-14.5} = 0.0020 \) M. For natural waters, most of the time, the only charged active species at pH = 4.5, are \(H_2PO_4^- \) and \(NH_4^+ \). In that respect, whatever the initial pH and the acid-base equilibrium of species in the sample, the sum of phosphate species will count negatively and the sum of ammonium species will count positively. Strictly speaking, at pH=4.5, acid species with pKa between 2.5 and 6.5, such as \(F^- \) and \(NO_2^- \), would be only partially titrated and the charge equals their concentration multiplied by a correction factor of \((1 + 10^{pKa-4.5})^{-1} \), but this correction can be neglected to a first approximation. The Eq. (4) corresponds to those published in Soetaert et al. (2007) or Wolf-Gladrow et al. (2007), whose equation 32 can be find back replacing the two term in Eq. (4) by:

\[
\sum z_{inactive} = [Na^+] + 2[Mg^{2+}] + [Ca^{2+}] + [K^+] + 2[Si^{2+}] + \ldots = [Br^-] = [Cl^-] \\
[NO_2^-] = 2TSO_4^- - THF = THNO_2 = \ldots
\]

where \(TPO_4 = \{H_3PO_4\} + \{H_2PO_4^-\} + \{HPO_4^{2-}\} + \{PO_4^{3-}\}, \) \(THF = \{F^-\} + \{HF\}, \) and \(THNO_2 = [NO_2^-] + [HNO_2] \). However, the Eq. (4) is more synthetic and more general. For example, in suboxic water, specific species such as polysulfides (as \(HS_2^- \), Rickard and Luther, 2007) and in highly productive environments, carboxylic groups from DOC can be easily added as soon as the bearing charges at pH = 4.5 are known. Finally, note that the definition of active species used differs from the weak acid-base couple definition, since our definition classifies the weak acid-based couples with pKa between –1.75 and 4.5 as inactive species, but the reasoning would be similar if the term active/inactive species is changed by weak/strong acid-base couple.

2.3.3 Linear combinations of reactions

To estimate the participation of each reaction to the observed changes of TAex, DICex and AOU or H2S, a linear combination of pre-selected reactions is calculated. This combination has to fit 3 equations (one for each parameter) which allows a maximum of 3 variables to be used to solve the system. Each reaction being one variable, a limited number of reactions is selected as candidates based on the discussion (see section 3.3.2). Then, the system is solved with the minimum possible reactions.
3 Results and Discussion

3.1 Water column stratification

High-resolution (<1 m) profiles of carbonate salinity and temperature plotted in Fig. 2 shows the stratified water column at station 858. Carbonate and redox chemistry are plotted against salinity in Fig. 3. These data result from the 11 CTD casts performed over 1 week during each campaign and correspond to depths ranging from 20.7 to 25 meters. While direct plots depth, Plots against depth generate noisier profiles that are less informative shown in Appendix 2 while plots against salinity provide consistent information about follow the processes water masses. Despite the overall much lower salinity due to a near 7-fold river flow increase in 2018 than 2017 (5800 m s\(^{-1}\) in 2018 versus 850 m s\(^{-1}\) in 2017), similar zonation of the water column occurred.

A surface layer sampled only in 2018 is visible in the top 3 meter depth. It presents highly variable temperature and oxygen concentration and oversaturation of pCO\(_2\) indicating export to the atmosphere. Below, at 3 meter depth, a subsurface layer (named primary production zone or PP in Fig. 4) is characterized by high amount of O\(_2\) (about or above 100% saturation), high pH (above about 8; 8.11 ± 0.07, n=13 in 2017 and 7.804 ± 0.08, n=14 in 2018), high day to day temperature variation (above 1 °C between different days) and low pCO\(_2\) (below atmospheric CO\(_2\) of 400 µatm). This signature corresponds to important atmospheric exchange and 407 µatm (Chen et al., 2020); 505 ± 75 µatm, n=13 in 2017 and 770 ± 130 µatm, n=14 in 2018 with minimal value at 110 µatm in 2017 and 205 µatm in 2018). This signature corresponds to important primary production (PP). Fluorescence (not shown) correlates with pH as expected for primary production (pH = Fluo (mV) x 13 +7.14, \(r^2=0.8\) in 2017 and \(r^2=0.9\) in 2018). DIC\(_{\text{ex}}\) and TA\(_{\text{ex}}\) reach their minimal value in this surface layer. While DIC\(_{\text{ex}}\) minimum is similar between the two campaigns (78 ± 17 µM, n= 13 in 2017 and 76 ± 10 µM, n=14 in 2018); TA\(_{\text{ex}}\) minimum is much lower in 2017 (7 ± 3 µM, n=12) than in 2018 (48 ± 7 µM, n=14).
Below, with increasing depth, an important increase of pCO$_2$ accompanying the decrease of O$_2$, pH and temperature is visible. A relatively invariable low O$_2$ oxygen zone (called ILO in Fig. 1) is here defined by the depth salinity invariance of O$_2$ concentrations, and corresponds to a concentration of about 30 ± 3 µM, n=15 in 2017 and 140 ± 5, n=16 µM in 2018. Other species are also relatively stable for this depth such as pCO$_2$, at about 2500 ± 150 µatm, n=10 in 2017 and 4000 ± 100 µatm, n=16 in 2018, and pH, about 7.428 ± 0.01, n=13 in 2017 and 7.437 ± 0.02, n=16 in 2018. Deeper, where the oxygen is not detectable (< ~ 1 µM), the so-called suboxic zone corresponds to a pH minimum at 7.2 ± 0.01, n=40, similar in 2017 and 2018 that generates a pCO$_2$ maximum. The deepest layer is a sulfidic layer ([H$_2$S] = 11.2 ± 2.8 µM n=36) in which the pH seems quite stable at 7.433 ± 0.01, n=29 and 7.432 ± 0.01, n=9 in 2017 and 2018 respectively. The main changes between the two campaigns correspond to a greater oxygen penetration in 2018, preventing nitrite accumulation, and to the appearance of a surface layer (with salinity below 3) that stands above the primary production zone in 2018.

Figure 1: Superimposed carbonate and redox chemistry profiles over 11 casts. Simple mathematic transformation allows to plot all variable on the same scale, lines are only here to guide eyes. Base line for temperature is 25 °C and base line for pH 7.175. For example, pH maximum value of 400 correspond to a pH=400/300+7.175=8.5, a reading at 100 for pCO$_2$÷10 indicates a value of pCO$_2$=1000 µatm.
The Ca2+ concentrations observed by Su et al. (2021) and during the 2018 cruise (data not shown) vary linearly with salinity (calcium excess stay below 200 µM or 10% of total Ca). Assuming similar behaviour in 2017, calculations show that the whole water column (except 4 samples from the PP zone) is under saturated (0.36<Ω\textsubscript{Cal}=1; mean=0.68) with respect to calcite in 2018, while undersaturation is only valid below S=10 in 2017. The main changes between the two campaigns correspond to a greater oxygen penetration in 2018, especially visible in the ILO zone. Additionally, a surface layer (with salinity below 3) is visible above the primary production zone in 2018 but is related to the more superficial sampling in 2018.

Figure 3: Superimposed carbonate and redox chemistry profiles of 11 casts done in august 2017 (left) and 11 casts done in august 2018 (right). Linear mathematic transformation allows to plot all variable on the same scale, lines are only here to guide eyes. In particular T = 25 + ΔT/300 and pH = 7.175 + ΔpH/300. For example, pH maximum value of 400 correspond to a pH=400/300+7.175=8.5, a reading at 100 for pCO\textsubscript{2}÷10 indicates a value of pCO\textsubscript{2} = 1000 µatm.
3.2 Intermediate redox species

The development of the suboxic zone during summer (Su et al., 2021) and the regularity of this development over the years (Sholkovitz et al., 1992; Trouwborst et al., 2006; Lewis et al., 2007; Cai et al., 2017; Oldham et al., 2017a) requires the presence of species able to rapidly oxidise the \(\text{H}_2\text{S} \) mixing upward and to reduce the \(\text{O}_2 \) mixing downward. The three main redox couples known to play this role, \(\text{NO}_3^- / \text{NO}_2^- \), \(\text{MnO}_x^- / \text{Mn}^{2+} \) and \(\text{Fe}^{3+} / \text{Fe}^{2+} \) are described in the Fig. 24 by the superimposition of all cast results against salinity. Four representative casts are plotted in the Fig. 2. \(\text{NO}_2^- \) reaches a maximum in the ILO zone, at low but measurable oxygen concentrations. Because of the presence of oxygen, the \(\text{NO}_2^- \) production would be more likely associated with nitrification of the \(\text{NH}_4^+ \) diffusing upward rather than denitrification despite the possibility of reducing conditions occurrence in micro niches. Just below oxygen depletion, in the suboxic zone, \(\text{MnO}_x^- \) reaches a maximum probably produced by the \(\text{Mn}^{2+} \) diffusing upward that is biologically oxidized by very low, undetected, \(\text{O}_2 \) concentration (Clement et al., 2009). Additionally, \(\text{Mn}^{2+} \) could be oxidized by the nitrite diffusing downward (thermodynamically favourable (Luther, 2010)), it is also possible that the Mn oxidation is produced by chemodenitrification i.e. by reduction of (not measured) nitrate into nitrite.

