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Abstract. Quantifying continental-scale river discharge is
essential for understanding the terrestrial water cycle, but
it is susceptible to errors caused by a lack of observations
and the limitations of hydrodynamic modeling. Data assim-
ilation (DA) methods are increasingly used to estimate river
discharge in combination with emerging river-related remote
sensing products (e.g., water surface elevation (WSE), water
surface slope, river width, and flood extent). However, di-
rectly comparing simulated WSE to satellite altimetry data
remains challenging (e.g., because of large biases between
simulations and observations or uncertainties in parameters),
and large errors can be introduced when satellite observa-
tions are assimilated into hydrodynamic models. In this study
we performed direct, anomaly, and normalized value assimi-
lation experiments to investigate the capacity of DA to im-
prove river discharge within the current limitations of hy-
drodynamic modeling. We performed hydrological DA us-
ing a physically based empirical localization method applied
to the Amazon basin. We used satellite altimetry data from
ENVISAT, Jason 1, and Jason 2. Direct DA was the baseline
assimilation method and was subject to errors due to biases
in the simulated WSE. To overcome these errors, we used
anomaly DA as an alternative to direct DA. We found that
the modeled and observed WSE distributions differed con-
siderably (e.g., differences in amplitude, seasonal flow vari-
ation, and a skewed distribution due to limitations of the hy-
drodynamic models). Therefore, normalized value DA was
performed to improve discharge estimation. River discharge
estimates were improved at 24 %, 38 %, and 62 % of stream
gauges in the direct, anomaly, and normalized value assimi-
lations relative to simulations without DA. Normalized value
assimilation performed best for estimating river discharge

given the current limitations of hydrodynamic models. Most
gauges within the river reaches covered by satellite obser-
vations accurately estimated river discharge, with the Nash–
Sutcliffe efficiency (NSE) > 0.6. The amplitudes of WSE
variation were improved in the normalized DA experiment.
Furthermore, in the Amazon basin, normalized assimilation
(median NSE= 0.50) improved river discharge estimation
compared to open-loop simulation with the global hydrody-
namic model (median NSE= 0.42). River discharge estima-
tion using direct DA methods was improved by 7 % with cali-
bration of river bathymetry based on NSE. The direct DA ap-
proach outperformed the other DA approaches when runoff
was considerably biased, but anomaly DA performed best
when the river bathymetry was erroneous. The uncertainties
in hydrodynamic modeling (e.g., river bottom elevation, river
width, simplified floodplain dynamics, and the rectangular
cross-section assumption) should be improved to fully real-
ize the advantages of river discharge DA through the assimi-
lation of satellite altimetry. This study contributes to the de-
velopment of a global river discharge reanalysis product that
is consistent spatially and temporally.

1 Introduction

River discharge plays a pivotal role in the global water cy-
cle and thereby affects human livelihoods (Oki and Kanae,
2006). River discharge records can be used to assess water re-
sources, biogeochemistry, and the carbon cycle in terrestrial
waters, and are the single most important parameter affecting
the flow dynamics of rivers (Gleason and Durand, 2020). The
ability to measure global river discharge via in situ gauging is
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limited by a lack of accurate, complete, and freely available
data (Hannah et al., 2011; Shiklomanov et al., 2002; Vörös-
marty et al., 2001). Because of the limited temporal coverage
and spatial heterogeneity of in situ gauging networks, eluci-
dating the terrestrial water cycle is essential.

As a result of recent computational advances, global hy-
drodynamic models (GHMs) have been used extensively to
study the terrestrial water cycle (Döll et al., 2016; Sood and
Smakhtin, 2015). Simulated water dynamics obtained from
GHMs are used to complement unavailable ground obser-
vations. GHMs simulate water dynamics in discretized river
segments to increase computational efficiency. Nevertheless,
they are subject to numerous limitations, including simpli-
fied model structures, imperfect external forcing, and uncer-
tainties in model parameters (Liu and Gupta, 2007; Renard et
al., 2010). These inadequacies are due to both a lack of infor-
mation about physical processes and simplifications made to
limit computational costs. There are considerable uncertain-
ties in model parameters such as river bottom elevation due to
a lack of measurements or limitations of estimation methods
that affect model outputs (Brêda et al., 2019). Uncertainties
in the forcing are also partially responsible for uncertainty in
the surface water dynamics (Emery et al., 2020c). In combi-
nation, these constraints result in unavoidable uncertainties
in GHM simulations of water dynamics.

Given the current limitations of GHMs and in situ mea-
surements, satellite altimetry observations provide an al-
ternative method of estimating the surface water dynamics
(Feng et al., 2021). Satellite altimetry quantifies the water
surface elevation (WSE) by measuring the time required for
the electromagnetic (e.g., radar or laser) pulse to travel be-
tween the satellite and the water surface. Beginning with
GEOS-3 in 1975, numerous satellite altimetry missions have
been deployed to obtain measurements of terrestrial water
surfaces. Although some of these satellites were developed
for other purposes (i.e., observing the sea surface), their ap-
plication has expanded to include river and lake observations
(Birkett et al., 2002; Crétaux et al., 2009; Santos da Silva
et al., 2010). Commonly used satellite missions for river ob-
servations are ENVISAT, Jason 1, Jason 2, Sentinel 3A, and
Sentinel 3B (Bannoura, 2001; Resti et al., 2002; Zwally et al.,
2002). The Surface Water and Ocean Topography (SWOT)
satellite will provide an unprecedented amount of data for the
first time on terrestrial waters (Biancamaria et al., 2016; Fu et
al., 2012). The greatest impediment to the use of these satel-
lites is their limited spatial and temporal coverage, which
ranges from a few days to several months between successive
observations of specific locations. Hence, satellite altimetry
observations may not provide a comprehensive view of the
terrestrial water cycle because of their spatial and temporal
sparseness.

Surface water dynamics can be clarified by combining re-
mote sensing data with a limited amount of observational
data in continental-scale hydrodynamic models. Data assim-
ilation (DA) is a mathematical technique that combines a

physical model with external observations, accounting for
their uncertainties, to improve model outputs or replicate the
evaluation of an actual system (Emery et al., 2020a). By
leveraging remote sensing data, DA methods can be used to
bridge the gap between models and ground observations. DA
approaches are widely used in meteorology and oceanogra-
phy (e.g., Anderson, 2007; Evensen and van Leeuwen, 2002;
Miyoshi and Yamane, 2007) and have recently been used
in large-scale hydrology (e.g., Clark et al., 2008; Emery et
al., 2018; Michailovsky et al., 2013; Paiva et al., 2013a;
Revel et al., 2021; Wongchuig et al., 2019). They have also
been used to correct hydrodynamic parameters such as river
bathymetry (Brêda et al., 2019; Yoon et al., 2012), Man-
ning’s coefficient (Emery et al., 2020a; Pedinotti et al., 2014),
and floodplain bathymetry and slope (Durand et al., 2008).
Emery et al. (2020c) used DA to improve the accuracy of
runoff forcing by integrating discharge observations. Using
operation system simulation experiments, researchers have
thoroughly investigated the potential for improving river dis-
charge through the assimilation of remote sensing data (An-
dreadis et al., 2007; Andreadis and Schumann, 2014; Bian-
camaria et al., 2011; Revel et al., 2019, 2021). In situ (Clark
et al., 2008; Paiva et al., 2013a; Wongchuig et al., 2019)
or remotely sensed (Emery et al., 2020b; Feng et al., 2021;
Ishitsuka et al., 2020) discharge assimilation performs better,
but the unavailability of ground observations and the limita-
tions of remotely sensed river discharge values may hamper
the performance of these DA schemes. Thus, DA approaches
based on remotely sensed data can be used to improve the
performance of global hydrodynamic models.

Although DA approaches can improve model perfor-
mance, hydrodynamic models are not yet mature enough
to directly assimilate satellite altimetry data (Emery et al.,
2020a). Because of ambiguity in digital elevation mod-
els (DEMs), flaws in hydraulic parameters (e.g., river
bathymetry), and the simplification of cross-section param-
eters, simulated WSEs may have substantial errors. Sev-
eral methods have been used to circumvent these limitations
when assimilating satellite altimetry into large-scale hydro-
dynamic models, including assimilating anomalies (i.e., re-
moving the long-term mean WSE) and using a common da-
tum (e.g. Emery et al., 2020a; Michailovsky et al., 2013;
Paiva et al., 2013a; Wongchuig-Correa et al., 2020). To im-
prove river discharge estimation in the Brahmaputra River,
Michailovsky et al. (2013) assimilated measurements from
the ENVISAT satellite into a rainfall-runoff model using
a common reference for satellite altimetry and simulated
river depth (i.e., adding the difference between the modeled
river depth and the altimetry elevation to satellite altimetry).
Likewise, anomalies from ENVISAT observations were as-
similated into a continental-scale hydrologic/hydrodynamic
model and compared to in situ and remotely sensed river dis-
charge data in the Amazon basin (Paiva et al., 2013a). More-
over, global-scale hydrodynamic modeling studies have used
anomaly assimilation to eliminate biases in the simulated
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WSE (Brêda et al., 2019; Emery et al., 2020a; Paiva et al.,
2013a; Wongchuig-Correa et al., 2020). However, anomaly
assimilation does not provide accurate river discharge esti-
mates for the Amazon basin (Paiva et al., 2013a), as it cannot
compensate for discrepancies in flow dynamics between ob-
servations and simulations. These differences in flow dynam-
ics can be attributed to several factors, including differences
in amplitude due to limited river width (De Paiva et al., 2013;
Yamazaki et al., 2012), differences in seasonal flow due to
a failure to capture anthropogenic activity (Hanazaki et al.,
2022; Pokhrel et al., 2018; Shin et al., 2020), and differences
in flow variation due to the assumption of rectangular cross-
sections (Neal et al., 2015; Saleh et al., 2013). Given such un-
certainties in parameters and the structural simplification of
current hydrodynamic models, anomaly assimilation of satel-
lite altimetry may not be effective for estimating

river discharge (Liu et al., 2012; Paiva et al., 2013a).
Therefore, alternative approaches to direct and anomaly as-
similation are required to integrate satellite altimetry into ex-
isting hydrodynamic models.

