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Abstract: This study evaluates water and energy fluxes and variables in combination with 

parameter optimization of the state-of-the-art land surface model Community Land Model version 

5 (CLM5), using six years of hourly observations of latent heat flux, sensible heat flux, 15 

groundwater recharge, soil moisture and soil temperature from an agricultural observatory in 

Denmark. The results show that multi-objective calibration in combination with truncated singular 

value decomposition and Tikhonov regularization is a powerful method to improve the current 

practice of using look-up tables to define parameter values in land surface models. Using 

measurements of turbulent fluxes as target variable, the parameter optimization is capable of 20 

matching simulations and observations of latent heat, especially during the summer period, while 

simulated sensible heat is clearly biased. Of the 30 parameters considered soil texture, monthly LAI 

in summer, stomata conductance and root distribution have the highest influence on the local-scale 

simulation results. The results from this study contribute to improvements of the model 

characterization of water and energy fluxes. The study underlines the importance of performing 25 

parameter calibration using observations of hydrologic and energy fluxes and variables to obtain 

optimal parameter values of a land surface model. 
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1 Introduction 

Hydrological processes play a fundamental role in land surface water and energy cycles. A land 

surface model (LSM) is a tool for linking energy and water processes at the land surface and is 

used to study and understand the processes controlling the transport of energy and water. There is a 

need for evaluating the hydrologic performance of LSMs based on comprehensive in-situ data on 5 

water and energy fluxes and variables. Climate change and changes in land-use/land cover further 

increase the demand for quantification of the water and energy fluxes and for investigating the 

predictive capability of LSMs (Clark et al., 2015; Dai et al., 2003; Oleson et al., 2008; Overgaard et 

al., 2006). 

LSMs simulate the vertical water and energy fluxes from the top of the canopy, through the canopy 10 

and stem, through the root zone and down to the groundwater table. The vertical fluxes and states 

are simulated based on coupled flow and energy equations subject to various boundary conditions 

and described by a large number of parameters. It is common practice to use lookup tables to define 

a-priori parameter values (Hou et al., 2012; Rosero et al., 2010). However, many LSM components 

are based on relatively few observations and idealized laboratory experiments (Stöckli et al., 2008), 15 

and existing LSMs are generally not tested on in-situ hydrological observational data (Clark et al., 

2015). Thus, LSMs are typically under-constrained (De Lannoy et al., 2011; Stöckli et al., 2008), 

and their capability for hydrological simulations at watershed scales has not been adequately 

studied (Li et al., 2011). It is standard practice in LSMs that a-priori assignment of parameter 

values is based solely on vegetation type or soil texture. However, several authors suggest that the 20 

parameterization in LSMs should also consider the climatic conditions (Rosero et al., 2010), as 

local climate has an important impact on the parameter values, especially when realistic 

hydrological responses should be captured (Huang et al., 2013). 

Many LSM studies focus on continental to global effects (Tangdamrongsub et al., 2017), while 

hydrological model studies often have a catchment-based focus (Demirel et al., 2018). With the 25 

development of hydrological observatories (Bogena et al., 2018), critical zone observatories (Guo 

and Lin, 2016), FLUXNET (Chen et al., 2018; Wilson et al., 2002) and similar observational 

programs, more and more attention is paid to hydrological performance of LSMs at local and 

regional scales (Carrillo-Rojas et al., 2020; Lane et al., 2021; Stöckli et al., 2008). It is important to 

test and evaluate LSMs at point scale to assess their predictability and their usefulness in global 30 

simulations (Dai et al., 2003). However, the smaller scale models are also highly relevant as they 

represent the scales at which societies make decisions. LSMs are used to inform and support 

natural resource management, for example, by estimating the evapotranspiration components of 



 

 

3 

 

 

various land-covers and hereby provide a platform for water and land use management under 

current and future climate conditions. 

LSMs are simplified representations of the landscape and many of the parameters of the process 

relations cannot be directly measured (Gupta et al., 1999). Additionally, there are extensive 

structural differences among LSMs (Clark et al., 2015). Therefore, the majority of parameters in 5 

LSMs are often model dependent and hence difficult to transfer and compare between different 

LSM schemes (Rosero et al., 2010). 

Over time LSMs have been further developed to address a broad range of terrestrial ecosystems 

related scientific questions (Lawrence et al., 2019a), e.g. cycling of energy, water, carbon and 

nitrogen. The “bewilderingly large set of processes” (Clark et al., 2015) incorporated into LSMs 10 

heavily increase model complexity and the associated number of parameters that governs the model 

equations, which emphasizes the need for parameter estimation and performance evaluation 

(Mendoza et al., 2014). Some of the commonly used LSMs are ORCHIDEE (Krinner et al., 2005), 

CLM (Dai et al., 2003), NOAH-MP (Niu et al., 2011), VIC (Liang et al., 1994) and MikeShe 

SWET (Overgaard, 2005) . Advanced calibration techniques are widely used in hydrology for 15 

parameter estimation including techniques to quantify uncertainties. Contrary to hydrological 

modeling, calibration of LSMs is relatively uncommon (Davison et al., 2016; De Lannoy et al., 

2011), and only a limited number of studies have dealt with calibration and sensitivity analysis of 

the energy and hydrology parameters in LSMs (Gupta et al., 1999; Pauwels and De Lannoy, 2011). 

Examples are: i) Rosero et al. (2010), who quantified the parameter sensitivity of both soil and 20 

vegetation parameters using the Sobol’s method in the Noah LSM by minimization of a RMSE 

multi-objective criteria of sensible heat flux (H), latent heat flux (LE), ground heat flux (G), soil 

temperature (Tsoil) and soil water content (SWC); ii) Pauwels and De Lannoy (2011) also combined 

energy fluxes, as well as SWC, when calibrating a simple water and energy balance model using 

the spectral domain method; iii) Davison et al. (2016) performed a single-objective calibration on 25 

streamflow and concluded that the simulation of streamflow clearly has an influence on the 

simulated LE; and iiii) With focus on evaluating the spatial performance of hydrological models 

Mendiguren et al. (2017) calibrated the two-source energy balance model (TSEB) driven by remote 

sensing products.  

Several studies have carried out sensitivity analyses on former versions of CLM. Göhler et al., 30 

(2013) used eigendecomposition in a sensitivity study of 66 parameters in CLM3.5 using 

measurements of energy fluxes and photosynthesis, while both Huang et al. (2013) and Sun et al. 

(2013) performed sensitivity analyses using satellite-based LE estimates and daily streamflow 

measurements, respectively, for evaluating the sensitivity of hydrologic parameters in CLM4.0. 
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Hou et al. (2012) made an uncertainty quantification using the quasi-Monte Carlo approach to 

evaluate the sensitivity of LE and H to the hydrological input variables in CLM4.0 and Jefferson et 

al. (2016) used energy fluxes in the active subspaces method to evaluate parameter sensitivity in 

the ParFlow-Community Land Model. Zhang et al. (2017) calibrated soil texture parameters using 

data assimilation methods and observed SWC. Hence, previous studies have shown that both 5 

energy and hydrological fluxes and variables are sensitive to the parameterization of a CLM, 

emphasizing the need for parameter optimization. 

In this study, we evaluate in-situ water and energy fluxes and variables at an agricultural field site 

in Denmark using the state-of-the-art LSM Community Land Model version 5 (CLM5) coupled to 

the optimization code PEST (Doherty, 2015). In most previous research, LSMs are not calibrated 10 

and instead use lookup tables to define parameter values. Here we identify values of important 

parameters in an LSM using multi-objective calibration in combination with regularization to 

improve the simulation of the hydrological processes. 

