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Abstract 

Lake Chad is facing critical environmental situations since the 1960s due to the effects of climate change and anthropogenic 

activities on its ecosystems. The statistical analyses of remote sensing climate variables (i.e., evapotranspiration, specific 

humidity, soil temperature, air temperature, precipitation, soil moisture) and remote sensing and ground-truth lake level 10 
applied to the period 1993-2012 reveal that remote sensing lake level data has a skewed distribution and positive significant 

association with only soil moisture, whereas ground-truth lake level has a symmetrical distribution and negative significant 

associations with all the climate variables. The regression of remote sensing and ground-truth lake level onto climate 

variables using Linear Regression (LR), Support Vector Regression (SVR), Regression Tree (RT), Random Forest 

Regression (RF), and Deep Learning (DL) methods show that (i) RF outperforms the other models with the highest 15 
coefficient of determination (R

2
) and explained variance score (EVS) values and (ii) SVR has the lowest Mean Absolute 

Error (MAE), Mean Squared Error (MSE), and k-fold cross-validation (k-fold CV) values. The RF feature ranking function 

shows that soil temperature is the major driver of remote sensing lake level fluctuations, whereas precipitation is the first 

factor for ground-truth lake level. This study provides more in-depth knowledge of the factors influencing Lake Chad’s level 

and perspectives for an integrated and forward-looking water management system for connecting climate change, 20 
vulnerability, human activities, and water balance research in the Lake Chad human-environment system. We cannot get the 

necessary ground truth data at this time because of the challenging security situations in the region. However, the 

development of the data analysis methodology reported here is of fundamental importance in understanding the water cycle 

dynamics in this important basin, even under challenging field conditions. Verification studies can be performed when more 

ground-truth data eventually become available. 25 

Keywords: machine learning algorithms; remote sensing; ground-truth; Lake Chad’s level. 

1 Introduction  

According to Magrin (2016) and the Food and Agricultural Organization (FAO, 2012), Lake Chad, located in the Lake Chad 

Basin (LCB), is undergoing environmental crises over the past half century due to climate change and anthropogenic 

activities, as it has been progressively shrinking since the 1960s. People in the surrounding areas have taken advantage of the 30 
lake region which has acted as a trading hub, offering economic opportunities and natural resources. There were cross-

border economic activities in agricultural produce and fishing as well as other commodities (Nagarajan et al., 2018). 

Because of the importance of water resource management for agriculture and the well-being of both humans and livestock, 

we believed that more accurate, reliable, qualitative, and quantitative predictions of water availability in such vulnerable 

regions are important. Moreover, most previous studies (Servant and Servant, 1983; Lévêque, 1987; Adamu, 2007) have 35 
focused on rainfall and evaporation as the factors affecting the lake yield in water. Our approach expanded on prior studies 

by examining the accuracy power of remote sensing climate variables in studying lake level fluctuations. Therefore, we 

decided to also address the driving forces affecting the changes in the lake level using both remote sensing and ground-truth 

data based on qualitative and quantitative methods. 

The application of physical models was very limited in developing countries because of the high computational costs and 40 
data scarcity (Mohanty et al., 2009; Taormina et al., 2012). Alternatively, data-driven modeling (DDM) could be a solution. 
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It is advisable to apply various types of DDM and compare and/or combine the results because water-related applications are 

often characterized by noisy and poor quality data (Solomatine and Ostfeld, 2008).  

Shiri et al. (2016) used the extreme learning machine (ELM) approach to predict daily water levels in the Urmia Lake. They 

found that ELM could accurately forecast the water level. They also found that ELM outperformed genetic programming 45 
(GP) and artificial neural networks (ANNs). Hipni et al. (2013) compared the support vector machine (SVM) model with the 

adaptive network-based fuzzy inference system (ANFIS) in forecasting daily dam water levels of the Klang gate. They found 

that SVM was a superior model to ANFIS when using the metrics such as root mean squared error (RMSE), mean absolute 

error (MAE), and mean absolute percentage error (MAPE). Coulibaly et al. (2001) modeled monthly water table depth 

fluctuations (1986 – 1996) in the Gondo aquifer in Burkina Faso using ANNs. They found that modeling was very important 50 
for groundwater management in areas where inadequate groundwater monitoring networks existed.  

We decide to apply DDM in this study due to few hydrological data in the region. We assume that Lake Chad’s level is a 

function of precipitation, soil moisture, air temperature, soil temperature, evapotranspiration, and specific humidity factors; 

precipitation is the only and most important climate variable on which all the other climate variable variations depend. 

The principal goals of this study are to determine (i) how accurately remote sensing data can help study ground-truth data 55 
and (ii) what machine learning model(s) may be of best use to analyze both remote sensing and ground-truth data. 

Specifically, we aim to (i) examine the relationships between the respective aforementioned climate variables and remote 

sensing and ground-truth lake level; (ii) investigate the performances of different machine learning algorithms in estimation 

of remote sensing and ground-truth lake level data; and (iii) determine the major climate variable drivers of the fluctuations 

of remote sensing and ground-truth lake level. 60 

This research will contribute to the general understanding of the hydrological processes in the Lake Chad basin and benefit 

both the scientific community and the decision-makers in (i) providing knowledge on the current state of environmental 

factors affecting Lake Chad’s level, and (ii) developing data-driven models for future prediction and projection of lake level 

fluctuations. Ultimately, this will help make better predictions of water availability in the lake for local populations and other 

stakeholders. 65 

1.1. Study area 

According to the United Nations Environment Programme (UNEP, 2004), the Lake Chad sub-basin is shared among Chad, 

Niger, Nigeria, and Cameroon. It is located between 6
o
 and 20

o
 N, 7

o
 and 25

o
 E (Figure 1). It is a relic of a vast lacustrine 

surface area, which is equivalent to the Caspian Sea that existed in 600 AD. Its elevation ranges from 278 to 286 meters. 

Depending on the climate fluctuations, the lake filled all or a part of an endorheic basin of 25,000 km
2
. The Chari-Logone 70 

river system is the main supply of water to Lake Chad and is located in the southern part of the basin. Another tributary of 

the lake is the Komadogou Yobe River in the western part of the basin (UNEP, 2004; USGS, 2018). This river system drains 

more than 610,000 km
2
 in Southern Chad and the Central African Republic as well as areas of Cameroon and Western 

Sudan (Lévêque; 1987; Nagarajan et al., 2018). 

