
General comments:  

This paper focused on the lake ice mapping in the Old Crow Flats using a temporal deep learning 

approach from the C-band SAR time series. Lake ice maps labeled as floating ice, bedfast ice, or land 

Flats were created from 1993 to 2021. The created ice-map dataset could be a reference for future ice 

dynamics analysis. So, it is an important and interesting issue. In this paper, however, the lake ice 

dynamics analysis was too simple. This work can be published after some minor revisions. However, 

some methods, expressions and the lake ice dynamic analysis need to be clarified before considering 

publication. Thus, I want to recommend that the paper be published after a few (minor) modifications.  

 

We would like to thank the referee for valuable comments which have substantially helped improve the 

clarity and quality of the manuscript and stimulated interesting and constructive discussion. *Please, 

refer to the supplement for all tables and figures. 

 

 

Specific comments:  

 

In the paper, the main purpose was to detect the bedfast ice and the floating ice. The two types ice was the 

top topic in this paper, so detail information on these is needed. In the introduction, the difference 

between bedfast ice and floating ice was not mentioned a lot. Please make a supplement to the bedfast ice 

and floating ice in the different effects on the lake and climate.  



Thank you for a valuable comment. The introduction section has been modified as follows to include a 

more detailed description of the impact of bedfast and floating ice presence on the permafrost:  

 

“Many shallow arctic lakes and ponds of thermokarst origin freeze to bed in the winter months, allowing 

lake-bottom temperatures to drop below 0°C and frost to penetrate the lake bottom sediment. Permafrost 

is sustained beneath the lake bottom where the freezing-degree-days at the ice-sediment interface are 

sufficient to counterbalance the thawing that takes place while lake-bottom temperatures are above 0°C 

(Roy-Léveillée and Burn, 2017). Where lake bottom conditions are too warm to sustain permafrost, for 

instance where ice does not reach the lake bottom or where the period of ice contact is brief, permafrost 

will degrade and a bulb of unfrozen ground or talik will develop and expand beneath the lake bottom. 

Such talik development contributes to positive feedbacks as it promotes lake deepening via subsidence of 

the lake bottom (Roy-Léveillée and Burn 2016), further reducing the occurrence of bottom-fast ice, and 

increases the ebullition of potent greenhouse gases such as methane from the thawing and decomposition 

of organic matter beneath the lake bottom (Arp et al., 2012; Engram et al., 2020). However, lake ice 

thinning and a subsequent decrease in the extent and duration of bedfast ice lakes has been noted by 

many researchers (Engram et al., 2018; Labrecque et al., 2009; Surdu et al., 2014). Hence, monitoring 

and quantifying thermokarst lake ice dynamics is critical for understanding changes in sub-lake 

permafrost stability and expected changes in methane ebullition patterns in thermokarst lowlands. 

Bedfast ice mapping, in particular, has a variety of other applications, including climate monitoring (Arp 

et al., 2012), permafrost studies (Arp et al., 2011), bathymetric mapping (Duguay and Lafleur, 2003; 

Kozlenko and Jeffries, 2000), overwintering fish habitat (Brown et al., 2010), and winter water 

withdrawal (Hirose et al., 2008; Jeffries et al., 1996).” 

 

Roy-Léveillée, P. and Burn, C. R.: A modified landform development model for the topography of drained 

thermokarst lake basins in fine-grained sediments. Earth Surface Processes and Landforms, 41, 1504-

1520, 2016. DOI: 10.1002/esp.3918 

 



Could the TempCNN can recognize the lake from the land when there is no ice in the lake? In this paper, 

it is deemed the land and lake ice are seamlessly connected. Did ice fully cover lakes during the study 

period?  

 

Thank you for a valuable comment. Generally speaking, land surface appears bright (high backscatter 

values) in SAR imagery due to roughness of its surface and vegetation volume scattering and open water 

surface is dark most of the time (unless it is roughened by wind) (Huang et al., 2018, Duguay and Lafleur, 

2003). As such, many studies have successfully explored water-body segmentation using SAR mainly 

using machine learning and deep learning techniques (Guo et al., 2022). To the best of the authors 

knowledge, no studies have applied temporal deep learning to this task. However, applying TempCNN to 

extracting water bodies would probably be unnecessarily complex, due to the need to create an extensive 

labelled dataset.  