The recent version of CLM, CLM5, includes a wide range of modifications in its structure and 

parameterization over previous CLM versions (Lawrence et al., 2019a). Only a few calibration 15 

studies for CLM5 have been reported (Dombrowski et al., 2022), however, through their validation 

of CLM5, Cheng et al. (2021) state that calibration of hydrologic parameters are needed to improve 

simulations of subsurface runoff. 

Recently, Dombrowski et al. (2022) performed a sensitivity analysis using the prognostic crop 

module in CLM5.  We calibrate a point-scale CLM5 against observations of net radiation (Rn), 20 

incident shortwave radiation (Sout), LE, H, recharge (q), SWC and Tsoil from the Danish 

hydrological observatory HOBE (Jensen and Refsgaard, 2018) using well-established calibration 

methods from hydrological modeling. Our observation dataset is exclusive in the way that we have 

all observations available for closing the long-term water and energy balance at point-scale 

including groundwater recharge measurements, which have not previously been used for evaluating 25 

and calibrating a LSM. The novelty of the study lies in the methodological approach that combines 

(1) multi-objective calibration, (2) truncated singular value decomposition and (3) Tikhonov 

regularization, by using the PEST program suite (Doherty, 2015). After the auto-calibration, we 

evaluate the model parameter uncertainty by means of identifiability and relative error variance 

reduction (Doherty and Hunt, 2009). 30 
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2 Methods 

2.1 Study site 

The Voulund site is an agricultural field observatory (Jensen and Refsgaard, 2018) located in a 

temperate climate in the western part of Denmark on flat terrain. During the study period, the field 

was cultured with rotations of spring and winter barley, with grass-species as cover crop during the 5 

autumn and winter season. The ploughed root zone of 30 cm contains approximately 4.5% organic 

matter (Andreasen et al., 2020), while there is little organic matter content below 30 cm. The soil is 

sandy with only very little clay content (Vasquez, 2013). The field site is a part of the Danish 

Hydrological Observatory (HOBE). 

Hourly forcing data from the period 2010-2015 were used for the analysis. From a flux tower, 10 

measurements of energy fluxes were obtained (Ringgaard et al., 2011) and the tower was also 

equipped with sensors of temperature, relative humidity and radiation components. Wind speed and 

atmospheric pressure were obtained from a meteorological station. The precipitation dataset is 

constructed based on observations from six undercatch-corrected precipitation gauges (Denager et 

al., 2020). Recorded irrigation amounts are included as additional precipitation in the precipitation 15 

dataset. Soil temperature (Tsoil) was obtained from two capacitance sensors located right below soil 

surface.  

To evaluate the performance of the CLM5 model we used measurements of LE, H, q, SWC in the 

top soil layer (0-20 cm), Tsoil, Sout and Rn. Four percolation lysimeters measured recharge q 

(Schelde et al., 2011) and measurements of SWC in the top soil was obtained from a cosmic ray 20 

neutron sensor (CRNS) (Andreasen et al., 2020; Bogena et al., 2022). Two heat flux plates 

measured ground heat flux (G) at 0.05 meter below ground level (mbgl). Net radiation (Rn) was 

calculated as the difference between incident and reflected shortwave (Sin - Sout) and longwave 

radiation (Lin - Lout) summed. In Denager et al. (2020) further details on site characterisations and 

data collection are provided.  25 

2.2 Model description 

The open-source LSM Community Land Model version 5 (CLM5) (Lawrence et al., 2019a, 2019b) 

is the land component of the Community Earth System Model (CESM), and it simulates the soil-

plant-atmosphere exchange processes. We applied this process-based model in single-point mode, 

uncoupled from the climate model and driven by hourly in situ site-specific climate forcing data. 30 

We used the original and publicly available release code of CLM5 with the modifications 

mentioned below.  
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CLM5 includes biophysical, biochemical, ecological and hydrological processes that are described 

by equations with a large number of parameters. Thermal and soil hydraulic parameters are 

estimated with built-in pedo-transfer functions from simple soil properties such as soil texture 

(fractions of sand and clay) (Nachtergaele et al., 2009) and soil organic carbon (Lawrence and 

Slater, 2008). CLM5 simulates unsaturated flow by the one-dimensional Richards’ equation for 5 

vertical flow and surface runoff based on a TOPMODEL-based parameterization (SIMTOP) (Niu 

et al., 2007, 2005). Surface water storage is simulated as a function of microtopography (Lawrence 

et al., 2019a). The soil column is divided into 20 hydrological active soil layers (0-8.6 mbgl) 

(Lawrence et al., 2019a), and with the thickness of each layer increasing from top to bottom. While 

CLM5 calculates water flux and SWC for all 20 hydrological active layers, it is assumed that the 10 

soil texture is homogeneous within each of two horizons; the root zone (0-0.32 mbgl) and below 

root zone (0.32 – 8.6 mbgl). In the present application of CLM5, the simulated groundwater 

recharge qsim is found as the water reaches the bottom of the eleventh soil layer, corresponding to 

the depth of the bottom of the lysimeters. In this study, we compare the average SWC of CLM5 

layers 1 to 4 (0-20 cm) with the SWC measured by the CRNS, which corresponds to the average 15 

CRNS measurement depth at the site. All simulations were carried out with hourly time steps 

covering the period 2010-2015. Simulated recharge and soil water content are compared to the 

outflow from lysimeters and CRNS estimated SWC, respectively. 

The lower boundary condition of the model was a water table head-based boundary 

(https://www.cesm.ucar.edu/models/cesm2/settings/current/clm5_0_nml.html). This modification was 20 

needed as default CLM5 settings of the lower boundary condition raised the groundwater table 

above the level of the bottom of the lysimeters. 

CLM5 was applied in satellite phenology mode (CLM5-SP), where the carbon and nitrogen 

biogeochemistry cycles were deactivated and plant phenology was represented by leaf area index 

(LAI), stem area index (SAI) and canopy height (height_top). LAI is the green area index, while 25 

SAI includes dead leafes and litter.  

The energy fluxes considered in CLM5 include direct and diffuse short-wave radiation as well as 

absorbed, transmitted, and reflected longwave radiation by soil and vegetation. CLM5 simulates 

the turbulent fluxes of H and LE numerically through the Monin-Obukhov similarity theory 

(Lawrence et al., 2019a), which relates the turbulent fluxes to the differences of mean temperature 30 

and humidity (Wang and Dickinson, 2012). CLM5 calculates many individual processes. For 

example, soil evaporation, canopy evaporation and transpiration are parameterized individually, 

and the sum of these individual component terms makes up total Esim. A detailed description of the 

CLM5 framework is available in Lawrence et al. (2019a). 

https://www.cesm.ucar.edu/models/cesm2/settings/current/clm5_0_nml.html
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Energy is conserved at every time step (Lawrence et al., 2019a): 

Rn = H + LE + G    (1)     

where Rn is the net radiative flux, H is the sensible heat flux, LE is the latent heat flux and G is the 

ground heat flux. CLM5 simulates LE and H explicitly, while G is considered a residual term for 

closing the energy balance (Lawrence et al., 2019a). This approach for closing the land surface 5 

energy balance is used in the majority of the available LSMs (Kracher et al., 2009). As in standard 

eddy covariance studies, Eq. 1 neglect minor fluxes and storage terms (Foken et al., 2006). 