As landscape, Lake Chad occupies a part of an erg oriented southeast-northwest. Its eastern shore was surrounded by dunes. 75 
The surrounding basin relief was extremely flat except for the Hadjer el Hamis rocks of volcanic origin. There were three 

major types of landscape: (i) many islands located along the eastern bank which matched the emerged summit of immerged 

erg dunes; (ii) rooted or floated vegetation islands called bench islands (mostly Cyperus papyrus and water reeds); and (iii) 

areas of open water (LCBC, 2014; Lévêque, 1987).  

The close interaction between rainfalls and evaporation, the generation of lateral inflow to the lake, the groundwater leakage 80 
under the body of the lake, and human abstraction influence the overall lake water balance (UNEP, 2004). The persistent 

change in the rainfall patterns over the whole basin in the last 30 years has led to a shift of mean annual rainfall from 320 

mm to less than 210 mm (Adamu, 2007; IAEA, 2017). The volume of the lake (72×10
9
 m

3
 in average) resulted from an 

equilibrium between water supplies essentially from rivers and losses particularly due to evaporation (Lévêque, 1987). The 
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United States Geological Survey (USGS, 2018) stated that approximately 90% of the rain falls from June to September with 85 
the lake quickly rising in November. The highest lake levels are in December, declining slowly for several months.  

Crétaux and Birkett (2006) used satellite radar altimetry to estimate lake water variations.  They concluded that altimetry is 

an additional useful tool for estimating river discharge and lake water prediction. Using the simple linear correlation 

methods, the estimated height of the permanent waters of the lake (i.e., 600 km downstream) 39 days in advance had a 

coefficient of determination (R
2
) of about 93%. The prediction of water height on the western marshes of the lake-bed was 90 

poorer with an R
2
 of 79% due to a change in response time of the local stage to the seasonal floods.  According to 

Internationale Zusammenarbeit (GIZ, 2016), groundwater recharge depends on surface water, temporal and spatial 

distribution of rainfall, total annual rainfall, and the volume of runoff flowing towards topographic depressions. As a result 

of droughts and a significant decline in surface water over the past 40 years, groundwater levels have decreased in these 

areas, and some wells and boreholes have dried up (GIZ, 2016). 95 

The World Food Programme (WFP, 2016), Magrin (2016), and FAO (2012) stated that when exemplifying the 

disproportionate effects of global climate change, the lake’s recession increased water stress within an area battling drought 

and experiencing intense competition for multi-usage of the hydro-system. The consequent degradation of natural resources 

widely affected the subsistence livelihoods, regional food security, and quality of life of people inhabiting the LCB. The 

“disappearing lake” creates serious ecological issues, as land exposed by the receding shores is being used for farming or 100 
new settlements to accommodate the expanding population growth (FAO, 2012; Magrin, 2016; WFP, 2016). 

                                       

Figure 1. Map of the study area: (a) the Lake Chad in the LCB, (b) Lake Chad. GT is the location where ground-truth data 

are measured; RS is the location where remote sensing data were processed. 
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2. Materials and methods 105 

2.1. Data source 

The dataset (Table 1) includes precipitation, air temperature, evapotranspiration, soil temperature, specific humidity, soil 

moisture, and remote sensing and ground-truth lake level data. We downloaded precipitation data from the Global 

Precipitation Climatology Center, GPCC (https://opendata.dwd.de/climate_environment/GPCC/html/fulldata-

monthly_v2020_doi_download.html), monthly land-surface precipitation data from rain-gauges built based on global 110 
telecommunication system (GTS) and historical data (Schneider et al. (2020). GPCC is operated by Deutscher Wetterdienst 

(https://www.dwd.de/EN/ourservices/gpcc/gpcc.html) with the sponsorship of the World Meteorological Organization 

(WMO). The other input variables are from the Global Land Data Assimilation (GLDAS) model (Hiroko and Rodell, 2015; 

Rodell et al., 2004; Wharton, 2016). GLDAS data are accessible in the Giovanni data system, and are developed and 

maintained by the National Aeronautics and Space Administration Goddard Earth Sciences Data and Information Services 115 
Center, NASA DISC GES (https://giovanni.gsfc.nasa.gov/giovanni/). We downloaded the remote sensing lake level data 

from the Global Reservoirs/Lakes 

(https://ipad.fas.usda.gov/cropexplorer/global_reservoir/gr_regional_chart.aspx?regionid=wafrica&reservoir_name=Chad&l

akeid=000068) of the United States Department of Agriculture’s Foreign Agricultural Service (USDA-FAS). The data 

contains monthly Lake Chad height variations. We obtained the ground-truth lake level data from Société de Développement 120 
du Lac (SODELAC), a Chadian governmental agency in charge of developing Lake Chad resources. The time period was 

from 1993 through 2012, totaling 20 years, which provided 240 observations. 

Remote sensing lake level data is processed at latitude 13.02 and longitude 14.38. To convert satellite product datum to an 

orthometric/mean sea level datum, we added 281.26 meters to each elevation in the lake product as instructed in the file 

downloaded from Global Reservoirs/Lakes. So, we have: 125 

𝐿𝐿_𝑅𝑖 = ℎ𝑖 + 281.26 𝑚       (1) 

where 𝐿𝐿_𝑅𝑖  is the remote sensing lake level of the 𝑖th day,  ℎ𝑖 is the matching elevation. 

For ground-truth lake level, the elevation data was collected at a hydrometric station located at latitude 13.45, longitude 

14.73, and altitude of 277.87 meters. Therefore, we have:   

𝐿𝐿_𝐺𝑖 = ℎ𝑖 + 277.87 𝑚       (2) 130 

where ℎ𝑖 is the ground-truth elevation of the 𝑖th day and 𝐿𝐿_𝐺𝑖 its corresponding lake level, and 277.87 m is the mean sea 

level of the limnimetric scale. 

In both above cases, daily lake level data is average into monthly data.  