 

On the other hand, mapping bedfast and floating ice in presence of open water (cracks in the ice or local 

melt caused by methane ebullition (Engram et al., 2020) or temporarily warming) is a challenge, as both 

open water and bedfast ice are characterized by low backscatter (Duguay and Lafleur, 2003). In this 

work, the time-series for each year of data tracked backscatter from early October to mid-March, and the 

final classification for each year was representative of the state of ice on the last day of the time-series 

(mid-March). Although, some open water was likely present in early October, mid-March end date was 

selected specifically to avoid open water presence (based on air temperature information).  

 

Huang, W., DeVries, B., Huang, C., Lang, M. W., Jones, J. W., Creed, I. F., and Carroll, M. L.: 

Automated extraction of surface water extent from Sentinel-1 data, Remote Sens., 10, 797, 2018. 

 

Duguay, C. R. and Lafleur, P. M. (2003). Determining depth and ice thickness of shallow sub-Arctic lakes 

using space-borne optical and SAR data. International Journal of Remote Sensing, 24(3):475-489. 

 

Guo Z, Wu L, Huang Y, Guo Z, Zhao J, Li N. Water-Body Segmentation for SAR Images: Past, Current, 

and Future. Remote Sensing. 2022; 14(7):1752. https://doi.org/10.3390/rs14071752 

 

Engram, M., Anthony, K. M. W., Sachs, T., Kohnert, K., Serafimovich, A., Grosse, G., and Meyer, F.: 

Remote sensing northern lake methane ebullition, Nat. Clim. Chang., 10, 511–517, 2020. 

 

Lake ice simulation is another key work in your paper. But the process of the simulation was not clear. It 

seems unreasonable to make the parameters unchanged as the land in the northern part and southern part 

are different.  

 

Thank you for a valuable comment. The CLIMo simulation results were used to access the accuracy of 

lake ice maps. The CLIMo simulation was run for two scenarios: taiga and tundra to capture the fact that 

northern part of Old Crow Flats is characterized by polygonal tundra, while the southern part has 

subarctic boreal forest. Parameters were set as follows: taiga – snow depth 100%, snow density 175 

kg/m3; tundra - snow depth 50%, snow density 300 kg/m3. Please refer to subsection 3.5 Accuracy 

assessment. The snow depth and density values used for the taiga vs tundra simulations are typical to 

those documented in other studies (Duguay et al., 2003; Sturm and Liston, 2003). 

 

Duguay, C. R., Flato, G. M., Jeffries, M. O., Ménard, P., Morris, K., and Rouse, W. R.: Ice-cover 

variability on shallow lakes at high latitudes: model simulations and observations, Hydrol. Process., 17, 

3465–3483, 2003. 

 

Sturm, M. and Liston, G. E.: The snow cover on lakes of the Arctic Coastal Plain of Alaska, USA., J. 

Glaciol., 49, 370–380, 2003. 



 

The figure captions are not so clear. Some lines and background lack details to make the figure hard to 

understand.  

 

Thank you for a valuable comment. The figure captions have been revised and more detailed descriptions 

have been added to make figures more reader friendly as shown below. 

 

“Figure 1. Old Crow Flats, Yukon, Canada. The background image is an RGB Landsat 8 of May 31, 

2020, downloaded from USGS Earth Explorer (link: https://earthexplorer.usgs.gov/, accessed: July 4, 

2021). Most lakes are still ice covered at this time of the year and appear white, open water surface of the 

river and smaller lakes, as well as some of the ice fringes appear black, tundra has a brownish shade, 

while areas of boreal forest appear dark green.” 

 

“Figure 2. Comparison of the three classes by sensor: (a) Sentinel-1; (b) RADARSAT-1; (c) ERS-1/2. 

Each class is represented by a mean and a standard deviation of a sample of 100 randomly selected 

pixels per sensor. Means and standard deviations are identified by solid and dashed lines, respectively: 

pink – floating ice; dark blue – bedfast ice; green – land.” 

