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Abstract. Accurately predicting the seasonal streamflow supply (
:::
SSS), i.e. the inflow into a reservoir accumulated during

the snowmelt season (April to August), is critical to operate hydroelectric damns and avoid hydrology-related hazard. Such

forecasts generally involve numerical models that simulate the hydrological evoluation of a basin. The operational department

of the French electric company EDF implements a semi-distributed model and carry out such forecasts for several decades, on

about fifty basins. However, both scarse observation data and over-simplified physics representatioin may
::::
lead

::
to significant5

forecasts errors. Data assimilation has been shown beneficial to improve predictions in various hydrological applications,

yet very few have addressed the seasonal streamflow supply prediction problem. More specifically, the assimilation of snow

observations, though available in various forms, has been rarely studied, despite the possible sensitivity of the streamflow

supply to snow stock. This is the goal of the present paper. In three mountainous basins,
:
a
::::::

series
::
of

:
four ensemble data

assimilation experiments – assimilating (i) the streamflow (Q) alone, (ii) Q and fractional snow cover (FSC) data, (iii) Q and10

local cosmic ray snow sensor data (CRS) and (iv) all the data combined – are compared to the climatologic ensemble and an

ensemble of free simulations. The experiments compare the accuracy of the estimated streamflows during the reanalysis (or

assimilation) period, September to March; during the forecast period, April to August; and the
::::
SSS estimation. The results show

that Q assimilation notably improves streamflow estimations during both reanalysis and forecast period. Also, the additional

combination of CRS and FSC data to the assimilation further ameliorates the
::::
SSS prediction in two of the three basins. In the15

last basin, the experiments highlight a poor representativity of the CRS observations during some years and reveals the need

for an enhanced observation system.
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1 Introduction

Accurately predicting the seasonal streamflow supply (
::::
SSS), i.e. the inflow into a reservoir accumulated during the snowmelt20

season (April to August), is critical to operate hydroelectric damns and avoid hydrology-related hazard. Hence, the operational

department of the French electric company EDF carry
::
has

:::::
been

:::::::
carrying

:
out such forecasts for several decades, on about

::
for

::::::
nearly fifty basins. Yet, in mountainous basins, the confidence provided by long term hydrological forecast is affected by
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the uncertainty on the meteorological forcings (Li et al., 2009; Bormann et al., 2013; Luce et al., 2014) and the inaccurately

simulated snowpack (Liston and Sturm, 1998; Pan et al., 2003). Acknowledging that the seasonal streamflow supply
::::
SSS partly25

depends on the snowpack accumulated during winter, the growing number of satellite observations of snow-related quantities

and in situ snow measurements may open the way to improving the
::::
SSS predictions in mountainous basins.

Some studies suggest that controlling the snowpack evolution using observations can significantly ameliorate short and long

term streamflow forecast (Viviroli et al., 2011; Fayad et al., 2017). In the present paper, a sensitivity experiment is conducted

to highlight how the uncertainties propagate within a hydrological system. The experiment calculates the Sobol indices
:::::
Sobol30

::::::
indices

:::
are

::::::::
computed

:
for each of the model variables, indicating the impact that the uncertainty of these variables has on the

uncertainty of the streamflow at the outlet.
::::
This

:::::::::
experiment

::::::::::
investigates

::
if

:
a
:::::
better

::::::::::::
representation

::
of

:::
the

:::::::::
snowpack

:::::
could

:::::
result

::
in

:
a
:::::::::
significant

::::
gain

::
in

::::
SSS

:::::::::
estimation.