Table 1. Label specifications table 

Column Name          Tag             Unit     Temp. Resolution   Spatial Resolution             Type 135 

AT                   Air Temperature        
o 
C             monthly                100 km x 100 km                 Feature

 

ET                    Evapotranspiration      kg/m
2
/s       monthly                 100 km x 100 km

 
                    Feature

 

P                      Precipitation              mm      monthly                    100 km x 100 km                    Feature
 

SH                   Specific Humidity       kg/kg          monthly            100 km x 100 km
 
                    Feature 

SM                  Soil Moisture             kg/m
2
         monthly            100 km x 100 km           Feature

 140 

ST                   Soil Temperature         
o 
C      monthly            100 km x 100 km                       Feature

 

LL_R              Remote sensing lake level  m      monthly                   Not Applicable                      Target 

LL_G              Ground-truth lake level  m      monthly                   Not Applicable                      Target 
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2.2. Methods 145 

The methods employed in this study are correlation coefficient analysis (r), Multiple Linear Regression (MLR), Support 

Vector Regression (SVR), Regression Trees (RT), Random Forests Regression (RF), and Deep Learning (DL). Table 2 has 

the brief descriptions of these respective methods. 

 

Table 2. Methods’ descriptions 150 

Abbreviation Purpose    Data Structure            Technique                     Justification  Advantages 

 

 

r     
1, 2, 3

  

 155 
 

 

 

MLR    
1, 3

 

 160 

 

 

SVR   
4, 5

 

 

 165 

 

RT    
6
 

 

 

 170 

 

RF    
7, 8

 

 

 

 175 

Assessing the 

strength of the 

linear relationship 

between two 

variables. 

Numerical 

variables  

𝛼 = 0.05, 
𝑝 − 𝑣𝑎𝑙𝑢𝑒, 

Confidence 

Interval, and 

𝑡 − 𝑣𝑎𝑙𝑢𝑒 

Finding the covariance 

of the variables, and 

divide it by the 

product of their 

standard deviations. 

  
Assessing the 

strength of the 

relationship 

between a target 

and many predictors 

individually. 

Finding the 

correlation and 

directionality of 

the data; then 

model fitting and 

assessment.  

 

A single target 

variable and 

many feature 

variables. 

 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 
significance 

level; functions 

minimizing the 

prediction error 

criterion. 

 

Excellent 

generalization 

powers and a high 

prediction 

accuracy 

 

Finding a 

hyperplane in an n-

dimensional space  

that estimates a 

continuous-valued 

multivariate 

function. 

Hyperplane to fit the 

data; support vectors: 

data nearest the 

hyperplane; kernel 

functions to transform 

an input data; 

boundary lines around 

the hyperplane . 

A symmetrical 

loss function 

equally 

penalizing 

high and low 

estimates. 

Given data points 

SVR finds a curve 

to match the vector 

and the position of 

the curve.   

Forming incrementally 

a tree -with decision 

nodes and leaf nodes- 

from breaking down a 

dataset into smaller 

subsets.  

Very 

interpretable 

models and low 

computational 

running time and 

storage needs. 

Splits that 

minimize the 

prediction 

squared error 

criterion. 

The prediction in 

each leaf is based 

on the weighted 

mean for node. 

A binary tree 

created by 

recursively splitting 

the data on the 

predictor values. 

Formed by growing 

trees depending on 

a random vector 

such that the tree 

predictor takes on 

numerical values. 

A loss function 

that penalizes 

the predicted 

values that are 

far from the 

observed 

values. 

Great at revealing 

complex structures 

and a higher 

flexibility 

Extraction of high-

level, complex 

abstraction through a 

hierarchical learning 

process 

A network of many 

layers of models, 

where each layer 

receives an input 

from the previous. 

Initial layers extract 

low-level features; 

next layers combine 

features to form a 

full representation. 

A loss function 

that minimizes 

the absolute or 

squared error 

criterion. 

Work well 

with default 

parameters; 

can be used for 

feature 

selection. 

 

A combination of 

tree predictors such 

that each tree 

depends on the 

values of a random 

vector sampled 

independently. 

A deeper 

knowledge of the 

association of 

each feature with 

the target 

variable. 

Quantify the 

strength of the 

relationship 

between two 

variables. 

A prediction which 

is the average of the 

predictions made by 

the trees in the 

forest. 
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DL    
9, 10

 

 

1: Gareth et al. (2013); 2:  Hayes (2013); 3: Kutner et al. (2004); 4: Awad and Khanna (2015); 5: Drucker et al. (2000); 

6: Torgo (1997); 7: Breiman (2001); 8: Cutler et al. (2011); 9: Wehle, (2017); 10: Matthew et al. (2021);  

2.3. Model accuracy evaluation criteria 180 

The model error assessment measures (Table 3) used in this study are: coefficient of determination (R
2
), mean absolute error 

(MAE), mean squared error (MSE), root mean squared error (RMSE), explained variance score (EVS), and 𝑘 − 𝑓𝑜𝑙𝑑 cross-

validation (𝑘 − 𝑓𝑜𝑙𝑑 𝐶𝑉).  

Table 3:  Performance metrics typology 

Abbreviation  Name           Formula   Purpose 185 

R
2  

Coefficient of determination 
1, 2

 𝑅2 = 1 −
∑ (𝑦𝑖−𝑦̂𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−𝑦̅)2𝑛
𝑖=1

   

 

MAE  Mean Absolute Error 
2, 3

  𝑀𝐴𝐸 =  
∑ |𝑦𝑖−𝑦̂𝑖|𝑛

𝑖∗1

𝑛
 

 

 190 
 

MSE  Mean Squared Error 
2, 3

  𝑀𝑆𝐸 =  
∑ (𝑦𝑖−𝑦̂𝑖)2𝑛

𝑖=

𝑛
 

 

 

RMSE  Root Mean Squared Error 
4
 𝑅𝑀𝑆𝐸 = √

∑ (𝑦𝑖−𝑦̂𝑖)2𝑛
𝑖=1

𝑛
 195 

 

EVS  Explained Variance Score 
2
 𝐸𝑉𝑆 (𝑦, 𝑦̂) =  

𝑉𝑎𝑟{𝑦−𝑦̂}

𝑉𝑎𝑟{𝑦}
 

 

 

𝑘 − fold CV 𝑘 − fold Cross-validation 
5, 6, 7

 𝐶𝑉(𝑘) =
1

𝑘
∑ 𝑀𝑆𝐸𝑖

𝑘
𝑖=1  200 

 

         

𝑦𝑖  is the true value of the target variable of the 𝑖 − th sample and 𝑦̂𝑖 the corresponding fitted value; 𝑦̅ represents the mean of 

the true values. 𝑘 denotes the number of groups. 

