Response to RC1:

HESS by any other name!
| could find only two minor 1-word corrections in all of the 13905 +/- words in the article:

1. ‘hewing’ in line 334, which means ‘cutting or chopping’ (in the Concise Oxford Dictionary) to
be replaced. Try "cleaving" = 'stick fast' or 'adhere to' [COD again]

2. ‘from all the co-authors’ in line 659, to be replaced by ‘from BOTH the authors’!

These are the ONLY words | want to alter that | can find need treatment in this article. Nice work —1
have never found such precision in all my 300+ reviews. Bravo! Good interesting and cloud
breaking (!) paper.

| will ask the Editor to accept the submission after these minor glitches have been attended to.
Geoff Pegram

We thank the referee for reviewing and providing support to our manuscript, and we are pleased by
the enthusiastic response! We corrected the two places in the manuscript according to the reviewer’s
comments.

Response to RC2:

Major comments

My first major concern with the paper is that the authors do not make enough attempts to validate
their method or at least compare it to external data sources.

The only comparison to other methods they make is with a GEV fitted to storm annual maxima in
Figure 6-7. | believe there is also opportunity to compare DAD curves in Figure 8 to an external data
sources. The authors mention the relationship between DAD curves and ARFs, so any ARF information
available for the Mississippi basin could be used to formulate a comparison here.

| appreciate that these comparisons may be difficult to facilitate because of the authors have taken
a storm-centred approach while the majority of other datasets are based on gauge-centred data. Still
for their approach to be applied outside of research we need to understand how it compares to
existing approaches.

We thank the reviewer for generally positive reception, and we hope our response and revisions can
address any remaining concerns.



We agree that comparing and validating our approach to other data sources are important,
particularly if the goal is for future development of the method. We would highlight several places in
the original manuscript where we did compare our approach with “external” observation-based
datasets. The spatiotemporal properties of ERA5-simulated storms were validated against the storm
tracking results based on the IMERG satellite-based precipitation estimates (Section 4.1). The bias in
ERAS extreme precipitation was also evaluated by comparing the 99t percentile daily precipitation
against the gauge-interpolated nClimGrid dataset in the Mississippi Basin (Section 5.2 and Figure B1).

Comparing DAD curves is indeed rather difficult because most previous studies were based on gauge-
centered data and had limited data length, smaller/different areas, and other differences. For
example, the ARF data from Technical Papers No. 29 (US Weather Bureau, 1958) and No. 49 (Miller,
1964) in the Mississippi Basin were limited to watersheds less than ~1,000 km?, much smaller than
the minimum area of 5,000 km? in our study.

A recent study by Kao et al. (2020) provides ARFs for 10-year precipitation with durations of 2-72
hours and areas of 10-100,000 km? in the Ohio River Basin, using a watershed-based approach and
gauge dataset. To compare, we calculated new DAD curves by converting the hourly precipitation
depth at 5,000 km? from the vine copula model to precipitation depths at larger areas based on the
ARFs. We then compared these new DAD curves with the original DAD curves that were purely
estimated from vine copulas (see Figure C1 below). The two DAD curves agree well for durations
between 6 to 72 hours, while for 2-hour storms the vine copula estimates are more conservative, i.e.,
the precipitation depth reduces much slower than the ARF estimates when area increases. Such
discrepancies may be attributable to the ARF estimation of Kao et al. (2020) being a “fixed-area”
approach, i.e., the point precipitation depth is related to areal depth in a watershed. Nevertheless,
the number of large watersheds in the Mississippi Basin (e.g., watersheds greater than 50,000 km?)
is limited, which may limit the approach’s ability to identify truly areal maxima, especially for short-
duration large-area storms. This suggests that our storm searching algorithm may provide more
conservative DAD relationships for storms with short durations. An alternative explanation, however,
could be that these differences highlight the limits of ERAS in depicting extreme convective rainfall
at small space-time scales. We included Appendix C “Validation of vine copula DAD relationships”
(see draft below) and a short discussion in Section 5.3 to describe the above comparison:

Appendix C: Validation of vine copula DAD relationships

The vine copula DAD curve was compared against the ARFs in Kao et al. (2020). The ARFs were
estimated for 10-year precipitation with durations of 2-72 hours and areas of 10-100,000 km? in the
Ohio River Basin, using a watershed-based approach and gauge-based dataset (DSI-3240, National
Climatic Data Center, 2003). We calculated new DAD curves by converting the vine copula hourly
precipitation depth at 5,000 km? to the depths at larger areas based on the ARFs. The new DAD curves
were then compared with the original DAD curves estimated from vine copulas, as shown in Figure
C1. More discussion of this figure can be found in Section 5.3.
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Figure C1 Comparison of DAD curves estimated from vine copulas (solid markers) and ARFs from Kao
et al., 2020 (empty makers) for Ohio River Basin with 10-year ARl and 2-72 hours durations.

