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Abstract. Accurately predicting the seasonal streamflow
supply (SSS), i.e. the inflow into a reservoir accumulated dur-
ing the snowmelt season (April to August), is critical to oper-
ate hydroelectric damns and avoid hydrology-related hazard.
Such forecasts generally involve numerical models that sim-5

ulate the hydrological evoluation of a basin. The operational
department of the French electric company EDF implements
a semi-distributed model and carry out such forecasts for
several decades, on about fifty basins. However, both scarse
observation data and over-simplified physics representatioin10

may lead to significant forecasts errors. Data assimilation has
been shown beneficial to improve predictions in various hy-
drological applications, yet very few have addressed the sea-
sonal streamflow supply prediction problem. More specifi-
cally, the assimilation of snow observations, though avail-15

able in various forms, has been rarely studied, despite the
possible sensitivity of the streamflow supply to snow stock.
This is the goal of the present paper. In three mountainous
basins, a series of four ensemble data assimilation experi-
ments – assimilating (i) the streamflow (Q) alone, (ii) Q and20

fractional snow cover (FSC) data, (iii) Q and local cosmic
ray snow sensor data (CRS) and (iv) all the data combined –
are compared to the climatologic ensemble and an ensemble
of free simulations. The experiments compare the accuracy
of the estimated streamflows during the reanalysis (or assim-25

ilation) period, September to March; during the forecast pe-
riod, April to August; and the SSS estimation. The results
show that Q assimilation notably improves streamflow esti-
mations during both reanalysis and forecast period. Also, the
additional combination of CRS and FSC data to the assimila-30

tion further ameliorates the SSS prediction in two of the three
basins. In the last basin, the experiments highlight a poor rep-

resentativity of the CRS observations during some years and
reveals the need for an enhanced observation system.

Keywords. Mordor-SD, Hydrological runoff, CRS, SWE, 35
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1 Introduction

Accurately predicting the seasonal streamflow supply (SSS),
i.e. the inflow into a reservoir accumulated during the
snowmelt season (April to August), is critical to operate 40

hydroelectric damns and avoid hydrology-related hazard.
Hence, the operational department of the French electric
company EDF has been carrying out such forecasts for sev-
eral decades, for nearly fifty basins. Yet, in mountainous
basins, the confidence provided by long term hydrological 45

forecast is affected by the uncertainty on the meteorological
forcings (Li et al., 2009; Bormann et al., 2013; Luce et al.,
2014) and the inaccurately simulated snowpack (Liston and
Sturm, 1998; Pan et al., 2003). Acknowledging that the SSS
partly depends on the snowpack accumulated during winter, 50

the growing number of satellite observations of snow-related
quantities and in situ snow measurements may open the way
to improving the SSS predictions in mountainous basins.

Some studies suggest that controlling the snowpack evolu-
tion using observations can significantly ameliorate short and 55

long term streamflow forecast (Viviroli et al., 2011; Fayad
et al., 2017). In the present paper, a sensitivity experiment
is conducted to highlight how the uncertainties propagate
within a hydrological system. The Sobol indices are com-
puted for each of the model variables, indicating the impact 60

that the uncertainty of these variables has on the uncertainty
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of the streamflow at the outlet. This experiment investigates
if a better representation of the snowpack could result in a
significant gain in SSS estimation.

Data assimilation techniques are often used to help control
and refine hydrological systems (see Largeron et al., 20205

for a detailed review). Several studies have successfully as-
similated snow water equivalent (SWE) data but mostly in
local models, i.e., models describing the snow dynamic at
a specific site and not the hydrological system of an entire
basin. Indeed, SWE measurements, especially from ground-10

based cosmic ray sensor (CRS; Kodama et al., 1979; Paquet
and Laval, 2006) instruments, provide very local information
which can be used to improve a local model at a specific site
(e.g., Piazzi et al., 2018 in three Alpine sites). Assimilating
CRS data in a basin scale model as is can lead to represen-15

tativity errors (where the SWE measured by CRS does not
correspond to any relevant global SWE model), thus deteri-
orating the system estimation. To circumvent this issue, an
alternative approach to consider CRS data in a basin scale
model is discussed in Section 4.3, used throughout the fol-20

lowing experiments and shows promising results.
Multiple studies have implemented ensemble-based data

assimilation schemes, such as the ensemble Kalman filter
(EnKF, Evensen, 2003), of direct or indirect snow observa-
tions (Andreadis and Lettenmaier, 2006; Clark et al., 2006;25

Slater and Clark, 2006; Su et al., 2008; Magnusson et al.,
2014; Piazzi et al., 2019, 2021). However, the nonlinear na-
ture of these snow-related observations as well as the com-
plexity to control a hydrological system with indirect infor-
mation seem to favor the use of a more nonlinear and non-30

Gaussian data assimilation method, especially when aiming
at long lead time prediction improvements (Dumedah and
Coulibaly, 2013). One data assimilation method in partic-
ular, the particle filter (PF, Van Leeuwen, 2009), is known
for its ability to handle highly non-linear systems contain-35

ing non-Gaussian probabilities. The PF implements Bayes’
theorem by describing the probability density functions as
a sum of Dirac from an ensemble of simulations (particles)
and without any additional hypothesis. Therefore, under the
assumption of a sufficiently large ensemble of particles, the40

PF provides the optimal solution of any inverse problem. In
hydrological applications, DeChant and Moradkhani (2011)
managed to improve SWE and discharge forecast using mi-
crowave radiance assimilation with a PF. Also, Leisenring
and Moradkhani (2011) showed in a synthetic experiment45

comparing an EnKF and a PF, that the assimilation of SWE
data with a PF improved seasonal predictions. The work of
Charrois et al. (2016) has shown the good performance of
the PF for the assimilation of optical reflectivity and snow
depths and Piazzi et al. (2018) successfully used a PF for50

SWE data assimilation in moutainous regions. Finally, Piazzi
et al. (2021) concluded that PF assimilation outperforms an
EnKF assimilation by generating longer-lasting predictions.