The MnOx decrease fits perfectly to the \(\text{Mn}^{2+} \) increases in sulfidic conditions (Fig. 2) according to the reduction of settling MnOx by \(\text{H}_2\text{S} \). The increase of total manganese concentration with depth may result from sedimentary efflux or dissolved manganese trapping in more stagnant bottom water. The primary production zone is depleted in dissolved Mn(II) and Mn(III), and shows an average value for solid MnOx (0.7 ± 0.1 µM, n=4) and \(\text{NO}_2^- \) (2.1 ± 0.1 µM, n=18). In 2018, iron speciation was investigated in the primary production zone showing an important iron pool (1.6 ± 0.1 µM, n=9) dominated by solid Fe(II) (95 ± 2%). Below, in the ILO zone, \(\text{NO}_2^- \) reaches a maximum plateau at 5.3 ± 0.2 µM, n=11 in 2017 that is not visible in 2018. MnOx dominates the Mn pool in the ILO zone with concentration of 1.8 ± 0.1 µM, n=14 in 2017 and 1.3 ± 0.1 µM, n=13 in 2018.
0.2 µM, n=3 in 2018). Fe(II) represents only 49% ± 13, n=4 of the iron pool (for a total iron concentration of 2.0 ± 0.4 µM, n=4) in 2017 while it represents 87 ± 5%, n=4 of the iron pool in 2018 (for a total concentration of 1.2 µM ± 0.2, n=4). Just below oxygen depletion, in the suboxic zone, MnOx reaches a maximum (2.0 ± 0.1 µM, n=25 in 2017 and 2.9 ± 0.4 µM, n=12 in 2018). During both campaigns, the sulfidic layer is characterised by the absence of NO₂⁻ and MnOx while dissolved manganese concentration increases up to 7.7 ± 0.8 µM, n=15 and the iron pool increases to 5.0 ± 0.7 µM, n=13. No Mn(III) was detected with the porphyrin kinetics method (Thibault de Chanvalon and Luther, 2019) but about 30% of the total dissolved manganese flocculated after acidification down to pH 1.5 when analysed in 2017. Although similar recycling is expected for iron, fresh precipitates are harder to catch due to higher particles content, and, in our study, lower dissolved total Fe concentration. Some features are discernible for a single cast (Fig. A2), but overall the only merging picture is an increase with proximity to the sediment interface for dissolved Fe(III) and Fe(II) and solid Fe(III) and Fe(II) (Fig. 2 indicating the existence of Mn(III)).

3.2 River flow control

In rivers, the carbonate system equilibria depend on processes as varied as weathering intensity, draining bedrock and in situ biological activities. The inspection of dissolved inorganic carbon (DIC) changes versus total alkalinity (TA) changes is a frequent and efficient method to unravel the origin of these changes whereas other related parameters such as pCO₂ or pH are non-conservative during mixing and harder to interpret (e.g., Cai et al. 2017). However, due to river mixing with ocean waters, both TA and DIC change with salinity (S) as observed in the Chesapeake Bay during our campaigns (r²>0.95, Fig. A1). The calculation of the excess of TA and DIC, named TAex and DICex (see section 2.3.1), is required to interpret further biogeochemical processes (Su et al., 2020b).
DICex increases progressively with depth up to about 330 µM and 350 µM at 25 m depth in 2017 and 2018 respectively (Fig. 1). The plot of TAex versus DICex (Fig. 3a) shows at the lowest observed salinity (7.1 in 2017 and 1.7 in 2018), an intercept for TAex = 0 corresponding to DICex~40 µM. This offset is within the uncertainty of the endmember calculation even if slight DICex background enrichment has been modelled (Shen et al., 2019) resulting from faster atmospheric equilibration of O₂ than CO₂ after respiration reactions. Interestingly, the relative changes of DICex and TAex, further named ΔTAex and ΔDICex, does not depend on the endmember calculation and their ratio presents much lower uncertainties (about 0.1) facilitating their interpretation. In 2017, TAex stayed almost constant up to the oxic zone (Fig. 3a) with a ΔTAex/ΔDICex ratio of 0.1 ± 0.1 which indicates a net aerobic respiration (AR) (theoretical slope of ΔTAex/ΔDICex = 0.15 see Table 1 and Fig. 3c). Discussion

The station 858 of the Chesapeake Bay shows very similar water column stratification between summer 2017 and summer 2018 despite a 10-folder differences in freshwater discharge rates (Fig. 3 and Fig. 4). Major features are: first, a surface layer characterized by intense atmospheric exchanges only sampled in 2018. Below, at about 3 meter depth, a subsurface layer associated with high primary production (PP zone) with high pH about 8, oversaturation of dioxygen and low CO₂ partial

Figure 3: Description of the Taex/DICex/AOU system. (a) and (b) panels show samples measured along with interpretative slope discussed in the main text. Panels (c) and (d) show theoretical slope of Taex/DICex. (c) from seven primary redox reaction in seawater (pH=8.2) described in Soetaert et al. (2007). (d) from combination of reaction discussed in the main text.
pressure (down to 110 µatm). Below, a low oxygen layer with invariant concentration of most species surveyed (the invariant low oxygen (ILO) zone) is characterized by significant nitrite accumulation in 2017 (Fig. 4) probably due to oxidation of NH₄⁺ diffusing upward and/or produced by \textit{in situ} remineralisation. This feature is not visible in 2018 probably because the higher O₂ concentration in 2018 accelerates nitrite oxidation into nitrate and prevents any significant accumulation. Below, the suboxic zone, with neither O₂ nor H₂S detectable, is characterized by an increase of MnOx concentration and a pH minimum. This MnOx maximum can be explained by the upward diffusing Mn²⁺ that is biologically oxidized by the downward diffusing O₂, even at low, undetectable, concentration (Clement et al., 2009). Additionally, Mn²⁺ could be oxidized by the nitrite or the nitrate (not measured) diffusing downward (thermodynamically favourable (Luther, 2010)). Compared to the ILO zone, the suboxic MnOx maximum corresponds to an increase of 0.2 µM in 2017, while it is much more marked in 2018 with an increase of 1.6 µM (Fig. 4). This difference could come from a faster Mn²⁺ oxidation produced by the steeper oxygen gradient above the suboxic zone and by the thinness of the suboxic layer in 2018. Finally, in the deeper and sulfidic layer, the MnOx disappearance corresponds to the Mn²⁺ increases (Fig. 4) according to the reduction of settling MnOx by H₂S. This MnOx maximum can be explained by the upward diffusing Mn²⁺ that is biologically oxidized by the downward diffusing O₂, even at low, undetectable, concentration (Clement et al., 2009). Additionally, Mn²⁺ could be oxidized by the nitrite or the nitrate (not measured) diffusing downward (thermodynamically favourable (Luther, 2010)). Compared to the ILO zone, the suboxic MnOx maximum corresponds to an increase of 0.2 µM in 2017, while it is much more marked in 2018 with an increase of 1.6 µM (Fig. 4). This difference could come from a faster Mn²⁺ oxidation produced by the steeper oxygen gradient above the suboxic zone and by the thinness of the suboxic layer in 2018. Finally, in the deeper and sulfidic layer, the MnOx disappearance corresponds to the Mn²⁺ increases (Fig. 4) according to the reduction of settling MnOx by H₂S. The concentration increase of the manganese pool and of the iron pool with depth in the suboxic and sulfidic layers probably results from important sedimentary efflux.