In the present study, we evaluated the potential of assim-
ilating satellite altimetry into a global-scale hydrodynamic
model to improve river discharge estimation. We investigated
methods of assimilating satellite altimetry data into a hydro-
dynamic model (within current limitations) without contam-
ination from the errors in simulated WSE. Large biases be-
tween satellite altimetry and simulated WSE are driven by
uncertainties in parameters, whereas simplified physics and
a lack of representation of anthropogenic activity (e.g., reser-
voir operations) introduce differences in the WSE distribu-
tion between simulations and observations. To effectively re-
place direct value assimilation, we propose alternative meth-
ods for DA in the Amazon basin, including anomaly and nor-
malized value assimilation. The hydrodynamic model used
in this study was the Catchment-based Macro-scale Flood-
plain model (CaMa-Flood: Yamazaki et al., 2011) with the
local ensemble transform Kalman filter (LETKF: Hunt et al.,
2007), which we used to assimilate satellite altimetry using
a physically based empirical localization approach (Revel et
al., 2019). The methodology is described in Sect. 2, and the
findings are presented in Sect. 3. The discussion and conclu-
sion are presented in Sects. 4 and 5, respectively.

2 Methodology

2.1 Data assimilation framework

Using a physically based empirical localization approach,
we developed a DA framework to incorporate satellite al-
timetry into a hydrodynamic model (Revel et al., 2021).
The DA framework developed in this study is represented
schematically in Fig. 1a. A collection of runoffs created with
Earth2Observe’s (E2O) Global Earth Observation for Inte-
grated Water Resource Assessment, a tier-2 water resources

reanalysis (WRR2) runoff data set, forced the ensemble sim-
ulations. As runoff is the single largest source of error in
hydrodynamic modeling (Paiva et al., 2013a; Wongchuig et
al., 2019), we simply perturbed the runoff forcing (“runoff
ensemble”). CaMa-Flood (Yamazaki et al., 2011) was the
hydrodynamic core of the DA scheme, and LETKF (Hunt
et al., 2007) was the DA algorithm. CaMa-Flood simula-
tions provide the current water state (i.e., WSE) and correct
that value using satellite altimetry. The assimilation scheme
takes advantage of physically based empirical local patches
(Revel et al., 2019). The initial water state at time T

(
xaT

)
and the runoff are used to simulate the forecasted water state
at time T +1T

(
xf
T+1T

)
using the CaMa-Flood hydrody-

namic model. The water status is then updated to
(
xaT+1T

)
via DA, and any modifications are transferred to the initial
condition of the following time step. In anomaly and nor-
malized value assimilation scenarios, the forecasted water
state is transformed to anomalies or normalized values us-
ing the long-term mean and standard deviation for the assim-
ilation of converted (anomalies or normalized values) satel-
lite altimetry. Then the assimilated water states expressed as
anomalies or normalized values are converted into natural
values (i.e., the corrected WSE). Further information about
the transformation of water states is presented in Sect. 2.3.

To match the WSE obtained from satellite altimetry, we
allocated virtual stations (VSs) to the CaMa-Flood river net-
work, accounting for the Multi-Error-Removed Improved-
Terrain DEM (MERIT DEM; Yamazaki et al., 2017, 2019)
elevations and river size. The methods used to allocate VSs
to the CaMa-Flood river network are illustrated in Fig. 1b.
First, we digitized the VS locations to high-resolution (i.e.,
3 arcsec) MERIT Hydro (conditioned DEM) map by using
latitude and longitude information to identify the nearest
river. The high-resolution locations were then mapped to
coarse-resolution river reaches, which were used in CaMa-
Flood simulations. Finally, VSs with considerable variation
in the mean WSE compared to the MERIT Hydro (Yamazaki
et al., 2017, 2019) elevation (expressed as riverbank height)
were filtered through comparison of mean observations and
riverbank heights (i.e., VSs with mean WSEs above or be-
low the 10 m riverbank height of the MERIT river network
were removed). Next, all satellite altimetry elevations were
converted into EGM96 from EGM08 via geoid conversion.
Allocation of VSs to the CaMa-Flood river network is a vital
step in the assimilation framework.

Using simulated long-term WSE values, we determined
the localization parameters (i.e., local patch and observation
localization weights; Fig. 1c). Deriving empirical localiza-
tion parameters involved simulating WSE with CaMa-Flood,
processing the data, running semi-variogram analyses, and
assigning a threshold to spatial dependence weights. The
physically based empirical localization DA approach outper-
formed traditional localization methods (Revel et al., 2019).
Hence, when combined with LETKF, these localization pa-
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Figure 1. (a) Data assimilation framework, (b) schematic diagram of satellite altimetry preprocessing, and (c) derivation of the localization
parameters.

rameters provide a foundation for efficient continental-scale
DA.

2.2 Hydrodynamic model

To diagnose the time-varying water states in the DA scheme,
we used CaMa-Flood (Yamazaki et al., 2011), which is a
large-scale distributed hydrodynamic model. CaMa-Flood
uses a local inertial flow equation, which is a computation-
ally efficient variant of the shallow-water equation (Bates et
al., 2010; Yamazaki et al., 2011), to determine river hydro-
dynamics (e.g., discharge, WSE, flood depth, flooded area).
Runoff (surface and subsurface flow of water per unit area)
from a land surface model (LSM) forces the model, and wa-
ter is routed through the river network at adaptive time steps
(Yamazaki et al., 2013). CaMa-Flood is capable of simulat-
ing floodplain dynamics and complex hydrodynamics such
as the backwater effect (Yamazaki et al., 2011, 2012) and
bifurcation flow (Yamazaki et al., 2014b). It is a physically
based model that can simulate WSE; combining CaMa-Flood
with MERIT DEM (Yamazaki et al., 2017, 2019) improves
its performance relative to satellite altimetry. Consequently,
the CaMa-Flood hydrodynamic model is appropriate for the
DA framework described in Sect. 2.1.

We used CaMa-Flood version 4.0, which was developed
with MERIT DEM and MERIT Hydro (Yamazaki et al.,
2017, 2019) at a spatial resolution of 0.1◦. The simula-
tions used the standard parameters (river channel depth,
river width, roughness coefficient, and floodplain profile) of
CaMa-Flood. The river channel depth was estimated using a
power law relationship with prior river discharge (Sect. S3
in the Supplement, Eq. 1) (Yamazaki et al., 2011; Zhou et
al., 2022). River widths were determined using remote sens-
ing for rivers wider than 300 m (Yamazaki et al., 2014a); for
narrower rivers, river width was empirically determined (Ya-
mazaki et al., 2011). The roughness coefficient was approxi-

mated as a global constant (0.03). MERIT DEM and MERIT
Hydro were used to construct the river network (Yamazaki et
al., 2017, 2019).

2.3 Water surface elevation transformation

Because of the large biases in simulated WSE, direct compar-
ison with satellite altimetry is difficult. Figure 2a presents an
example of WSE bias and a comparison of satellite altimetry
with simulated WSE. This figure shows that direct DA can
introduce additional biases into assimilated WSE. These bi-
ases are caused by inaccuracies in parameters such as river-
bank elevation height errors and river bathymetry errors as
well as differences in elevation due to hydrodynamic model
resolution (i.e., models assume the unit-catchment outlet ele-
vation as the riverbank elevation of the river reach). Convert-
ing WSE into anomalies can reduce the challenges created by
large differences between simulated and observed WSE val-
ues. WSE anomalies were generated by subtracting the time-
averaged reference WSE (i.e., the long-term mean) from the
current WSE. Therefore, each ensemble member had a dif-
ferent reference WSE value.

Although the use of anomalies can overcome the bias be-
tween observations and simulations, differences in flow vari-
ation between simulated and observed WSE remain (e.g., a
difference in the amplitude of WSE variation, upstream water
regulations that are not represented in the model). An exam-
ple of a difference in flow variation is presented in Fig. 2b.
The flow dynamic variation between simulations and obser-
vations can be overcome by using normalized values (i.e.,
subtracting the long-term mean and dividing by the standard
deviation) when assimilating satellite altimetry into contem-
porary hydrodynamic models. To compensate more accu-
rately for distribution discrepancies and estimate the river
discharge, we used normalized value assimilation. We nor-
malized the current WSE values using the time-averaged ref-
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Figure 2. (a) Schematic diagram of the bias between the simulated and observed WSE, and an example of the bias between the simulated
and observed water surface elevation (WSE) at the HydroWeb VS R_AMAZONAS_JARI_KM0529. (b) The differences in surface water
dynamics shown as a boxplot, probability distribution of simulated and observed WSE, and an example of the difference in amplitude
between simulated and observed WSE at the HydroWeb VS R_AMAZONAS_ JUTAI_KM3182.

erence WSE and the standard deviation of WSE for each per-
turbation in the ensemble. Hence, each perturbation had a
unique reference WSE and standard deviation of WSE.