 

“Figure 3. The two graphs illustrate application of 1-dimensional (1D) filters to time-series that can be 

used by convolutional layers of a TempCNN for extraction of temporal features. The red line represents 

original time-series, while the blue line denotes the filtered time-series: (a) a curve that resembles 

floating ice transformed by a gradient filter – the dashed red line indicates the origin of the filtered time 

series, where the value of the original series is increasing the filtered series has positive values, and 

where the value of the original series is decreasing the filtered series has negative values; (b) a curve 

resembling floating ice transformed by a low-pass filter.” 

 

“Figure 5. The graph illustrates temporal cross validation results using box-plots. Each box-plot contains 

17 overall accuracy values and if read from left to right each box-plot corresponds to 4, 8, 16, 32, 64, and 

128 convolutional units in each convolutional layer.  Red highlights the best architecture with 64 

convolutional units.” 

 

“Figure 6. A sample of TempCNN classification output for OCF, Yukon, Canada: (a) Sentinel-1, March 

2021; (b) RADARSAT-1, March 2004;(c) ERS, March 1993. Dark blue, light blue, and grey represent 

bedfast ice, floating ice, and land, respectively.” 

 

“Table 2. TempCNN overall classification accuracy for 15 experiments designed to test sensitivity of the 

network to removing certain years of data from the training set. Runs 1-5 correspond to the 20/80% split 

of the entire dataset, runs 6-10 were performed by training the network on 15 years of data and testing it 

on 3 each from a different sensor, runs 10-15 were carried out by training the network on 17 years of 

data and testing it on 1 year of data that was originally reserved and was not part of the cross validation 

procedure for determining the best architecture. Subsequently, mean accuracy for each set of 5 runs was 

calculated and finally mean of the three means is shown in the last row of the table.”  

 

“Figure 7. Matching TempCNN output with lake depths collected in 2000. Horizontal lines indicate 

CLIMo ice thickness predictions for taiga (0.72 m) and tundra (1.21 m) environments. RADARSAT-1 SAR 

1999/2000 time-series were used for ice regime classification. The colour of points corresponds to the 

label assigned to each location by the TempCNN: dark blue – bedfast ice, pink – floating ice, green – 

land; while the shape corresponds to the surrounding vegetation: circle – tundra, triangle – taiga; square 

– mixed assigned based on the OCF vegetation map created by Turner et al., 2014.”  

 



“Figure 8. CLIMo simulated ice thickness for OCF: (a) simulation of taiga environment; (b) simulation 

of tundra environment. Dark blue represents ice thickness and grey stands for snow depth. The grey and 

dark blue points mark the condition on March 13 (last day of time-series) for each year.”  

 

“Table 3. Field data collection in the OCF in April 2009. For each of the ten locations, UTM 

coordinates, ice thickness, lake depth, and ice regime collected in the field are matched with TempCNN 

(bedfast, floating, land) and vegetation type (tundra or taiga).” 

 

“Table 4. Field data collected in April 2021 on a small lake located beside the drained basin of Zelma 

Lake. For each of the four locations, UTM coordinates, ice regime, ice thickness, snow depth, and 

sediment temperature are matched with the TempCNN output.” 

 

“Figure 9. Husky Lake TempCNN predicted ice regime (1993-2021). Dark blue represents bedfast ice, 

light blue – floating ice, grey – land. Ice regime fluctuates between floating and bedfast depending on 

snow conditions, water level, and air temperature.” 

 

“Figure 12. Netro Lake TempCNN predicted ice regime (1993-2021). Dark blue represents bedfast ice, 

light blue – floating ice, grey – land. Between 1993 and 2021 ice regime has transitioned from mostly 

bedfast to mostly floating.” 

 

“Figure 13. Zelma Lake TempCNN predicted ice regime (1993-2021). Dark blue represents bedfast ice, 

light blue – floating ice, grey – land. You can notice a significant reduction in water surface area and a 

transition to mostly bedfast ice regime following the 2007 catastrophic drainage event.” 

 

 

Technical corrections:  

 

Table 1: The dataset is not consistent because of the lack of data from 1996/1997 to 1998/1999. Please 

give detailed information about it.  