4.1 Validity of the “reaction driven” interpretation in the context of station 858

The simultaneous and high-resolution sampling of multiple carbonate parameters and redox species gives us the rare opportunity to investigate in detail the interaction between carbonate species and redox sensitive elements. In the Chesapeake Bay, main changes of DIC and TA can be explained by mixing between upstream and oceanic endmembers (Appendix, Fig. A1). This “endmember driven” interpretation (see section 2.3.1), leads to the calculation of an excess of DIC and TA, \(\text{DIC}_{\text{ex}} \) and \(\text{TA}_{\text{ex}} \), relative to the mixing line and shown in Fig. 5a. As detailed in section 2.3.1, these excesses can be explained either by the occurring processes leading to a “reaction driven” (or spear) interpretation (Fig. 1b), or by mixing with an additional, third, endmember leading to an “endmember driven” (or hammer and bow) interpretation (Fig. 1a). In station 858, the steep gradient observed, for example the pH and pCO₂ gradient in the PP zone, the O₂ and NO₂⁻ gradient above the suboxic zone and the Mn, Fe and H₂S gradient at depth suggest that \textit{ongoing in situ} processes control the changes of concentrations rather than the time-dependent endmember variability or the existence of an unknown third endmember. Additionally, the \(\text{TA}_{\text{ex}} \) versus \(\text{DIC}_{\text{ex}} \) plot (Fig. 5a) shows steep changes of direction while a preponderance of mixing would produce more progressive changes. Finally, at depth, Fig. 5a shows a similar slope for both years studied (\(\Delta \text{TA}_{\text{ex}} / \Delta \text{DIC}_{\text{ex}} = 2.4 \)) rather than a similar \(\text{TA}_{\text{ex}} \) and \(\text{DIC}_{\text{ex}} \) concentration, which reinforces the validity of the “reaction driven” interpretation.
Assuming 1) that mixing is efficiently described by turbulent diffusion mixing, 2) that the measured concentrations correspond to a steady state – no gradient change over the 1 week sampling, 3) that the concentration at the starting point does not vary with time – as observed during one week sampling and 4) that the samples are isolated from atmospheric exchanges – sampling focus below 3 meters depth; the “reaction driven” interpretation (section 2.3.1) permits interpretation of the concentration changes as a linear combination of the stoichiometry of several chemical reactions (equation 5). The weighted coefficients of each reaction are equal to the rate of each reaction relative to the sum of the rate of all occurring reactions, \(\frac{v_i}{v} \) (equation 9). This interpretative framework describes the vertical stratification of the water column as the journey of a water mass slowly mixed deeper and deeper and whose DIC and TA are progressively enriched by all chemical reactions they undergo. Accordingly, this interpretation does not identify reactions with minor impact on the carbonate cycle or reactions cancelled later during the journey, for example, PP is frequently cancelled by similar amount or excess of AR. The starting point corresponds to the upstream \((S=1.5)\) endmember at DICex=0; TAex=0. Figure 5a shows a slight DICex enrichment at TAex=0 which reflects a bias from the endmember calculation.

Figure 5: Description of the Taex/DICex/AOU system. (a) and (b) panels show samples measured along with interpretative slope discussed in the main text. Panel (c) shows the theoretical slope of TAex/DICex from combination of reactions presented in Table 1.
4.2 Identification of major reactions in oxygenated water column using ΔTAex/ΔDICex/ΔAOU signature.

In oxygenated water, the ΔTAex/ΔDICex analysis can be improved by looking also to the ΔAOU/ΔDICex ratio (Fig 5b) and establishing a ΔTAex/ΔDICex/ΔAOU signature for each water layer. Then, a linear combination of up to 3 reactions can be fit to the observed ΔTAex/ΔDICex/ΔAOU signature. The main candidate reactions to be combined are: aerobic respiration (AR), primary production (-AR), carbonate dissolution (CD) and nitrification of ammonium (Nit) as presented in the Table 1 and in Fig. 5c. In 2017, the whole oxygenated zone, including the PP zone and the ILO zone, is characterized by a ΔTAex/ΔDICex/ΔAOU = 0.1/1/1 (Fig. 5a and 5b) which corresponds to the occurrence of only net aerobic respiration (AR).

Table 1: Summary of the main net reactions occurring among the different zones of a redox gradient with reactants starting in equilibrium with the atmosphere. The calculations assume Redfield ratio of the organic matter, i.e. γN = 0.156 and γP = 0.4094 (Soetaert et al., 2007).

<table>
<thead>
<tr>
<th>Name</th>
<th>Redox zones</th>
<th>Net Formula</th>
<th>ΔTA</th>
<th>ΔDIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR</td>
<td>Oxic</td>
<td>(CH₂O)₉(NH₄)₂,(H₂PO₄)₂,p + O₂ ➔ γ₉ NH₃ + γ₉ H₂PO₄ + CO₂ + H₂O</td>
<td>0.15</td>
<td>+1</td>
</tr>
<tr>
<td>CD</td>
<td>Any</td>
<td>CaCO₃ + CO₂ ➔ Ca²⁺ + 2 HCO₃⁻</td>
<td>2</td>
<td>+1</td>
</tr>
<tr>
<td>Nit</td>
<td>Oxic</td>
<td>NH₃ + 2 O₂ ➔ HNO₃ + H₂O</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>NR-N₂</td>
<td>Suboxic</td>
<td>(CH₂O)₉(NH₄)₂,(H₂PO₄)₂,p + 0.8 HNO₃ ➔ γ₉ NH₃ + γ₉ H₂PO₄ + CO₂ + 0.4 N₂ + 1.4 H₂O</td>
<td>0.95</td>
<td>+1</td>
</tr>
<tr>
<td>NR-NH₃</td>
<td>Suboxic</td>
<td>(CH₂O)₉(NH₄)₂,(H₂PO₄)₂,p + 0.5 HNO₃ ➔ γ₉ NH₃ + γ₉ H₂PO₄ + CO₂ + 0.5 NH₃ + 0.5 H₂O</td>
<td>1.15</td>
<td>+1</td>
</tr>
<tr>
<td>MnR-MnC</td>
<td>Suboxic</td>
<td>(CH₂O)₉(NH₄)₂,(H₂PO₄)₂,p + 2 MnO₂ + CO₂ ➔ γ₉ NH₃ + γ₉ H₂PO₄ + 2 MnCO₃ + H₂O</td>
<td>0.15</td>
<td>-1</td>
</tr>
<tr>
<td>SR-FeS</td>
<td>Sulfidic</td>
<td>(CH₂O)₉(NH₄)₂,(H₂PO₄)₂,p + 0.33 FeOOH + 0.5 H₂SO₄ ➔ γ₉ NH₃ + γ₉ H₂PO₄ + FeO + 0.33 FeS + 0.17 S²⁻ + 1.67 H₂O</td>
<td>1.15</td>
<td>+1</td>
</tr>
<tr>
<td>SR-FeS</td>
<td>Sulfidic</td>
<td>(CH₂O)₉(NH₄)₂,(H₂PO₄)₂,p + 0.27 FeOOH + 0.53 H₂SO₄ ➔ γ₉ NH₃ + γ₉ H₂PO₄ + FeO + 0.27 FeS + 1.67 H₂O</td>
<td>1.21</td>
<td>+1</td>
</tr>
</tbody>
</table>

(For each water layer, see Table 1 and Fig 5c). The AOU increase (Fig. 5b) confirms this possibility with a ΔDICex/ΔAOU signal similar to the expected theoretical slope of 1 for AR (Table 1). Note that this ΔTAex/ΔDICex/ΔAOU
signature stands for absent or negligible nitrification following respiration. In case of full nitrification, the theoretical slopes should be $\Delta T_{\text{eox}}/\Delta T_{\text{DICex}} = -0.165$ and $\Delta T_{\text{eox}}/\Delta T_{\text{AO}} = 0.76167/1.31$ as proposed by Zeebe and Wolf-Gladrow (2001). The absence of noticeable nitrification can be explained by slow kinetics of NH$_4^+$ oxidation, with a half-life time estimated between a few days in estuaries (Horrigan et al., 1990) to multiple years in coastal environments (Heiss and Fulweiler, 2016). As a comparison, other NH$_4^+$ fates, such as adsorption leads to ammonium half life time of about a few minutes (Alshameri et al., 2018) to a few hours (Raaphorst and Malschaert, 1996) depending on the concentration of fine particles. Additionally, algae are known to use NH$_4^+$ as a N source (Raven et al., 1992) and NH$_4^+$ can be directly assimilated by heterotrophic organisms. Finally, for 2017, despite pCO_2 being below atmospheric saturation at about 2 m depth (Fig. 1).

Table 2: Linear combination of reactions from Table 1 that fit the observations (see text for details, H$_2$O molecules are omitted).

