
Reply to Referee #2:  

I have read over the paper. I think it is very well written and if I was reviewing this I would only 
ask for moderate or minor revisions. 

The authors developed a storm tracking algorithm (using a combination of existing algorithms 
in a novel way) and use it to create a dataset of large storm events which they perform 
frequency analysis on. Despite the novel storm tracking algorithm, performing frequency 
analysis on a storm dataset (as opposed to gauge records) is not in itself novel. This paper’s 
key contribution comes from the way the authors uses copula based multivariate analysis on 
atmospheric variables from ERA5 to develop a way to stochastically generate annual maxima 
series representative of the observed storm catalogues. 

Major comments 

My first major concern with the paper is that the authors do not make enough attempts to 
validate their method or at least compare it to external data sources. 

The only comparison to other methods they make is with a GEV fitted to storm annual maxima 
in Figure 6-7. I believe there is also opportunity to compare DAD curves in Figure 8 to an 
external data sources. The authors mention the relationship between DAD curves and ARFs, 
so any ARF information available for the Mississippi basin could be used to formulate a 
comparison here. 

I appreciate that these comparisons may be difficult to facilitate because of the authors have 
taken a storm-centred approach while the majority of other datasets are based on gauge-
centred data. Still for their approach to be applied outside of research we need to understand 
how it compares to existing approaches. 

We thank the reviewer for generally positive reception, and we hope our response and 
revisions can address any remaining concerns.  

We agree that comparing and validating our approach to other data sources are important, 
particularly if the goal is for future development of the method. We would highlight several 
places in the original manuscript where we did compare our approach with “external” 
observation-based datasets. The spatiotemporal properties of ERA5-simulated storms were 
validated against the storm tracking results based on the IMERG satellite-based precipitation 
estimates (Section 4.1). The bias in ERA5 extreme precipitation was also evaluated by 
comparing the 99th percentile daily precipitation against the gauge-interpolated nClimGrid 
dataset in the Mississippi Basin (Section 5.2 and Figure B1).  

Comparing DAD curves is indeed rather difficult because most previous studies were based 
on gauge-centered data and had limited data length, smaller/different areas, and other 
differences. For example, the ARF data from Technical Papers No. 29 (US Weather Bureau, 
1958) and No. 49 (Miller, 1964) in the Mississippi Basin were limited to watersheds less than 
~1,000 km2, much smaller than the minimum area of 5,000 km2 in our study.  



A recent study by Kao et al. (2020) provides ARFs for 10-year precipitation with durations of 
2-72 hours and areas of 10-100,000 km2 in the Ohio River Basin, using a watershed-based 
approach and gauge dataset. We calculated new DAD curves by converting the hourly 
precipitation depth at 5,000 km2 from the vine copula model to precipitation depths at larger 
areas based on the ARFs. We then compared these new DAD curves with the original DAD 
curves that were purely estimated from vine copulas (see Figure C1 below). The two DAD 
curves agree well for durations between 6 to 72 hours, while for 2-hour storms the vine copula 
estimates are more conservative, i.e., the precipitation depth reduces much slower than the 
ARF estimates when area increases. Such discrepancies may be attributable to the ARF 
estimation of Kao et al. (2020) being a “fixed-area” approach, i.e., the point precipitation depth 
is related to areal depth in a watershed. Nevertheless, the number of large watersheds in the 
Mississippi Basin (e.g., watersheds greater than 50,000 km2) is limited, which may limit the 
approach’s ability to identify truly areal maxima, especially for short-duration large-area 
storms. This suggests that our storm searching algorithm may provide more conservative 
DAD relationships for storms with short durations. An alternative explanation, however, could 
be that these differences highlight the limits of ERA5 in depicting extreme convective rainfall 
at small space-time scales. We propose to include Appendix C “Validation of vine copula DAD 
relationships” (see draft below) and a short discussion in Section 5.3 to describe the above 
comparison:  

Appendix C: Validation of vine copula DAD relationships 

The vine copula DAD curve was compared against the ARFs in Kao et al. (2020). The ARFs 
were estimated for 10-year precipitation with durations of 2-72 hours and areas of 10-100,000 
km2 in the Ohio River Basin, using a watershed-based approach and gauge-based dataset 
(DSI-3240, National Climatic Data Center, 2003). We calculated new DAD curves by 
converting the vine copula hourly precipitation depth at 5,000 km2 to the depths at larger 
areas based on the ARFs. The new DAD curves were then compared with the original DAD 
curves estimated from vine copulas, as shown in Figure C1. More discussion of this figure 
can be found in Section 5.3. 

 

Figure C1 Comparison of DAD curves estimated from vine copulas (solid markers) and ARFs 
from Kao et al., 2020 (empty makers) for Ohio River Basin with 10-year ARI and 2-72 hours 
durations. 