 

Thank you for a valuable comment. In order to build a reliable time-series a more or less even coverage 

throughout the ice season is necessary. 18 years of data were chosen for this study as they offered a 

minimum of two scenes for each month throughout the ice season as is mentioned in subsection 3.1 SAR 

imagery. ERS-1/2 availability was quite limited and seasons 1996/1997 1997/1998, and 1998/1999 had 

either none or an insufficient number of scenes available.  

 

 

Figure 1. please point out what the different color areas represent.  

 

Thank you for a valuable comment. Figure 1 caption has been updated as follows: 

 

“Figure 1. Old Crow Flats, Yukon, Canada. The background image is an RGB Landsat 8 of May 31, 

2020, downloaded from USGS Earth Explorer (link: https://earthexplorer.usgs.gov/, accessed: July 4, 

2021). Most lakes are still ice covered at this time of the year and appear white, open water surface of the 

river and smaller lakes, as well as some of the ice fringes appear black, tundra has a brownish shade, 

while areas of boreal forest appear dark green.” 

 

 

 

 

Figure 3. what’s the dashed red line represent for?  



 

Thank you for a valuable comment. Figure 3 caption has been updated as follows: 

 

“Figure 3. The two graphs illustrate application of 1-dimensional (1D) filters to time-series that can be 

used by convolutional layers of a TempCNN for extraction of temporal features. The red line represents 

original time-series, while the blue line denotes the filtered time-series: (a) a curve that resembles 

floating ice transformed by a gradient filter – the dashed red line indicates the origin of the filtered time 

series, where the value of the original series is increasing the filtered series has positive values, and 

where the value of the original series is decreasing the filtered series has negative values; (b) a curve 

resembling floating ice transformed by a low-pass filter.” 

 

 

Line 140 “which cover the time period between 1992 to 2021.”; line 14 “Canada over the 1993 to 2021 

period”; Please unify the time of data for the paper: it’s better to unify the time as 1992/1993 to 

2020/2021.  

 

Thank you for a valuable comment. The time period has been made consistent throughout the manuscript.  

 

 

Line 250: please make an explanation about the interpolation of the SAR stacks.  

 

Thank you for a valuable comment. The temporal deep learning model trained 

and used in this study works with time-series of a specific length. It takes a 

backscatter time-series as input and assigns it a specific class (bedfast ice, 

floating ice, or land) which corresponds to the state of the pixel on the last day of 

the time-series. Each time-series represents the backscatter value of a single pixel 

traced through time from October 4 to March 13. However, temporal resolution 

of SAR image stacks (# of scenes available throughout the ice season) varied 

significantly between years (please, refer to Table 1). As such, prior to inputting 

a SAR image stack into the TempCNN for classification, it had to be interpolated. 

The model was trained to work with time-series consisting of 161 time stamps 

which corresponds to a daily frequency from October 4 to March 13 – excluding 

February 29 for leap years. Imagine that each SAR image stack is a collection of 

time-series where each pixel is represented by a time-series of backscatter values 

starting from its backscatter value on October 4 and ending with a backscatter 

value on March 13 (Please, refer to portion of Figure 4 presented on the right for 

visual illustration). To ensure that each of the backscatter time-series for each 

year of data had the same length (161 values), linear interpolation was applied. 

Although the lake ice lifecycle is non-linear, previous studies have shown that 

more complex interpolation methods have little influence on classification 

accuracy (Pelletier et al., 2019, Valero et al., 2016). Linear interpolation was 

performed utilizing python programming language and the tools of pandas 

module. Interpolation not only filled the temporal gaps, but also replaced any 

missing or Not a Number (NaN) values, especially common for ERS1/2 and scene fringes. Interpolation 

was performed individually on every time-series (backscatter value of pixel traced through time). As a 

result, we obtained SAR image stacks consisting of 161 full coverage scenes, which were subsequently 

input into the TempCNN to perform classification.  

 

The manuscript briefly explains time-series interpolation in Subsection 3.2 Annotated dataset creation:  

 



“Resampling to a daily frequency and linear interpolation were applied to compensate for the temporal 

irregularity of the data gearing it for the deep learning classification (Pelletier et al., 2019; Valero et al., 

2016). The final labeled time-series consisted of 161 time steps (i.e., one time step per day) covering the 

time period 185 between October 4 and March 13.” 