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Net Formula</th>
<th>Linear combination for 1 CH$_4$</th>
<th>$\Delta T_{\text{eox}}/\Delta T_{\text{DICex}}$</th>
<th>$\Delta T_{\text{eox}}/\Delta T_{\text{AO}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR</td>
<td>$(\text{CH}_3\text{O})(\text{NH}_3)\text{H}_2\text{PO}_4 + O_2 \rightarrow \gamma^N\text{NH}_4 + \gamma^P\text{H}_2\text{PO}_4 + \gamma^O\text{CO}_2$</td>
<td>0.15</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CD-AR</td>
<td>$\gamma^N\text{NH}_4 + \gamma^P\text{H}_2\text{PO}_4 + \gamma^O\text{CaCO}_3 + 2\gamma^O\text{CO}_2 \rightarrow (\text{CH}_3\text{O})(\text{NH}_3)\text{H}_2\text{PO}_4 + O_2 + Ca^{2+} + 2\gamma^O\text{HCO}_3^-$</td>
<td>\approx</td>
<td>\approx</td>
<td></td>
</tr>
<tr>
<td>AR+0.5CD</td>
<td>$(\text{CH}_3\text{O})(\text{NH}_3)\text{H}_2\text{PO}_4 + O_2 + 0.5\gamma^O\text{CaCO}_3 \rightarrow \gamma^N\text{NH}_4 + \gamma^P\text{H}_2\text{PO}_4 + 0.5\gamma^O\text{CO}_2 + 0.5\gamma^O\text{Ca}^{2+} + \gamma^O\text{HCO}_3^-$</td>
<td>0.77</td>
<td>0.67</td>
<td></td>
</tr>
<tr>
<td>AR + 0.54 CD + 0.46 Nt</td>
<td>$(\text{CH}_3\text{O})(\text{NH}_3)\text{H}_2\text{PO}_4 + 1.93\gamma^O\text{O}_2 + 0.54\gamma^O\text{CaCO}_3 + 2\gamma^N\text{NH}_4 \rightarrow 3\gamma^O\text{HNO}_3 + \gamma^P\text{H}_2\text{PO}_4 + 0.46\gamma^O\text{CO}_2 + 0.54\gamma^O\text{Ca}^{2+} + 1.1\gamma^O\text{HCO}_3^-$</td>
<td>0.2</td>
<td>1.25</td>
<td></td>
</tr>
</tbody>
</table>

The possible CO$_2$ invasion does not significantly modify the observed $\Delta T_{\text{eox}}/\Delta T_{\text{AO}}$ signal at the shallowest depth sampled.
In 2018, this surface water history did not repeat as fresh and light water masses brought by the exceptional flood drastically modified the carbonate system equilibrium. First, a low salinity layer with pCO₂ at 1600 µatm overlays the primary production layer (Fig. 13), preventing the uptake of atmospheric CO₂ by primary production as was observed for other years in 2016 (Chen et al., 2020). Just below the air-sea interface surface layer, in the PP zone, the lock down of atmospheric exchanges by the low salinity layer produces supersaturation of trapped O₂ (Fig. 4, for S between 3 and 4). In Fig. 3a and 3b, this process translates into a vertical distribution at DICex = 40 µM associated with negative AOU and slightly positive TAex, i.e., a ΔTAex/ΔDICex/AAOU = c/0/a-5. This original signature can be modelled by the combination of simultaneous carbonate dissolution (CD), the water column being undersaturated, and PP fuelled by NH₄⁺, in equal proportion and would result in no DICex-only TAex production (see 2nd line in Table 2); the carbonate dissolution buffers the DIC consumption produced by PP. The Ca²⁺ concentrations observed by Su et al. (2021) and during the 2018 cruise (data not shown) vary linearly with salinity, i.e., [Ca²⁺] = 0.282 S + 0.4 in mmol L⁻¹. Assuming similar behaviour in 2017, calculations show that the whole water column is undersaturated with respect to calcite and validates the possibility for CD.

Table 1: Summary of the main net reactions occurring among the different zones of a redox gradient with reactants starting in equilibrium with the atmosphere, adapted from Soetaert et al. (2007). The calculations assume Redfield ratio of the organic matter, i.e., γN = 0.16 and γP = 0.0094 (Soetaert et al., 2007). Redox zones describe the different conditions required for completing the reaction.

<table>
<thead>
<tr>
<th>Name</th>
<th>Redox zones</th>
<th>Net Formula</th>
<th>ΔTA</th>
<th>ΔDIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR</td>
<td>Oxic</td>
<td>(CH₂O)(NH₃)(H₃PO₄) → O₂ + CaCO₃ + CO₂ + H₂O</td>
<td>0.15</td>
<td>+</td>
</tr>
<tr>
<td>CD</td>
<td>Anoxic</td>
<td>(CH₂O)(NH₃)(H₃PO₄) → O₂ + CaCO₃ + CO₂ + H₂O</td>
<td>0.15</td>
<td>+</td>
</tr>
<tr>
<td>NR-N2</td>
<td>Suboxic</td>
<td>(CH₂O)(NH₃)(H₃PO₄) → O₂ + CaCO₃ + CO₂ + H₂O</td>
<td>0.95</td>
<td>+</td>
</tr>
<tr>
<td>MnR-MnC</td>
<td>Suboxic</td>
<td>(CH₂O)(NH₃)(H₃PO₄) → O₂ + CaCO₃ + CO₂ + H₂O</td>
<td>0.15</td>
<td>+</td>
</tr>
<tr>
<td>SR</td>
<td>Sulfidic</td>
<td>(CH₂O)(NH₃)(H₃PO₄) → O₂ + CaCO₃ + CO₂ + H₂O</td>
<td>+1.8</td>
<td>+</td>
</tr>
<tr>
<td>SR-O</td>
<td>Sulfidic + Oxidic</td>
<td>(CH₂O)(NH₃)(H₃PO₄) → O₂ + CaCO₃ + CO₂ + H₂O</td>
<td>+1.8</td>
<td>+</td>
</tr>
<tr>
<td>SR-MnC</td>
<td>Sulfidic + Suboxic</td>
<td>(CH₂O)(NH₃)(H₃PO₄) → O₂ + CaCO₃ + CO₂ + H₂O</td>
<td>+1.8</td>
<td>+</td>
</tr>
<tr>
<td>SR-FeS</td>
<td>Sulfidic + Suboxic</td>
<td>(CH₂O)(NH₃)(H₃PO₄) → O₂ + CaCO₃ + CO₂ + H₂O</td>
<td>+1.8</td>
<td>+</td>
</tr>
</tbody>
</table>
In 2018, below the PP zone down to DIC\textsubscript{ex} = 240µM, the beginning of the ILO zone, the TA\textsubscript{ex} increases significantly with a ΔTA\textsubscript{ex}/ΔDIC\textsubscript{ex} signature incompatible with AR (ΔTA\textsubscript{ex}/ΔDIC\textsubscript{ex} = 0.67 ± 0.1, Fig. 3A) and a ΔDIC\textsubscript{ex}/ΔAOU close to 1.5. Although there are other available candidates, a contribution of CD superimposed on AR seems most likely (theoretical ΔTA\textsubscript{ex}/ΔDIC\textsubscript{ex} slope of 2 for CD, Table 1). A linear combination fitting leads to TA contribution of 13% from AR and 87% from CD (Table 2) and results in ΔTA\textsubscript{ex}/ΔDIC\textsubscript{ex} = 0.77 and ΔDIC\textsubscript{ex}/ΔAOU = 1.5. An explanation of its occurrence solely in 2018 could be particularly carbonate-rich suspended material at high-flow conditions. Deeper in the ILO zone, the relations of ΔTA\textsubscript{ex}/ΔDIC\textsubscript{ex}/ΔAOU (Fig. 3B) result from aerobic respiration with almost indiscernible carbonate precipitation (ΔTA\textsubscript{ex}/ΔDIC\textsubscript{ex} = 0.2, ΔDIC\textsubscript{ex}/ΔAOU = 0.8). Overall, our results show that the higher river flow of 2018 increases carbonate dissolution for the top 5-10 m depth (at salinity below 8) that superimpose on primary production (for salinity below 4) or aerobic respiration (for salinity between 4 and 8) 3.3, Sediment control.

Table 2: Linear combination of reactions from Table 1 that fit the observations (see text for details. H\textsubscript{2}O molecules are omitted).