2.4 Local ensemble transformation Kalman filter

DA aims to overcome differences between observations and
simulations by combining uncertain and complementary in-
formation from observations. In this study, LETKF (Hunt et
al., 2007), which is a computationally efficient variant of the
ensemble Kalman filter (EnKF: Evensen, 2003), an advanced
Kalman filter (Kalman, 1960), was used as the DA method.
We used a physically based empirical localization approach
(Revel et al., 2019, 2021) to enhance the computational effi-
ciency of global-scale DA.

The LETKF is a commonly used DA algorithm (e.g., Feng
et al., 2021; Ishitsuka et al., 2020; Revel et al., 2019, 2021b;
Wongchuig-Correa et al., 2020) for nonlinear models, which
are needed for modeling hydrodynamic processes. The non-
linear hydrodynamic model can be shown in discrete form as
follows:

xk+1 =M(xk,uk,ϑ)+ qk, (1)

where x, u, and ϑ represent the vector of the state variable,
the model forcing, and the model parameters, respectively.

The nonlinear model operator, M , is related to the time in-
terval of tk to tk+1, whereas errors in the model structure,
parameters, forcing, and antecedent states are represented
by qk . All state variables in CaMa-Flood, such as river dis-
charge, WSE, flooded area, flood height, and storage, are in-
cluded within the vector x. The model states can be related
to the observations as follows:

yk =H (xk)+ εk, (2)

where y is the observation vector; ε is the vector of ob-
servation errors; and H is the linear observation operator,
which relates the model states (x) to the observations (y).
In this study, the observations were WSEs obtained from
satellite altimetry. In the anomaly and normalized value as-
similations, the observed and forecasted states were trans-
formed into anomalies and normalized values, respectively
(Sect. 2.3, Fig. 2). The LETKF assimilation algorithm was
used to obtain the optimal estimate of the model state vector
XTS1 considering the model and observation errors. Here,
the model state vector X was composed of WSE valuesCE1 .
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LETKF analysis is expressed as

Xa
=Xf

+Ef[
VD−1V T

(
HEf

)T(R
w

)−1(
Y o
−HXf

)
+
√
m− 1 VD−1/2V T

]
, (3)

where Xa is the posterior state estimator (or analysis); Xf is
the prior state estimator (or forecast); Y o is the observation
(i.e., the WSE value obtained from satellite altimetry); H is
the observation operator corresponding to WSE, which is a
subset of H;m is the ensemble size;Ef is the prior state error
covariance obtained directly from the perturbations; R is the
observation error covariance determined from the uncertainty
of the measurements;w is the weighting term for observation
localization calculated with semi-variogram analysis of the
simulated WSE (Revel et al., 2019); and VDVT is defined as

VDVT = (m− 1)I +
(

HEf
)T
R−1HEf, (4)

where I is the unit matrix of dimension m×m, representing
the number of perturbations. VD−1V T and VD−1/2V T are
calculated through eigenvalue decomposition of VDVT . The
overbar represents the ensemble mean vector.

2.5 Generation of ensembles

CaMa-Flood diagnoses terrestrial water dynamics forced by
surface and subsurface runoff values simulated using LSMs.
LSMs are subject to flaws such as simplified physics, e.g.,
hill slope dynamics (Fan et al., 2019) and uncertainty in
the forcing data. We stochastically perturbed the runoff forc-
ing of the CaMa-Flood hydrodynamic model. The errors in
runoff can be attributed to the limitations of LSM physics
and uncertainty in the forcing data sets. We assumed that the
uncertainty of the LSM’s physical processes could be rep-
resented by the variability of the multi-model runoff diag-
nosed in the E2O WRR2 data set (Dutra et al., 2017). The
uncertainty of the forcing (e.g., precipitation, radiation) was
represented by normally distributed random numbers with a
standard deviation calculated from the ensemble spread of
the 20th-century atmospheric model ensemble (ERA20CM:
Hersbach et al., 2015) runoff data set. We multiplied each
runoff from the E2O WRR2 data set (seven runoff data sets
from E2O WRR2 were used) by a random number from a
normal distribution with a mean of 1 and a standard devia-
tion of 0.1 according to the ERA20CM runoff ensemble. We
used seven runoff outputs from the models HTESSEL (Bal-
samo et al., 2011), PCR-GLOBWB (Van Beek et al., 2011;
Sutanudjaja et al., 2014), JULES (Best et al., 2011; Clark et
al., 2011), LISFLOOD (Burek et al., 2013; Van Der Knijff
et al., 2008), ORCHIDEE (d’Orgeval et al., 2008), Water-
GAP3 (Flörke et al., 2013; Verzano, 2009), and W3 (Van
Dijk et al., 2013) of E2O WRR2 (Dutra et al., 2017). The

SURFEX-TRIP (Vergnes et al., 2014) model outputs were
not used since they were incompatible with the CaMa-Flood
hydrodynamic model. Therefore, 49 perturbations were used
to prepare the runoff ensembles (Fig. 1) using runoff fields
from the E2O WRR2 runoff product, which generally pro-
duce a reasonable ensemble of runoff forcing for global DA.

2.6 Experimental design

We performed three types of experiments: direct DA (DIR),
anomaly DA (ANO), and normalized DA (NOM). ANO was
performed because assimilating WSE anomalies rather than
direct values can overcome the errors associated with direct
DA. Although anomalies can overcome the biases between
observations and simulations, differences in flow variation
between simulated and observed WSE could not be over-
come by the anomaly DA method (Fig. 2b). To overcome
the flow dynamic variation between simulations and observa-
tions, we performed NOM. Both forecasted values and obser-
vations were transformed into anomalies (ANO) and normal-
ized values (NOM) for the DA experiments. The three assim-
ilation approaches were used to identify the optimal assimila-
tion methodology for improving discharge estimation within
the present limits of hydrodynamic modeling. The anoma-
lies and normalized values were calculated from the long-
term (2000–2014) mean and standard deviation of the WSE
for the anomaly and normalized value DA experiments. The
statistics (i.e., mean and standard deviation) for satellite al-
timetry were determined from the period when observations
were available. However, for WSE simulations, we obtained
statistics using simulations from 2000 to 2014. For all exper-
iments, simulations began on 1 January 2009 and ran through
31 December 2014. The year 2008 was used for spin-up.
Moreover, we conducted biased runoff (Sect. S2, Fig. S4)
and corrupted river bathymetry (Sect. S3, Fig. S5) experi-
ments to further understand DA performance under different
model conditions.

We selected the Amazon basin as the test area for our DA
experiments (Sect. S1, Fig. S1). The Amazon basin is the
world’s largest hydrological system, with a catchment area
of approximately 6 million km2 (Reis et al., 2019), and con-
tributes nearly one-fifth of the total freshwater discharged
into the ocean (Paiva et al., 2013a). The flow dynamics of the
Amazon basin, which range from seasonal flooding (Papa et
al., 2010; Prigent et al., 2020) to complex river hydraulics
such as hysteresis in the stage–discharge relationship driven
by the backwater effect (Paiva et al., 2013b; De Paiva et
al., 2013), have been studied extensively. This basin receives
substantial annual rainfall (≈ 2200 mm) with high spatial
heterogeneity, and experiences distinct rainy and dry sea-
sons in the southern and eastern portions (Builes-Jaramillo
and Poveda, 2018; Espinoza Villar et al., 2009). The major
advantage of analyzing the Amazon basin is the availability
of a large number of remote sensing observations (Fassoni-
Andrade et al., 2021).
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Figure 3. Spatial distribution of the satellite virtual stations (VSs)
used in this study. ENVISAT VSs are shown in red, and Jason 1 and
Jason 2 VSs are in blue. VSs used for assimilation and validation
are indicated with squares and circles, respectively.

2.7 Observational data

We used satellite altimetry as observations for all DA exper-
iments (Sect. 2.6). Satellite altimetry was originally devel-
oped to observe ocean surfaces, but its application has ex-
panded through the creation of algorithms to detect surface
water dynamics (Birkett et al., 2002; Crétaux et al., 2009;
Santos da Silva et al., 2010). Satellite altimetry data were ob-
tained from HydroWeb (https://hydroweb.theia-land.fr/ last
access: 14 December 2022). Satellite altimetry measure-
ments from ENVISAT and Jason 1 and 2 were used de-
pending on the data availability during the simulation pe-
riod (2009–2014), as listed in Table 1. Table 1 summarizes
the availability periods, temporal resolutions, cross-track dis-
tances, and measurement errors of the satellites used in this
study. The spatial distribution of VSs is illustrated in Fig. 3.
Using the methodology described in Sect. 2.1, we allocated
the VSs to river pixels in CaMa-Flood (Fig. 1b). Preprocess-
ing excluded around 3 % of VSs from analyses, which may
have generated considerable inaccuracies, in particular in the
experiments with direct value assimilation (DIR). These VSs
were in narrow rivers at relatively high elevations. The WSE
data obtained from satellite altimetry were converted from
EGM08 to EGM96, as the EGM96 geoid model is used in
MERIT DEM/MERIT Hydro (Yamazaki et al., 2017, 2019).

As we assimilated only WSEs from satellite altimetry,
we used Global Runoff Data Centre (GRDC) river dis-
charge data for validation. We used river discharge gauges
located in the main river reaches (upstream catchment
area> 1000 km2) and gauges with observational data cover-
ing at least 1 year of the simulation period. Furthermore, we
randomly chose 80 % of the VSs in the Amazon basin for
assimilation, while the remaining 20 % were preserved for

WSE validation (Fig. 3). Consequently, we used only 80 %
of the 324 VSs in the Amazon basin for the DA.