The following short discussion was added to Section 5.3 (line 555):

“...The ability to derive storm-centered DAD relationships using our method can in principle obviate
the need for ARFs entirely, something that has been advocated for previously (Wright et al., 2014).
To support this point, we compared vine copula DAD curves with those estimated by the ARFs from
Kao et al. (2020) in the Ohio River Basin at 10-year ARI (see Appendix C and Figure C1). The vine copula
DAD estimates agree well with those ARF estimates for storm duration between 6 and 72 hours, while
for 2-hour storms from the vine copula estimates are more conservative, i.e., the precipitation depth
reduces much slower with increasing area. Such discrepancies may be attributable to the ARF
estimation of Kao et al. (2020) being a “fixed-area” approach, i.e., the precipitation depth is compared
to areal depth in a watershed. Nevertheless, the number of large watersheds in the Mississippi Basin
(e.g., watersheds greater than 50,000 km?) is limited, which may limit the approach’s ability to
identify truly areal maxima, especially for short-duration large-area storms. This suggests that our
“storm-centered” approach may provide more conservative DAD relationships for storms with short
durations. An alternative explanation, however, could be that these differences highlight the limits
of ERAS in depicting extreme convective rainfall at small space-time scales. Another contention
within the ARF literature is whether or not such ratios are independent of recurrence intervals (e.g.
Greener and Roesch, 1997; Osborn et al., 1980; Pavlovic et al., 2016). Relevant to this debate, we
found that DAD appears to be independent of recurrence intervals for 5,000-100,000 km2 scales in
the Mississippi Basin.”

My second major concern is about the use of empirical CDFs for all atmospheric variables except the
divergence term for which a GEV is fitted. While divergence shows the highest correlation to
precipitation | find this insufficient justification for why only this variable is modelled using a GEV. |
also note that other terms such as the residual also have non-negligible contributions to rainfall. |
would be interested to know if there is any change in results if similar extreme value distributions are
used for other atmospheric variables.

It is feasible to use parametric distributions for all atmospheric variables. Based on our testing, the
impacts on results are minor if the parametric distribution fits well to the corresponding atmospheric



variable. In the study, we used empirical cumulative distribution functions (CDFs) for the remaining
variables to reduce additional parameters and errors introduced by fitting parametric distributions;
this is common practice in vine copula modeling. However, empirical CDFs can constrain the
simulated variables to their maximum in the original sample data, leading to unrealistic upper-
bounded tail behavior. Therefore, we used GEV distribution to fit the dominant component (i.e., the
convergence term) to allow our model to generate extreme precipitation that exceeds the original
maxima. Another advantage of using parametric distributions is that nonstationarities (e.g., changing
location and scale) in atmospheric variables can be modeled using distribution parameters that vary
with time or other climatic covariates. Indeed we did this while preparing the manuscript, but decided
that the “story” became too complicated to present due to the difficulty of showing and evaluating
nonstationary return levels.

We added the above discussion at the end of Section 4.4.2 (line 465):

“The histograms along the diagonal show the marginal distributions of each water balance
component used in the vine copula model; the divergence term’s histogram is smooth due to the use
of a GEV marginal distribution, while the other three components used empirical CDFs. We used
empirical CDFs for the remaining variables to reduce additional parameters and errors introduced by
fitting parametric distributions; this is common practice in vine copula modeling. However, empirical
CDFs can constrain the simulated variables to their maximum in the original sample data, leading to
unrealistic upper-bounded tail behavior. Therefore, we used GEV distribution to fit the dominant
component (i.e., the convergence term) to allow the model to generate extreme precipitation that
exceeds the original maximum. Note that it is feasible to fit parametric distributions to all
atmospheric water balance components. The influence on the results is rather minor as long as the
parametric distribution fits to each component are good. For example, the distribution of the residual
term can be fitted by a t-distribution, while the time-derivative and evapotranspiration terms can be
fitted with beta distributions. Another advantage of using parametric distribution is that
nonstationarities (e.g., changing location and scale) in each atmospheric water balance component
can be modeled with distribution parameters that vary with time or other climate indices (see Section
5.5).“

Minor comments
I’d prefer the use of spelling gauge to gage, | think it’'s most common in modern literature.
Thanks for this suggestion. The spelling has been changed in the manuscript.

Section 3.1: | believe the authors could draw more attention to their storm search method being a
novel combination of existing approaches

We rearranged the first paragraph in Section 3.1 (line 130) to highlight the novelty of our approach.
Original text:

“..we developed the Storm Tracking and Regional Characterization method (STARCH, publicly
available at https://github.com/lorenliu13/starch). The method can track storms based on successive



two-dimensional precipitation fields and create catalogs of extreme storm events with specific areas
and durations within a chosen region. The storm identification and tracking portions of STARCH
combine two prior storm tracking algorithms: 1) double-threshold identification from the
Thunderstorm ldentification, Tracking, Analysis, and Nowcasting (TITAN) algorithm (Dixon & Wiener,
1993) and 2) “almost-connected component labeling” from the Storm Tracking and Evaluation
Protocol (STEP; Chang et al., 2016)...”