The relevance of using local snow observations is an open
question though: How much is the SSS prediction sensitive to55

the snowpack? Do the snow observations contain the neces-
sary information to estimate the snowpack accurately enough
to impact the quality of predictions? To answer these ques-
tions, the present paper assesses the potential of using local
snow observations in a seasonal forecast procedure to im- 60

prove the streamflow supply prediction at the outlet of moun-
tain basins. This is addressed by implementing real data as-
similation experiments.

The experiments performed in the present article are based
on the MORDOR-SD model (Garavaglia et al., 2017), the 65

semi-distributed version of the original MORDOR model,
used by EDF for many years. The experiments have been
deployed on three French mountainous basins. Three types
of observations are available in these basins: the observed
streamflow at the outlet Q, cosmic ray snow sensor CRS data 70

and fractional snow cover (FSC, Masson et al., 2018), pro-
vided by the moderate resolution imaging spectroradiometer
(MODIS) satellite. Each year, an assimilation of the available
data is performed from September to March of the following
year. Throughout the paper, this time period is called the re- 75

analysis (or assimilation) period. A free forecast is then run
from April to August. This time period is called the forecast
period. The performance of the assimilation is evaluated dur-
ing both the reanalysis and the forecast period.

The paper is structured as follows: a description of the 80

model and observations used in the study, i.e. the numer-
ical model, the three hydrological basins and the available
observations (Section 2); a study of the sensitivity of the sys-
tem (Section 3); the description of the experimental protocol
(Section 4) and the assimilation results (Section 5). A sum- 85

mary and conclusions are drawn in Section 6.

2 Model and observations

2.1 Mordor-SD model

For many years, EDF teams have been using a hydrolog-
ical box model: the Mordor model. In this study, we the 90

semi-distributed MORDOR-SD model (Garavaglia et al.,
2017), which is an improvement on the original Mordor that
includes a spatial discretization scheme. MORDOR-SD is
based on a succession of hydrological components: the po-
tential evaporation is determined by an evaporation function 95

(depending on air temperature) ; the surface storage U (mod-
eling a rainfall excess and soil moisture accounting storage)
impacts the evaporation and the direct runoff ; the capillar-
ity storage Z is fed by indirect runoffs and also impacts the
evaporation ; the hillslope storage L seperates direct and in- 100

direct runoffs, the rest feeds the deep storage N that provides
the baseflow component ; lastly, a snow stock S is accumu-
lating or melting based on an improved degree-day formu-
lation. More specifically, the snow model is derived from a
classical degree-day scheme, with a few important additional 105

processes: (i) a cold content able to dynamically control the
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Figure 1. Time series of the forcings: precipitation P (top) et the temperature T (bottom) during the year 2001-2002 in the Verdon basin. The
deterministic forcings are represented in blue and the corresponding perturbed 50 ensemble members are plotted in gray curves.

melting phase; (ii) a liquid water content in the snowpack;
(iii) a ground-melt component; and (iv) a variable melting
coefficient, depending on the potential radiation assumed to
model the changing albedo effect throughout the melting sea-
son. The accumulation phase is controlled by the discrimi-5

nation of the liquid and solid fractions of the precipitations.

Finally, the total runoff Q is then determined with a unit hy-
drograph.

The discretization scheme of MORDOR-SD is based on
an elevation band approach, adapted for mountain hydrol- 10

ogy. Classically, the number of elevation bands is optimized
depending on the hypsometric curve of the basin according
to the following criteria: (i) the relative area of each elevation
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Figure 2. Geographic locations of the Verdon basin, the Guil basin in the Alps mountain range and the Naguilhes basin in the Pyrenees
mountain range (left panel). On the right panels, two zooms show the locations of the in situ CRS observations: V2471, v2804 and v4322
within the Guil, the Verdon and the Naguilhes basins, respectively.

band has to be greater than or equal to 5% and less than or
equal to 50%, and (ii) the elevation range of each zone has to
be lower than 350 m.

In most MORDOR-SD applications, the spatial variability
of meteorological forcing is summarized by two orographic5

gradients: gpz (in % · 1000 m−1 ) for precipitation and gtz (in
◦C · 100 m−1) for temperature (see Appendix 2 of Garavaglia
et al., 2017). In this way, we assume that in mountainous
areas, spatial variability is primarily determined by elevation.

In our configuration, the Mordor-SD model has 5 state10

variables in each elevation band: 4 storage water levels (sur-
face storage U, hillslope storage L, capillarity storage Z and
snow stocks S) and the snowpack bulk temperature (TST).
The model has one global variable N representing the deep
storage water level. The number of free parameters is rang-15

ing from 10 to 12 depending on the basin-specific calibration
strategy. See Garavaglia et al. (2017) for a thorough descrip-
tion of MORDOR-SD components and flows.

In addition to the state variables, the Mordor-SD model de-
pends on two atmospheric forcings: temperature T and pre-20

cipitation P. Both forcings result from a statistical reanalysis
based on ground network data and weather patterns (Gottardi
et al., 2012). The MORDOR-SD model is prescribed with the
spatial average of these forcing data over the basin and are
given at daily time steps. As discussed previously, the model25

modifies the impact of the forcings at the different elevations
using two orographic gradients. The orographic gradients are
constants prescribed to the model (respectively, gpz= 21,39
and 28 % · 1000 m−1 and gtz=−0.75,−0.60, and −0.57
◦C · 100 m−1 for the three basins studied in this paper and30

described in the next section: Verdon, Naguilhes and Guil
basin). In the rest of the work presented here, these gradients
will not be discussed further, however, these vertical gradi-
ents might represent a significant source of uncertainty and
their impact should be investigated in future works. 35