<table>
<thead>
<tr>
<th>Linear combination (for LCH\textsubscript{ex})</th>
<th>ΔTA\textsubscript{ex}/ΔDIC\textsubscript{ex}</th>
<th>ΔDIC\textsubscript{ex}/ΔAOU</th>
<th>Net-Formula (for 1 mole of CH\textsubscript{3}O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD-AR</td>
<td>≈ 0</td>
<td>0.27</td>
<td>(\text{H}_3\text{PO}_4 + \text{CaCO}_3 + 2\text{CO}_2 + 2\text{H}_2\text{O} \rightarrow \text{(H}_3\text{PO}_4)\text{CaCO}_3 + 2\text{H}_2\text{O} + 2\text{CO}_2)</td>
</tr>
<tr>
<td>AR + 0.5 CD</td>
<td>1.5</td>
<td>1.5</td>
<td>(\text{NH}_3 + \text{H}_2\text{PO}_4 + 0.5\text{CaCO}_3 \rightarrow \text{NH}_4\text{H}_2\text{PO}_4 + 0.5\text{CaCO}_3)</td>
</tr>
<tr>
<td>AR</td>
<td>0.15</td>
<td>1.0</td>
<td>(\text{H}_3\text{PO}_4 + 0.5\text{CaCO}_3 \rightarrow \text{NH}_4\text{H}_2\text{PO}_4 + 0.5\text{CaCO}_3)</td>
</tr>
<tr>
<td>0.98 SR-MnC</td>
<td>2.4</td>
<td>2.4</td>
<td>(\text{NH}_3 + \text{H}_2\text{PO}_4 + 0.49\text{H}_2\text{SO}_4 + 0.53\text{MnO}_2 \rightarrow \text{NH}_4\text{H}_2\text{PO}_4 + 0.49\text{H}_2\text{SO}_4 + 0.53\text{MnO}_2)</td>
</tr>
<tr>
<td>+ 0.65 SR-FeS</td>
<td>2.4</td>
<td>2.4</td>
<td>(\text{NH}_3 + \text{H}_2\text{PO}_4 + 0.3\text{H}_2\text{SO}_4 + 0.7\text{MnO}_2 + 0.3\text{FeOOH} \rightarrow \text{NH}_4\text{H}_2\text{PO}_4 + 0.3\text{H}_2\text{SO}_4 + 0.7\text{MnO}_2 + 0.3\text{FeOOH})</td>
</tr>
<tr>
<td>+ 0.35 MnR-MnC</td>
<td>2.4</td>
<td>2.4</td>
<td>(\text{NH}_3 + \text{H}_2\text{PO}_4 + 6.4\text{CaCO}_3 + 2\text{MnO}_2 + 7.4\text{CO}_2 \rightarrow \text{NH}_4\text{H}_2\text{PO}_4 + 6.4\text{CaCO}_3 + 2\text{MnO}_2 + 7.4\text{CO}_2)</td>
</tr>
<tr>
<td>+ 6.4 CD</td>
<td>2.4</td>
<td>2.4</td>
<td>(\text{H}_3\text{PO}_4\text{NH}_3 + \text{H}_2\text{PO}_4 + 0.31\text{H}_2\text{SO}_4 + 0.68\text{MnO}_2 + 0.07\text{S}_8 \rightarrow \text{NH}_4\text{H}_2\text{PO}_4 + 0.31\text{H}_2\text{SO}_4 + 0.68\text{MnO}_2 + 0.07\text{S}_8)</td>
</tr>
<tr>
<td>+ 0.76 SR-FeS</td>
<td>2.4</td>
<td>2.4</td>
<td>(\text{H}_3\text{PO}_4\text{NH}_3 + \text{H}_2\text{PO}_4 + 0.32\text{CO}_2 + 0.68\text{MnO}_2 + 0.38\text{H}_2\text{S} \rightarrow \text{NH}_4\text{H}_2\text{PO}_4 + 0.32\text{CO}_2 + 0.68\text{MnO}_2 + 0.38\text{H}_2\text{S})</td>
</tr>
<tr>
<td>+ 0.38 MnR-MnC</td>
<td>2.4</td>
<td>2.4</td>
<td>(\text{H}_3\text{PO}_4\text{NH}_3 + \text{H}_2\text{PO}_4 + 0.18\text{H}_2\text{SO}_4 + 0.79\text{MnO}_2 + 0.5\text{S}_8 \rightarrow \text{NH}_4\text{H}_2\text{PO}_4 + 0.18\text{H}_2\text{SO}_4 + 0.79\text{MnO}_2 + 0.5\text{S}_8)</td>
</tr>
</tbody>
</table>

Sediment control...
3.3.4 In 2018, below the PP zone down to DICex = 240µM, the beginning of the ILO zone, the TAex increases significantly with a ΔTAex/ΔDICex/ΔAOU = 0.67/1/0.67 (Fig. 5a and 5b), incompatible with AR. To explain this signature a contribution of CD superimposed on AR seems most likely. A linear combination fitting leads 0.5 CD for 1 AR (3rd line in Table 2) and results in ΔTAex/ΔDICex/ΔAOU = 0.77/1/0.67. An explanation of its occurrence solely in 2018 could be the increase in carbonate rich suspended material at high flow conditions (Su et al., 2021). Excess of Ca²⁺ compared to the mixing line with oceanic end member (not shown) indicate that up to 200 µM of Ca²⁺ is produced in the oxygenated layer. Deeper, in the ILO zone, ΔTAex/ΔDICex/ΔAOU = 0.2/1/1.25 (Fig. 5a and 5b) results mainly from AR (0.15/1/1) with possible addition of CD and Nitr, the exact signature being fitted for 0.54 CD and 0.46 Nit for 1 AR (4th line in Table 2), in close continuity of AR and CD relative rates from the overlying layer. This important nitrification is also in good agreement with the lack of nitrite build up in the ILO zone and the relatively high oxygen concentration (at 105 µM) in the ILO zone in 2018 which is able to sustain nitrification. Overall, our results show that the higher river flow of 2018 increases carbonate dissolution for the top 5-10 m water depth that is superimposed on primary production or aerobic respiration. Additionally, in 2017 the ΔTAex/ΔDICex/ΔAOU system was undiscernible from the AR signature without nitrification, while in 2018 some nitrification in the ILO zone is suggested by the “reaction driven” interpretation.

4.3 Identification of predominant reactions\[major reactions in the anoxic water column using ΔTAex/ΔDICex/ΔH₂S signature. \]

In the absence of oxygen, in the suboxic and sulfidic zone, both campaigns show a similar evolution of the TAex and DICex with very high ΔTAex/ΔDICex of 2.4 (Fig. 3a). This exceptionally high ratio, never reported in the literature, cannot be explained by most typical chemical reactions such carbonate dissolution (CD), aerobic respiration (AR), CO₂-uptake or primary production (PP = AR). A scenario combining sulfate reduction (SR) is particularly attractive since SR represents the main carbon remineralisation pathway in absence of oxygen. However, a combination of SR with CD would result in a ΔTAex/ΔDICex between 1.15 and 2 (see Table 1 or Fig. 3a) and fails to reach the ΔTAex/ΔDICex of 2.4. Moreover, SR alone underestimates the importance of the H₂S oxidation pathway. H₂S oxidation is critical in the Chesapeake Bay since no H₂S is measurable in the suboxic zone while the gradient at the sediment/water interface indicates high H₂S sedimentary efflux (Fig. 4) and that oxidation can consume all the alkalinity produced during SR, as with oxygenated oxidation (see reaction SR + O in Table 1).

Generalizing these observations, recent efforts to build an alkalinity budget on the global scale (Hu and Cai, 2011; Middelburg et al., 2020) highlight that the alkalinity produced by anaerobic respiration corresponds to the uncharged species produced, mostly in solid or gaseous phases. Indeed, the alkalinity changes produced during a natural reaction equal the “charge transfer” from species having some charge at pH = 4.5, such as NO₃⁻ and SO₄²⁻, to “acid active species” that would lose its charges at pH = 4.5, mainly HCO₃⁻, that does not count in the alkalinity calculation (see Eq. (4)). In the absence of oxygen, the ΔTAex/ΔDICex/ΔH₂S will be used for rates calculation. In the suboxic zone, the signature is similar in summer 2017 and 2018 at ΔTAex/ΔDICex/ΔH₂S = 2.4/1/0. The “reaction driven” interpretation of this signature is more difficult than...
in oxidized water because more reactions are known to occur simultaneously in absence of oxygen. However, it is not necessary to describe each reaction step but only the overall changes concerning the journey of a water mass over different redox conditions resulting in combined reaction. This approach has recently been proposed for FeS burial by Hiscock and Millero (2006), Rassmann et al. (2020) or Su et al. (2020b). A scenario combining sulfate reduction (SR) is particularly attractive since SR represents the main carbon remineralisation pathway in absence of oxygen. However, a combination of SR with CD would result in a ΔTAex/ΔDICex between 1.15 and 2 (see Table 1 or Fig. 5c) and fail to reach the ΔTAex/ΔDICex of 2.4. Moreover, SR alone underestimates the importance of the H$_2$S oxidation pathway that can consume all the alkalinity produced during SR. For example, SR follow by oxygenated oxidation results in ΔTAex/ΔDICex/ΔAOU signature equal to AR only. In the Chesapeake Bay, H$_2$S oxidation is critical since no H$_2$S is measurable in the suboxic zone while the gradient at the sediment/water interface indicates high H$_2$S sedimentary efflux (Fig. 3).