2.8 Evaluation diagnostics

We evaluated the relative assimilation efficiency using sev-
eral diagnostics. The difference in correlation coefficient
(1r) between assimilated and open-loop simulations was as-
sessed to evaluate the improvement in the flow pattern of the
discharge. 1r was calculated as

1r = rasm− ropn, (5)

where the correlation coefficients of the assimilated and
open-loop simulations are represented by rasm and ropn, re-
spectively. Then the relative efficacy of WSE was assessed
with the relative root mean square error (rRMSE): TS2

rRMSE=
(
RMSEasm−RMSEopn

)
/RMSEopn (6)

RMSE=

√√√√√ N∑
i=1
(si − oi)

2

N
, (7)

where RMSEasm and RMSEopn are the RMSE values of the
assimilated and open-loop simulations, respectively. s and o
are simulation results and observations, respectively. N is
the number of observations in the time series. The Nash–
Sutcliffe (Nash and Sutcliffe, 1970) efficiency-based assimi-
lation index (NSEAI; Revel et al., 2021) was used to evaluate
the improvement in river discharge with DA:

NSEAI=
NSEasm−NSEopn

1−NSEopn
, (8)

where NSEasm and NSEopn are the Nash–Sutcliffe (Nash and
Sutcliffe, 1970) efficiencies for the assimilated and open-
loop simulations, respectively. Similarly, the Kling–Gupta
(KGE: Kling and Gupta, 2009) efficiency-based assimilation
index (KGEAI) was used to evaluate the improvement. The
relative interval skill score (rISS) was used to compare the
ensemble spreads of the assimilated and open-loop simula-
tions. rISS is defined as follows:

rISS=

(
ISSasm− ISSopn

)
ISSopn

(9)

ISSα =
N∑
i=1

issα (li,ui,oi) (10)

issα (l,u,o)=


(u− l) ; if l<o<u
(u− l)+ 2

α
(l− o) ; if o<l

(u− l)+ 2
α
(o− u) ; if o<u,

(11)

where ISSasm and ISSopn are the ISS values (Gneiting and
Raftery, 2007) of the assimilated and open-loop simulations,
respectively. u and l are the upper and lower confidence in-
tervals for the estimate, o is the observed value, and α is the

https://hydroweb.theia-land.fr/
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Table 1. Summary of the satellite altimetry data used in this study. Periods of availability, measurement errors, temporal resolutions, and
cross-track distances are shown.

Satellite Period Measurement Temporal Cross-track
error (mm) resolution (d) distance (km)

ENVISAT 2002–2012 35 30–35 80
Jason 1 2001–2013 28 10 315
Jason 2 2008–present 28 10 315

significance level. N is the number of observations. By re-
warding narrow confidence intervals and penalizing observa-
tions outside the nominal confidence intervals, the ISS in-
corporates both sharpness (i.e., the size of the confidence
interval) and reliability (i.e., the proportion of observations
that fall within the nominal confidence interval specified).
When balancing sharpness and reliability, a relative com-
parison of ISS (rISS) allows for the evaluation of ensemble
models; those with better performance have lower ISS val-
ues (Michailovsky et al., 2013). The significance level (α)
was set to 0.05 in this study. Furthermore, relative sharp-
ness (rSharpness) and difference in reliability (1Reliability)
were used to evaluate the relative assimilation performance.
rSharpness is calculated as

rSharpness=
Sharpnessasm−Sharpnessopn

Sharpnessopn
(12)

Sharpness= u− l, (13)

where Sharpnessasm and Sharpnessopn are Sharpness values
of the assimilated and open-loop simulations, respectively.
1Reliability is defined as

1Reliability= Reliabilityasm−Reliabilityopn, (14)

where Reliabilityasm and Reliabilityopn are reliability values
of the assimilated and open-loop simulations, respectively.
Reliability is the number of observations within the bounds
u and l.

We used NSE (Nash and Sutcliffe, 1970) and KGE (Kling
and Gupta, 2009) to evaluate the overall performance of river
discharge. Furthermore, RMSE, the absolute bias between
the means of the observations and simulation results (BIAS)
and the difference in amplitude (1A) of WSE were evalu-
ated.

3 Results

3.1 Relative performance evaluation

In this section, we present the relative performance of each
assimilation approach, considering the direct (DIR), anomaly
(ANO), and normalized value (NOM) DA experiments in
that order. Here we analyze the performance of assimilated

values with respect to the open-loop simulation. 1r repre-
sents the relative change in r between the open-loop or as-
similation results and observations. rRMSE represents the
deviation in the RMSE of assimilation relative to that of
open-loop simulation. rISS, rSharpness, and1Reliability are
used to assess changes in ensemble spread between the open-
loop and assimilated simulations, followed by a comparison
of the relative performance (i.e., 1r , NSEAI, KEGAI, rISS,
rSharpness, and 1Reliability) of the experiments (i.e., DIR,
ANO, NOM).

3.1.1 Direct assimilation of satellite altimetry

In DIR, we assimilated direct satellite altimetry measure-
ments into the CaMa-Flood hydrodynamic model. Figure 4a
shows the improvement (degradation) in the correlation co-
efficient in green (violet) for river discharge at the GRDC
locations in this study. r improved in 8.1 % of GRDC lo-
cations out of the 86 used for evaluating river discharge,
whereas half of the gauges (48.8 %) showed no difference. r
was reduced (1r<0) at several locations along the Madeira,
Negro, and Purus tributaries (accounting for 43.0 % of all
gauges). The relative change in RMSE between observed
and simulated WSE (rRMSE) was used to evaluate WSE
performance, as illustrated in Fig. 4b. Large negative (pos-
itive) values for rRMSE indicate better (worse) performance
of the DA scheme, which is denoted by blue (red). Overall,
56.4 % and 50.8 % of the assimilation and validation VSs, re-
spectively, showed reductions in RMSE with the assimilation
of satellite altimetry into a hydrodynamic model. The WSE
estimates obtained from the assimilated simulation with di-
rect DA into a model were degraded (assimilation: 39.0 %,
validation: 41.5 %) relative to the open-loop simulation in
the Amazon mainstem and the Negro, Branco, Madeira, and
Xingu rivers (Fig. 4b). A limited number of gauges demon-
strated no change with direct DA.

Figure 4c, d, and e depict hydrographs at Labera in the Pu-
rus River, Santos Dumont in the Jurua River, and Santo An-
tonio Do Ica in the Amazon River, in that order. Each panel
shows observations (black line), open-loop simulation results
(blue line), assimilated discharge (orange line), and 95 %
confidence bounds for the assimilated and open-loop river
discharge. The discharge at Labera station (Fig. 4c) improved
in terms of NSE and ISS but not r . Substantial improvement
in the 95 % ensemble spread was evident until mid-2010,
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Figure 4. (a) Difference in the correlation coefficient of river discharge (1r) and (b) the relative root mean square error (rRMSE) in water
surface elevation for DIR. Circles indicate virtual stations used for data assimilation, and squares are virtual stations used for validation on
the WSE plots. Hydrographs recorded at Labera on the Purus River, Santos Dumont on the Jurua River, and Santo Antonio Do Ica on the
Amazon River are presented in panels (c), (d), and (e), respectively. The locations of the hydrographs shown in panels (c), (d), and (e) are
presented in panel (a). Discharge observations are shown in black, assimilated simulation results in orange, and open-loop simulation results
in blue. The color range indicates the 95 % confidence interval used to calculate the relative interval skill score (rISS).1r , the Nash–Sutcliffe
efficiency-based assimilation index (NSEAI), and rISS are shown at the bottom of each panel.

when the ENVISAT satellite was available. However, confi-
dence intervals became larger after 2010. DA marginally im-
proved NSE scores, with low flows well replicated but peak
flows showing some fluctuations. Santos Dumont (Fig. 4d)
showed an improvement in the correlation coefficient of river
discharge, although NSE suffered from a substantial under-
estimation of high flow. ISS increased by 29 %, primarily
because of an improvement in sharpness, but reliability de-
creased. Figure 4e illustrates the variation in discharge at a
station located in the mainstem of the Amazon River (Santo
Antonio Do Ica), showing an improvement in NSE values
but a weakening of the correlation coefficient. At this loca-
tion, the tradeoff between reliability and sharpness is strong.
Sharpness is often enhanced when direct satellite altimetry
measurements are assimilated into an uncalibrated hydrody-
namic model, but reliability is reduced.

In summary, direct DA improved flow dynamics when the
simulations were within comparable limits of satellite obser-
vations. When direct satellite altimetry measurements were
assimilated into the hydrodynamic model, the sharpness of

river discharge improved. Furthermore, the accuracy of WSE
estimates also improved with DA.