In the following experiments, first-order stochastic auto-
regressive processes (AR1) are used to perturbed the atmo-
spheric forcings. These AR1 processes introduce perturba-
tions on the forcings that are consistent in time and that pro-
vide MORDOR-SD with an ensemble of probable meteoro- 40

logical scenarios. An AR1 process is added to the tempera-
ture in order to simulate the instrument and the representa-
tivity errors. The precipitation is mutliplied by an AR1 (cen-
tered around 1) process, so that the variability in the precip-
itation intensity is simulated but no new day of precipitation 45

are created. An illusration of the ensemble of forcings gen-
erated for the year 2001 in the Verdon basin (later described
in Section 2.2) is provided in Figure 1. The calibration of
these ensembles (i.e., calibration of the parameters of the
auto-regressive processes) play a crucial role in the imple- 50

mentation of the assimilation system and is further discussed
in Section 4.1.

2.2 Hydrological basins and observations

The present study focuses on three mountainous basins: the
Verdon at La Mure basin, the Naguilhes basin and the Guil 55

at Chapelue basin (Figure 2) that are part of the EDF hy-
droelectricity network. These three basins were selected ac-
cording to two criteria: (i) the quality of the hydrometric data
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Figure 3. Available observation time series in the Verdon basin (left), in the Naguilhes basin (center) and in the Guil basin (right) of
streamflow Q (top), CRS SWE observation (center) and FSC (bottom).

(to avoid assimilating poor quality data); (ii) the presence of
CRS data on the basin. They also offer a variety of hydro-
climatic dynamics.

The Verdon at La Mure basin is a sub-basin of the Durance
basin located in the Southern French Alps. The Verdon basin5

covers 404 km2 and has an elevation ranging from 972m to
2990m. The Naguilhes basin is located on a tributary of the
Ariege river in the Eastern part of the French Pyrenees. It is
the smallest of the studied basins, covering 30 km2 and with
an elevation ranging from 1880 to 2750m. The basin corre-10

sponds to the inflow from the Naguilhes hydroelectric damn.
The Guil basin is a tributary of the Durance river, located in
the French Alps (Hautes-Alpes). The Guil at Chapelue basin
covers 418 km2 and has an elevation ranging from 1313m to
3274m. The outlet is located just upstream from Maison du15

Roy damn.
Three types of observations are available in the basins: the

streamflow, the CRS and the FSC.
The streamflow is the observed water flow at the basin out-

let given in m · s−1. It is a direct and reliable observation of20

the model state variable Q. The streamflow data have been
collected by EDF almost continuously since 1997 in the Ver-
don basin, 1962 in the Naguilhes basin and 2004 in the Guil
basin.

The CRS (Kodama et al., 1979; Paquet and Laval, 2006) 25

is a cosmic ray snow sensor located in every basin as part of
the EDF snow network, and provides the snow water equiv-
alent (SWE) that informs on the state of the snow stock at a
specific geographical point (see Figure 2 right panels):

– In the Verdon basin, the instrument is located at the San- 30

guignères station (V2804) at an altitude of 2050m. The
CRS data are available discontinuously from 2002 to
2017.

– In the Naguilhes basin, the instrument is located at the
Les Songes station (V4322) at an altitude of 2030m. The 35

CRS data are available discontinuously from 2004 to
2017.

– In the Guil basin, the instrument is located at the Les
Marrous station (V2471) at an altitude of 2730m. The
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CRS data are available discontinuously from 2005 to
2016.

The CRS measurement technique is known to provide accu-
rate SWE estimations, except for very shallow snow-depth
due to instrumental limitations. It provides a very local ob-5

servation (typical footprint about 5m), which suffers from
representativness limitations. In Section 4.3, a detailed dis-
cussion is held on how the CRS observations are integrated
in the assimilation process.

The FSC is provided by the MODIS satellite observations10

(Hall et al., 2006). The FSC is quantified at a 500m- and
daily-resolution by a value ranging from 0 to 1, for zero to
full coverage. FSC data suffer from well-known limitations
concerning cloud/snow discrimitation and measure on com-
plex vegetation/topography terrain. In our experiments, the15

FSC data are averaged on catchment scale and available dis-
continuously (depending on cloud cover) from 2001 to 2015
in the Verdon, from 2003 to 2015 in the Naguilhes and from
2002 to 2015 in the Guil basin.

For all observation types, the uncertainty is difficult to quantify. This is all the more difficult for the assimilation perspective since representativeness uncertainties must be accounted for. Those are impossible to quantify with the available model and observations, and may be larger than instrumental uncertainties. For these reasons, the levels of uncertainties (error variances) have been empirically tuned in the data assimilation system to avoid significant data rejection, which occurs when observation uncertainties are under-estimated.20

The three types of observations are displayed for each
basin in Figure 3.

The performance of the model is good on the three basins
of interest, with Nash-Sutcliffe Efficiencies equal to 0.846,
0.760, 0.926 respectively for the Verdon, Naguilhes and Guil25

basins over the calibration periods (respectively 1998-2013,
1987-2012 and 2004-2013).