The following short discussion will be added to Section 5.3 (line 510): 

“…The ability to derive storm-centered DAD relationships using our method can in principle 
obviate the need for ARFs entirely, something that has been advocated for previously (Wright 
et al., 2014). To support this point, we compared vine copula DAD curves with those 
estimated by the ARFs from Kao et al. (2020) in the Ohio River Basin at 10-year ARI (see 
Appendix C and Figure C1). The vine copula DAD estimates agree well with those ARF 
estimates for storm duration between 6 and 72 hours, while for 2-hour storms the vine copula 
estimates are more conservative, i.e., the precipitation depth reduces much slower with 
increasing area. Such discrepancies can be attributable to the ARF estimation of Kao et al. 
(2020) being a “fixed-area” approach, i.e., the precipitation depth is compared to areal depth 
in a watershed. Nevertheless, the number of large watersheds in the Mississippi Basin (e.g., 
watersheds greater than 50,000 km2) is limited, which may limit the approach’s ability to 
identify truly areal maxima, especially for short-duration large-area storms. This suggests that 
our “storm-centered” approach may provide more conservative DAD relationships for storms 
with short durations. An alternative explanation, however, could be that these differences 
highlight the limits of ERA5 in depicting extreme convective rainfall at small space-time scales. 
Another contention within the ARF literature is whether or not such ratios are independent of 
recurrence intervals (Greener and Roesch, 1997; Osborn et al., 1980; Pavlovic et al., 2016). 
Relevant to this debate, we found that DAD appears to be independent of recurrence intervals 
for 5,000-100,000 km2 scales in the Mississippi Basin.” 

My second major concern is about the use of empirical CDFs for all atmospheric variables 
except the divergence term for which a GEV is fitted. While divergence shows the highest 
correlation to precipitation I find this insufficient justification for why only this variable is 
modelled using a GEV. I also note that other terms such as the residual also have non-
negligible contributions to rainfall. I would be interested to know if there is any change in 
results if similar extreme value distributions are used for other atmospheric variables. 

It is feasible to use parametric distributions for all atmospheric variables. Based on our testing, 
the impacts on results are minor if the parametric distribution fits well to the corresponding 
atmospheric variable. The choice of parametric distribution depends on the variable’s 
statistical properties. For example, the distribution of the residual term can be fitted by a t-
distribution, while the time derivative term and evapotranspiration term can be fitted with a 
beta distribution. Note that they need not be extreme value distributions to achieve a good fit.  

In the study, we used empirical cumulative distribution functions (CDFs) for the remaining 
variables to reduce additional parameters and errors introduced by fitting parametric 
distributions; this is common practice in vine copula modeling. However, empirical CDFs can 
constrain the simulated variables to their maximum in the original sample data, leading to 
unrealistic upper-bounded tail behavior. Therefore, we used GEV distribution to fit the 
dominant component (i.e., the convergence term) to allow our model to generate extreme 
precipitation that exceeds the original maxima. Another advantage of using parametric 
distributions is that nonstationarities (e.g., changing location and scale) in atmospheric 
variables can be modeled using distribution parameters that vary with time or other climatic 
covariates. Indeed we did this while preparing the manuscript, but decided that the “story” 
became too complicated to present due to the difficulty of showing and evaluating 
nonstationary return levels. 



We propose to add the above discussion at the end of Section 4.4.2 (line 453):  

“The histograms along the diagonal show the marginal distributions of each water balance 
component used in the vine copula model; the divergence term’s histogram is smooth due to 
the use of a GEV marginal distribution, while the other three components used empirical 
CDFs. We used empirical CDFs for the remaining variables to reduce additional parameters 
and errors introduced by fitting parametric distributions; this is common practice in vine copula 
modeling. However, empirical CDFs can constrain the simulated variables to their maximum 
in the original sample data, leading to unrealistic upper-bounded tail behavior. Therefore, we 
used GEV distribution to fit the dominant component (i.e., the convergence term) to allow the 
model to generate extreme precipitation that exceeds the original maximum. Note that it is 
feasible to fitting parametric distributions to all atmospheric water balance components. The 
influence on the results is rather minor if the parametric distribution fits well to each 
component. For example, the distribution of the residual term can be fitted by a t-distribution, 
while the time-derivative and evapotranspiration terms can be fitted with beta distributions. 
Another advantage of using parametric distribution is that nonstationarities (e.g., changing 
location and scale) in each atmospheric water balance component can be modeled with 
distribution parameters that vary with time or other climate indices (see Section 5.5).“ 

Minor comments 

I’d prefer the use of spelling gauge to gage, I think it’s most common in modern literature. 

Thanks for this suggestion. The spelling has been changed in the manuscript.  

Section 3.1: I believe the authors could draw more attention to their storm search method 
being a novel combination of existing approaches 

We propose to rearrange the first paragraph in Section 3.1 (line 130) to highlight the novelty 
of our approach.  