A spin-up configuration enables CLM5 to reach a quasi-equilibrium state prior to simulation period 

of interest. 1000 years of spin-up were used from cold start with the described modifications of the 

model setup, and four years (2012-2015) of forcing data were recycled to achieve proper initial 10 

conditions. It took approximately 150 years of spin-up to reach quasi-equilibrium. Additionally, 

since the calibration process changes the model behavior through parameter adjustments, we 

included four years spin-up preceding each simulation in the calibration. 

CLM5 differentiate between “surface runoff” from the SIMTOP runoff model (Niu et al., 2005) 

and “surface water runoff/surface water storage” based on microtopography (Lawrence et al., 15 

2019a). In SIMTOP precipitation that falls over the saturated fraction of a grid cell is immediately 

converted to surface runoff. Surface runoff at the study site is almost absent. Therefore, maximum 

possible saturated area fraction (Fmax) was set to zero resulting in nonexistent surface runoff.  

Meteorological forcing data include precipitation, air temperature, wind speed, surface air pressure 

and relative humidity, while radiation forcing data includes incident solar (Sin) and incident long-20 

wave radiation (Lin).  

As the intension was to calibrate CLM5 outputs against observed flux data, it is of critical 

importance that the specified Rnobs is in agreement with Rnsim. We identified systematic errors in 

the measurements of absolute longwave radiation components. However, although the values of 

absolute longwave radiation were inaccurate, we assume that the difference between Linobs and 25 

Loutobs was reliable, and thus assuming that Rnobs calculated as Rnobs = Sinobs - Soutobs + Linobs - 

Loutobs will represent the net radiation at the field site.  

Lin specified to the model was computed as a differential term because CLM5 computes Lout from 

Stefan-Boltzmann’s law (Stöckli et al., 2008): 

𝐿𝑖𝑛 = 𝑅𝑛 − 𝑆𝑖𝑛 + 𝑆𝑜𝑢𝑡 + 𝜎 (
𝑇𝑎+𝑇𝑠

2
)

4
 (2) 30 
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where Rn, Sin and Sout are net radiation, incoming solar radiation and outgoing solar radiation 

respectively (W m-2), σ is the Stefan-Bolzmann constant (5.67·10-8 Wm-2 K-4), Ta is the air 

temperature (K) and Tsoil is the soil-surface temperature (K). 

The observed energy fluxes do not meet long-term energy balance closure (Denager et al., 2020). 

Many studies introduce corrections of the observed energy fluxes LE and H to meet energy balance 5 

closure (Carrillo-Rojas et al., 2020; Chen et al., 2018; Davison et al., 2016). Such a correction of 

the observed turbulent fluxes was not applied here as the goal specifically was to analyze the 

energy balance components using CLM5.   

2.3 Calibration approach 

Calibration is a challenge when models are complex and the number of parameters is high (Doherty 10 

et al., 2010). We applied the PEST suite programs (Doherty, 2018a, 2018b) to calibrate CLM5. 

PEST is an open source software and model-independent, and provides highly parameterized 

inversion and model parameter uncertainty analysis (Doherty et al., 2010). A single model run in 

CLM5 took about 10 minutes on Linux server (Intel Xeon Gold 6148 processor, 20 cores, 380 GB 

RAM). An example .pst file used in PEST can be found in Supplementary Material S3. In PEST a 15 

maximum of 50 interactions were defined and only one scenario calibration reached this maximum. 

We applied the gradient-based nonlinear Gauss-Marquardt-Levenberg method implemented in 

PEST, were the calculation of finite–difference derivatives are used in the inversion process. We 

did that because those often use fewer models runs that alternative optimization techniques 

(Doherty, 2015). Additionally, we introduced Tikhonov regularization to honor the observed 20 

parameters values as prior knowledge. In mathematical regularization using the subspace method, 

the parameter space is divided into a solution space and a null space. The solution space comprises 

combinations of parameters that can be estimated uniquely from the available observations, while 

the null space includes parameters combinations that cannot be estimated on the basis of the 

observations. Truncation of low singular values provides a threshold between solution and null 25 

spaces (Doherty et al., 2010).  

Focus was given to a set of 30 time-invariant model parameters (Table 1 and Supplementary 

Material S1 and S2), chosen for their direct mechanistic impacts on responses of energy and water 

fluxes. To keep the analysis simple, we decided to include only parameters represented in look-up 

tables and to disregard hard-coded parameters, parameters determining pedo-transfer functions as 30 

well as parameters influencing e.g. snow hydrology. We kept all these parameters at the prescribed 

values. A formal local parameter sensitivity analysis of the 30 model parameters was carried out to 

identify the most sensitive parameters. However, it was decided to include all 30 parameters in the 

calibration approach. John Doherty (personal communication) recommends Highly Parameterized 
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Inversion, were most parameters are included in the calibration. The regularization approach will 

keep the insensitive parameters at their preferred values, so that parameter value deviation from the 

look-up table values can be studied after regularization. Notice that we calibrated on the 

percentages of clay and sand, and not directly on the Clapp-Hornberger exponent B. The Clap-

Hornberger B exponent is inherent defined in CLM5 from pedo-transfer functions of percentages 5 

of sand and clay and organic (Lawrence et al., 2019a). Regularization converts an ill-posed 

problem to a well-posed problem and prevents overfitting. Truncated singular value decomposition 

identifies insensitive or highly correlated combinations of parameters and excludes them from the 

calibration (Doherty, 2015) and through Tikhonov regularization we honored the observed 

parameter values and a-priori information from look-up tables, as those were given as the prior-10 

knowledge/initial values (Table 1 and S1 and S2). 

In CLM5 the soil and hydraulic parameters including porosity, saturated hydraulic conductivity and 

the Clapp-Hornberger exponent B in the functional relationships for retention and unsaturated 

hydraulic conductivity are derived from soil texture (percentage of sand/clay and organic) in each 

soil layer (Lawrence et al., 2019a) using built-in pedo-transfer functions. Measured soil texture 15 

were used as prior-knowledge/initial values (Vasquez, 2013). Those were slightly different from 

look-up table parameter values (Table 1 and S1 and S2). The soil carbon density in the root zone 

was fixed at a value of 6 kg/m3, since this entails an organic matter content corresponding to the 

measured value of 4.5% (Andreasen et al., 2020). Soil colour determines dry and saturated soil 

albedo (Fisher et al., 2019). Soil colour was not included in the calibration because the parameter 20 

estimation tool was not able to handle parameter values as integers. The look-up parameter value of 

soil colour for the field site is 13; we used this value in the simulations. 

The a-priori satellite-derived LAI and SAI values were aggregated from high resolution input 

datasets (Cheng et al., 2021). According to our basic knowledge of the field site (Herbst et al., 

2011) the a-priori LAI values as derived from satellite images seemed rather small. Therefore we 25 

used initial values for LAI assessed from Herbst et al. (2011). We included all 12 monthly LAI 

parameters in the calibration. We used the SAI values from the look-up table and did not include 

them in the optimization. Initial values of the eight optical properties parameters were defined 

according to the look-up table values. 

We used the single Plant Functional Type (PFT) “C3 Unmanaged Rainfed Crop” (Lawrence et al., 30 

2019a) as a-priori vegetation parameter values. The prescribed leaf/stem orientation index for “C3 

Unmanaged Rainfed Crop” of -0.3, was changed to -0.5, as this is the prescribed value for spring 

wheat (Lawrence et al., 2019a). 
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Parameter limits were given wide intervals to give full freedom to the parameter optimization. Prior 

calibration parameter variability (σi pre) was given as a standard deviation of 0.5 in the log space of 

the respective parameters.  