3 Sensitivity experiment

3.1 Sobol indices

In order to better understand the sensitivity, and thus the con-30

trolability, of the Mordor-SD model, we seek to determine
which variables generate the most uncertainty in the stream-
flow estimate at the basin outlet. To do so, we perform a
sensitivity study of the system based on the Sobol indices
(Sobol’, 1990; Nossent et al., 2011).35

The Sobol indices evaluate the sensitivity of an output
variable to an input variable. If a model links one or more
random variables Xi, i ∈ [1,n] (input variables) to one ran-
dom variable Y (output variable), the Sobol index (of first
order) of the variable Xi is based on a variance decomposi-40

tion and is defined by :

Si =
Var [E [Y |Xi]]

Var [Y ]
. (1)

3.2 Mordor-SD sensitivity

In the case of the Mordor model, one can see the SSS value
as an output variable and all other state variables of the model45

as input variables. It is then possible to run a set of ensem-
ble simulations by perturbing each variable independently to
compute Var [E [Y |Xi]] and another set by perturbing all the

variables at once to compute Var [Y ]. This gives the SSS
sensitivity to each state variable in the model. 50

It is to be noted that the Sobol’ equations make the as-
sumption that the variable Xi are independent of each other.
This is clearly not the case for the Mordor variables, however,
the goal of this experiment is not to attribute the causality of
the uncertainties on Y but to assess the potential controlabil- 55

ity of the model by each variable. In other words, if we were
to control and reduce the uncertainties on Xi, with observa-
tions for instance, the Sobol indices can tell us how effective
would be the uncertainty reduction on Y .

To carry out this sensitivity study, a set of simulations is 60

generated in each basin on April 1st of each year and the
impact on the seasonal streamflow supply on August 31st
is evaluated. Figure 4, 5 and 6 show the Sobol indices (in
percent), in the Verdon, the Naguilhes and the Guil basins
respectively, for a perturbation on each variable of 10% of 65

its initial value (April 1st). The Figures show the Sobol in-
dices between 1968 and 2018, the last column Av is the av-
erage over the entire time period. The Sobol indices show
the sensitivity of the SSS value to the five state variables:
surface storage (U), hillslope storage (L), capillarity storage 70

(Z), snow stocks (S) and to the snow pack temperature (TST)
at the 8, 4 and 8 altitude levels in Figure 4, 5 and 6, respec-
tively. The darkest squares indicate a stronger sensitivity of
the SSS to uncertainties on the corresponding variables. The
U, L and Z storages are expected to have a short-term im- 75

pact on the runoff at the basin outlet, hence, uncertainties on
these storages on April 1st should impact less the SSS uncer-
tainty. This is indeed confirmed by the small Sobol indices
they generate on the SSS. Uncertainty on the temperature of
the snow pack TST at April 1st seems to have also not much 80

impact on the SSS uncertainty. However, it can be seen that
for all years the variable uncertainties that lead to the largest
uncertainties in cumulative streamflow are the uncertainties
on snow stocks at the altitude bands from S4 to S7 in the
Verdon, from S2 to S4 in the Naguilhes and from S4 to S7 85

in the Guil basin. The differences between elevation bands
is mainly due to the differences of their absolute snow con-
tent. For example, the high elevation bands have smaller ar-
eas (by definition of the elevation bands) hence they have less
snow content which leads to less uncertainty. Similarly, dif- 90

ferences between years are most likely due to differences in
snowfall since the perturbations are prescribed relative to the
state variables (10 %) but the sensitivity of the streamflow is
absolute.

A substancial difference in sensitivity between the three 95

basins is to be noted. The Verdon basin shows a maximum of
36% of sensitivity, the Naguilhes basin of 99% and the Guil
basin of 28%. This could imply that in the Naguilhes basin,
for instance, introducing accurate information on the snow
stocks might have a very positive impact on the SSS estima- 100

tion. On the other hand, in the other two basins, a control of
the snow stocks could improve the SSS estimation but maybe
to a lesser extent. This sensitivity study confirms nonetheless
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Figure 4. Sobol indices (in %) in the Verdon configuration between the years 1968 and 2018, for a 10% perturbation on each variable. The Sobol indices show the sensitivity of the SSS value to the variables surface storage (U), hillslope storage (L), capillarity storage (Z), snow stocks (S) and snow pack temperature (TST) at the 8 altitude levels (number 1 is the lowest altitude). The last column Av gives the average over the entire time period. The darkest squares indicate a stronger sensitivity of the SSS to uncertainties on the snow stocks between altitude level 5 and 7.

that controlling the snow stocks at the end of winter seems to
be the most important lever to improve the SSS prediction.

4 Experimental protocol

4.1 Protocol and diagnostics

The experiments are performed during the years when CRS5

and streamflow observations are available: from 2002 to
2017 in the Verdon basin, from 2004 to 2017 in the Naguilhes
basin and from 2005 to 2016 in the Guil basin. Every year,
data assimilation is performed between September, 1st and
March, 31st, this period is called the reanalysis period. The10

assimilated ensemble is then forecasted freely from April,
1st to August, 31st, this period is called the forecast period.
The streamflow estimations are diagnosed during both the
reanalysis and the forecast period. The SSS estimation, i.e.,
the cumulated streamflow during the forecast period, is also15

diagnosed.
The diagnostics performed are the continuous rank proba-

bility score skill (CRPSS; see Hersbach, 2000 for details on

the CRPS and Piazzi et al., 2018 for details on the CRPSS)
according to the formulation described by Bontron (2004), 20

with a thinness component (FinS) and a correctness compo-
nent (JustS). A score of 1 represents a perfect ensemble and
lower than 0 an ensemble less accurate than the climatology
of the system. The FinS score can be seen as a measurement
of the dispersion of the ensemble and the JustS a distance 25

between the median of the ensemble and the observations. A
second diagnostic is used to assess the SSS estimation: the
root-mean-square error (RMSE). The RMSE is the euclid-
ian distance between the ensemble mean SSS estimation and
the observed SSS and is computed, here, in hm3. A perfect 30

RMSE score is equal to 0.