Measures the proportion of 

variability in the target 

variable explained by the 

predictors. 

 Calculates the average of 

the absolute error between 

the observed and fitted 

values of the target variable 

over 𝑛 samples. 

Computes the average of the 

squared difference between 

the observed and fitted 

values of the target variable 

for total 𝑛 samples. 

The squared root of the 

MSE; it is the measure of the 

standard deviation of the 

residuals. 
Evaluates the strength of the 

relationship between the 

feature and the target 

variables. 

Provides the ability to estimate 

the model performance and its 

generalization to unseen data.   
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1: Hahn (1973); 2: Pedregosa et al. (2011); 3: Torgo (2014); 4: Neill and Hashemi (2018); 5: Gareth et al. (2013); 6: Hayes 205 
(2013); 7: Kutner et al. (2004).  

 

 

Figure 2 shows our methodological approach from the data sources, the techniques used, to the results. 

  210 

 

Figure 2. Flowchart diagram of the methodology 

2.4. Settings and parametrization 

The steps to proceed with our studies were as follows: 

- Standardized the feature variables so that each of them was properly scaled and none of the them overdominated 215 
- Performed the Variance Inflation Factor (VIF), a measure of collinearity between feature variables to check 

multicollinearity  

- Split the dataset into training dataset (75%) and testing dataset (25%) using the scikit-learn train_test_split function 

- Trained the model using the training set. This neural network ran in regression mode, meaning it returned values 

- Predicted the target variable using the testing dataset 220 
- Computed the model performance metrics (MAE, MSE, RMSE, and EVS) 

- Conducted the 𝑘 − 𝑓𝑜𝑙𝑑 CV to evaluate the prediction performance and compared the models with each other. 

For MLR, SVR, RT, and RF, we used the functions with the default parameters from Python scikit-learn library. For 

deep learning, we used Sequential function from Keras library. The deep learning model created has two hidden layers 

with Rectified Linear Unit (ReLU) activation function and one output layer with Linear activation function. The hidden 225 
layers have 128 and 64 neurons, respectively, with all the six feature variables. We set Mean absolute error as the loss 
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function. We replaced the input layers activation function by Sigmoid and Tanh and compared their metrics with the 

ones of ReLU. 

 

3. Results and discussions 230 

3.1. Data exploration and analysis 

Figure 3 shows the seasonal pattern of all eight variables for the period of 1993 to 2012. The lake level data have 

almost the same temporal patterns as the feature variables. The similarity in the patterns of these variables is 

related to that of the rainy and dry seasons in the region since precipitation is the primary source of water in 

addition to Chari River and Logone River that feed Lake Chad. Soil moisture (SM), specific humidity (SH), and 235 
evapotranspiration (ET) timeseries follow the same pattern as that of precipitation but are shifted in time. Air 

temperature (AT) and soil temperature (ST) present bimodal distributions. Remote sensing and ground-truth 

lake level data follow the same patterns except for the years from 2003 to 2009 where remote sensing lake level 

data seems to have multimodal distribution while ground-truth lake level data have greater variations.  

 240 

 

Figure 3 . Time series plot of: left panel ST, AT, SH, and ET; right panel:  LL_G, LL_R, SM, and P.  

The abbreviation and units corresponding to the variables are listed in Table 1. 

Figure 4 shows the distribution visualization of our target variables. The distributions are both unimodal (Figures 4a and 

b). Remote sensing lake level data have a positively highly right-skewed distribution, meaning its mean value is greater 245 
than its median. Ground-truth lake level data, on the other hand, have a symmetrical distribution; its mean and median are 

equal. The boxplots (Figures 4c and d) show that neither remote sensing nor ground-truth lake level data have outliers. 
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 250 

Figure 4: Distribution visualization of (a) remote sensing and (b) ground-truth lake level data 

 

Table 4 shows the summary of the dataset. For the minima, maxima, and means of the target variables, we observed that 

𝑚𝑖𝑛𝐿𝐿_𝑅  is greater than 𝑚𝑖𝑛𝐿𝐿_𝐺 by 2.40 meters, 𝑚𝑎𝑥𝐿𝐿_𝑅 is greater than 𝑚𝑎𝑥𝐿𝐿_𝐺 by 1.50 meters, and 𝑚𝑒𝑎𝑛𝐿𝐿_𝑅 is greater 

than 𝑚𝑒𝑎𝑛𝐿𝐿_𝐺 by 1.98 meters.  255 
 

For the measure of the spread, considering the standard deviation, we have 𝑠𝑑𝐿𝐿_𝑅 is less than 𝑠𝑑𝐿𝐿_𝐺. This signifies that 

remote sensing lake level data are clustered around its mean while ground-truth lake level data are more dispersed. 

 

Based on the range, the difference between the maximum and the minimum, 𝑟𝑎𝑛𝑔𝑒𝐿𝐿_𝑅 =  𝑚𝑎𝑥𝐿𝐿_𝑅 − 𝑚𝑖𝑛𝐿𝐿_𝑅 =260 
282.28 − 280.20 = 2.08 is less than 

 𝑟𝑎𝑛𝑔𝑒𝐿𝐿_𝐺 =  𝑚𝑎𝑥𝐿𝐿_𝐺 −  𝑚𝑖𝑛𝐿𝐿_𝐺 = 280.78 − 277.80 = 2.98.  This is another evidence that ground-truth lake level 

data are more spread out than remote sensing lake level data.  

 

The interquartile range (𝐼𝑄𝑅) evaluation shows that: 265 
𝐼𝑄𝑅𝐿𝐿_𝑅 =  𝑄3(𝐿𝐿_𝑅) −  𝑄1(𝐿𝐿_𝑅) = 281.47 − 280.83 = 0.64 is less than  

𝐼𝑄𝑅𝐿𝐿_𝐺 =  𝑄3(𝐿𝐿_𝐺) −  𝑄1(𝐿𝐿_𝐺) = 279.71 − 278.72 = 1.00; this means that ground-truth lake level data vary a lot while 

remote sensing lake level data tend to be more or less the same.  