Data assimilation techniques are often used to help control and refine hydrological systems (see Largeron et al., 2020

for a detailed review). Several studies have successfully assimilated snow water equivalent (SWE) data but mostly in local35

models, i.e., models describing the snow dynamic at a specific site and not the hydrological system of an entire basin. Indeed,

SWE measurements, especially from ground-based cosmic ray sensor (CRS; Kodama et al., 1979; Paquet and Laval, 2006)

instruments, provide very local information which can be used to improve a local model at a specific site (e.g., Piazzi et al., 2018

in three Alpine sites). However, assimilating
::::::::::
Assimilating

:
CRS data in a basin scale model as is can lead to representativity

errors (where the SWE measured by CRS does not correspond to any relevant global SWE model), thus deteriorating the system40

estimation. A test (not shown here) has been performed to assess a CRS assimilation directly in the hydrological system and

did indeed strongly deteriorate the streamflow estimation. To circumvent this issue,
:

an alternative approach to consider CRS

data in a basin scale model is discussed in Section 4.3, used throughout the following experiments and shows promising results.

Multiple studies have implemented ensemble-based data assimilation schemes, such as the ensemble Kalman filter (EnKF,

Evensen, 2003), of direct or indirect snow observations (Andreadis and Lettenmaier, 2006; Clark et al., 2006; Slater and Clark,45

2006; Su et al., 2008; Magnusson et al., 2014; Piazzi et al., 2019, 2021). However, the nonlinear nature of these snow related

observations as well as the complexity to control a hydrological system with indirect information seem to favor the use of a

more nonlinear and non-Gaussian data assimilation method, especially when aiming at long lead time prediction improvements

(Dumedah and Coulibaly, 2013). One data assimilation method in particular, the particle filter (PF, Van Leeuwen, 2009), is

known for its ability to handle highly non-linear systems containing non-Gaussian probabilities. Indeed, the PF applies
:::
The

:::
PF50

:::::::::
implements

:
Bayes’ theorem by describing the probability density functions as a sum of Dirac from an ensemble of simulations

(particles) and without any additional hypothesis. Therefore, under the assumption of a sufficiently large ensemble of particles,

the PF provides the optimal solution of any inverse problem. In hydrological applications, DeChant and Moradkhani (2011)

managed to improve SWE and discharge forecast using microwave radiance assimilation with a PF. Also, Leisenring and

Moradkhani (2011) showed in a synthetic experiment comparing an EnKF and a PF, that the assimilation of SWE data with55

a PF improved seasonal predictions. The work of Charrois et al. (2016) has shown the good performance of the PF for the

assimilation of optical reflectivity and snow depths and Piazzi et al. (2018) successfully used a PF for SWE data assimilation
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in moutainous regions. Finally, Piazzi et al. (2021) concluded that PF assimilation outperforms an EnKF assimilation by

generating longer-lasting predictions.

The relevance of using local snow observations is an open question though: How much is the
::::
SSS prediction sensitive to the60

snowpack? Do the snow observations contain enough
::
the

:::::::::
necessary information to estimate the snowpack accurately enough

to impact the quality of predictions?
::
To

::::::
answer

:::::
these

:::::::::
questions,

:::
the

::::::
present

:::::
paper

::::::::
assesses

:::
the

:::::::
potential

::
of
:::::

using
:::::

local
:::::
snow

::::::::::
observations

::
in

::
a
:::::::
seasonal

:::::::
forecast

:::::::::
procedure

::
to

:::::::
improve

:::
the

::::::::::
streamflow

::::::
supply

:::::::::
prediction

::
at

:::
the

:::::
outlet

::
of

:::::::::
mountain

::::::
basins.

::::
This

:
is
:::::::::
addressed

::
by

::::::::::::
implementing

:::
real

::::
data

::::::::::
assimilation

:::::::::::
experiments.

:

:::
The

::::::::::
experiments

:::::::::
performed

::
in

:::
the

::::::
present

::::::
article are based on the MORDOR-SD model (Garavaglia et al., 2017), the semi-65

distributed version of the original MORDOR model, used by EDF for many years. The experiments have been deployed on

three French mountainous basins. Three types of observations are available in these basins: the observed streamflow at the

outlet Q, cosmic ray snow sensor CRS data and fractional snow cover (FSC, Masson et al., 2018), provided by the moderate

resolution imaging spectroradiometer (MODIS) satellite. Each year, an assimilation of the available data is performed from

September to March of the following year. Throughout the paper, this time period is called the reanalysis (or assimilation)70

period. A free forecast is then run from April to August. This time period is called the forecast period. The performance of the

assimilation is evaluated during both the reanalysis and the forecast period.