4.2 Meteorological forcing perturbations

The free ensemble simulations and the assimilation ensem-
ble simulations are generated using perturbations with AR1
processes on the forcings. The AR1 autocorrelation parame- 35

ters are prescribed for all experiments as 0.9 for temperature
and 0 for precipitation. Note that the AR1 process applied on
precipitation is multiplicative and the one applied on temper-
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Figure 5. Sobol indices (in %) in the Naguilhes configuration between the years 1968 and 2018, for a 10% perturbation on each variable. The
Sobol indices show the sensitivity of the SSS value to the variables surface storage (U), hillslope storage (L), capillarity storage (Z), snow
stocks (S) and snow pack temperature (TST) at the 4 altitude levels(number 1 is the lowest altitude). The last column Av gives the average
over the entire time period. The darkest squares indicate a stronger sensitivity of the SSS to uncertainties on the snow stocks at altitude level
2 and 3.

ature is additive. The AR1 standard deviations for the free
ensemble were tuned to provide the most accurate SSS pre-
diction. Figure 7 shows the CRPSS on the SSS estimation for
free ensembles with several sets of AR1 standard deviations
parameters (σP ,σT ) applied to the forings (P,T).5

A reproducibility issue was encountered during the assim-
ilation experiments (several experiments with the same pa-
rameters produced different results) probably due to the high
non-linearities of the system and the finite number of ensem-
ble members. To avoid this problem, the standard deviations10

σP and σT of the AR1 processes on the forcings used for
the assimilation were increased to stabilize the results, dur-
ing the reanalysis period. Then, during the forecast period,
the assimilation ensemble uses the same AR1 process pa-
rameters as the free ensemble. Table 1 summarizes the AR115

parameters used in the experiments.

4.3 Assimilation setup

The assimilation is performed using a particle filter (PF)
with sequential importance resampling (Gordon et al., 1993;
Van Leeuwen, 2009). The PF determines sequentially, within 20

an ensemble of simulations (also called particles or mem-
bers), the simulations having a model state close to the ob-
servations. The PF describes the prior probability density of
the system state as a Dirac sum of equal weights 1/N for N
the size of the ensemble. Using Bayes’ theorem, the analysis 25

assigns larger weights to the simulations closer to the obser-
vations. The weights are then used to resample the simula-
tions farthest from the observations so that the simulations
closest to the observations are duplicated. In this study, we
use a stratified resampling method introduced by Kitagawa 30

(1996). The duplicated simulations are not perturbed after re-
sampling. The dispersion of the ensemble is maintained only
by the perturbations on the forcings. Several studies showed
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Figure 6. Sobol indices (in %) in the Guil configuration between the years 1968 and 2018, for a 10% perturbation on each variable. The
Sobol indices show the sensitivity of the SSS value to the variables surface storage (U), hillslope storage (L), capillarity storage (Z), snow
stocks (S) and snow pack temperature (TST) at the 8 altitude levels (number 1 is the lowest altitude). The last columnow Av gives the average
over the entire time period. The darkest squares indicate a stronger sensitivity of the SSS to uncertainties on the snow stocks between altitude
level 4 and 7.

Verdon basin Naghuiles basin Guil basin

Figure 7. CRPSS of free ensemble simulations computed for AR1 parameter calibration (σP ,σT ). The maximum CRPSS occurs at Verdon
basin for (0.3,0.3), at Naguilhes basin for (0.3,0.8) and at Guil basin for (0.3,0.5).

the need for additional perturbation after resampling in order to avoid ensemble collapse yet it does not seem necessary in
our system.
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Verdon basin Naguilhes basin Guil basin
σP σT σP σT σP σT

Free 0.3 0.3 0.3 0.8 0.3 0.5

Q assim 0.4 0.4 0.5 1.1 0.4 0.5

(Q,FSC) assim 0.8 0.8 0.6 1.2 0.4 0.6

(Q,CRS) assim 0.8 0.8 0.6 1.2 0.4 0.6

(Q,CRS,FSC) assim 1.0 1.0 0.8 1.4 0.5 0.7

Table 1. AR1 processes parameters applied on precipitation (φP ,σP ) and temperature (φT ,σT ) forcings, for the free ensemble and the
assimilation ensembles during the reanalysis period (September to March) and the forecast period (April to August).

Figure 8. Streamflow time series Q, during the year 2002 for the Verdon basin, of the observed streamflow (blue), the climatological
ensemble (black), the free ensemble (top panel ; green) and the assimilated ensemble (middle panel ; red) for the assimilation of Q. Bottom
panel represent the ensemble respective medians. The vertical dotted black line represents the separation between the reanalysis period
(before the line) and the forecast period (after the line).

The free ensemble and the assimilation ensemble are
composed of 900 members. The PF provides the exact
Bayes’theorem solution for an infinitely large ensemble but
quickly suffers from the curse of dimensionality (Snyder
et al., 2008) and underperforms with small ensemble sizes.5

Some experiments have been performed with smaller ensem-

bles (not shown here) and confirm this issue. Due to the very
nonlinear nature of the hydrological model, the assimilation
performance were not necessarily poor but unstable, mean-
ing, they would fluctuate when repeated. Since the goal of 10

the present paper is not to suggest the most appropriate as-
similation method for operational use, but is rather to assess
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if information on the SSS exists and can be retrieved from
snow stock observations, we have chosen to use a very large
ensemble.

The assimilation window for all experiments is a 3-day
window, i.e., an analysis is performed every three days using5

the last three daily observations.

4.4 Observation operators

In order to allow small time lags between simulated and ob-
served streamflow, the three streamflow observations in the
3-day assimilation window are averaged to make a single ob-10

servation. Streamflow observation error variance is then pre-
scribed as a function of the observed streamflow Qobs (sim-
ilarly to Clark et al., 2008; Weerts and El Serafy, 2006; and
Piazzi et al., 2021):

σ2
Q = α ·Q2

obs, (2)15

with α= 0.3. Also, a minimal threshold of σ2
Q = 0.2 is used

so as to avoid unreasonably low uncertainties for very small
streamflow.

The ssimilation is performed using the FSC normalized
anomalies. The anomalies are computed by substracting the20

daily FSC climatologic average to the daily FSC value of
the current year and this difference is then divided by the
climatologic average. The anomaly indicates with a positive
or a negative value if the snow cover is especially high or
low this year on that day. The same is done to the fraction25

snow cover computed by the model. The observation error
variances of the FSC normalized anomalies are prescribed at
σFSC = 0.3.