 

The coefficient of variation (CV) –the ratio of the standard deviation to the mean- gives: 270 

𝐶𝑉𝐿𝐿_𝑅 =  
𝑠𝑑𝐿𝐿_𝑅

𝑚𝑒𝑎𝑛𝐿𝐿_𝑅
⁄ =  0.45

281.19⁄ = 0.0016 is less than 

𝐶𝑉𝐿𝐿_𝐺 =  
𝑠𝑑𝐿𝐿_𝐺

𝑚𝑒𝑎𝑛𝐿𝐿_𝐺
⁄ =  0.69

279.21⁄ = 0.0025. There is a greater dispersion of ground-truth lake level data 

around its mean since 𝐶𝑉𝐿𝐿_𝐺 is higher. The more precise will the estimates of remote sensing lake level data will be since 

𝐶𝑉𝐿𝐿_𝑅 is lower. 

We also see from Table that 𝑚𝑒𝑎𝑛𝐿𝐿_𝑅 > 𝑚𝑒𝑑𝑖𝑎𝑛𝐿𝐿_𝑅  while 𝑚𝑒𝑎𝑛𝐿𝐿_𝐺 = 𝑚𝑒𝑑𝑖𝑎𝑛𝐿𝐿_𝐺 confirming the skewed and 275 
symmetrical distributions of remote sensing and ground-truth lake level data, respectively.  

 

Table 4: descriptive and quantile statistics of the dataset 

                 ET                 SH  AT         ST    P             SM      LL_R     LL_G               
 

Count        240.00        240.00  240.00      240.00 240.00          240.00    240.00                 240.00     
 280 
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Min.       0.000001           0.004          21.37           19.63                 0.87              98.57    280.20     277.80
 

1
st
 Qu.    0.000013           0.007          25.20         24.44     16.51           158.04    280.83     278.72 

Median  0.000023           0.012          26.47            25.96 193.50           182.27           281.10                 279.21
 

Mean     0.000023     0.011   26.61         25.98    297.57          190.32           281.19     279.21
 

Sd.         0.000012           0.005            2.04              2.47              308.28             43.43   0.45                      0.69 285 
3

rd
 Qu.   0.000033        0.015   28.18         28.07    504.83           222.01    281.47     279.71 

Max.     0.000046            0.030   31.08         30.99             1086.74           292.34           282.28     280.78 

 

3.2. Correlation coefficient and correlation test analyses 

Table 5 shows the correlation coefficient and correlation test values. Evapotranspiration has positive and statistically 290 
significant correlation coefficients with specific humidity, soil temperature, precipitation, and soil moisture. It has a negative 

and statistically insignificant correlation with air temperature. Specific humidity has positive and statistically significant 

correlations with air temperature, soil temperature, precipitation, and soil moisture. Air temperature has a positive and 

statistically significant correlation with soil temperature, a positive statistically insignificant correlation with precipitation, 

and a negative and statistically significant correlation with soil moisture. Soil temperature has a positive and statistically 295 
significant correlation with precipitation; it has a negative and statistically insignificant correlation with soil moisture. 

Precipitation and soil moisture have a positive and statistically significant correlation. The couples soil moisture-

evapotranspiration (0.89) and air temperature-soil temperature (0.85) are highly correlated; a regression analysis of lake 

level using them may cause multicollinearity. Therefore, we standardized the feature variables and performed variance 

inflation factor (VIF) before running the regression analysis. 300 

The correlation test (𝜌) helps verify whether the sample (i) has sufficient evidence to reject the null hypothesis. Therefore, 

we accept the alternative hypothesis and resolve that there is relationship between the variables in the population or (ii) has 

not satisfactory proof to reject the null hypothesis. Therefore, we accept the null hypothesis and state that there is no 

association between the variables in the population.  Our two variables of interest are remote sensing (𝐿𝐿_𝑅) and ground-

truth lake level (𝐿𝐿_𝐺). The significance level in this study is 5% (𝛼 = 0.05). We interpreted only the 𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑠 less than 305 
the significance level (i.e., 𝑝 < 0.05).  

At 5% significance level, the correlation between remote sensing lake level and ground-truth lake level is positive, 

statistically significant and very large. The correlation coefficient is significantly different from 0 in both the sample and the 

population. The two target variables vary in the same direction. Thus, we do reject the null hypothesis and state that there is 

positive linear relationship between the two variables in the population. 310 

Remote sensing lake level and evapotranspiration have a negative, statistically insignificant, and low correlation coefficient. 

Although the correlation coefficient is different from 0 in the sample, it is insignificantly different from 0 in the population. 

So, we accept the null hypothesis concluding that there is no linear association between remote sensing lake level and 

evapotranspiration. Remote sensing lake level has negative and statistically significant correlations with specific humidity 

(low), soil temperature (very large), air temperature (very large), and precipitation (medium). Remote sensing lake level 315 
decreases when the four feature variables increase and vice versa. On the other hand, it has positive and statistically 

significant correlation with soil moisture (low). The increase of soil moisture induces the increase of lake level. In both 

situations, the correlation coefficients are significantly different from 0 in the sample and in the population. Therefore we 

accept the alternative hypothesis that there are linear associations (negative in the first, positive in the latter) between our 

target and feature variables. 320 

Ground-truth lake level has negative and statistically significant correlations with all the features variables, 

evapotranspiration, specific humidity, soil temperature, air temperature, precipitation, and soil moisture. The correlation 

coefficients are significantly different from 0 in both the sample and the population. We accept the alternative hypothesis 

and state that there are negative linear relationships between ground-truth lake level and the feature variables.  Our target and 
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feature variables change in opposite direction. An increase of the feature variables causes a decrease of ground-truth lake 325 
level and vice versa. 