Revised text:

“..we developed the Storm Tracking and Regional Characterization method (STARCH, publicly
available at https://github.com/lorenliu13/starch). The method is a novel combination of two prior
storm tracking algorithms: 1) double-threshold identification from the Thunderstorm Identification,
Tracking, Analysis, and Nowcasting (TITAN) algorithm (Dixon & Wiener, 1993) and 2) “almost-
connected component labeling” from the Storm Tracking and Evaluation Protocol (STEP; Chang et al.,
2016). An area-duration selection algorithm is also developed to search storms with user-defined
duration and area. STARCH can not only track storms based on successive two-dimensional
precipitation fields, but also create catalogs of extreme storm events with specific areas and
durations within a chosen region....”

Line 170-175: | think the explanation of the ‘binary search’ is not clear and could be improved
We added a more detailed description of the binary search algorithm in this paragraph (line 180):
Original text:

“...To do this, a binary search is implemented on the total precipitation map of the storm to find a
precipitation contour whose area value is closest to but less than the desired area A. Thereafter, the
area selection algorithm recursively expands...”

Revised text:

“..To do this, a binary search was implemented to find a precipitation threshold whose corresponding
contour area on the total precipitation map is close to but less than the desired area A. We began
with a threshold at the midrange of the precipitation interval, i.e., (maximum+minimum)/2, and
computed the contour areas, i.e., areas of precipitation regions above the threshold. The largest
contour area was compared with the desired area A. If the contour area is less than A, we narrowed
the precipitation interval to the lower half, i.e., from the minimum to the midrange. Otherwise, we
narrowed the interval to the upper half. We then repeatedly calculated the midrange of the new
interval as the next threshold and compared the contour area with the desired area A. All the
thresholds and associated contour areas were recorded throughout the iterations. The binary search
stops if the difference between the contour area and desired area is less than one pixel, or the
selected contour area does not change in consecutive 3 iterations. From the search record, we found
a threshold with a contour area that is close to but less than the desired area A. Thereafter, the area
selection algorithm recursively expands...”

Line 255: The GEV scale parameter must be greater than zero (o>0)



The range of the scale parameter has been corrected from (-oo, +o°) to (0, +o°).
Line 354: Should reference Figures A1-27?
Yes. The reference should be Figures A1-2 and has been corrected.

Additional - uncertainty in the ERA data is not accounted for in the approach here. Alternate
reanalyses do not agree with each other, even for atmospheric moisture - see Moalafhi, D. B., Evans,
J. P. & Sharma, A. Influence of reanalysis datasets on dynamically downscaling the recent past.
Climate Dynamics 49, 1239-1255 (2017). Some discussion on the impact of this uncertainty and how
it could be included in the GEV modeling may be helpful.

We agree that uncertainties exist in atmospheric water balance components and can influence
precipitation estimates. We added the above discussion at the end of Section 5.2 (line 520) and
changed the section name to “Uncertainty and Bias in ERA5 Reanalysis:”

“Uncertainties also exist in atmospheric water balance components in ERA5 Reanalysis and can
influence the precipitation estimates from the vine copula model. Uniquely among reanalyses (to the
best of our knowledge), ERAS includes coarser-resolution (3-hour, 0.5° grid scales) ensembles that
can be used to examine some forms of uncertainty. To assess these uncertainties, we computed the
water balance components in the annual maximum storm catalogs based on 10 ERA5 ensemble
members (results not shown). These ensembles estimate the uncertainties of observations in DA and
model parameterizations (Hersbach et al., 2020). All the atmospheric water balance components
showed certain variations, especially for precipitation and water vapor flux convergence.
Nevertheless, the coarser resolution of the ensemble members smooths out high precipitation
regions and periods and result in different storm tracking and search results, making it difficult to use
these to quantify the uncertainty in our precipitation estimates. However, variatibility in ERA5
ensemble members can still qualitatively reflect the uncertainty in atmospheric variables across
different subbasins and different storm spatial-temporal scales. Other reanalysis or numerical models,
such as MERRA-2 (Gelaro et al., 2017; Moalafhi et al., 2017), can also be alternative sources to
evaluate the uncertainty in ERAS reanalysis. For valid comparison, a common period of these datasets
(e.g., 1980-2020) and transformation to the same spatial-temporal resolution are needed to perform
storm tracking and vine copula fitting. An ensemble distribution can be generated from extreme
precipitation estimates based on each dataset. It is expected that the variability of the precipitation
estimates would increase by incorporating multiple reanalysis/numerical models.”
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