Finally, as previously mentioned, CRS observations are lo-
cal data and do not necessarily represent the snow dynamics30

of an entire basin. Hence, the first step of the CRS obser-
vation operator is to consider the CRS normalized anoma-
lies, similarly to the FSC observations. However, after sev-
eral tests (not shown here), the CRS normalized anomaly
does not provide the correction needed for the model snow35

stock anomaly at the appropriate altitude band. A second step
of the CRS observation operator was then to systematically
compare, at each assimilation window, the CRS anomaly to
the forecasted model snowpack anomaly at all altitude bands.
The closest (in terms of CRPSS) altitude band is then consid-40

ered to be the observed band. This can be seen as an adap-
tative observation operator. This process does slightly im-
pact the computation time (as it has to be performed every
three days, in this case), but significantly improves the re-
sults in our study. The observation error variances of the CRS45

anomalies are prescribed at σCRS = 0.3.

5 Assimilation results

5.1 Streamflow reanalysis, September to March

During the September to March period, the observations are
available daily. In this subsection, only streamflow observa- 50

tions are assimilated. As an illustration, Figure 8 shows the
time series of Q during the year 2002 in the Verdon basin.
The reanalysis period corresponds to the times left of the
vertical dotted black line and the forecast period to the times
right of that line. While the top two panels highlight the high 55

confidence of the assimilated ensemble (red lines) versus the
free ensemble (green lines) with a reduction in dispersion,
the bottom panel shows that the median after assimilation
(red line) is more accurate than the median without assimila-
tion (green line) with respect to the observations (blue line). 60

The first conclusions drawn from the year 2002 are con-
firmed over the 16 years 2002-2017 in the Verdon, the 12
available years between 2004 and 2017 in the Naguilhes and
the 10 available years between 2005 and 2016 in the Guil
basin, with the use of the probabilistic score CRPSS and its 65

components FinS and JustS summarized in Table 2. The FinS
of the free ensemble is higher than the FinS of the assimilated
ensemble which is not abnormal since the ensembles have
not been generated with the same perturbations and the as-
similated ensemble perturbations were much stronger. How- 70

ever, the assimilation increases the JustS of the free ensem-
ble from 37.1% to 79.6% in the Verdon, 31.1% to 44% in
the Naguilhes and -36.6% to 41% in the Guil basin. This re-
sults in a CRPSS of 75.4%, 36.8% and 69.4% after assimila-
tion when the free ensemble CRPSS was 47.6%, 20.5% and 75

39.3% in the three basins, respectively.
Assimilation of streamflow observations combined with

CRS and FSC observations have been compared to
streamflow-only assimilation and has very little to no impact
on the results during this reanalysis period (not shown here). 80

This is due to the very straightforward task of constraining
simulated streamflows using the accurately observed stream-
flow. Indeed, the PF sequentially selects and resamples the
simulations with a streamflow closer to the observations.

An interesting specificity of the particle filter, as a data 85

assimilation method, is that each time not only the accurate
streamflows are selected but also all the corresponding state
variables. In other word, one can hope that the assimilation
will have also selected more accurate snow stocks which will
then help produce better streamflow predictions during the 90

following spring and summer seasons.

5.2 Streamflow forecast, April to August

Figure 9 shows the streamflow time series of the ensem-
ble medians (climatologic ensemble in black, free ensemble
in green and assimilated ensemble in red) and the observed 95

streamflow (in blue) during the year 2011 in the Verdon basin
for the Q assimilation (top panel) and the (Q, CRS) assimi-
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Verdon basin Naguilhes basin Guil basin
Free Q assimilation Free Q assimilation Free Q assimilation

FinS 0.701 0.665 −0.015 0.218 0.755 0.830

JustS 0.371 0.796 0.311 0.440 −0.366 0.410

CRPSS 0.476 0.754 0.205 0.368 0.393 0.694
Table 2. Probabilistic scores on streamflow Q during reanalysis period, from September to March, for the free ensemble (Free) and the
streamflow assimilation (Q assimilation).

Figure 9. Same as the bottom panel of Figure 8, during the year 2011 in the Verdon, for the Q assimilation (top) and the (Q,CRS) assimilation
(bottom).

lation (bottom panel). The streamflow assimilation (Figure
9 top panel) seem to improve the short term (first 5 to 10
days) streamflow forecast. But, the streamflow forecast is
then overestimated after a couple of weeks. However, a good
control of the snow pack with (Q, CRS) assimilation (Fig-5

ure 9 bottom panel) reduces this long term streamflow fore-
cast overestimation. Hence, the overall streamflow forecast
remains improved in the first few weeks of the forecast pe-
riod in comparison to the free ensemble and the overestima-
tion during the rest of the forecast period is avoided.10

This result is confirmed by the probabilistic score CRPSS
for all years available and in two of the three basins: Ver-
don and Naguilhes basins (Figure 10). Both (Q,CRS) and
(Q, FSC) assimilation show CRPSS increase in comparison
to Q only assimilation. In the Naguilhes basin, in particular,15

the streamflow assimilation improvement over the Free en-
semble (approximately from a CRPSS of 0.44 to 0.455) is
almost doubled by the additional use of CRS (approximately
to a CRPSS of 0.465). This significant improvement in the

Naguilhes basin could be due to the strong sensitivity of the 20

streamflow to the snow stock uncertainty as implied by the
Sobol experiment conclusions (Section 3).

In the Guil basin, the streamflow forecast is degraded by
the use of CRS data. This overall result is in fact due to some
years in particular where the CRS information is contradic- 25

tory to the observed streamflow. The case of the Guil basin
will be further discussed in the following section.