Table 5. Correlation coefficients (𝑟) and p-value values between lake level and the climate variables 

  Parameter1  Parameter2          r               95% CI   t(238)           p-value 

                ET                                   SH               0.48    [ 0.38,  0.57]        8.46         < .001*** 

  ET                                   AT            -0.03    [-0.15,  0.10]     -0.42         > .999    330 
  ET                                   ST             0.18    [ 0.05,  0.30]        2.77          0.043*    

  ET                         P              0.70    [ 0.63,  0.76]         15.03         < .001*** 

  ET                                   SM              0.89    [ 0.86,  0.92]         30.42         < .001*** 

  ET                               LL_R            -0.09    [-0.21,  0.04]       -1.36          0.597     

  ET                               LL_G           -0.49   [-0.58, -0.38]     -8.56        < .001*** 335 
  SH                                   AT              0.19    [ 0.06,  0.31]        2.96            0.027*    

  SH                         ST             0.51    [ 0.41,  0.60]        9.19          < .001*** 

  SH                        P             0.63   [ 0.55,  0.70]     12.59         < .001*** 

  SH                               SM              0.42    [ 0.31,  0.52]        7.14         < .001*** 

  SH                           LL_R               -0.17    [-0.29, -0.04]     -2.63           0.054     340 
  SH                          LL_G               -0.43   [-0.53, -0.33]   -7.44        < .001*** 

  AT                    ST            0.85   [ 0.81,  0.88]        24.80           < .001*** 

  AT                        P         0.00124   [-0.13,  0.13]       0.02            > .999    

  AT                                SM           -0.28    [-0.39, -0.15]       -4.43            < .001*** 

  AT                          LL_R              -0.46    [-0.55, -0.35]       -7.97        < .001*** 345 
  AT                          LL_G              -0.27    [-0.38, -0.15]       -4.31        < .001*** 

  ST                       P           0.29    [ 0.17,  0.41]      4.76        < .001*** 

  ST                               SM         -0.09    [-0.22,  0.03]    -1.45         0.597     

  ST                          LL_R              -0.50    [-0.59, -0.40]    -9.00        < .001*** 

  ST                          LL_G              -0.43    [-0.53, -0.32]    -7.42        < .001*** 350 
  P                               SM            0.63    [ 0.54,  0.70]       12.41           < .001*** 

  P                           LL_R              -0.24    [-0.35, -0.11]    -3.76         0.002**   

  P                           LL_G              -0.66    [-0.72, -0.58]   -13.45         < .001*** 

  SM                          LL_R               0.13    [ 0.01,  0.26]        2.08         0.039     

  SM                          LL_G             -0.32    [-0.43, -0.21]     -5.27        < .001*** 355 
                               LL_R                        LL_G              0.66    [ 0.59,  0.73]    13.70          < .001*** 

p-value adjustment method: Holm (1979). Observations: 240 
  

- Variance Inflation Factor 

After standardizing the features, we ran variance inflation factor (VIF) since evapotranspiration and soil moisture as well as 360 
air temperature and soil temperature are highly correlated. The purpose is to check the multicollinearity between features 

using the VIF rules of thumb. For standardized data, a 𝑉𝐼𝐹𝑖 > 10 is a sign of harmful collinearity (Kennedy, 1992). There is 

multicollinearity if (i) the largest VIF exceeds 10 and (ii) the mean of all of the VIF’s largely exceeds 1. A VIF of 10 and 4 

are considered as a proof of excessive or serious multicollinearity (Chatterjee and Price, 1991), and are often used to 

question the results of analyses that are pretty strong on statistical bases (O’Brien, 2007). With these VIF values, the attempt 365 
is to eliminate one or more variables from the analysis to reduce multicollinearity; VIF exceeding a threshold value can even 

lead to a rejection of paper by a manuscript reviewer. O’Brien (2007), when analyzing these rules of thumb, showed that 
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they should be put into the context of the effects of other factors that affect the variance of the regression coefficients. VIF 

values of 10 or even higher do not, by themselves, discredit the results of regression analysis, do not call for the elimination 

of one or more feature variables, do not advise using ridge regression, nor do they require combining feature variables into a 370 
single index. We can much assuredly draw conclusions from regression analysis even with VIF values over the rules of 4 or 

10. The conviction can depend on t-values and/or confidence interval. Our null and alternative hypotheses in this analysis are 

as follows: 

𝐻0: there is no multicollinearity between the features 

𝐻1: there is multicollinearity between the features 375 

Table 6 has the VIF values corresponding to each of our feature variables. Using the rule of thumb of 10, our results are 

acceptable since all the VIF values are well below 10, and the associations are statistically very significant (𝑝 < 0.001). So, 

we conclude that there is no multicollinearity between all the features; therefore we accept the null hypothesis. 

If we consider the rule of thumb of 4, evapotranspiration and soil moisture, although highly correlated, have a statistically 

very significant relationship (𝑝 < 0.001), with the narrowest confidence interval, and the largest 𝑡 − 𝑣𝑎𝑙𝑢𝑒. Thus, we are 380 
confident about the VIF values of evapotranspiration and soil moisture, we and accept the null hypothesis. Therefore, we 

state that there is no collinearity between these two features. Likewise, though air temperature and soil temperature are 

highly correlated, their association is statistically very significant with the second narrowest confidence and the second 

largest 𝑡 − 𝑣𝑎𝑙𝑢𝑒. We accept the null hypothesis and conclude that there is not collinearity between air temperature and soil 

temperature.  385 
Since we standardized our data and all the 𝑉𝐼𝐹𝑖 values are less than 10, we state that there is no collinearity. In addition, our 

maximum VIF being less than 10, we conclude that there is inconsequential multicollinearity affecting the estimates of our 

regression analysis.  

Table 6. VIF table 

Feature  ET SH AT ST P SM 390 

VIF  7.97 2.63 5.45 7.97 2.66 8.23 

3.3. Predictions 

Figure 5a shows the predictions of remote sensing lake level data. Figure 5b presents the results from predicting ground-

truth lake level data. For both remote sensing and ground-truth data, the magnitude and general variation of predicted lake 

level from LR, SVR, RT, and RF are significantly closer to the observed lake level as compared to the predictions from DL. 395 
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Figure 5: Comparison of observed and predicted lake level using (a) remote sensing and (b)  ground-truth lake level data 

with linear regression (LR), support vector regression (SVR), regression tree (RT), random forest (RF), and deep learning 

(DL). 400 

Table 7 shows the predictive performances of our five models on training and testing datasets for remote sensing and 

ground-truth lake level data, respectively. The best performances with regard to each model are in bold type.  

The results from both remote sensing and ground-truth lake level data analysis show that RT has a perfect performance on 

training dataset, followed by RF, SVR, and LR; DL gives the worst performances with negative 𝑅2 and 𝐸𝑉𝑆 values. 