3.1.2 Anomaly assimilation of satellite altimetry

In ANO, anomalies of satellite altimetry were assimilated to
anomalies of simulated WSE, with both anomalies produced
using long-term means (for satellite altimetry: the mean of
the available period; for WSE simulation: 2000–2014). Fig-
ure 5a depicts the 1r of river discharge in ANO, with green
indicating an improved r relative to the open-loop simu-
lation, which accounted for around 53.5 % of the GRDC
gauges used to evaluate river discharge. Some degradation
(purple) in r was observed in the Madeira and Purus rivers,
Amazon mainstem, and smaller river reaches. WSE estimates
improved in 76.1 % of assimilation VSs and 80.0 % of vali-
dation VSs (Fig. 5b). WSE performance decreased (in terms
of RMSE) in the Jurua and Purus rivers, although nearly all
other river reaches showed increases in the accuracy of WSE
calculations with DA.
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Figure 5. (a) Difference in the correlation coefficient of river discharge (1r) and (b) the relative root mean square error (rRMSE) in water
surface elevation for ANO. Circles indicate virtual stations used for data assimilation, and squares are virtual stations used for validation on
the WSE plots. Hydrographs recorded at Gaviao on the Jurua River, Manacapuru on the Amazon River, and Serrinha on the Negro River
are presented in panels (c), (d), and (e), respectively. The locations of the hydrographs shown in panels (c), (d), and (e) are presented in
panel (a). Discharge observations are shown in black, assimilated simulation results in orange, and open-loop simulation results in blue. The
color range indicates the 95 % confidence interval used to calculate the relative interval skill score (rISS). 1r , the Nash–Sutcliffe efficiency-
based assimilation index (NSEAI), and rISS are shown at the bottom of each panel.

Figure 5c–e displays hydrographs of the Jurua (Gaviao),
Amazon (Manacapuru), and Negro (Serrinha) rivers, respec-
tively. At Gaviao station (Fig. 5c), the r of river discharge
increased slightly, whereas NSEAI and rISS decreased. Al-
though low flows were adequately characterized during the
brief observation period, peaks were exaggerated, resulting
in low NSE and high ISS for the assimilated simulation.
River discharge in the Amazon mainstem, notably at Man-
acapuru gauge (Fig. 5d), was well characterized, with im-
provements in r and ISS but a deterioration of NSE values.
By contrast, the flow variation was accurately defined at Ser-
rinha station in the Negro River (Fig. 5e) with anomaly DA
and an uncalibrated hydrodynamic model (1r , NSEAI, and
rISS were improved). Through anomaly assimilation into an
uncalibrated hydrodynamic model, the flow dynamics (char-
acterized by r) of the Amazon basin improved, although NSE
and ISS values worsened slightly.

Overall, the discharge estimates improved at some GRDC
gauging stations (35 %) with the assimilation of WSE
anomalies into the hydrodynamic model. The seasonality of

river discharge improved considerably in most river reaches
with anomaly assimilation. Furthermore, the WSE calcula-
tion was improved in many Amazon basin river reaches.

3.1.3 Normalized assimilation of satellite altimetry

In NOM, we assimilated normalized values of WSE. Long-
term statistics (the mean and standard deviation of WSE for
2000–2014) were used to generate normalized values of DA
for NOM. Figure 6a and b represent the 1r of river dis-
charge and the rRMSE of WSE, respectively, for NOM. A
total of 60.5 % of the GRDC gauges demonstrated a posi-
tive 1r , whereas decreases were evident in the Purus and
Madeira rivers as well as the Amazon mainstem. A consid-
erable number of VSs showed an improvement in WSE cal-
culations with the normalized DA technique (85.6 % for both
assimilation and validation VSs; Fig. 6b).

The lower panels of Fig. 6 illustrate flow dynamics along
the Amazon mainstem (Sao Paulo De Olivenca; Fig. 6c) and
the Japura (Vila Bittencourt; Fig. 6d) and Negro (Curicuri-
ari; Fig. 6e) rivers. The discharge at Sao Paulo De Olivenca
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Figure 6. (a) Difference in the correlation coefficient of river discharge (1r) and (b) the relative root mean square error (rRMSE) of water
surface elevation for NOM. Circles indicate virtual stations used for data assimilation, and squares are virtual stations used for validation in
the WSE plots. Hydrographs recorded at Sao Paulo De Olivenca on the Amazon River, Vila Bittencourt on the Japura River, and Curicuriari
on the Negro River are presented in panels (c), (d), and (e), respectively. The locations of the hydrographs shown in panels (c), (d), and
(e) are presented in panel (a). Discharge observations are in black, assimilated simulation results are in orange, and open-loop simulation
results are in blue. The color range indicates the 95 % confidence interval used to calculate the relative interval skill score (rISS). 1r , the
Nash–Sutcliffe efficiency-based assimilation index (NSEAI), and rISS are shown at the bottom of each panel.

station in the Amazon mainstem (Fig. 6d) resembled the ob-
served river discharge. Although NSEAI and rISS were both
enhanced, 1r was marginally degraded. Note that the nor-
malized value DA replicated the flow dynamics of the obser-
vations well, showing a secondary peak (e.g., October 2009)
at the Sao Paulo De Olivenca station that was absent in the
open-loop simulation. Although low flows and other fluctua-
tions were accurately portrayed along the Japura River (Vila
Bittencourt; Fig. 6d), the relative assimilation efficiency met-
rics had low values. Figure 6e illustrates a hydrograph of the
Curicuriari gauge along the Negro River. The discharge at
Curicuriari was well characterized, with a positive 1r and
NSEAI and a negative rISS. Normalized DA using an uncal-
ibrated hydrodynamic model improved the characterization
of river discharge in terms of seasonal dynamics, overall ac-
curacy, and the tradeoff between sharpness and reliability.

The normalized DA approach improves flow variation in
most river reaches. In the normalized assimilation experi-
ment, WSE estimates improved in most Amazon basin river
reaches.

3.1.4 Comparison of assimilation experiments

To evaluate the relative improvement associated with DA,
we evaluated only those GRDC gauges located in river
reaches observed through satellite altimetry (satellite cover-
age; Fig. S2). The effectiveness of assimilation for GRDC
gauges located outside the area of the satellite observations
is poor, with very little difference between open-loop and as-
similated simulations. Approximately 75 % of the 86 GRDC
gauges lay outside the satellite coverage area (Fig. S2).
The 21 gauges within the satellite coverage area were used
to assess the relative improvement among experiments. Ta-
ble 2 presents median relative performance statistics for river
discharge estimates for all experiments. Positive values for
1r , NSEAI, KGEAI, and 1Reliability indicate that DA im-
proved river discharge estimation. Negative values for rISS
and rSharpness, in contrast, demonstrate an improvement
in river discharge estimation with DA. For all experiments,
Fig. 7a displays the kernel density estimate of the probability
density function for the 1r of the river discharge. All ex-
periments except DIR showed improvement in the median
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1r (> 0), demonstrating improvement in the flow regime
with DA for at least 50 % of the gauges. The1r for river dis-
charge in DIR showed a left-skewed distribution, which sug-
gests a deterioration in seasonality at many gauges (75 %).
Approximately 70 % of the gauges showed improvements
in flow regime characterization in the anomaly and normal-
ized value DA experiments. However, only NOM had a pos-
itive median NSEAI, which indicates that at least 50 % of
the gauges had improved NSE values with normalized value
DA (Table 2). Figure 7b shows boxplots of NSEAI for all ex-
periments that demonstrate considerable improvement in the
DA experiments with normalized value assimilation. KGEAI
followed the same pattern, with positive median values for
NOM.

Compared to 1r , NSEAI, and KGEAI, rISS showed the
opposite trend (Fig. 7c, Table 2), with major improvements
resulting from direct DA. A negative rISS means that the
ISS of assimilated discharge was improved, as a lower ISS
indicates better performance with DA. Direct assimilation
(DIR) led to a lower median rISS value (−0.36), whereas
both anomaly and normalized value assimilation had values
of −0.13 and −0.18, respectively. When evaluating rISS,
one must consider changes in sharpness (i.e., the width of
the confidence interval) and reliability (i.e., the percentage
of observations that fall within the predicted nominal confi-
dence interval; Michailovsky et al., 2013). A large reduction
in sharpness was observed in the direct assimilation experi-
ment (DIR), mainly because the assimilation was conducted
using direct values in DIR (Fig. 4c–e), whereas the ANO and
NOM reprojected the assimilated values to WSE values. The
lowest reliability reduction was obtained in the normalized
value assimilation experiment (NOM). The reliability of di-
rect assimilation was reduced by 54 %, whereas sharpness
improved by 79 % in DIR compared to the open-loop sim-
ulation (i.e., the 95 % confidence interval was larger in the
open-loop simulation: Fig. S2b–c). Although the confidence
bounds (i.e., sharpness) were narrower with direct DA com-
pared to the anomaly and normalized value DA experiments,
reliability was degraded by more than 50 %.

In summary, considering the improvements measured us-
ing multiple evaluation metrics (e.g., NSEAI, KGEAI), nor-
malized value assimilation (NOM) showed the greatest im-
provement relative to the open-loop simulation, whereas the
smallest improvement was obtained from the direct DA ex-
periment (DIR). However, the tradeoff between sharpness
and reliability was better in the direct DA experiment, as the
assimilations were performed directly. Sharpness was sub-
stantially improved in DIR. In anomaly and normalized value
assimilations, WSE space is affected by the calculation of
anomalies or normalized values. Hence, given the current
condition of hydrodynamic modeling (i.e., the limitations of
hydrodynamic models), normalized value assimilation per-
formed best.

3.2 Absolute performance evaluation

In this section, we explore the absolute performance of river
discharge and WSE. When analyzing absolute performance,
we consider the r , NSE, and KGE values for river discharge;
RMSE, BIAS, and 1A are used for WSE. r is used to as-
sess the seasonality of river discharge estimates, whereas
NSE and KGE are used to evaluate the overall performance
of river discharge estimation. RMSE is used to evaluate the
overall error of WSE estimation against satellite altimetry
observations. Long-term bias is assessed with BIAS, and the
difference in amplitude between the simulated and observed
WSE is examined using 1A. The absolute performance of
daily discharge estimates is presented in Sect. 3.2.1, and
the absolute performance of WSE estimation is described in
Sect. 3.2.2.