The paper is
::::::::
structured

::
as

::::::
follows: a description of the model and observations used in the study, i.e. the numerical model,

the three hydrological basins and the available observations (Section 2); a study of the sensitivity of the system (Section 3); the

description of the experimental protocol (Section 4) and the assimilation results (Section 5). A summary and conclusions are75

drawn in Section 6.

2
:::::
Model

::::
and

:::::::::::
observations

2.1 Mordor-SD model

For many years, EDF teams have been using a hydrological box model: the Mordor model.

The
:
In

::::
this

:::::
study,

:::
we

:::
the semi-distributed MORDOR-SD model (Garavaglia et al., 2017)

:::::::::
(Garavaglia

::
et

:::
al.,

:::::
2017),

::::::
which is80

an improvement on the original Mordor that includes a spatial discretization scheme. This discretization
::::::::::::
MORDOR-SD

::
is

:::::
based

::
on

::
a

:::::::::
succession

::
of

:::::::::::
hydrological

:::::::::::
components:

:::
the

:::::::
potential

::::::::::
evaporation

::
is

::::::::::
determined

::
by

:::
an

::::::::::
evaporation

:::::::
function

::::::::::
(depending

::
on

:::
air

:::::::::::
temperature)

:
;
:::
the

:::::::
surface

::::::
storage

:::
U

:::::::::
(modeling

:
a
:::::::

rainfall
::::::
excess

:::
and

::::
soil

::::::::
moisture

:::::::::
accounting

::::::::
storage)

:::::::
impacts

:::
the

:::::::::
evaporation

::::
and

:::
the

:::::
direct

::::::
runoff

:
;
:::
the

:::::::::
capillarity

::::::
storage

::
Z
::
is

:::
fed

:::
by

:::::::
indirect

::::::
runoffs

::::
and

:::
also

:::::::
impacts

:::
the

::::::::::
evaporation

::
;
:::
the

:::::::
hillslope

::::::
storage

::
L

::::::::
seperates

:::::
direct

:::
and

::::::
indirect

:::::::
runoffs,

:::
the

:::
rest

:::::
feeds

:::
the

::::
deep

::::::
storage

::
N

::::
that

:::::::
provides

:::
the

:::::::
baseflow

::::::::::
component85

:
;
:::::
lastly,

:
a
:::::
snow

:::::
stock

:
S
::
is

:::::::::::
accumulating

:::
or

::::::
melting

:::::
based

:::
on

::
an

::::::::
improved

::::::::::
degree-day

::::::::::
formulation.

:::::
More

::::::::::
specifically,

:::
the

:::::
snow

:::::
model

::
is

:::::::
derived

::::
from

::
a
:::::::
classical

::::::::::
degree-day

:::::::
scheme,

::::
with

::
a
:::
few

:::::::::
important

:::::::::
additional

:::::::::
processes:

::
(i)

::
a
::::
cold

::::::
content

::::
able

:::
to

::::::::::
dynamically

::::::
control

:::
the

:::::::
melting

::::::
phase;

:::
(ii)

:
a
:::::
liquid

:::::
water

:::::::
content

::
in

:::
the

:::::::::
snowpack;

:::
(iii)

::
a
::::::::::
ground-melt

::::::::::
component;

::::
and

:::
(iv)