In the calibration we used seven different observation data sets as optimization targets; Rn, Sout, 

LE, H, q, Tsoil and SWC in the top soil layer, all in hourly resolution. We considered 13 individual 5 

scenarios (A-M) where calibration was carried out against different combinations of observation 

data types (Table 1). The scenarios were designed to both study the worth of hydrological data in 

an energy based LSM, and to study the reliability of LE and H observations, respectively. Rn and 

Sout were included as optimization targets to ensure persistent match between observations and 

simulations of Rn and Sout.  10 

The multi-objective function (ϕobservation) that is minimized by PEST is defined as the squared sum 

of weighted residuals. 

𝜑𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 = ∑ ∑ (𝜔𝑦,𝑖,𝑗(𝑦𝑜𝑏𝑠,𝑖,𝑗 − 𝑦𝑠𝑖𝑚,𝑖,𝑗))
2

𝑛
𝑗=1

𝑚
𝑖=1   (3) 

where m is the number of observation groups in the given optimization, n is the number of 

respective Rn, Sout, LE, H, q, SWC and Tsoil observations, ω is the weight of the observations, yobs 15 

and ysim are observed and simulated values, respectively. We ensured uniform weighting between 

the different observation groups to avoid single observation groups to excessively dominate the 

parameter estimation. 

Regularization was introduced in all calibrations by adding the regularization objective function 

(ϕregularization) to ϕobservation. As we used preferred value regularization, ϕregularization consists of the 20 

weighted least squared of the difference between parameter value and preferred (a-priori) 

parameter values. The total objective function (ϕt) thus comprises the sum of the observation and 

the regularization objective functions 

𝜑𝑡 = 𝜑𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 + 𝜇2𝜑regularization  (4) 

were μ is the weight factor of the regularization objective function (Doherty, 2018a). 25 

In mathematical regularization we seek an “appropriate” fit, rather than the best possible fit 

between simulations and observations (Doherty et al., 2010). An acceptable fit is specified by 

PHIMLIM, which defines a threshold value that the observation objective function must not fall 

below. Hereby, a balanced optimization is obtained with respect to observations and prior 

parameter values. PHIMLIM was set 10% higher than the lowest achieved objective function, and 30 

PHIMACCEPT another 10% higher than PHIMLIM as recommend by Doherty (2018a). 
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The weights to the individual observations were assigned such that they were proportional to the 

standard deviation associated with the observation. The standard deviation was assumed to be 10% 

of the absolute observation value. To ensure that all observation time steps had a balanced impact 

on the objective function, we developed a simple model of the observation weights of LE, H and q. 

Hereby, larger observations are given a higher weight than smaller observations and time steps 5 

where yobs≈ 0 is prevented from having inappropriate high weight and therefore inappropriate high 

impact on the objective function.  

𝜔𝑖 =
1

𝑎−0.1∙|𝑦𝑜𝑏𝑠|
 (5) 

where aLE =1000, aH = 1000, aRn = 1000 and aq = 1. All SWC and Tsoil observations were given the 

same weight and thus not dependent on the observation value.  10 

All calibration scenarios were assessed based on mean error (ME), mean absolute error (MAE), 

root mean square error (RMSE), Nash-Sutcliffe coefficient (NSE) and Pearsons correlation 

coefficient (r) for each of the four observation groups LE, H, Rn, q, SWC and Tsoil. 

𝑀𝐸 =
1

𝑛
∑ (𝑜𝑏𝑠𝑗 − 𝑠𝑖𝑚𝑗)𝑁

𝑗=1    (6) 

 15 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑜𝑏𝑠𝑗 − 𝑠𝑖𝑚𝑗|𝑁

𝑗=1   (7) 

 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑ (𝑠𝑖𝑚𝑗 − 𝑜𝑏𝑠𝑗)

2𝑁
𝑗=1  (8) 

 

𝑁𝑆𝐸 = 1 −
∑ |𝑜𝑏𝑠𝑗−𝑠𝑖𝑚𝑗|

2𝑁
𝑗=1

∑ |𝑜𝑏𝑠𝑗−𝑜𝑏𝑠̅̅ ̅̅ ̅|
2𝑁

𝑗=1

  (9) 20 

 

𝑟 =
∑ (𝑜𝑏𝑠𝑗−𝑜𝑏𝑠̅̅ ̅̅ ̅)𝑁

𝑗=1 ∙(𝑠𝑖𝑚𝑗−𝑠𝑖𝑚̅̅ ̅̅ ̅̅ )

√∑ (𝑜𝑏𝑠𝑗−𝑜𝑏𝑠̅̅ ̅̅ ̅)
2𝑁

𝑗=1 ∙∑ (𝑠𝑖𝑚𝑗−𝑠𝑖𝑚̅̅ ̅̅ ̅̅ )
2𝑁

𝑗=1

 (10) 

 

where N is the number of observations in the given observation group. All summary statistics were 

calculated on hourly time basis.  25 
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A small ME suggests that the overall model fit is not biased, however, positive and negative errors 

may cancel out implying that ME may be a weak indicator of the goodness of model fit. Instead, 

MAE may be a better indicator of the model performance. RMSE is a performance criteria, which 

gives higher weight to large errors as opposed to MAE that weights all residuals equally. The 

innate character of RMSE is very much related to the objective function. NSE and r are both unit 5 

less, should ideally be as close to 1 as possible and are comparable across data types. NSE is a 

measure of the model’s ability to match the temporal variability, while r is a measure of the 

strength of the linear relationship. For ME, MAE and RMSE the closer the metrics are to 0, the 

better the model performs.  The optimized fluxes and states of the system is evaluated through 

those six metrics (including objective function). It is important to keep in mind that the 10 

optimization tool PEST uses the objective function and that this does not necessarily improve all 

other metrics. 

Aside from parameter estimation, the PEST software package contains a collection of utility 

programs for calculation of the model parameter uncertainties developed under the assumption of 

linearity. Thus, the uncertainty estimates are approximates, but can nevertheless provide useful 15 

information even though the system may violate the assumptions (Doherty, 2015). The truncation 

point (or threshold) between the null and solution space is a generic mathematical concept that 

enable an investigation of model error (Doherty, 2015; Doherty et al., 2010). 

To assess the parameter importance, we used the two statistics “identifiability” and “relative error 

variance reduction” (Doherty and Hunt, 2009) calculated by the PEST utility programs 20 

IDENTPAR and GENLINPRED. These statistics are based on the same concepts as those applied 

by mathematical regularization and rely on singular value decomposition of a weighted sensitivity 

matrix. Opposite to the one-at-a-time sensitivity analysis approach, the identifiability and relative 

error variance reduction determine the significance of the parameters while taking the interactions 

among them into account (Doherty and Hunt, 2009). 25 

The identifiability expresses to which extent a parameter can be estimated uniquely based on the 

extent that the parameter is located in the solution space and hence how much it is informed by 

available observation data. When the identifiability of a parameter is 0, the dataset possesses no 

information with respect to that parameter, and the uncertainty is not reduced through the 

calibration process. When the identifiability of a parameter is 1, it does not mean that the parameter 30 

can be estimated without error, but it indicates that all of its potential for errors are dominated by 

and originates from the noise of the observation data (Doherty and Hunt, 2009). 
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The relative error variance reduction (ri) describes to which extent the calibration process reduces 

the variance of a parameter from the pre-calibration level (Doherty and Hunt, 2009). 