3.2.1 Estimation of the daily river discharge

We used r , NSE, KGE, and Sharpness to evaluate daily as-
similated river discharge across all experiments, and Table 3
presents the median statistics for each metric. We obtained
the reported median values using all GRDC gauges in the
Amazon basin (all) and, more conservatively, using river
reaches with satellite altimetry observations (satellite cover-
age reaches), so the impact of assimilation on river reaches
outside the satellite observation area was minimal. In gen-
eral, the median performance metrics in satellite coverage
river reaches were better than the median performance of all
discharge gauges, whereas median Sharpness was worse in
satellite coverage river reaches. Sharpness was determined
with the average confidence bounds, and river reaches with
satellite coverage have a high discharge, resulting in larger
confidence intervals. Consequently, the median Sharpness
estimate for river reaches with satellite coverage was in-
evitably large. When only river reaches with satellite ob-
servations were considered, the NSE of DIR was reduced.
Flow patterns improved with the shift from direct to anomaly
or normalized value DA. However, the differences between
the anomaly and normalized DA experiments were marginal.
Median NSE and KGE values increased in the following or-
der: direct, anomaly, and normalized value DA experiments.
However, the direct DA experiments efficiently improved
Sharpness, thereby increasing confidence in the assimilated
river discharge when reliability is higher. DIR had the low-
est sharpness values for both the entire river and satellite-
covered reaches.

Figure 8 shows the spatial distributions of absolute per-
formance metrics (e.g., r , NSE, and KGE) for daily river
discharge in all DA experiments (DIR, ANO, and NOM).
Figure 8a depicts the spatial distribution of the absolute per-
formance of river discharge estimates obtained in the direct
DA experiment (DIR). The r of river discharge estimation for
several GRDC gauges was> 0.8 (approximately 38 %), with
a median r of 0.74. NSE and KGE were > 0.6 in 22 % and
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Figure 7. (a) Probability distribution of the correlation coefficient (1r) for each experiment, shown in blue, yellow, and red for direct (DIR),
anomaly (ANO), and normalized value (NOM) experiments, respectively. (b) Boxplots of the Nash–Sutcliffe efficiency-based assimilation
index (NSEAI) and (c) relative interval skill score (rISS) of assimilated discharge compared to those of open-loop discharge for all the
experiments. Boxes in blue, yellow, and red indicate direct (DIR), anomaly (ANO), and normalized value (NOM), respectively.

Table 2. Summary of relative DA efficiency statistics for river discharge in each experiment. The difference in the correlation coefficient
(1r), Nash–Sutcliffe efficiency-based assimilation index (NSEAI), Kling–Gupta efficiency-based assimilation index (KGEAI), relative
interval skill score (rISS), relative sharpness (rSharpness), and difference in reliability (1Reliability) are shown. Positive values for 1r ,
NSEAI, KGEAI, and reliability represent better performance of DA, and lower values for rISS and sharpness indicate improvements due to
DA. Improvements in each relative performance metric with DA are highlighted in bold.

Experiment 1r NSEAI KGEAI rISS rSharpness 1Reliability

DIR −0.02 −0.93 −0.72 −0.36 −0.79 −0.54
ANO 0.01 −0.39 −0.39 −0.13 −0.14 −0.01
NOM 0.01 0.21 0.02 −0.18 −0.15 0.00

34 % of gauges, respectively, and the median NSE and KGE
were 0.13 and 0.46, respectively. Some gauges along the Ne-
gro, Jurua, and Upper Solimoes rivers had low accuracy for
estimating river discharge through direct DA (DIR).

The spatial distribution of the absolute performance of
river discharge estimation through anomaly DA is shown in
Fig. 8b. Anomaly DA (ANO) produced r values of river dis-
charge that were > 0.8 in 84 % of gauges, with a median
r = 0.85. In the Amazon basin, overall river discharge was
well characterized by anomaly DA (35 % of stations with
NSE> 0.6 and 48 % of stations with KGE> 0.6).

Figure 8c illustrates the performance of NOM,
showing better performance in large river reaches(
catchment area> 1000km2). Nearly 57 % of the GRDC

gauges had r > 0.8, with a median r of 0.84 in NOM. The
preponderance of gauges (76 %) had NSE> 0.6, with a
median NSE of 0.47. KGE values were greater than 0.6 for
92 % of the gauges, with a median of 0.62. Most gauges
along the Amazon mainstem and Negro, Purus, Madeira,
and Jurua rivers reliably estimated river discharge with
assimilation of satellite altimetry using the normalized value
DA method.

3.2.2 Estimation of water surface elevation

Although we used the river discharge to evaluate assimilation
efficiency, WSE is an important water dynamic estimator, in

particular for predicting floods. Table 4 summarizes the eval-
uation results of the assimilated WSE satellite altimetry mea-
surements. We evaluated the RMSE, BIAS, and1A of WSE
between assimilated and observed values. RMSE represents
the total departure from observations, whereas BIAS denotes
the difference in long-term mean values between simulation
results and observations. The mean difference in the varia-
tion in the yearly peak and trough of the hydrograph was
identified with 1A. Transitioning from direct to normalized
value assimilation did not reduce the RMSE or BIAS. Nev-
ertheless, the anomaly and normalized assimilation methods
improved the amplitude of WSE more than direct DA. Simi-
lar patterns were observed for the assimilation and validation
VSs. The BIAS of WSE, which accounts for a considerable
portion of the RMSE, was not corrected in the anomaly or
normalized value assimilations.

Figure 9 illustrates the spatial distributions of the RMSE,
BIAS, and 1A of WSE for DIR (Fig. 9a), ANO (Fig. 9b),
and NOM (Fig. 9c). Median RMSE and BIAS were low-
est with direct DA (DIR), but 1A was larger than in
the anomaly and normalized value DA experiments for
all, assimilation, and validation VSs. RMSE and BIAS
were lower along the lower Amazon mainstem and Negro
River (RMSE< 3m and BIAS< 2m) compared to other
river reaches. However, 1A (> 4m) was less accurately es-
timated with direct DA than with other methods.
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Figure 8. Performance of daily discharge in terms of the correlation coefficient (r), Nash–Sutcliffe efficiency (NSE), and Kling–Gupta
efficiency (KGE) for (a) DIR, (b) ANO, and (c) NOM. Diamonds and circles indicate the gauges outside and inside the satellite altimetry
coverage, respectively.

Table 3. Median performance metrics for daily discharge estimates obtained from DA experiments. Median values for the correlation coef-
ficient (r), Nash–Sutcliffe efficiency (NSE), Kling–Gupta efficiency (KGE), and width of the confidence interval (Sharpness) are presented
for all GRDC gauges and for gauges in the satellite coverage area.

Experiment
All Satellite coverage reaches

r NSE KGE Sharpness
(

106
)

r NSE KGE Sharpness
(

106
)

Open-loop 0.83 0.50 0.59 1.17 0.91 0.71 0.77 1.59
DIR 0.74 0.13 0.46 1.09 0.88 0.21 0.48 5.79
ANO 0.85 0.39 0.55 1.18 0.95 0.66 0.70 13.91
NOM 0.84 0.50 0.62 1.17 0.95 0.76 0.72 14.37
CaMa VIC BC 0.81 0.42 0.60 – 0.91 0.68 0.76 –

Large RMSE values (> 4m) were obtained for the
Madeira, upper Purus, and upper Solimoes rivers in anomaly
DA (ANO; Fig. 9b). Large BIAS values occurred in the Ama-
zon mainstem, Purus River, and Japura River, with BIAS>
4m. The annual variation in WSE (amplitude) differed con-
siderably in some areas of the Amazon and Negro River
mainstems (1A > 8m).

With normalized DA (NOM), a large RMSE(> 4m) was
observed in the Madeira River, downstream reaches of the
Amazon mainstem, and upper Purus River. Large BIAS val-
ues occurred in the mid-section of the Amazon mainstem
and Japura River (BIAS> 6m). 1A was particularly high
in some sections of the Amazon mainstem and Negro River
(|1A|> 8m). In summary, direct DA estimated WSE with
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Figure 9. Performance of water surface elevation estimation in terms of the root mean square error (RMSE), bias between assimilation
results and observations (BIAS), and mean differences in amplitude between assimilation results and observations (1A) for (a) DIR, (b)
ANO, and (c) NOM.

low RMSE and BIAS values, whereas the best 1A was ob-
tained with anomaly DA.

3.3 Comparison of discharge products

To investigate the accuracy of river discharge estimation us-
ing DA compared to state-of-the-art hydrodynamic model-
ing, we compared the river discharge obtained from CaMa-
Flood forced with bias-corrected variable infiltration capac-
ity LSM (Liang et al., 1994) runoff data (VIC BC: Lin et al.,
2019). We used VIC BC runoff (Lin et al., 2019) to force the
discharge without DA, whereas the ensemble mean discharge
was examined for all DA experiments (direct DA (DIR),
anomaly DA (ANO), and normalized value DA (NOM)).
VIC BC runoff is produced with sparse cumulative density
function matching, and combining VIC BC runoff with the
CaMa-Flood hydrodynamic model yields more accurate dis-
charge estimates (Lin et al., 2019). A comparison of box-

plots showing the NSE for various discharge products is pre-
sented in Fig. 10. The median NSE for discharge determined
using CaMa-Flood standard settings (CaMa VIC BC) was
0.42. Normalized value assimilation (NOM) provided the
best river discharge estimates, with a median NSE of 0.50,
whereas direct and anomaly DA produced medians of 0.13
and 0.39, respectively. For normalized value DA, NSE values
of river discharge were confined to around 0.5, with many
of the gauges demonstrating NSE values greater than zero.
Hence, normalized value assimilation improved the NSE of
river discharge compared to standard CaMa-Flood modeling
and the other DA methods tested (i.e., anomaly and direct
assimilation).