In general, the improvement brought by an accurately con-
trolled snow pack to the streamflow estimation is slim in
terms of scores. The variation in the CRPSS is almost al- 30

ways smaller than 5%. This is due to the fact that, even
though the snow stock might be improved, the timing of the
streamflow runoff is mainly driven by the anticipated meteo-
rological forcings during the forecast period. The cumulated
streamflow, or seasonal streamflow supply, however should 35

be less impacted by the timing of the runoff and should be
significantly improved by a better estimated snow stock.
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Verdon basin

Naguilhes basin

Guil basin

Figure 10. Probabilistic scores (bottom) for the forecasted stream-
flow Q by the free ensemble (Free) and the four assimilation exper-
iments.

5.3 Seasonal streamflow supply SSS forecast

Global scores have been computed to assess the abilities of
the different assimilation configurations to estimate the sea-
sonal streamflow supply SSS, i.e., the cumulated runoff be-
tween April and August. Similarly to Figure 10, Figure 115

shows the global CRPSS, FinS and JustS of the SSS ensem-
ble estimations in the three basins and Figure 12 shows the
RMSE of the ensemble means.

As for the streamflow estimation, the SSS estimation is
improved by assimilating all the available data in the Ver-10

don basin and the Naguilhes basin. In the Verdon basin, the
Q assimilation increases the CRPSS from 77% (free ensem-
ble) to 80.5% and the (Q, FSC, CRS) assimilation further
increases the CRPSS to 82.7%. Meanwhile, the RMSE of
the free ensemble SSS mean (200 hm3) is almost halved by15

the (Q, FSC, CRS) assimilation and reduced to a little over
100 hm3. In the Naguilhes basin, the Q assimilation increases
the CRPSS from 58.7% (free ensemble) to 62.2%, the (Q,
CRS) assimilation further increases the CRPSS to 75% and
the (Q, FSC, CRS) assimilation CRPSS is slightly lower at20

74.6%. The RMSE is strongly reduced by the use of CRS
observations. Both (Q, CRS) and (Q, FSC, CRS) assimila-
tions reduce the free ensemble SSS mean RMSE, which is

over 10 hm3, down to under 4 hm3. Once again, these very
good performances in the Naguilhes basin, are likely due to 25

the significant sensitivity of the SSS estimation to the snow
stock uncertainty that was highlighted by the Sobol sensitiv-
ity experiment (Section 3).

The yearly SSS CRPSS histograms presented in Figure 13
and Figure 14 allow to understand how combining all the ob- 30

servations improve the global scores. Every year, the free en-
semble SSS CRPSS (green) is compared to the SSS CRPSS
of the assimilated ensemble (red) for the different assimila-
tion configurations. As a reminder, a negative CRPSS indi-
cates that the ensemble estimation is less accurate (in terms 35

of CRPS) than the climatological ensemble. In the Verdon
basin, the main inaccurate free ensemble SSS estimation oc-
curs in 2014. During that year, only the assimilation configu-
rations containing CRS observations are able to truly correct
that estimation. Meanwhile, in 2003 for instance, (Q, CRS) 40

assimilation deteriorates the SSS estimation. But, only as-
similating (Q,CRS,FSC) manages to improve both 2003 and
2014. Similarly, in the Naguilhes basin, the years 2004 and
2011 are poorly estimated by the free ensemble, the Q assim-
ilation and the (Q, FSC) assimilation but both the (Q, CRS) 45

and the (Q, FSC, CRS) assimilations significantly increase
the SSS CRPSS. These yearly variations show that the hy-
drological problem considered here is not a linear and Gaus-
sian problem where adding observations systematically im-
proves the estimation every year. These variations can be due 50

to the quality or representativity of those observations which
can also variate from one year to the next. But in this case,
the benefits of combining multivariate data comes from the
particle filter selection process which behaves as a data cross
validation of sort that will take advantage of the most appro- 55

priate observations each year. This remains true, however, as
long as none of the observations are widely inaccurate.

For instance, in the Guil basin, the detrimental impact of
the CRS observations is even larger on the SSS estimation
than it is on the streamflow estimation. The average CRPSS 60

declines from approximately 75% to 65% (Figure 10) and the
RMSE increases from 120 hm3 up to 280 hm3 (Figure 11).
Similarly to Figure 13 and Figure 14, the yearly histograms
in Figure 15 reveal that the assimilation performances differ
significantly from one year to the next. In particular, the his- 65

tograms reveal that the SSS estimation in 2012 is improved
by the CRS observations. However, for the years 2008, 2013
and 2014, the CRS observations seem to completely mislead
the SSS estimation. This behavior can be explained by (1) the
particularly wide area covered by the Guil basin and (2) spe- 70

cific atmospheric events during those years, both rending the
CRS observations unrepresentative of the hydrological situ-
ation of the basin. In particular, for the year 2008, the poor
results can be explained both by the non-representativity of
the CRS observations and by a historical flooding episode at 75

the end of May, associated with strong uncertainties on pre-
cipitation.
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Verdon basin

Naguilhes basin

Guil basin

Figure 11. Probabilistic scores for the forecasted seasonal stream-
flow supply SSS by the free ensemble (Free) and the four assimila-
tion experiments.

6 Summary and conclusions

The objective of this work is to assess the potential of using
local snow observations such as cosmic ray sensor observa-
tions (CRS) and fractional snow cover (FSC) data in order to
improve the estimation of the seasonal streamflow supply at5

the outlet of mountainous basin. The assimilation of stream-
flow measurements is commonly performed and is known
to improve the short term prediction of hydrological system
evolution. However, combining different snow pack obser-
vations at basin-scale, such as FSC data, and at local scale,10

such as CRS data, could improve the prediction of seasonal
streamflow supply between April and August (SSS).