Generalizing these observations, recent efforts to build an alkalinity budget on the global scale (Hu and Cai, 2011; Middelburg et al., 2020) highlight that the alkalinity produced by anaerobic respiration corresponds to the uncharged species produced, mostly in solid or gaseous phases. Indeed, the alkalinity changes produced during a natural reaction equal the “charge transfer” from species having some charge at pH = 4.5, such as NO$_3^-$ and SO$_4^{2-}$, to species that would lose its charges at pH = 4.5, mainly HCO$_3^-$ that is not counted in the alkalinity calculation (see Eq. (12)). Although correct, this approach tends to neglect the roles of Fe and Mn oxides (Middelburg et al., 2020) since their transformation from (oxyhydr)oxides into sulphur or carbonate species does not involve any charge transfer. When looking in detail at these processes, the metal oxides are critical since they are the main H$_2$S oxidation pathway that does not regenerate H$_2$SO$_4$ but rather produces S$_0^0$, S$_{n_2}^-$ or FeS (Findlay et al., 2014; Avetisyan et al., 2021) which limits alkalinity consumption.

To build a pool of candidate reactions for the fitting, first, dissolved species. Although correct, this approach tends to neglect the role of Fe and Mn oxides (Middelburg et al., 2020) since their transformation from (oxyhydr)oxides into sulphur or carbonate species does not involve any charge transfer. When looking in detail at these processes, the metal oxides are critical since they are the main H$_2$S oxidation pathway that does not regenerate H$_2$SO$_4$ but rather produces S$_0^0$, S$_{n_2}^-$ or FeS (Findlay et al., 2014; Avetisyan et al., 2021) which limits alkalinity consumption. The plot of selected redox sensitive species against TAex (Fig. 4) reveals a particular behaviour of MnOx in the suboxic water with a maximum concentration at the disappearance of O$_2^-$ followed by a decrease down to zero in presence of H$_2$S. Manganese changes from MnOx to Mn$^{2+}$, and ultimately to MnCO$_3$, consuming DIC and transforming H$_2$S in a non-charged species. This TA source is generally overlooked but may be important in the Chesapeake Bay. Fig. 2 and 4 also depict recycling of NO$_3^-$ whose concentrations increase simultaneously to O$_2^-$. However, the small vertical shift between NO$_2^-$ and O$_2^-$ minimum (Fig. 4) and the lack of overlap between NO$_2^-$ and H$_2$S indicates that NO$_2^-$ does not directly oxidize H$_2$S. Since, NH$_4^+$ and NO$_3^-$ concentration were not measured, we limit our reasoning to the layer depleted in NO$_3^-$ that signals the negligible role of N cycling at these depths.
In the anoxic layer, most of the dissolved species are at too low concentration (e.g. \(\text{Mn}^{2+}_{\text{aq}}, \text{Fe}^{2+}_{\text{aq}} \)) to be a net reagent to affect the carbon cycle on a monthly timescale. These species are usually recycled rapidly and hold a role of catalyst or electron shuttle between other redox species. Second, many minerals are expected to be at low concentration or thermodynamically not favoured, and their associated reactions are neglected (e.g., iron phosphate, ferrous or manganous oxide, sulphur clusters, \(\text{Mn}^2\), \(\text{FeCO}_3 \), adsorption processes, reverse weathering). Therefore, to explain the 100 \(\mu \text{M} \) \(\text{TAex} \) increase in absence of oxygen (Fig. 3a), only aqueous species with “important” stock concentrations at a monthly timescale (with concentrations that frequently exceed 0.1 mM in anoxic porewater) are taken into account, i.e., \(\text{SO}_4^{2-}, \text{Ca}^{2+}, \text{H}_2\text{S}, \text{NH}_4^+ \) together with gaseous (\(\text{N}_2, \text{CO}_2 \)) and main solid phases (\(\text{FeS}_0, \text{FeS}, \text{S}_0, \text{MnCO}_3, \text{FeOOH}, \text{MnO}_2 \)). Based on these species, we detailed the most likely preponderant reactions for each redox zone (Table 1), although, for the sake of simplicity, many mineral and associated reactions are neglected (e.g., iron phosphate, ferrous or manganous oxide, sulphur clusters, adsorption processes, reverse weathering). Third, many combinations of the carbon remineralisation
reaction with a re-oxidation reaction are equal to another remineralisation reaction. As an example, SR followed by H_{2}S oxidation with oxygen is equal to aerobic respiration.

Table 1 lists the resulting combined reactions and the calculated ΔTAex/ΔDICex slopes are represented in Fig. 5c. For the suboxic zone, the nitrate reduction/nitrate respiration can be associated with N₂ production or denitrification (NR-N₂, Table 1) or with NH₃ production (NR-NH₃) and the manganese oxides reduction associated with manganese respiration produces carbonates precipitation (MnR-MnC, Table 1) represent the main expected respiration processes. The reduction of HNO₃ down to NH₃ is not detailed but would result in almost similar alkalinity changes: 1.15 for NH₃ production (DNRA) versus 0.95 for N₂ production. The only solid form of Mn(II) is MnCO₃ since MnS is negligible despite thermodynamic possibilities. FeCO₃ production would produce a very similar reaction as MnCO₃ production; the latter, more common, is favoured in this simple description. Accordingly, the only solid. For the sulfidic zone, SR can occur alone producing a build-up of H₂S. However, at a certain point, H₂S gets significantly oxidised either by MnO₂ which produces MnCO₃ and S₀ (SR-MnC) or by FeOOH, producing FeS and S₀ (SR-FeS) and ultimately FeS₂ (SR-FeS2). Direct respiration of FeOOH is also taken into account, but as the only Fe product from iron reactions is FeS and requires a coupling between iron oxide respiration and the minimum required amount of sulfate reduction (equation SR-FeO). However, FeS₂ is implicitly taken into account since it corresponds to FeS plus S₀ and a specific coupling of iron oxide respiration with sulfate reduction to produce FeS₂ would result in ΔTAex/ΔDICex of 1.21 molC⁻¹ instead of ΔTAex/ΔDICex of 1.04 molC⁻¹ when FeS is the final product (Table 1). After sulfate reduction, H₂S can also accumulate in the water (SR reaction) or be oxidized back to SO₄²⁻ (SR-O is detailed as an example). Finally, SR-MnC describes H₂S oxidation by MnO₂- into S₀. Table 1 illustrates the importance of metal oxide to generate amount of high alkalinity in the case of sulfate reduction. In particular, its FeS or FeS₂ it has to be accompanied by some SR (FeSR-FeS).

This exercise highlights that the higher ΔTAex/ΔDICex obtained ratio is 2.3 which corresponds to a combination of sulfate reduction followed by Mn (or Fe) oxide reduction followed by Mn (or Fe) carbonate precipitation, and is here illustrated by (SR-SMnC) which fits extremely well with the SR-MnC reaction from Table-signature ΔTAex/ΔDICex/ΔH₂S = 2.4/1/0 reported in the Chesapeake Bay.