𝑟𝑖 = 1 −
𝜎𝑖

2
𝑝𝑜𝑠𝑡

𝜎𝑖
2

𝑝𝑟𝑒

 (11) 

where 𝜎𝑖
2

𝑝𝑜𝑠𝑡
 is post-calibration error variance associated with estimation of parameter i, and 

𝜎𝑖
2

𝑝𝑟𝑒
is its pre-calibration error variance assigned by expert knowledge.  5 



 

 

14 

 

 

3 Results 

To provide a basis for comparison we ran a control simulation using CLM5’s a-priori (look-up 

table) parameter values (Scenario X). Additionally, a simulation was run (Scenario Z) where some 

look-up table parameters values were replaced by observed parameter values. Table 1 present the 

soil texture parameters and the plant functional type (PFT) parameters. LAI and optical parameters 5 

can be found in S1 and S2. Look-up table and initial parameter values are listed together with the 

optimized parameters for all calibrated scenarios. Scenarios A, E and K are calibrations with LE, H 

and q, respectively, as targets. The remaining scenarios are multi-objective calibrations using 

different combinations of observation data types. The summary statistics are given in Table 2 

where the top row show the initial and control runs together with statistics on the observed data. In 10 

row no. 2 calibration results using LE as targets plus LE combined with other measurement types 

as targets are presented. Row no. 3 is similar to row no. 2, where LE is substituted by H. Row no. 4 

is similar to row no. 3 but including Tsoil as target variable. In the last row results using different 

combinations of targets is shown. 

Table 1 15 

Table 2 

Figure 1 

Figure 2 

Figure 3 

As Rnobs was used indirectly to obtain incident longwave radiation for model forcing (Eq. 2), there 20 

is a good match between both Rnobs and Rnsim, and Soutobs and Soutsim, in the control run. To ensure 

that simulated and observed Rn and Sout agree in the optimization process, Rn and Sout were 

included in the objective function (Eq. 3) and given the same group weight as for the other 

variables in the objective function. We included Rn and Sout in the objective function to ensure 

accordance between observed and simulated Rn and the short wave radiation components. It is 25 

important to note that in the control run and initial model run (Scenario X and Z) an excellent 

match between Rnobs and Rnsim was already obtained and therefore we do not expect the metrics for 

Rn to improve in the calibrated scenarios (Fig 1).  

3.1 Analysis of the control run 

Simulations based on look-up parameter values for the field site (Scenario X) highly overestimate 30 

daily H all year except in July and August (Fig. 1b). On the contrary, LE is underestimated during 

the cold season from September to April, especially in March and April (Fig. 1a). This model 
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conceptualization fails to reproduce the correct partitioning between LE and H during the grain 

filling and harvest period in July and August, where LE is highly overestimated (Fig. 1a) and H 

underestimated (Fig. 1b).  

Regarding the unsaturated zone variables, the control run (Scenario X) simulates the level of SWC 

consistently too high, albeit the dynamics match observations fairly well (Fig. 2a). The model fails 5 

to capture the overall dynamics of q including low and high flow events (Fig. 2b). For certain 

years, 2010 and 2011, snow periods are not simulated well. 

As the turbulent fluxes have a distinct diurnal variation, we compare simulations and observations 

in Fig. 3 for four individual months. For the control run (Scenario X) the daytime LE values are 

slightly overestimated in June (Fig. 3a), while underestimated in all other months (Fig. 3b-d). For 10 

H both the daytime and nighttime values are overestimated in all four months (Fig. 3e-h). Thus, 

CLM5 highly overestimates H based on look-up parameter values and is not capable of simulating 

negative nocturnal H (Fig. 1e and Fig. 3e-h). In winter, the CLM5 control run simulates small 

negative H during night, but Hobs is much lower than Hsim (Fig. 3h).  

3.2 Analysis of multi-objective calibration results 15 

As expected, calibration enhances CLM5’s ability to simulate the dynamics of the energy fluxes, 

recharge and soil moisture, though with a consistent overestimation of H (Fig. 1b and 1e). 

LE and H are linked through the energy balance and the partitioning of incoming energy into LE 

and H. In most calibrated scenarios, optimization against either one of the turbulent fluxes improve 

the other as well. Thus, the inverse calibration improves the simulation of both LE and H. When 20 

comparing the initial model run (Scenario Z) with the calibrated scenarios in general, Hsim and Hobs 

match better in all the calibrated scenarios (Scenario A-M) than in the control run (Table 2). This 

applies to most metric types, but most evident for ϕH, which is less than 100 in all scenarios (except 

Scenario K). This is the case regardless of whether H is used as calibration target (Scenarios E-J, L 

and M) or not (Scenarios A-D). In the same way as for H, Table2 shows that summary statistics for 25 

LE are likewise improved for all scenarios when comparing to the initial model run.  

Scenarios A and D are, as expected, best in capturing the reduction in LE at harvest and grain-

filling period of July and August. However, it is important to keep in mind that Fig. 1 shows daily 

mean over a six years period, and the variation in the timing of the harvest/grain-fill will affect the 

visual comparison in Fig. 1.  30 
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Figures 1d, e and f present results for the first week in June. When LE is used as target variable 

(Scenario A), H is overestimated, and vice versa when using H as target variable (Scenario E). The 

excess energy is placed on the other turbulent flux or on G (Fig.2). 

Despite the improvement in both LEsim and Hsim, a clear discrepancy between Hsim and Hobs is found 

after calibration (Table 2), also for the single-objective optimization (Scenario E), where a bias of 5 

MEH = -11 W m-2 is found. MEH is negative in all scenarios with a value between -9 W m-2 and -14 

W m-2. This is a very high absolute value especially when comparing to the mean value of the 

observations (μHobs = 7 W m-2) (Table 2). The bias of Hsim can also been seen on Fig. 1b, where the 

calibrated scenarios are not able to match mean daily Hobs and the simulated values are higher than 

observations for most of the year. The same discrepancies between simulations and observations 10 

can be seen in Fig. 3e-h, where hourly Hobs values are less than Hsim values for all scenarios and for 

all months, especially at night. We see from Fig. 1e that CLM5 overestimates the nighttime 

negative H values. 

For scenarios D, LEsim matches LEobs nearly perfectly in June (Fig. 3b and Fig. 1a), while during 

the remaining seasons (Fig. 3a, Fig. 3c and Fig. 3d), LEsim is underestimated. For example, does the 15 

calibration of LE (Scenario A) only slightly improve the climatology of LE during March (Fig 4a). 

There is only a slight difference in turbulent fluxes between Scenario A and D, thus including 

hydrological observations in the objective function does not have much effect on the results.   

As expected the single-criteria optimization of LE (Scenario A) leads to the best summary statistics 

for LE (Table 2), but for H the best summary statistics are surprisingly obtained in scenario F and 20 

not in scenario E. In the same way, optimization against LE and q (Scenario B) gives better 

summary statistics for q than the single-objective optimization of q (ϕq = 58 for Scenario B and ϕq 

= 81 for Scenario K), and is capable of matching observed and simulated q to a better degree than 

other scenarios. However, in general the dynamics of q are not well simulated in any of the 

scenarios as reflected in NSEq being less than 0.46 for all scenarios (Table 2).  25 

The model is overall better in simulating the dynamics of LE as compared to H and the 

hydrological observations as evidenced by NSE for the different scenarios (Table 2). This is also 

the case if LE is not included in the objective function. In all cases (except Scenario G), NSELE is 

higher than NSEq, NSESWC and NSEH (Table 2). To ensure that the heat and water budget are 

constrained to the same extend we did two scenarios that includes Tsoil as a target variable in the 30 

calibration. A slight improvement in MEH from -11 Wm-2 to -8 Wm-2 is obtained from Scenario E 

to H, but MEH is still highly biased, and the remaining metrics for H are not improved when 

including Tsoil as target variable.  
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The results demonstrate that it is important to include several datatypes in the optimization. Single-

objective optimization against LE or H, respectively, leads to good results for the respective fluxes 

but deteriorates the simulation of the internal hydrological processes, especially SWC. The absolute 

level of simulated SWCsim is too high in the control run (Scenario X), but becomes much better 

when using site specific parameter values in the initial model run (Scenario Z) (not shown).  5 