Assessing the spatial distribution of the optimal discharge
product is critical to improving discharge estimates globally.
Figure 10b shows the heterogeneity of the optimal discharge
estimate among the four products. River discharge was com-
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Table 4. Median performance metrics for water surface elevation estimates obtained from DA experiments. Median values for the root mean
square error (RMSE), long-term bias (BIAS), and difference in amplitude (1A) are presented for all, assimilation, and validation VSs.

Experiment
All Assimilation Validation

RMSE BIAS 1A RMSE BIAS 1A RMSE BIAS 1A

Open loop 4.60 2.43 1.98 4.65 2.49 1.92 4.45 1.98 2.29
DIR 4.56 2.38 3.86 4.58 2.39 3.68 4.25 1.90 4.75
ANO 4.80 2.82 1.60 4.79 2.83 1.53 4.88 2.69 2.08
NOM 4.80 2.76 1.75 4.78 2.74 1.72 4.96 2.84 2.10
CaMa VIC BC 4.89 3.14 2.51 4.38 3.02 2.37 5.12 3.35 3.46

Figure 10. (a) Boxplot of Nash–Sutcliffe efficiency (NSE) for discharge simulated using CaMa-Flood with VIC bias-corrected runoff
(CaMa-Flood VIC BC),ensemble mean assimilated river discharge CE2 with direct DA (DIR), mean assimilated with anomaly DA (ANO),
and mean assimilated with normalized value DA (NOM). (b) Spatial distribution of the best discharge estimates among CaMa VIC BC, DIR,
ANO, and NOM based on NSE.

pared based on the NSE of each discharge product. NOM,
which accounted for 44 % of the gauges, most accurately
estimated discharge overall. ANO estimated river discharge
more accurately for 24 % of the GRDC gauges. Direct DA
provided better estimates for 23 % of the gauges, whereas
CaMa VIC BC estimated river discharge accurately for 8 %
of the gauges. Note that the discharge estimates of some
of the gauges located on the Amazon mainstem were better
without DA. Most gauges with the most accurate discharge
estimates of CaMa-Flood VIC BC were located outside of
the satellite-observed river reaches and were marginally af-
fected by DA.

In conclusion, normalized value DA (NOM) performed
best for estimating river discharge, but uncalibrated CaMa-
Flood simulations without DA (i.e., CaMa VIC BC) were
more accurate than other DA methods (i.e., direct and
anomaly assimilation). Hence, assimilating satellite altimetry

can improve the accuracy of river discharge estimates com-
pared to current state-of-the-art hydrodynamic modeling.

4 Discussion

4.1 DA performance with current hydrodynamic
models

We compared several DA methods to overcome the errors
associated with assimilating satellite altimetry observations
directly into a hydrodynamic model. Through the assimila-
tion of anomalies or normalized values, river discharge es-
timation was improved considerably compared to direct DA
(Fig. 7). Although WSE was correctly assimilated with di-
rect DA (Fig. 9a), river discharge estimates were inaccu-
rate because of parameter errors and discrepancies in flow
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dynamics driven by limited representation of actual physi-
cal phenomena (as illustrated in Fig. 2). These biases can
be caused by discrepancies in parameters such as riverbank
full height and river bottom elevations. For example, when
river channel depth was overestimated in the model, the sim-
ulated WSE was lower than the observations. When assim-
ilated WSE was converted into the CaMa-Flood prognostic
variable (i.e., storage), the initial condition could be erro-
neous. Such errors were propagated to river discharge. In ar-
eas where the simulated water dynamics (e.g., amplitude and
flow regime) were similar to observations, anomaly assimi-
lation limited the extent to which the biases affected assimi-
lation (Emery et al., 2020a; Paiva et al., 2013a; Wongchuig-
Correa et al., 2020). Although spurious errors (due to limited
ensemble size) were regulated using physically based empir-
ical localization patches (Revel et al., 2019), direct DA was
adulterated because of the biases and dynamic differences in
WSE simulations.

Normalized value assimilation showed better assimilation
efficiency in terms of NSEAI, representing the overall accu-
racy of discharge estimation, compared to the anomaly DA
method (Fig. 7). Currently the CaMa-Flood hydrodynamic
model cannot accurately represent the dynamics of WSE be-
cause of limitations in the model framework (e.g., a lack of
representation of water regulations, diversions, and lake dy-
namics) and the impacts of water dynamics other than river
flow. These limitations also exist for most global hydrody-
namic models, which do not accurately represent reservoirs,
diversions, and lakes (Fleischmann et al., 2021). For exam-
ple, when reservoir operations are not represented in a hy-
drodynamic model, assimilating observations obtained dur-
ing reservoir operation will alter the flow regime. In addi-
tion, errors related to the model structure hamper the predic-
tion of surface water dynamics and may produce a different
flow dynamic than the observations. Therefore, normalized
value assimilation provided the best estimates of river dis-
charge given the current limitations of models such as biases
and poor representation of flow dynamics.

Moreover, the assimilation framework is computationally
efficient and effective at removing spurious correlations.
LETKF is a computationally efficient filtering method that
uses a local area for the assimilation (Hunt et al., 2007;
Miyoshi and Yamane, 2007). In addition, we used a phys-
ically based empirical localization technique (Revel et al.,
2019) to reduce erroneous correlations and assimilate obser-
vations in significantly correlated areas. It has been found
that the physically based empirical localization method per-
formed better than the conventional square-shaped local
patches in hydrodynamic DA schemes (El Gharamti et al.,
2021; Ishitsuka et al., 2020; Revel et al., 2019; Wongchuig et
al., 2019). Hence, the assimilation framework is capable of
estimating river discharge at the global scale provided satel-
lite observations are available. Once the SWOT satellite is
launched, the methods developed in this study will be valu-
able for accurately estimating river discharge.

4.2 DA performance under various conditions

To examine DA performance under model conditions such
as biased runoff forcing and corrupted river bathymetry, we
performed biased runoff and corrupted bathymetry experi-
ments. An artificial bias of −50 % was introduced into the
ensemble mean of the “runoff ensemble” (Fig. 1a) for each
assimilation approach, namely, direct DA, anomaly DA, and
normalized value DA (Sect. S2, Fig. S4 in the Supplement).
Because of the bias introduced by the runoff forcing, river
discharge was approximately 50 % lower in the open-loop
simulation than in the observations. We artificially corrupted
the river bathymetry to represent errors in the hydrodynamic
model (Sect. S3, Fig. S5 in the Supplement). River channel
depth was increased by 25 % in the corrupted bathymetry ex-
periment. Then we assimilated satellite altimetry into the hy-
drodynamic model with corrupted river bathymetry through
the direct, anomaly, and normalized value DA methods. In
general, the WSE was reduced by approximately 25 % of the
river channel depth. For simplicity, we used only a single
runoff (HTESSEL; Balsamo et al., 2011) from E2O WRR2
to prepare the runoff ensemble. The HTESSEL runoff from
E2O WRR2 is fairly unbiased (Dutra et al., 2017; Revel et
al., 2021), and the default bathymetry parameter of CaMa-
Flood should provide adequate WSE estimates (Yamazaki
et al., 2012). Simulations using the default CaMa-Flood
bathymetry parameter and HTESSEL runoff are referred to
as “normal conditions”.

Runoff bias and bathymetry errors affect the accuracy of
assimilated river discharge in different ways, and Fig. 11
compares boxplots of NSE values for different DA meth-
ods with different error conditions. When neither runoff nor
bathymetry was erroneous, the normalized value DA method
performed best (median NSE= 0.83) at estimating river dis-
charge in terms of NSE (Fig. 11a). When the bathymetry
contained some errors but runoff was unbiased (Fig. 11b),
none of the DA methods were able to improve the river
discharge from open-loop simulation. The performance of
river discharge in the open-loop simulation was not affected
much by the river bathymetry corruption, as river discharge
is not influenced much by the river bathymetry (Modi et
al., 2022). But when the satellite altimetry was assimilated
into the hydrodynamic model, the accuracy of the river dis-
charge estimates was degraded. In the direct DA, assimilated
WSE values were higher than the observed WSE, result-
ing in river discharge overestimation when the bathymetry
has errors (Sect. S5, Fig. S7 in the Supplement). In con-
trast, anomaly and normalized value DA were affected by
the bias in the open-loop statistics (i.e., mean and standard
deviation) used for generating anomalies and normalized val-
ues (Sect. S5, Fig. S7 in the Supplement). Bias in the runoff
ensemble strongly affected the accuracy of river discharge
estimation with anomaly and normalized value DA, as bias
in the runoff causes bias in the mean and standard devia-
tion used to generate WSE anomalies and normalized values
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Figure 11. Comparison of the Nash–Sutcliffe efficiency (NSE) of assimilated river discharge under various conditions: (a) without runoff
bias or bathymetry error, (b) without runoff bias and with bathymetry error, (c) with runoff bias and without bathymetry error, and (d) with
runoff bias and bathymetry error. The direct, anomaly, and normalized value DA results are represented in blue, yellow, and red, respectively.