3.3.2 Quantification However, other linear combination of reactions importance

As listed in Table 1 result in the absence of H₂S, the simplest combination leading to the observed ΔTAex/ΔDICex of 2.4/1/0 is to consider sulfide oxidation by MnOx and formation of MnCO₃ leading to the SR-MnC reaction (theoretical ratio of ΔTAex/ΔDICex = 2.3, see Table 1). More complex combinations to better fit the ΔTAex/ΔDICex can be found graphically in Fig. 3d. Note here the arrows demonstrate signature, Figure 5c demonstrates that the slope of 2.4 can be obtained for any reaction in combination with MnR-MnC. Combinations without MnR-MnC, however, lead to a negative SR and are not considered despite a possible small participation of anoxygenic phototrophic (purple) bacteria (Findlay et al., 2015, 2017). Therefore, in the absence of nitrate, oxygen and H₂S, only a combination of MnR-MnC with SR-MnC (producing S₀, 8th line in Table 2), SR-FeS (producing FeS, 6th line in Table 2) or CD (releasing Ca²⁺, 7th line in Table 2) gives the particularly high ΔTAex/ΔDICex of 2.4. S₀ was not measured during our campaign, but it has been previously reported at this site (Findlay et
al., 2014). Thus, and the S_0 produced by SR-MnC can react with FeS to form FeS$_2$. All the three identified combinations require a critical role of MnO$_x$ - in agreement with the observed remobilization in the hypoxic zone (Fig. Since Figure 4). However, since the Ca$^{2+}$ survey (Su et al., 2021) did not reveal a significant production in the Chesapeake Bay, and since the available data on iron speciation (Fig. 2) do not indicate any clear reaction, for iron while the steep gradient of MnO$_x$ in proximity to the H$_2$S rich layer suggests reaction between MnO$_x$ and H$_2$S; the combination of MnR–MnC with SR-MnC is the most likely – (5th line in Table 2). Deeper, in the presence of sulphide, the ΔTAex/ΔDICex signature is 2.4/1/1.2 in 2017 and 2.4/1/3.2 in 2018 and can be explained by the same combination of reactions without oxidized SR to take into account the build-up of H$_2$S (Table 2).

4.4 Comparison with other studies

The high observed ratio of ΔTAex/ΔDICex = 2.4 seems very specific to the Chesapeake Bay. Moreover, the “reaction driven” interpretation can be applied to other published datasets for which the ΔTA/ΔDIC/ΔH$_2$S system can be calculated (Table 3). In the water column, most of the available datasets are not suitable for the “reaction driven” interpretation since either they focus on surface water where DIC and TA are strongly impacted by atmospheric exchanges or the water masses change too fast to consider that reactions dominate over water mixing. However, porewater measured in the Gulf of Mexico has ΔTAex/ΔDICex/ΔH$_2$S = 1.15/1/0.53 (Hu et al., 2010) In the presence of H$_2$S, a closer look at the relation between ΔH$_2$S versus ΔTAex (Fig. 4) reveals an interannual variation of the ΔTAex/ΔH$_2$S ratio changing from 2 in 2017 to 0.75 in 2018 whereas the theoretical ratio of SR is ΔTAex/ΔH$_2$S = 2.3 when no H$_2$S is oxidized. These observed ratios indicates either TAex consumption without H$_2$S oxidation or H$_2$S formation without TAex production. The retained combination should implicate at least SR, to produce the H$_2$S, and MnR–MnC, to increase the ΔTAex/ΔDICex slope, but it also requires another reaction to decrease the ΔTAex/ΔH$_2$S ratio. Since carbonate under saturation prevents carbonate precipitation, and no primary production.

Table 3: Overview of the ΔTA/ΔDIC/ΔH$_2$S signature observed in different environments

<table>
<thead>
<tr>
<th>Publication</th>
<th>Sample type</th>
<th>ΔTA/ΔDIC/ ΔH$_2$S or ΔTA/ΔDIC/ ΔAOU</th>
<th>ΔTA</th>
<th>Reaction driven interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hu et al., 2010</td>
<td>Gulf of Mexico sediment (slope)</td>
<td>1.15/1/0.53</td>
<td>> 17 mM</td>
<td>SR</td>
</tr>
<tr>
<td>Lukawska-Matuszewska, 2016</td>
<td>Baltic Sea sediment</td>
<td>1.3/1/0.07</td>
<td>> 15 mM</td>
<td>SR-FeS$_2$</td>
</tr>
<tr>
<td>Rassmann et al., 2020</td>
<td>Rhone prodelta sediment</td>
<td>1/1/0</td>
<td>> 56 mM</td>
<td>FeSR-FeS</td>
</tr>
<tr>
<td>Cai et al., 1998</td>
<td>Satilla estuary</td>
<td>2/1/ND</td>
<td>> 0.2 mM</td>
<td>CD</td>
</tr>
<tr>
<td>Drupp et al. 2016</td>
<td>Oxygenated Hawai carbonate reef sands</td>
<td>0.86-0.91/1/ND</td>
<td>> 1.5 mM</td>
<td>Not applicable*</td>
</tr>
<tr>
<td>Su et al. 2021</td>
<td>Chesapeake Bay water column</td>
<td>2.1/1.5 AOU</td>
<td>>0.4 mM</td>
<td>Not applicable**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.2/1 AOU</td>
<td>>0.05 mM</td>
<td>AR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.8/1/ND</td>
<td>>0.1 mM</td>
<td>NR-N2 or CD+Nit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.3/1/0.5</td>
<td>>1.3 mM</td>
<td>SR+CD</td>
</tr>
</tbody>
</table>

*Lack of data on oxygen concentration prevent any interpretation. ** Important air-water exchange prevent any “reaction driven” interpretation.
is expected, the most likely source of H₂S is from S₂⁻, although FeS₂ is also possible, as depicted in Table 2. From this equation, the main TA source is the absence of SO₄²⁻ regeneration after sulfate reduction whereas the second source is the nutrient release that accounts for 19% and 29% of the TA produced in 2017 and 2018, respectively. The alternative possibility of NH₄⁺ oxidation by MnO₂ into N₂ (Mn anammox, (Luther et al., 1997; Thamdrup, 2012)) could also reduce the alkalinity without additional H₂S oxidation.

Based on the stoichiometry proposed, about 88 µM to 155 µM of MnO₅ are required to produce the 100 µM TAex increase observed (Fig. 3a), one order of magnitude higher than the observed MnO₅ concentration (Fig. 1). Based on an average concentration of 20 µmol g⁻² of Mn in suspended particles, the 88 µM of MnO₅ would require a suspended material concentration of about 11.1 g L⁻¹, which is again one or two orders of magnitude higher than the 0.01–0.1 g L⁻¹ usually found in the Chesapeake Bay. However, previous studies at this station (e.g., Sholkovitz et al., 1992) explained the seasonality of anoxia with an upward move of the redox front from the sediments to bottom waters during the start of summer. Accordingly, it is likely that the observed dissolved species, notably TAex and DICex, have not been produced in the water column but rather in the sediment during the year and then transported simultaneously with other reduced elements as the summer begin. Therefore, the 100 µM TA increase does not fit with the ambient Mn⁺ or MnO₅ in the water column but rather with the MnCO₃ deposited in the sediment. The sedimentary solid Mn stock is about 10 mM (assuming a porosity of 0.8, a solid density of 2.6 g cm⁻³) deposited in the sediment. The sedimentary solid Mn stock is about 10 mM (assuming a porosity of 0.8, a solid density of 2.6 g cm⁻³)

At a global scale, besides its role on alkalinity, MnO₅ can also be a trap for CO₂ as proposed in this Urey-Ebelman (Urey, 1952, Eq. 5) like reaction (Eq.6):

\[
\Delta \text{TAex} / \Delta \text{DICex} / \Delta \text{H}_2 \text{S} = 1.15 / 1 / 0.5 \quad \text{(Table 1)}.
\]

Similarly, Hiscock and Millero (2006) report \(\Delta \text{TAex} / \Delta \text{DICex} / \Delta \text{H}_2 \text{S} = 1.3 / 1 / 0.5 \) in the Western Black Sea close to the SR signature. In the Baltic Sea sediment, \(\Delta \text{TAex} / \Delta \text{DICex} / \Delta \text{H}_2 \text{S} = 1.3 / 1 / 0.7 \) was reported (Lukawska-Matuszewska, 2016), which is close to the expected signature in case of important H₂S consumption by Fe oxides and precipitation as pyrite (SR-FeS₂ reaction; \(\Delta \text{TAex} / \Delta \text{DICex} / \Delta \text{H}_2 \text{S} = 1.2 / 1 / 0 \)). In Rhone river prodelta sediments, the reported \(\Delta \text{TAex} / \Delta \text{DICex} / \Delta \text{H}_2 \text{S} \) is 1/1/0 that can be related to the 1/1/0 signature of FeSR-FeS₂ (Table 1) that is expected in iron rich sediment with high sedimentation rate preventing FeS₂ formation in the pore water (Rassmann et al., 2020). In permeable, carbonate rich sediments, the reported signature of \(\Delta \text{TAex} / \Delta \text{DICex} / \Delta \text{H}_2 \text{S} \) in Hawaii sands is 0.86/1/ND (Drupp et al., 2016). The lack of salinity and oxygen datasets prevents further model fits, but the \(\Delta \text{TAex} / \Delta \text{DICex} \) is below 2.4. For oxygen depleted data from the whole Chesapeake Bay described in Su et al. (2020), the signatures are \(\Delta \text{TAex} / \Delta \text{DICex} / \Delta \text{AOU} = 0.2 / 1 / 1 \) in presence of oxygen (typical signature of AR) and 0.8/1/ND in absence of oxygen that could correspond to NR-N2 or a combination of CD+Nit. Overall, this bibliographic survey highlights the effectiveness of the reaction driven approach to identify preponderant reactions controlling the carbon cycle and puts in perspective the originality of the \(\Delta \text{TAex} / \Delta \text{DICex} / \Delta \text{AOU} \) signature of 2.4/1/0 observed in the Chesapeake Bay.
4.5 Local and global budget