The information content of the different observation data types can be examined by comparing the 

model results of the different scenarios. When evaluating the model performance of Scenarios A to 

D, it is evident that when including q in the objective function (Scenario B) improves the fit of q 

(ϕq = 103 for Scenario A and ϕq = 58 for Scenario B) and SWC (ϕswc = 1301 for Scenario A and 

ϕswc = 341 for Scenario B), while still maintaining  strong agreement with LE observations (ϕ= 52 10 

for Scenario A and ϕLE = 54 for Scenario B). On the other hand by including SWC in the objective 

function (Scenario C) actually also improves q (ϕq= 103 for Scenario A and ϕq = 92 for Scenario 

C), while the match with LE observations becomes worse (ϕLE = 52 for Scenario A to ϕLE = 63 for 

Scenario C). When including both q and SWC in the calibration a good fit of LE and SWC and also 

an acceptable agreement with q observations can be obtained (Scenario D). Scenario D leads to the 15 

best overall model results. Including SWC in the parameter optimization leads to a good match 

between SWCobs and SWCsim (Fig. 2a). 

Surprisingly, summary statistics (Table 2) do not change much when calibrating the dynamics of 

LE and H at the same time (Scenarios L and M). H is simulated with low accuracy independently 

whether LE is included in the objective function or not, while LE is simulated slightly worse in 20 

Scenario L than in Scenario A (ϕH = 52 for Scenario A and ϕH = 61 for Scenario L). Including all 

four data types in the optimization (Scenario M) still leads to a bias of H simulations.  

FIGURE 4 

The parameter response space of CLM5 is complex, and the impacts of the parameters estimated on 

water and energy fluxes vary with different parameter value combinations. In general, Scenario D 25 

gives the best results. Figure 4 shows the identifiability, the relative error variance reduction and 

the estimates of 30 parameter estimated for Scenario D. The total height of each bar in Fig. 4a is 

the identifiability of the pertinent parameter. The color-coding of each bar corresponds to the 

contribution by different eigencomponents spanning the calibration solution space to the 

identifiability. Warmer colors (red-yellow) correspond to singular values of smaller index (singular 30 

value of higher magnitude) and indicate that the parameter is less prone to measurement noise and 

more informed by observation data (Doherty, 2015).  
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The boundary between solution and null subspaces for Scenario D was set to 20. The 30 parameters 

show a broad range of identifiabilities, and if choosing a somewhat arbitrary qualitative 

identifiability level of 0.7 to mark cut-off between identifiable and non-identifiable parameters, 

then 14 out of 30 parameters are identifiable on the basis of the hourly observations of Rn, Sout, 

LE, q and SWC. The 14 identifiable parameters are primarily sand and clay fractions, LAI in 5 

summer, height-top, medlyn and rootprof. 

The parameters with the highest identifiability and which are mostly informed by data (warmer 

colors at Fig. 4) also have the highest relative error variance reduction. Hence, the information 

contained in the observation dataset constrain the identifiable parameters, while the non-

identifiable parameters are to a stronger degree constrained by expert-knowledge in the form of 10 

preferred-values in the Tikhonov regularization. Parameter confidence intervals reduces mostly for 

the parameters mostly informed by data. 

FIGURE 5 

Figure 5 shows the optimized parameter values, i.e. a) soil parameters, b) LAI and c) optical 

parameters, respectively. The optimized values for the plant functional type (PFT) parameters can 15 

be found in Table 1, S1 and S2. Additionally, Fig. 5 indicates how much the parameters have 

moved from the a-priori loop-up table values and the initial parameter values. 

The a-priori value for the PFT parameters are retrieved from global datasets, while the soil and 

vegetation phenology parameters are linked to the study site location (Herbst et al., 2011; Vasquez, 

2013). Sand1 and clay1 determine the hydraulic properties of the root zone. Sand1 is highly 20 

informed by data (warmer colors in identifiability plots, Fig. 4a), which is also seen from the 

narrow post-calibration confidence interval (Fig. 4b). According to the local information (Vasquez, 

2013), the soil at the field site is sandy with only very little clay content. Most calibrated scenarios 

obtain reasonable soil texture values, where the sand content mostly varies between the look-up 

table value of 60% and up to 100%, and the clay contend is below 20%. Scenarios B and K obtain 25 

an unrealistic low sand fraction in the root zone and Scenario A obtain an unrealistic high sand 

fraction in the root zone (Fig. 5). All scenarios which include q in the objective function reduce the 

fraction of sand in the soil layer below root zone (sand2). We know that this is incorrect and that 

the soil texture becomes coarser with depth (Haarder et al., 2015). All scenarios not including q in 

the objective function have an expected high sand content below the root zone (Fig. 5a). Scenario 30 

A on the other hand has an unrealistic high value for the sand fraction of sand2. In generally the 

clay content is much less informed by data than sand (Fig. 4a)  
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All a-priori values of PFT parameters (except medlyn) are nearly identical for the different 

vegetation types in the look-up tables of CLM5 (Lawrence et al., 2019a). Thus, specification of 

individual initial parameter values for each PFT is not possible.  

Medlyn is a parameter of the stomatal conductance model. The parameter determines the degree of 

stomatal opening and has a critical impact on the stomatal responses in the soil-root-stem-leaf 5 

system. The optimal value for medlyn varies between 3.38 and 5.75 (Table 1).  

Rootprof is the root distribution parameter that determines the root fraction in each soil layer, and 

is critical for SWC of the soil. Roofprof is well informed by data and the regularization strategy 

allows the parameter value to move away from the initial value.  

LAI shows similar patterns for all scenarios (Fig. 5b). As LAI parameters are non-identifiable in 10 

cold months, the values do not deviate much from the preferred values. The optimized LAIs 

enhance energy partitioning of LE and H during the grain filling and harvest phase in July and 

August (Fig. 1). The calibrated models match LE and H during the harvest period in July and 

August better than the control run.  

  15 
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4 Discussion 

The results presented shows that multi-objective calibration enhances the ability of CLM5 to 

represent both energy and hydrological processes considerably. This result is expected to be 

applicable elsewhere, particularly for low-lying agricultural areas subject to high 

evapotranspiration. In line with Gupta et al. (1999), it was also demonstrated that optimization 5 

using a single-criterion objective function is less suitable as the internal hydrological processes are 

not represented adequately. In contrast, multi-objective parameter estimation considerably 

enhances the ability of CLM5 to simulate observed energy and hydrology data. According to the 

summary statistics, Scenario D (calibrated against LE, q and SWC) gives the best overall 

representation of all data types (Table 2). Compared to the control run (Scenario Z), Scenario D 10 

reduce RMSE with 27%, 2%, 9% and 31% for LE, H, q and SWC, respectively. 

In the following, we will discuss issues with respect to the energy and hydrology representation of 

the model, the calibration approach and the parameter uncertainty. However, to begin with, we will 

elaborate on the issue of land surface energy balance closure with respect to calibration of a LSM 

and potential shortcomings of LSMs. Throughout the discussion, we will outline potential future 15 

work within the subject of the study. 