However, the 𝐶𝑉𝑀𝑆𝐸 results indicate that SVR outperforms the other models followed by RF, LR, RT, and DL, respectively. 405 
On the testing dataset, it is rather SVR that has better performances, followed by RF, LR, and RT in terms of 𝑅2 values. LR 

and RF models are approximately equal in terms of 𝑀𝐴𝐸, 𝑀𝑆𝐸, and 𝐸𝑉𝑆 values. The 𝐶𝑉𝑀𝑆𝐸 results show that SVR and LR 

perform equally, followed by RF, RT, and DL, respectively. 

Table 7. Statistical performances of regression models on training and testing datasets for remote sensing and ground-truth 

lake level data.  410 

             Remote sensing lake level    Ground-truth lake level 

Training model      LR        SVR         RT       RF           DL    LR     SVR          RT           RF  DL 

𝑅2 (%)
                              

0.33       0.73       100       0.93      -1.50                 0.52           0.71           100          0.94          -15.44 

𝑀𝐴𝐸                    0.29       0.18         0.00        0.09       0.61                 0.40      0.30          0.00        0.14               2.30 

𝑀𝑆𝐸                    0.14       0.06         0.00       0.02       0.53                 0.24           0.14 0.00        0.03               8.08 415 

𝑅𝑀𝑆𝐸                    0.37       0.24         0.00        0.12       0.73                 0.49           0.37 0.00        0.17               2.84 

𝐸𝑉𝑆                    0.33       0.73         1.00        0.93      -1.34                 0.51            0.71 1.00        0.94 -           -7.30 

𝐶𝑉𝑀𝑆𝐸                       0.15       0.09          0.18        0.11        1.03                         0.26            0.22            0.40        0.22                       6.43 

Testing model 

𝑅2  
                   0.38     0.49       0.09       0.40     -19.05   0.51       0.62            0.17       0.56           -25.58 420 

𝑀𝐴𝐸                   0.25     0.23       0.32       0.25        1.56    0.37            0.32   0.46       0.34    2.56 

𝑀𝑆𝐸                   0.11        0.09         0.16        0.11        3.65   0.20       0.15            0.31       0.18            11.17 

𝑅𝑀𝑆𝐸                   0.33        0.30         0.40        0.33       1.91   0.45       0.39            0.56       0.42    3.34 

𝐸𝑉𝑆                   0.43        0.51  0.13        0.40    -16.62     0.51       0.62            0.27       0.56           -16.66 

𝐶𝑉𝑀𝑆𝐸                             0.11        0.11 0.24         0.15        2.13                0.20       0.20            0.33       0.24  13.86 425 
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The results from Table 7 above suggest that RF and SVR, respectively, seem the best models to further investigate remote 

sensing and ground-truth lake level data because of their respective highest R
2
 and EVS and least MAE and MSE values. 

These results would recommend LR as a third model of choice instead of RT because LR training and testing metrics are 

very close, whereas RT has a perfect fit on training dataset but poorly predicts on testing dataset. DL, despite its worst 

metrics in this present case, should not be ignored for further studies with increased data because of its ability to improve its 430 
performance with the increase in the training sample size.    

Figures 6 and 7 show the residuals plots for LR, SVR, RT, and RF models using remote sensing and ground-truth lake level 

data, respectively. LR model using remote sensing data (Figure 6a) has a quite random and uniform distribution of residuals 

against the target in two dimensions on both training and testing datasets. The histogram also shows normally and 

multimodal distributed errors around zero for both datasets. This seems to show that LR performs well. Using ground-truth 435 
data (Figure 7a) with both training and testing datasets, residuals are more dispersed below the horizontal axis with an outlier 

(for testing dataset) above. In addition, the errors distribution is right-skewed for both datasets. This appears to prove that LR 

is not a well fitted model for ground-truth lake level data. 

SVR model using remote sensing data (Figure 6b) presents a random and uniform dispersion of residuals around the 

horizontal axis for both training and testing datasets; the errors distributions around zero are normal. This seems to indicate 440 
that SVR fits well on training and testing remote sensing data.  In the case of ground-truth data (Figure 7b), we see that, 

although the dispersion is random and uniform, the training data residuals are mostly closer to the horizontal axis, whereas 

the testing data residuals are more dispersed with an outlier. The histogram also shows that the training errors are normally 

distributed and closer to zero whereas the testing errors are widely spread. This may indicate that SVR fits well on training 

ground-truth data but poorly predicts on testing data. 445 
Using both remote sensing and ground-truth data, RT model (Figure 6c and Figure 7c) has perfect fits on training datasets, 

meaning the residuals line up with the horizontal line. On testing datasets, however, the residuals show random and uniform 

distributions. The histograms show residuals lining with zero for both training and testing datasets. This illustrates that RT 

does not fit well the testing datasets. 

RF models, using remote sensing and ground-truth lake level data, respectively (Figure 6d and Figure 7d), show uniform 450 
distributions of residuals around the horizontal axis for both training and testing dataset. However, testing data residuals are 

more widely spread than the training data residuals. Furthermore, the histograms show that the training residuals have 

normal distributions while testing residuals do not. This seems to explain that RF performs well on training datasets but not 

on testing datasets. 
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 455 

Figure 6: Plots of residuals from remote sensing lake level data models (a) LR, (b) SVR, (c) RT, and (d) RF 

 

Figure 7: Plots of residuals from ground-truth lake level data models (a) LR, (b) SVR, (c) RT, and (d) RF 
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Figure 8 shows the plots of deep learning analysis, using ReLU activation function, of remote sensing (row 1) and ground-460 
truth (row 2) lake level. Our loss function is the mean absolute error. Both training and validation losses decrease 

exponentially with the increase of epochs and quickly converge at around 40 epochs (Figure 8a) and 20 epochs (Figure 8d). 

The losses decrease to a level of stability with small gaps between them. This seems to be a good fit (meaning there is 

neither overfit nor underfit). The MSE values in both cases (Figures 8b and 8e) follow the same patterns and reach a plateau 

from around 60 epochs to the end. The R
2
 values (Figures 8c and 8f), although exponentially increase with the increase in 465 

number of epochs, are always negative and reach a stability at around 60 epochs. 