::
a

::::::
variable

:::::::
melting

:::::::::
coefficient,

:::::::::
depending

:::
on

:::
the

:::::::
potential

::::::::
radiation

:::::::
assumed

::
to

::::::
model

:::
the

::::::::
changing

:::::
albedo

:::::
effect

::::::::::
throughout

:::
the
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Figure 1. Time series of the forcings: precipitation P (top) et the temperature T (bottom) during the year 2001-2002 in the Verdon basin. The

deterministic forcings are represented in blue and the corresponding perturbed 50 ensemble members are plotted in gray curves.
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Figure 2. Geographic locations of the Verdon basin, the Guil basin in the Alps mountain range and the Naguilhes basin in the Pyrenees

mountain range (left panel). On the right panels, two zooms show the locations of the in situ CRS observations: V2471, v2804 and v4322

within the Guil, the Verdon and the Naguilhes basins, respectively.

::::::
melting

::::::
season.

::::
The

:::::::::::
accumulation

:::::
phase

::
is

::::::::
controlled

::
by

:::
the

::::::::::::
discrimination

::
of

:::
the

:::::
liquid

:::
and

:::::
solid

:::::::
fractions

::
of

:::
the

::::::::::::
precipitations.90

::::::
Finally,

:::
the

::::
total

:::::
runoff

::
Q
::
is
::::
then

::::::::::
determined

::::
with

:
a
::::
unit

::::::::::
hydrograph.

:::
The

::::::::::::
discretization

::::::
scheme

:::
of

:::::::::::::
MORDOR-SD is based on an elevation band approach, adapted for mountain hydrology.

:::::::::
Classically,

:::
the

:::::::
number

:::
of

:::::::
elevation

::::::
bands

::
is

:::::::::
optimized

:::::::::
depending

::
on

::::
the

::::::::::
hypsometric

:::::
curve

:::
of

:::
the

:::::
basin

::::::::
according

:::
to

:::
the

::::::::
following

:::::::
criteria:

::
(i)

:::
the

:::::::
relative

::::
area

::
of

::::
each

::::::::
elevation

::::
band

::::
has

::
to

::
be

:::::::
greater

::::
than

::
or

:::::
equal

::
to

:::
5%

::::
and

:::
less

::::
than

:::
or

:::::
equal

::
to

::::
50%,

::::
and

::
(ii)

:::
the

::::::::
elevation

:::::
range

::
of

::::
each

:::::
zone

:::
has

::
to

::
be

:::::
lower

::::
than

::::
350

::
m.

:
95

In most MORDOR-SD applications, the spatial variability of meteorological forcing is summarized by two orographic gradi-

ents:
:::
gpz

:::
(in

::
%

:
·
::::
1000

::::
m−1

:
)
:::
for

::::::::::
precipitation

::::
and

::
gtz

:::
(in

:::

◦C
:
·
:::
100

:::::
m−1)

::
for

::::::::::
temperature

::::
(see

::::::::
Appendix

::
2

::
of

::::::::::::::::::
Garavaglia et al., 2017

:
).
:
In this way, we assume that in mountainous areas, spatial variability is primarily determined by elevation.

::
In

:::
our

::::::::::::
configuration,

:::
the

::::::::::
Mordor-SD

::::::
model

:::
has

::
5
::::
state

::::::::
variables

::
in
:::::

each
::::::::
elevation

:::::
band:

::
4

::::::
storage

:::::
water

::::::
levels

:::::::
(surface

::::::
storage

::
U,

::::::::
hillslope

::::::
storage

::
L,

:::::::::
capillarity

::::::
storage

::
Z

:::
and

:::::
snow

:::::
stocks

:::
S)

:::
and

:::
the

:::::::::
snowpack

::::
bulk

::::::::::
temperature

::::::
(TST).

:::
The

::::::
model100

:::
has

:::
one

::::::
global

:::::::
variable

::
N

::::::::::
representing

:::
the

:::::
deep

::::::
storage

:::::
water

:::::
level.

:::
The

:::::::
number

::
of

::::
free

:::::::::
parameters

::
is
:::::::
ranging

::::
from

:::
10

::
to

:::
12

::::::::
depending

:::
on

:::
the

:::::::::::
basin-specific

:::::::::
calibration

::::::::
strategy.