As a first step, a sensitivity test performed in Section 3
shows that snow stock control has the potential to strongly
reduce the uncertainties on the seasonal streamflow supply.15

The Sobol indices (relative variances) demonstrate a signifi-
cant sensitivity of the seasonal streamflow supply SSS to un-
certainties on the snow stocks at different altitudes (S4 to S8

in the Verdon, S2 to S4 in the Naguilhes and S4 to S7 in the
Guil basin). Although expected, this result supports the idea20

that assimilating data containing snow stock information can
improve SSS estimation.

Verdon basin

Naguilhes basin

Guil basin

Figure 12. RMSE for the forecasted seasonal streamflow supply
SSS by the free ensemble (Free) and the four assimilation experi-
ments. Not shown here, the climatology RMSE are: 3603.43 hm3

in the Verdon basin, 57.26 hm3 in the Naguilhes basin and 2079.76
hm3 in the Guil basin.

The streamflow assimilation is confirmed to be beneficial
for the streamflow estimation during the reanalysis period
from September to March (Section 5.1), the streamflow pre- 25

diction (after the assimilation) from April to August (Sec-
tion 5.2) and for the SSS estimation (Section 5.3). Indeed,
in the three basins, the Q assimilation significantly improves
the streamflow estimation during the reanalysis period: from
47.6% to 75.4% in the Verdon basin, from 20.5% to 36.8% 30

in the Naguilhes basin and from 39.3% to 69.4% in the Guil
basin. Also, the streamflow forecast during the 5 month fore-
cast period is systematically improved by the Q assimilation,
albeit slightly. Finally, the SSS CRPSS of the Q assimila-
tion is increased compared to the one of the free ensemble 35

for both the Verdon and the Naguilhes basin and remains ap-
proximately constant in the Guil basin. In all the basins, the
SSS RMSE of the Q assimilation ensemble mean is smaller
than the free ensemble mean.

Since the streamflow assimilation seems to be improving 40

the SSS estimation, further experiments were performed in
Section 5.2 to assess the combination of streamflow and other
observations. Also, seperate tests were performed to assess a
CRS-only and a FSC-only assimilation in the hydrological
system (not shown here) but not using the streamflow obser- 45

vations seemed to strongly deteriorate the SSS estimation.
Section 5.2 shows that, in two of the three basins, the com-
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bination of FSC and CRS to Q in the assimilation process
has proven to be very beneficial to the SSS estimation. In
the Verdon and the Naguilhes basins, where it was identified
that FSC and CRS are beneficial, the best strategy seems to
be that all available observations are to be included in the5

assimilation process so that if some years one observation
type is misrepresenting the hydrological situation the others
can counteract its effect. For instance, in the Verdon basin,
the (Q, FSC) assimilation degrades the estimation in 2014
and in 2003 the (Q, CRS) assimilation degrades the estima-10

tion but when assimilating (Q,CRS,FSC) both those years are
improved. The overall scores show that the (Q, FSC, CRS)
assimilation when compared to the Q only assimilation in-
creases the SSS estimation CRPSS by 2% in the Verdon and
by 22% in the Naguilhes basin and reduces the SSS estima-15

tion RMSE by 19.7 hm3 in the Verdon, corresponding to a
15.9 % improvement, and by 4.8 hm3 in the Naguilhes basin
, corresponding to a 56.6 % improvement.

A caution must be made on this strategy since, in the Guil
basin during specific years, the CRS observations can be20

largely misrepresenting the hydrological situation thus sig-
nificantly deteriorating the streamflow and SSS estimations.
More specifically, during three years (2008, 2013 and 2014)
the CRS observations appear to be in contradiction with the
streamflow observations hence misleading the SSS estima-25

tion. This can be explained by specific atmospheric events
occurring during those years and leading to highly heteroge-
neous precipitation patterns.

The present study showed that assimilating multivariate
data in a basin scale hydrological model is possible and can30

improve long term predictions such as the seasonal stream-
flow supply estimation. In two of the three basins, the assimi-
lation of snow observations has proved beneficial, improving
the overall performances. This result was achieved by incor-
porating local CRS data into a basin model through the use of35

an adaptive observation operator on the elevation band. Al-
beit heuristic, the adaptive observation operator has proven to
be successful in most cases. However, some years, the poor
representativity of local CRS observations can degrade the
performance of the DA process. Combining the sources of40

observations therefore appears to be the best guarantee of ro-
bustness for operational purposes. Also, the multivariate as-
similation allowed to highlight that the CRS observations in
one of the studied basins and during specific years are not
appropriate for assimilation and should be disregarded.45

As a continuation of this work and to keep improving SSS
prediction in operational forecasting systems, several other
aspects must be further investigated. First, a wider study
should be conducted using the same experimental set up to
assess the benefits and issues of the available observations,50

in particular the CRS data, in a larger panel of hydrologi-
cal basins. Options to compensate for the lack of represen-
tativity of the CRS data in some basins are limited. A study
on the cost-benefit to densify the observation network in the
concerned basins should be conducted by operational cen-55

Verdon basin

Figure 13. Yearly CRPSS of the seasonal streamflow supply SSS
for the free ensemble (green) and the assimilated ensemble (red)
from the Q assimilation, (Q,FSC) assimilation, (Q,CRS) assimila-
tion and (Q,CRS,FSC) assimilation (10 experiments each year) in
the Verdon basin.

ters. A more attractive, because less expensive, alternative
could be to better characterized and/or improve the repre-
sentativity of SWE data at basin scale by using the exist-
ing large network of snow poles that may contain comple-
menting SWE information. Finally, moving from the semi- 60

distributed MORDOR model to the fully spatialized MOR-
DOR model (Rouhier et al., 2017) should make the integra-
tion of local CRS information into the physics of a basin
model more realistic and ultimately improve the SSS esti-
mation. 65
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Naguilhes basin

Figure 14. Same as Figure 13 in the Naguilhes basin.
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Guil basin

Figure 15. Same as Figure 13 in the Guil basin.
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