 

Figure 8: Plots of deep learning model metrics using
 
ReLU activation function 

a. Activation functions comparison 

We also compared ReLU activation function with Sigmoid and Tanh activation functions to see which one performs 470 
better in predicting remote sensing and ground-truth lake level data. The results (Table 8) show that, for the present 

study, although deep learning using ReLU performs worse than the other models in consideration (i.e., LR, SVR, RT, 

and RF), changing the activation function to Sigmoid and Tanh does not improve the model. The ordering of metrics, 

except for EVS which has 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 > 𝑇𝑎𝑛ℎ > 𝑅𝑒𝐿𝑈 as order, is 𝑅𝑒𝐿𝑈 > 𝑇𝑎𝑛ℎ > 𝑆𝑖𝑔𝑚𝑜𝑖𝑑. 

 475 
Table 8. Statistical performances of ReLU, Sigmoid, and Tanh activation functions using remote sensing and ground-

truth lake level data 

 

Remote sensing data  

R
2
  MAE  MSE   EVS  CVMSE 480 

ReLU                  -16910.38  42.18  2065.40     -15386.43    728.22 

Sigmoid           -352931.11  253.52              64274.93    -0.0055  44831.77 

Tanh                -297346.09  232.70              54151.95    -0.44  41122.68 

Ground-truth data 
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ReLu                  -4785.58  34.40  2011.05     -4411.00     779.87 485 
Sigmoid         -146713.14              248.27  61641.21    -0.002  44238.34 

Tanh             -126664.70              230.69  53217.96    -0.003  40370.29 

b. Feature importance  

In Table 9, we have the feature ranking for remote sensing and ground-truth lake level data, respectively. The most 

important feature for remote sensing lake level is soil temperature, which is followed by soil moisture, specific humidity, air 490 
temperature, precipitation, and evapotranspiration, respectively. For ground-truth lake level, precipitation is the most 

important feature, closely followed by specific humidity, then air temperature. Soil moisture, soil temperature, and 

evapotranspiration, respectively, are the least important. 

We can notice that the first two most important (0.50) features (ST and SM) for remote sensing lake level are, in reverse 

order, the first two least important (0.13) features (SM and ST) for ground-truth lake level. Precipitation is among the less 495 
important features for remote sensing lake level while it is most important feature for ground-truth lake level. Specific 

humidity and air temperature are more important for ground-truth lake level. Evapotranspiration is the least important for 

both targets. 

Table 9. The importance of features for remote sensing and ground-truth lake level, respectively. 

Remote sensing lake level      Ground-truth lake level 500 
Feature   Importance    Feature   Importance 

ST      0.34     P        0.31 

SM       0.16     SH        0.29 

SH                  0.14                  AT            0.21 

AT                 0.13                  SM            0.07 505 

P                  0.12                  ST            0.06 

ET                 0.11                  ET            0.05 

 

3.4. Algorithms comparison 

Figure 9 shows the plots comparing the MAE and MSE values for LR, SVR, RT, and RF algorithms, respectively, using the 510 
whole dataset of remote sensing (row 1) and ground-truth (row 2) lake level data. The results suggest that SVR and RF seem 

worthy to use for further study on lake level data since they have the first two lowest MAE and MSE values. The ordering of 

these algorithms, based on their MAE and MSE scores for both remote sensing and ground-truth data is: SVR >  RF > LR >
RT. 
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 515 

Figure 9.  Comparison of LR, SVR, RT, and RF algorithms based on MAE and MSE metrics. 

These algorithm comparison results confirm the statistical performances of regression models (Table 7) for which RF and 

SVR seem to be the best models based on their higher R
2
 and lower MAE and MSE values. 

Table 10 summarizes the training and testing MAE and MSE values for LR, SVR, RT, and RF algorithms using remote 

sensing and ground-truth lake level data, respectively. Using remote sensing data, SVR outperforms RF, followed by LR and 520 
RT, respectively, based on both training and testing MAE and MSE values (i.e. SVR > RF > LR > RT). When using ground-

truth data, based on both training MAE and MSE, the relationships are SVR = RF > LR > RT; the testing MAE gives 

SVR > LR > RF > RT as relationships, whereas the testing is MSE is SVR = LR > 𝑅𝐹 > 𝑅𝑇. 

Once more, these results confirm those from Table 7 and Figure 9 based on which SVR and RF seem to be the most suitable 

algorithms to study lake level data, followed by LR and RT. 525 

Table 10. Statistical performances of LR, SVR, RT, and RF algorithms based on training and testing MAEs and MSEs 

metrics using remote sensing and ground-truth lake level data 

Remote sensing lake level   

Training dataset 

LR  SVR  RT  RF 530 
MAE  0.30  0.23  0.32  0.26 

MSE   0.15  0.09  0.18  0.12 

Testing dataset 

LR  SVR  RT  RF 

MAE  0.25  0.24  0.37  0.28 535 
MSE   0.11  0.11  0.25  0.14 

Ground-truth lake level   
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Training dataset 

LR  SVR  RT  RF 

MAE  0.42  0.38  0.52  0.38 540 
MSE   0.26  0.22  0.40  0.22 

Testing dataset 

LR  SVR  RT  RF 

MAE  0.37  0.36  0.52  0.38 

MSE   0.20  0.20  0.32  0.25 545 
 

4. Conclusion 

The study of remote sensing and ground-truth Lake Chad level data from 1993 to 2012 using remote sensing climate 

variables (i.e., evapotranspiration, specific humidity, soil temperature, air temperature, precipitation, soil moisture) shows 

that remote sensing lake level has a skewed distribution, whereas ground-truth lake level has a symmetrical distribution. 550 
Remote sensing lake level shows a positive and significant relationship with only soil moisture, and ground-truth lake level 

has a negative and significant relationship with all the feature variables. These associations do not undeniably mean 

causation. 

The results also reveal that Random Forest Regression and Support Vector Regression seem to be the most suitable models 

to analyze remote sensing and ground-truth lake level data. Deep Learning should, however, be considered if more data is 555 
available. Linear Regression and Regression Tree do not fit well the two target variables. Soil temperature and soil moisture 

are the most important input features for remote sensing lake level, however they are the first two least important for ground-

truth lake level. Precipitation, specific humidity, and air temperature are the factors influencing the most ground-truth lake 

level, while their importance is less for remote sensing lake level.  

This indicates that ground-truth data, despite their scarcity, should be always and carefully considered to validate data-driven 560 
environmental models. These findings can serve as the basis for understanding how the remote sensing and ground-truth data 

can be used in the study of hydrologic processes in the basin. Validation studies are needed when a greater amount of remote 

sensing and ground-truth data is available. 
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