4.1 Energy balance closure  

The eddy covariance (EC) method is generally regarded as the best practical method for measuring 

turbulent energy fluxes at the land surface, however numerous studies have documented the lack of 

energy balance closure (Foken et al., 2006; Franssen et al., 2010; Stoy et al., 2013). As 20 

measurements of Rn is generally trusted, an underestimation of the turbulent fluxes appears likely 

because the sum of the energy fluxes is less than Rn (Foken et al., 2011). The observation data 

from the field site (Ringgaard et al., 2011) show that incoming available energy (Rn minus G) on 

average exceeds the turbulent energy fluxes (LE and H) by 21% and the data is thus subject to land 

surface energy imbalance (Denager et al., 2020). Since LSMs conserve energy, the conclusions 25 

from LSM calibration studies using turbulent fluxes as target variables, rest on the premise of 

closure of the observed energy fluxes. This is in contradiction and therefore Scenarios J and K are 

fundamentally incorrect as it is not possible to match LEobs and Hobs, simultaneously.  

CLM5 simulates LE and H explicitly through the Monin-Obukhov similarity theory. Nonetheless, 

the regularization approach used in this study fails to identify parameter values to match 30 

uncorrected Hobs with Hsim (Scenario E). It is especially challenging to match negative H during 

winter and nocturnal periods, where the overlying air is warmer than the surface and sensible heat 

is therefore transported downwards (Fig. 1e and Fig. 3e-f). There may be structural limitations of 
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CLM5 that prevent a good match to H. However, as the observed incoming and outgoing energy is 

imbalanced (Denager et al., 2020) and the model maintains Rn (Eq. 1), there is excess energy in the 

model, which CLM5 transmits to H and G (results not shown). G is often considered as a residual 

term for closing the energy balance in CLM5 e.g. Kracher et al. (2009). Denager et al. (2020) 

concluded by comparison to water balance measurements that the imbalance of the EC method at 5 

the specific field site is to a less degree caused by errors in the LE estimates, but can mainly be 

attributed to errors in the other energy flux components or unaccounted effects.  

Contrary to this study, many studies have tested LSMs using corrected flux observations of H and 

LE that fulfill energy closure (Carrillo-Rojas et al., 2020; Davison et al., 2016; Dombrowski et al., 

2022; Larsen et al., 2016; Pauwels and De Lannoy, 2011). A few studies have tested LSMs using 10 

both corrected and uncorrected turbulent fluxes (Chen et al., 2018), while some studies do not 

indicate whether turbulent energy fluxes are corrected or not (De Lannoy et al., 2011; Göhler et al., 

2013; Hou et al., 2012). Chen et al. (2018) applied both corrected and uncorrected LE and H from 

FLUXNET for testing a point-scale CLM4.5 over open sites, and found that simulations matched 

uncorrected LE better than corrected LE, and, as energy-balance correction methods increase the 15 

LE values, they found that CLM4.5 underestimated FLUXNET corrected LE. 

 

4.2 Model physics in land surface models 

In this study we have showed that running the model with soil parameters that have been measured 

(and therefore are likely correct) (Scenario Z) did not lead to an improved model performance, 20 

which can potentially be interpreted to point to deficiencies in the model physics. As the highly 

relevant quote by Clark et al. (2015) stated in the introduction of this paper, more and more 

advanced descriptions of the processes have been built into LSM codes. This induce heavily 

increased model complexity and expand the associated number of parameters in the model 

equations (Mendoza et al., 2014). The parameter optimization in complex models is complicated, 25 

and there is a possibility that LSMs may not be parameterized appropriately. Several authors have 

contested the complexity of LSMs (Clark et al., 2015; Franks et al., 1999; McCabe et al., 2005; 

Williams et al., 2009) and suggested a reassessment of the structure and process representations. 

An overall simplification of the LSMs would enable a more profound parameter optimization and 

utilization of measured data. This would lead to more parsimonious LSMs and utilizing the well-30 

establish model evaluation within hydrology considering uncertainties in data, model parameters 

and conceptual understanding (Refsgaard et al., 2021), would enhance the model evaluation of 

LMSs. Therefore, the hydrology and LSM modelling communities could benefit even more from 

each other (Clark et al., 2015). 
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4.3 Worth of observation data  

Physically, LE depends on both energy flux and water availability. Aside from LE, moisture 

information is clearly central for optimizing the internal hydrological processes of CLM5. Other 

studies have also shown the appropriateness of SWC in optimizing the hydrological state in LSMs 

(De Lannoy et al., 2011; Zhang et al., 2017). Similar to LE, groundwater recharge, q, also describe 5 

the water exchange, however as long as LE data is available, q data only gives minor additional 

information to the calibration.  

Data uncertainty has been discussed in Denager et al. (2020) and we are generally confident with 

the accuracy of our forcing and hydrological data. To improve the simulation of soil water flow in 

LSMs, we followed the suggestion by Rosero et al. (2010) and used percolation observations in the 10 

parameter optimization process. To capture the diurnal dynamics of energy and water fluxes the 

optimization is based on hourly time steps. However, given the design of the lysimeters at the field 

site where recharge water is collected at a sloping face at the bottom of the lysimeters there may be 

a temporal mismatch between model simulations and observations. Through each of the four 

lysimeters have a surface area of 3.2 x 3.88 m, their total area is much smaller than the footprint of 15 

the EC system. 

4.4 Calibration approach 

As six years of observations are available for all major water and energy balance components at the 

field site, there is a potential for studying the long-term effects on the seasonal energy and water 

fluxes and variables. However, the target of the applied calibration approach is the dynamics of the 20 

24-hour cycle of hourly observations rather than the seasonal energy and water balance 

components.  

Sun et al. (2013) found that parameter optimization by PEST only led to small improvements in 

performance of CLM4.0. In the present study, we were able to obtain considerable improvements 

by parameter optimization using singular value decomposition and Tikhonov regularization 25 

implemented in the PEST software package. This approach is more computational effective than 

general Bayesian approaches that require a large number of model simulations to estimate 

parameter and predictive uncertainty such as the stochastic Markov-chain Monte Carlo inversion of 

CLM4 presented by Sun et al. (2013). Another approach was presented by Zhang et al. (2017) who 

evaluated different data assimilation methods for soil texture parameter estimation in CLM. 30 
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4.5 Evaluation of optimal parameters values 

Some CLM5 parameters, e.g. LAI and height_top, are physically meaningful and can be inferred 

directly from observations, while other parameters, e.g. displar, dleaf, medlyn, rootprof and z0mr 

can be viewed as conceptual representations for which useful values cannot be directly measured.  

Aside from the stomatal resistance, LAI also directly controls actual evapotranspiration, and as the 5 

sum of LE and H is constrained by the energy preservation in CLM5, LAI consequently determines 

both LE and H.  

Theoretically, LAIs should not change between calibration scenarios, and most scenarios show 

very similar LAI and SAI values. Scenarios A-D show well-constrained LAIjun values between 4.14 

and 5.37. We did not consider SAI parameters as adjustable parameters, but preliminary model 10 

calibrations including SAI showed that the decrease of LAIjul and LAIaug were compensated in 

nearly all scenarios by an increase in SAIjul and SAIaug. However, we do not expect SAI to have 

considerable influence on turbulent fluxes and hydrological variables. The increase in LAI in some 

scenarios in September probably reflects the emerging of cover crop.  