(Fig. 11c). Direct DA provided the best discharge estimation
(median NSE= 0.68) when runoff was biased. When both
runoff and river bathymetry were erroneous, none of the DA
methods produced better discharge estimates than open-loop
simulation. Therefore, the normalized DA method worked
well under normal conditions, but anomaly DA produced
better discharge estimates when the river bathymetry had er-
rors, and the direct DA method performed best under runoff-
biased conditions. Simple calibration of the hydrodynamic
model is recommended for successful normalized value DA
(i.e., bias correction of runoff to obtain the mean discharge
and river bathymetry calibration to accurately determine the
mean WSE).

4.3 DA performance with calibrated river bathymetry

Investigating the performance of DA with corrected
bathymetry is essential, as river bathymetry is the most in-
fluential parameter for WSE (Brêda et al., 2019). Calibrat-
ing the river bathymetry increases the accuracy of the hy-
draulic relationship between discharge and WSE (i.e., the
rating curve; Zhou et al., 2022), thereby improving dis-
charge estimation with direct DA (median NSEAI=−0.50;

Fig. 12). Minimization of the WSE bias attributable to river
bathymetry improved discharge estimates obtained with the
direct DA method, although the anomaly and normalized
value DA approaches had little effect on the estimation of
river discharge (Fig. 12b and c). River discharge estimation
can be improved by updating river-related parameters. How-
ever, anomaly and normalized value assimilation (with and
without river bathymetry calibration) had greater assimila-
tion efficiencies than direct DA with the calibrated model.
Therefore, correcting river-related parameters is essential to
achieving good river discharge estimates with direct DA.

Furthermore, the bathymetry parameters calibrated with
the rating curve approach were the most accurate values at-
tainable under current conditions (Zhou et al., 2022). How-
ever, direct DA was not capable of producing more ac-
curate river discharge estimates than other DA approaches
(i.e., anomaly and normalized value DA; Fig. 12). This find-
ing indicates that calibrating a single parameter (i.e., river
bathymetry) may be insufficient to improve the overall accu-
racy of river discharge estimation using direct DA. Hence,
calibrating other river-related parameters (e.g., riverbank
height, floodplain profile, and cross-sectional shape) is nec-
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Figure 12. Boxplot comparison of Nash–Sutcliffe efficiency-based assimilation index (NSEAI) values for uncalibrated and calibrated models
with (a) direct DA, (b) anomaly DA, and (c) normalized value DA.

essary to increase assimilation efficiency (median NSEAI>
0) when assimilating satellite altimetry data directly into
large-scale hydrodynamic models such as CaMa-Flood.

Direct DA offers several benefits over anomaly or normal-
ized value assimilation. Although the direct DA approaches
reduced overall accuracy, the sharpness of the ensemble
spread was substantially reduced compared to the anomaly
and normalized value DA approaches (e.g., Fig. 4c–e). In ad-
dition, the improvement in the accuracy of river discharge
estimates with the anomaly or normalized value assimila-
tion was lower in river reaches with high biases in open-
loop runoff estimation (Sect. S4, Fig. S6 in the Supplement).
This finding suggests that direct DA methods can be used to
correct river discharge values in river reaches where runoff
causes large biases but the river bathymetry parameter is
reasonably accurate. By contrast, the reliability of discharge
estimates in the anomaly and normalized DA experiments
was highly dependent on the quality of the runoff ensemble.
Therefore, direct assimilation has several advantages, such as
greater confidence in DA-estimated river discharge and accu-
rate discharge estimation even when the runoff ensemble is
biased.

4.4 Potential and limitations of river hydrodynamics
DA

The development of a discharge reanalysis product (such as
those described by Feng et al., 2021 and Wongchuig et al.,
2019) is crucial to evaluating the reliability of the assimi-
lated discharge product within the capabilities of current hy-
drodynamic modeling. In addition, reanalyses of river dis-
charge play an important role in biodiversity and biogeo-
chemistry research (Messager et al., 2021). Discharge esti-
mated from the assimilation of satellite altimetry character-
ized the flow dynamics of the Amazon basin better than esti-
mates from a state-of-the-art hydrodynamic model (Fig. 10).

However, CaMa-Flood modeled river discharge better than
the assimilated product in certain river reaches along the
Amazon mainstem. These discrepancies are primarily due to
the limitations of hydrodynamic modeling, as the assimilated
WSEs were adequately represented in the assimilated simu-
lation. As we assimilated WSE and corrected the initial con-
ditions of the following time step using CaMa-Flood param-
eters (e.g., riverbank height, river bathymetry, river width,
and floodplain profile), the errors of the modeling frame-
work may have propagated into the river discharge estimates
at the next time step. These limitations can be circumvented
through the assimilation of in situ or remotely sensed river
discharge observations into hydrodynamic models (Emery et
al., 2020b; Feng et al., 2021; Paiva et al., 2013a; Wongchuig
et al., 2019). Yet, with decreasing numbers of in situ gauges
(Hannah et al., 2011; Shiklomanov et al., 2002; Vörösmarty
et al., 2001) and the low accuracy of remotely sensed river
discharge estimates (Bjerklie et al., 2018; Gleason and Du-
rand, 2020; Gleason and Smith, 2014), obtaining consistent
and reliable observations can be difficult.

DA of satellite altimetry had several advantages over hy-
drodynamic modeling, in particular when it came to ac-
curately estimating low flows and unanticipated peaks that
were not reflected in the runoff forcing (Fig. S8). These un-
expected peaks, which were not as large as annual peaks,
were characterized well by DA methods (Fig. S8), although
the open-loop simulation did not identify them. Low flows
were estimated well with normalized assimilation (Sect. S6,
Fig. S9 in the Supplement) and further improved through cal-
ibration of the river bottom elevation (Sect. S4, Fig. S6 in the
Supplement). Hence, the DA scheme accurately represented
low flows and unforeseen secondary peaks.

The normalized DA approach may have been unable to ac-
curately predict other variables, such as WSE and flood ex-
tent, as the assimilation was performed in transformed space.
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WSE estimation using normalized value DA had lower over-
all accuracy than direct DA (Fig. 7) based on median RMSE
(Table 4). Moreover, flood extent would be better estimated
with direct DA than other DA methods, as flood extent is di-
agnosed with WSE in the CaMa-Flood hydrodynamic model.
Hence, normalized DA may be unable to effectively predict
various important variables (e.g., WSE and flood extent).

5 Conclusion

This study explored strategies for assimilating satellite al-
timetry data into a contemporary hydrodynamic model. As
existing large-scale hydrodynamic models either are too con-
ceptual or have uncertainties in their parameter schemes, di-
rect or anomaly assimilation of satellite altimetry may intro-
duce inaccuracies due to discrepancies between satellite al-
timetry and simulated WSE. We assessed direct, anomaly,
and normalized value DA schemes using a continental-
scale hydrodynamic model, CaMa-Flood (Yamazaki et al.,
2011). We used the physically based localization approach
of LETKF to assimilate satellite altimetry data in the Ama-
zon basin. Normalized value assimilation performed better
than other approaches to estimating river discharge in this
continental-scale basin. River discharge was accurately es-
timated with normalized value assimilation in most river
reaches covered by satellite observations (NSE> 0.6).

We investigated the capacity of DA approaches to reliably
estimate river discharge through cutting-edge hydrodynamic
modeling. River discharge was well characterized in the nor-
malized value assimilation experiment, with a median NSE
of≈ 0.50, which was better than the river discharge produced
by the uncalibrated model with default parameters using VIC
BC runoff (Lin et al., 2019) (median NSE≈ 0.42). The me-
dian NSE of river discharge improved by 19 % with the as-
similation of satellite altimetry into a continental-scale hy-
drodynamic model. Improvements were evident across the
entire Amazon basin; however, some degradation occurred
due to the underestimation of peak river discharge in the
Amazon mainstem. This underestimation of peaks may be
attributable to uncertainties in other parameters of the hydro-
dynamic model.

The estimation of river discharge using DA methods is
variable and depends on the state of the runoff data (i.e., bi-
ased runoff state) and the accuracy of river cross-sectional
parameters (e.g., river bathymetry). In the current condi-
tion of the hydrodynamic model with perturbed HTESSEL
runoff from the E2O WRR2 data set, the normalized value
DA method performed best among other DA methods. But
when the runoff was biased without river bathymetry error,
the direct DA approach performed best. However, when the
river bathymetry was erroneous, none of the DA methods
performed better than open-loop simulation. Hence, differ-
ent DA approaches should be used depending on the runoff
and river bathymetry. To realize the advantages of the nor-

malized value DA approach, basic model calibration is nec-
essary, such as calibration of the runoff to capture the mean
discharge and moderate calibration of bathymetry to capture
WSE patterns.

River bathymetry calibration enhanced the accuracy of
the river discharge estimates produced using the direct DA
method but had minimal effect on normalized assimilation.
Zhou et al. (2022) used a calibration strategy to increase the
accuracy of river bathymetry by decreasing the WSE error
by utilizing the stage–discharge relationship; they found that
the approach does not necessarily improve river discharge
accuracy. In addition, when the calibrated model was forced
by runoff with large errors, normalized DA did not improve
the estimation of river discharge because of bias in the mean
discharge and WSE. The quality of runoff perturbation data
should be evaluated before they are used in anomaly or nor-
malized value assimilations.

The use of precise river cross-section estimates and flood-
plain dynamic processes may improve peak discharge esti-
mates. To represent the river discharge more accurately, some
improvements to the CaMa-Flood hydrodynamic model may
be necessary. Furthermore, assimilating multiple variables
such as river discharge, WSE, and the flooded area may im-
prove discharge estimates further. Overall, the methods de-
veloped in this study demonstrate great potential for using
available satellite altimetry to improve river discharge esti-
mation in continental-scale rivers within the limitations of
current hydrodynamic models.
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