Original text:  

“…we developed the Storm Tracking and Regional Characterization method (STARCH, 
publicly available at https://github.com/lorenliu13/starch). The method can track storms based 
on successive two-dimensional precipitation fields and create catalogs of extreme storm 
events with specific areas and durations within a chosen region. The storm identification and 
tracking portions of STARCH combine two prior storm tracking algorithms: 1) double-
threshold identification from the Thunderstorm Identification, Tracking, Analysis, and 
Nowcasting (TITAN) algorithm (Dixon & Wiener, 1993) and 2) “almost-connected component 
labeling” from the Storm Tracking and Evaluation Protocol (STEP; Chang et al., 2016)…” 

Proposed text:  

“…we developed the Storm Tracking and Regional Characterization method (STARCH, 
publicly available at https://github.com/lorenliu13/starch). The method is a novel combination 
of two prior storm tracking algorithms: 1) double-threshold identification from the 
Thunderstorm Identification, Tracking, Analysis, and Nowcasting (TITAN) algorithm (Dixon & 



Wiener, 1993) and 2) “almost-connected component labeling” from the Storm Tracking and 
Evaluation Protocol (STEP; Chang et al., 2016). An area-duration selection algorithm is also 
developed to search storms with user-defined duration and area. STARCH can not only track 
storms based on successive two-dimensional precipitation fields, but also create catalogs of 
extreme storm events with specific areas and durations within a chosen region….” 

Line 170-175: I think the explanation of the ‘binary search’ is not clear and could be improved 

We propose a more detailed description of the binary search algorithm in this paragraph (line 
173): 

Original text:  

“…To do this, a binary search is implemented on the total precipitation map of the storm to 
find a precipitation contour whose area value is closest to but less than the desired area A. 
Thereafter, the area selection algorithm recursively expands…” 

Proposed text:  

“…To do this, a binary search was implemented to find a precipitation threshold whose 
corresponding contour area on the total precipitation map is closest but less than the desired 
area A. We began with a threshold at the midrange of the precipitation interval, i.e., 
(maximum+minimum)/2, and computed the contour areas, i.e., areas of precipitation regions 
above the threshold. The largest contour area was compared with the desired area A. If the 
contour area is less than A, we narrowed the precipitation interval to the lower half, i.e., from 
the minimum to the midrange. Otherwise, we narrowed the interval to the upper half. We then 
repeatedly calculated the midrange of the new interval as the next threshold and compared 
the contour area with the desired area A. All the thresholds and associated contour areas 
were recorded through iterations. The binary search stops if the difference between the 
contour area and desired area is less than one pixel, or the selected contour area does not 
change in consecutive 3 iterations. From the search record, we found a threshold with a 
contour area that is closest but less than the desired area A. Thereafter, the area selection 
algorithm recursively expands…” 

Line 255: The GEV scale parameter must be greater than zero (σ>0) 

The range of the scale parameter has been corrected from (-∞, +∞) to (0, +∞).  

Line 354: Should reference Figures A1-2? 

Yes. The reference should be Figures A1-2 and has been corrected.  

Additional - uncertainty in the ERA data is not accounted for in the approach here. Alternate 
reanalyses do not agree with each other, even for atmospheric moisture - see Moalafhi, D. 
B., Evans, J. P. & Sharma, A. Influence of reanalysis datasets on dynamically downscaling 
the recent past. Climate Dynamics 49, 1239-1255 (2017). Some discussion on the impact of 
this uncertainty and how it could be included in the GEV modeling may be helpful. 



We agree that uncertainties exist in atmospheric water balance components and can 
influence the precipitation estimates. Uniquely among reanalyses (to our knowledge anyway), 
ERA5 includes coarser-resolution (3-hour, 0.5° grid scales) ensembles that can be used to 
examine some forms of uncertainty. To assess these uncertainties, we computed the water 
balance components in the annual maximum storm catalogs based on 10 ERA5 ensembles. 
These ensembles estimate the uncertainties of observations in DA and model 
parameterizations (Hersbach et al., 2020). All the atmospheric water balance components 
showed certain variations, especially for precipitation and water vapor flux convergence.  
Nevertheless, the coarse resolution of the ensemble can smooth out high precipitation 
regions and periods and result in different storm tracking and search results, making it difficult 
to be directly used to quantify the uncertainty in our precipitation estimates. However, the 
variations in ERA5 ensembles can still qualitatively reflect the uncertainty in atmospheric 
variables across different subbasins and different storm spatial-temporal scales. Other 
reanalysis or numerical models, such as MERRA-2, can also be alternative sources to 
evaluate the uncertainty in ERA5 reanalysis. We need to use the common period of these 
data (e.g., 1980-2020) and transform them to the same spatial-temporal resolution to perform 
storm tracking and vine copula fitting. An ensemble distribution can be generated from 
extreme precipitation estimates based on each dataset. It is expected that the variability of 
the precipitation estimates is likely to increase by incorporating multiple reanalysis/numerical 
model sources. We propose to add the above discussion at the end of Section 5.2 (line 492) 
and change the section name to “Uncertainty and Bias in ERA5 Reanalysis.” 
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