 

As per the referee’s request, Subsection 3.4 Creation of ice regime maps using TempCNN was extended 

to include more details on interpolation of SAR stacks as follows:  

 

“In order to transform SAR image stacks for each of the 18 years of data into lake ice regime maps using 

the trained TempCNN each stack had to be interpolated. Interpolation allowed to compensate for 

temporal resolution variability between different years such that each year’s stack consisted of 161 

scenes corresponding to a daily frequency from October 4 to March 13. Pixel-based linear interpolation 

was performed utilizing python programming language and the tools of pandas module. Although the lake 

ice lifecycle is non-linear, previous studies have shown that more complex interpolation methods have 

little influence on classification accuracy (Pelletier et al., 2019; Valero et al., 2016). Once the SAR stacks 

for 18 years were interpolated and each consisted of 161 scenes, the trained TempCNN model was used 

to create ice regime classification maps consisting of three classes: floating ice, bedfast ice, and land.” 

 

Pelletier, C., Webb, G. I., and Petitjean, F.: Temporal convolutional neural network for the classification 

of satellite image time series, Remote Sens., 11, 1–25, 2019. 

 

Valero, S., Pelletier, C., and Bertolino, M.: Patch-based reconstruction of high resolution satellite image 

time series with missing values using spatial, spectral and temporal similarities, in: 2016 IEEE 

International Geoscience and Remote Sensing Symposium (IGARSS), 2308–2311, 2016. 

 

 

Line 268: “lake depth was specified as 2m”, is it reasonable, as the average depth of lakes in OCF is 

1.5m.   

 

Thank you for a valuable comment. The change in depth could impact the freeze-up date by at most 1 day. 

However, the ice thickness simulated by CLIMo for the end of the season and used in this study will not 

be impacted by such a small change in depth (no difference in the break-up date). 

 

Line 422:” Performing change detection between the first (1993) and the last years of the dataset (2021), 

reveals a transition of 51 km2 from bedfast to floating ice regime. However, 172 km2 of floating ice 

shifted to a bedfast state.” How to detect the exchange between the bedfast ice and floating ice?  

 

Thank you for a valuable comment. The ice regime maps created by TempCNN for each year of the 

available data allow to detect the exchange between the two ice regime classes using the 

following formula: (“class on date 1” *10) + “class on date 2”. The resulting GIS layer of data 

will be a raster where each cell contains a two-digit number with the first digit being the class on 

date 1 and the second digit being the class on date 2. Figure 10 is an example of a change 

detection between 1993 and 2021. Using the ice maps created in this study the change detection 

can be performed between any two years of data.  
 

Table 5: maybe you can add a “total ice area (bedfast ice + floating ice)” list to the table. The fraction 

trends analysis is better to company with an area trends analysis. 

Thank you for a valuable comment. Total ice area has been added to Table 5 as is shown below. 

However, the authors prefer not to include it into the manuscript as the ice fraction analysis were done 



using a lake mask from October 2020 and as such the total ice area for the years prior to 2020 is likely 

underestimated.  

Table 5. Bedfast and floating lake ice fractions and area (km2) in OCF from 

1993 to 2021. A lake mask created using 2020/2021 lake extent was used to 

extract lake ice fractions.  

 

 

Year Floating ice 

fraction (%) 

Bedfast ice 

fraction (%) 

Floating ice 

area (km2) 

Bedfast ice 

area (km2) 

Total ice 

area (km2) 

1993 88 12 790 108 898 

1994 86 14 779 127 906 

1995 88 12 848 111 959 

1996 92 8 909 82 991 

2000 90 10 825 93 918 

2001 81 19 753 175 928 

2002 86 14 796 134 930 

2003 79 21 746 203 949 

2004 91 9 836 80 916 

2005 77 23 687 207 894 

2006 90 10 884 98 982 

2008 89 11 826 101 927 

2009  92 8 757 70 827 

2010 83 17 792 160 952 

2018 66 34 671 346 1017 

2019 79 21 798 206 1004 

2020 81 19 794 184 978 

2021 75 25 762 252 1014 

 