When CLM5 is run in satellite phenology mode, it is not capable of simulating the year-to-year 15 

variation in germination, leaf emergence, harvest etc., as all years are assumed to follow the same 

pattern. The energy partitioning in July and August is simulated better some years than others, but 

despite the alignment of distinct yearly phenology in CLM5, the abrupt decrease in LE (averaged 

over 6 years) at grain filling/harvest, is quite well simulated (Fig. 1a). Calibration of CLM5 with 

inclusion of the biogeochemistry (BGC) model is beyond the scope to this paper, but as CLM5-20 

BGC applies carbon and nitrogen cycle functionality, the CLM5-BCG replaces phenology with 

prognostic variables. These variables change dynamically with meteorological forcing, soil 

moisture and nutrient availability (Cheng et al., 2021). Inclusion of the BGC-module in CLM5 

would further enable simulations of cover crops schemes (Boas et al., 2021). According to Boas et 

al., (2021), the cover crop scheme helped to match the observed energy balance. 25 

It is a large disadvantage when calibrating LSMs that many important parameters are often hard 

coded (Davison et al., 2016). Adjusting those hard-coded parameters requires manual alteration of 

the appropriate code lines and subsequent recompiling before every parameter trial in the 

calibration routine. This limits the calibration process and the ability of the model to describe 

important processes (Mendoza et al., 2014).  30 

The model uses pedo-transfer functions to estimate the soil hydraulic properties, which is a useful 

approach for large-scale applications. However, for local scale applications as in this study it would 

have been more appropriate to be able to specify the hydraulic properties directly. We observed 
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that CLM5 overestimates the recharge during spring and summer, indicating that the representation 

of the hydraulic properties are inadequate when estimated from pedo-transfer functions of 

optimized soil texture. A large number of the former studies regarding parameter estimation and 

parameter sensitivity in CLM5 relate their analysis to the hydrologic parameters (e.g. hydraulic 

conductivity) rather than evaluating the model parameters in the pedo-transfer functions (e.g. 5 

percentage of sand and clay) (Göhler et al., 2013; Hou et al., 2012; Huang et al., 2013; Sun et al., 

2013).  

De Lannoy et al. (2011) analyzed the effect of different soil texture specifications on simulations of 

SWC, LE and H using CLM3.5 and concluded that the impact of soil texture on energy fluxes is 

minor but impact on water storages characteristics was significant. The present study found that the 10 

soil texture parameters (especially in the root zone) are identifiable also in the single-objective 

calibration of Scenario A. 

It should be noted that although soil texture is defined as a proportion of sand and clay, and 

therefore has the unit of percentage, individual values of sand or clay >100% is conceivable in 

CLM5, because the parameter interval were set >100%. In some scenarios, we obtain a sum of sand 15 

and clay slightly above 100% but is not considered a critical issue as the textural percentages only 

enter as parameters in the pedo-transfer function for the hydraulic properties.  

Similar to other sensitivity studies of CLM, we find that the stomatal conductance parameter 

(medlyn) and teh soil parameters are highly significant (Göhler et al., 2013). In contrast, Hou et al., 

(2012) and Huang et al. (2013) found that in CLM4 subsurface generation parameters (distribution 20 

of surface runoff with depth, max subsurface drainage and specific yield) are the most important 

parameters for LE, H and runoff, while soil texture parameters (Clapp and Hornberger parameter b 

and porosity) are of secondary significance. However, which parameters that are most sensitive can 

vary from site to site and from season to season, and the significance of parameters also depend on 

which target variable that is considered. As our cropland field site has a shallow root zone, the 25 

unsaturated zone parameters (e.g. soil texture in top layer) become more important. 

The a-priori value of 0.943 for rootprof is similar for all grass and crop PFTs (Lawrence et al., 

2019a). Thereby off-the-shelf CLM5 does not distinguish root density for different types of grasses 

and crops. There is a clear possibility to constrain individual rootprof parameter values for different 

land-cover types. We found the rootprof parameter to be highly identifiable and thereby highly 30 

informed by observation data of LE, q and SWC. Our optimized values of the parameter rootprof 

for the scenarios including SWC in the objective function (Scenario B and C), are substantial 

different from the a-priori value (rootprof = 0.39 (Scenario B), rootprof = 0.56 (Scenario C)). 

https://www.thesaurus.com/browse/inadequate
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However, the optimized values of rootprof seem reasonable, as they imply an increase of the root 

density near surface and a reduction at deeper soil layers, which fit well with the spring and winter 

barley cultivated at the agricultural field.  



 

 

26 

 

 

  

5 Conclusion 

In this study, we explore how parameter estimation techniques can be used for improving the 

hydrological processes in a state-of-the-art LSM. The results indicate that mathematical 

regularization is a compelling method to improve the current practice of using look-up tables to 5 

define parameter values in LSMs. 

Through a case-study of an agricultural field in western Denmark with six years of extensive 

observations, we demonstrate that calibrating a point-scale CLM5 using i) multi-objective 

calibration, ii) truncated singular value decomposition and iii) Tikhonov regularization using 

combinations of hourly time series of latent heat, sensible heat, soil moisture and groundwater 10 

recharge from 2010-2015, can considerably improve the characterization of the energy and water 

fluxes.  

The control run overestimated the soil moisture by more than 10%, however we found that 

parameter optimization of CLM5 using soil moisture data enhanced the ability of the model to 

describe the temporal patterns of moisture storage within the root zone. Calibration also 15 

considerably improved the energy partitioning of LE and H during the summer period and revealed 

good reproduction of observed and simulated LE and H during the grain filling and harvest period 

in July and August.  

However, we found that H was biased the rest of the year as the simulated H was clearly 

overestimated. It was not possible to fine tune parameters to match observed H, which suggests that 20 

observed H needs to be corrected to match simulations. 

Additionally, we evaluated the post-calibration uncertainties of the model parameters through the 

two statistics of identifiability and relative error variance reduction. Identifiability indicates to 

which extent the parameter is informed by observation data. Using LE, q and SWC as target 

variables, we found that the identifiable parameters were soil texture, monthly LAI in summer, the 25 

stomata conductance model parameter (medlyn) and the root distribution parameter (rootprof). 

Our results underline the necessity of parameter calibration using available observations of energy 

and hydrological fluxes to obtain an optimal parameter set for CLM5. We anticipate that the results 

from this study contribute to improvements in model characterization of water and energy fluxes, 

especially when EC flux data are available.   30 
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Table 1: Look-up table, initial and optimized parameter values for all scenarios. LAI and optical parameter values can 

be found in Supplementary Material S1 and S2.  
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Table 2: Summary statistics. units: NSE and r are unit less, ME and MAE for H and LE are [W m-2], ME and MAE for q 

are [mm/h] and ME and MAE for SWC are [m3m-3]. ϕ and RMSE for H and LE are [(W m-2)2], ϕ and RMSE for q is 

[(mm h-1)2] and ϕ and RMSE for SWC are [(m3 m-3)2]. Blue color indicate that in variable were included in the 

calibration for the given scenario. 
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Figure 1: Observed and simulated LE and H (daily mean 2010-2015) for scenario X (control run) D and E over a year 

(left), and (hourly mean 2010-2015) over a one week period in June (right). 
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Figure 2: Observed and simulated SWC and q for control run for scenario X (control run) and D in 2014. 
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Figure 3: Seasonal daily cycle of observed and simulated (hourly mean 2010-2015) LE and H for 

scenario X (control run) D and E.  5 
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Figure 4: Identifiability (subplot a), relative error variance reduction and optimized parameter values 

(subplot b) for Scenario D. The total height of the bars in subplot a) indicates identifiability of each 

parameter and the color-coding of each bar corresponds to the contribution of the singular values to 

the identifiability. Please note the logarithmic scale on the secondary y-axis of subplot b). 5 
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Figure 5: Optimized parameter values for all scenarios. a) soil parameters, b) LAI and c) optical 

parameters. 

 