While the “reaction driven” interpretation indicates a dominant role of the SR-MnC reaction; this possibility needs to be validated looking at the saturation state of rhodocrosite (main MnCO$_3$ mineral) and looking at the mass budget between MnOx consumed and TAex produced. The rhodocrosite saturation (Luo and Millero, 2003) is always below 0.3 which stands against the occurrence of in situ SR-MnC reaction. When inspecting the mass budget, the 88 µM to 155 µM of MnO$_2$ required to produce the 100 µM TAex increase observed (Fig. 5a) is one order of magnitude higher than the observed MnOx or Mn$^{2+}$ concentration (Fig. 4). This mass budget discrepancy cannot be solved invoking suspended material since the 88 µM of MnO$_2$ would require a suspended material concentration of about 4.4 g L$^{-1}$ (assuming an average concentration of 20 µmol g$^{-1}$ of Mn), which is again one or two orders of magnitude higher than the 0.01–0.1 g L$^{-1}$ usually found in the Chesapeake Bay (Cerco et al., 2013). Therefore the SR-MnC reaction does not happen in the water column of the Chesapeake Bay. However, it is likely that the TAex and DICex have rather been produced in the sediment during the previous year and then diffused simultaneously with other reduced elements as the summer begins. Indeed, previous studies at station 858 (e.g., Sholkovitz et al., 1992) explained the seasonality of anoxia with an upward move of the redox front from the sediments to bottom waters during the start of summer. Important sedimentary efflux of H$_2$S, Fe$_{am}$ and Mn$_{am}$ were still visible during both August campaigns. Therefore, the 100 µM TA increase does not fit with the ambient Mn$^{2+}$ or MnO$_2$ in the water column but rather with the MnCO$_3$ deposited in the sediment. The sedimentary solid Mn stock of the Chesapeake Bay is particularly important, up to 70 µmol g$^{-1}$ at station 858 (Sinex and Helz, 1981) compared to an average value of 15 µmol g$^{-1}$ for the upper continental crust (Rudnick and Gao, 2003). Indeed semi-enclosed basins are known to concentrate manganese at the deeper sediment (Thamdrup and Dalsgaard, 2000; Lenstra et al., 2020). Recent investigations at a close station (ET 5.1; 38°48.36′N; 75°54.66′W) in the Chesapeake Bay (Lenstra et al., 2021) report that about 60% of the surface sedimentary Mn pool is MnOx (acid ascorbic extractable) and 25 % is Mn carbonate (1M HCl extraction). Assuming a porosity of 0.8, a bulk solid density of 2.6, the sedimentary pool corresponds to 35 mM of manganese which largely exceeds the 88 µM required to produce the 100 µM TAex increase. Therefore, the Chesapeake Bay sediment is particularly rich in manganese and could host important SR-MnC reactions in the superficial pore water whose soluble products diffuse up to the water column during summer and could bear with them the high ATaex/ADICex signature observed.

At a global scale, beside its role on alkalinity, MnO$_2$ can also be a trap for CO$_2$ as proposed in this Urey-Ebelman (Urey, 1952, Eq. 13) like reaction (Eq.14):

\[
\text{SiCaO}_3 + \text{CO}_2 \rightarrow \text{SiO}_2 + \text{CaCO}_3 \tag{13}
\]

\[
\text{MnO}_2 + \text{CO}_2 \rightarrow 0.5 \text{O}_2 + \text{MnCO}_3 \tag{14}
\]

Assuming all the Mn is in the form of MnO$_2$, a weathering intensity similar to iron (Poulton and Raiswell, 2002) and based on the upper continental crust composition (Rudnick and Gao, 2003), the continental MnO$_2$ input to the ocean can be estimated at 0.4 x 1012 mol y$^{-1}$. Assuming a steady state ocean toward Mn and MnCO$_3$ as the unique sedimentary phase, this estimation
represents 1.4 % of the total carbonate burial (Middelburg et al., 2020). Although negligible at the global scale, this carbonate burial may be significant in MnO₂ rich semi-enclosed basins.
Conclusion

The “reaction driven” interpretation identifies the major reactions controlling the carbonate cycle. In the Chesapeake Bay, similar redox stratification can support varying intensity of carbonate dissolution, absent in 2017 or important as in 2018. The summer anoxia observed in the Chesapeake Bay is characterized by exceptionally high ΔTAex/ΔDICex of 2.4 which has never been reported in anoxic water columns or sediment pore waters. By comparison, pore water ΔTAex/ΔDICex was measured at 1.15 in the Gulf of Mexico. The “reaction driven” interpretation suggests it comes from sulphate reduction followed by almost complete hydrogen sulphide oxidation by MnOx followed by MnCO₃ precipitation. This interpretation is supported by the important manganese dynamics observed. However, the rhodocrosite saturation index is below 1, and the weak pool of manganese measured indicates that most of the reactions would have occurred in the upper pore water from which the ΔTAex/ΔDICex of 2.4 would have diffused into the bottom water with the redox front during summer water column anoxia set up. Although (Hu et al., 2010) with ΔTAex / ΔH₂S ~ 2.2 as expected when sulfate reduction is associated with H₂S accumulation (theoretical ΔTAex / ΔH₂S ratio from SR being 2.3, Table 1). In the Baltic Sea, a ΔTAex/ΔDICex ratio of 1.3 was reported (Lukawska-Matuszewska, 2016) with ΔTAex / ΔH₂S > 17.5, signs of important H₂S consumption by Fe oxides.

In oxygenated coastal sediment, where dissolved reduced compounds are oxidised before release in the water columns, fluxes of TA over fluxes of DIC ranged from 0.4 to 1 (Rassmann et al., 2020 and references therein). In the Chesapeake Bay, ΔTAex / ΔH₂S is below 2.3, a sign of another preponderant reaction. The stoichiometry analysis agrees with direct measurements to underline the critical role of MnO₂-reduction followed by Mn carbonate precipitation. This scenario could be confirmed by a careful analysis of Mn oxides concentration in the bottom sediment during the entire year, since semi-enclosed basins are known to concentrate manganese oxides into the deeper area during oxygenated conditions (Thamdrup and Dalsgaard, 2000; Madison et al., 2013; Lenstra et al., 2020). Despite the fact that MnCO₃ production from MnO₂ involves no charge transfer (Hu and Cai, 2011), our study demonstrates that it can have strong impact on local alkalinity (Middelburg et al., 2020). The lack of charge transfer visible from the stoichiometry implies that Mn has no bearing on does not bear the alkalinity it produces, but it is a critical element to limit the H₂S oxidation to its S₀ intermediate and finally to favour its burial.
Appendix A

Figure A1: Variation of Total Alkalinity (TA) during oceanic and river mixing. Dashed lines represent the theoretical TA if only mixing occurs (TAex=0).

Figure A2: Examples of redox and metal chemistry profiles. Note that Fe(III) and Fe(III)aq scales are zoomed in by 3 and O2 scale is zoomed out by 100.
Data availability

The data used in this paper is available on request to the correspond author.

Author contribution

ATC, ERE, JN, BMT and SJ performed the data analysis. ATC and SJ process the data. ATC, GWL, SJ and WJC interpreted the results. GWL, BMT and WJC get the funding. ATC wrote the paper with contributions from all authors.

Competing interests

The authors declare that they have no conflict of interest.

Acknowledgements

We gratefully acknowledge the support of the captain and crew of R/V Hugh R. Sharp. This work was funded by grants from the Chemical Oceanography program of the National Science Foundation (OCE-1558738 to GWL; OCE-1558692 to BMT and OCE-1756815 to WJC)

References