:::
See

::::::::::::::::::::
Garavaglia et al. (2017)

::
for

::
a
::::::::
thorough

:::::::::
description

::
of

:::::::::::::
MORDOR-SD

::::::::::
components

:::
and

:::::
flows.

:

In addition to the state variables, the Mordor-SD model depends on two atmospheric forcings: temperature T and precipita-

tion P.
::::
Both

:::::::
forcings

:::::
result

::::
from

:
a
::::::::
statistical

:::::::::
reanalysis

:::::
based

::
on

::::::
ground

:::::::
network

::::
data

:::
and

:::::::
weather

::::::
patterns

::::::::::::::::::
(Gottardi et al., 2012)105

5



:
.
:::
The

::::::::::::
MORDOR-SD

::::::
model

::
is

::::::::
prescribed

::::
with

:::
the

::::::
spatial

::::::
average

:::
of

::::
these

::::::
forcing

::::
data

::::
over

:::
the

::::
basin

::::
and

:::
are

::::
given

::
at
:::::
daily

::::
time

::::
steps.

:
As discussed previously, the model modifies the impact of the forcings at the different elevations using two orographic

gradients.
:::
The

:::::::::
orographic

::::::::
gradients

:::
are

::::::::
constants

:::::::::
prescribed

::
to
::::

the
:::::
model

::::::::::::
(respectively,

::::::::::
gpz= 21,39

:::
and

:::
28

::
%

::
·
::::
1000

:::::
m−1

:::
and

::::::::::::::::
gtz=−0.75,−0.60,

::::
and

::::::
−0.57

::

◦C
:
·
::::

100
::::
m−1

:::
for

:::
the

:::::
three

:::::
basins

:::::::
studied

::
in

:::
this

:::::
paper

::::
and

::::::::
described

::
in

:::
the

::::
next

:::::::
section:

::::::
Verdon,

:::::::::
Naguilhes

:::
and

::::
Guil

::::::
basin). In the rest of the work presented here, these gradients are constant and will not be discussed110

further. However,
:
,
::::::::
however, these vertical gradients might represent a significant source of uncertainty and their impact should

be investigated in future works.

::
In

:::
the

::::::::
following

:::::::::::
experiments,

::::::::
first-order

:::::::::
stochastic

:::::::::::::
auto-regressive

::::::::
processes

::::::
(AR1)

:::
are

::::
used

::
to

::::::::
perturbed

:::
the

:::::::::::
atmospheric

:::::::
forcings.

:::::
These

::::
AR1

::::::::
processes

::::::::
introduce

:::::::::::
perturbations

:::
on

::
the

:::::::
forcings

::::
that

:::
are

::::::::
consistent

::
in

::::
time

:::
and

::::
that

::::::
provide

::::::::::::
MORDOR-SD

::::
with

::
an

::::::::
ensemble

::
of

::::::::
probable

::::::::::::
meteorological

:::::::::
scenarios.

:::
An

::::
AR1

:::::::
process

::
is

:::::
added

::
to

:::
the

::::::::::
temperature

::
in
:::::

order
::
to
::::::::
simulate

:::
the115

:::::::::
instrument

:::
and

:::
the

:::::::::::::
representativity

::::::
errors.

:::
The

:::::::::::
precipitation

::
is

:::::::::
mutliplied

::
by

:::
an

::::
AR1

::::::::
(centered

::::::
around

:::
1)

:::::::
process,

::
so

::::
that

:::
the

::::::::
variability

::
in

:::
the

:::::::::::
precipitation

:::::::
intensity

::
is

::::::::
simulated

:::
but

:::
no

:::
new

::::
day

::
of

::::::::::
precipitation

:::
are

:::::::
created.

:::
An

:::::::::
illusration

::
of

:::
the

::::::::
ensemble

::
of

:::::::
forcings

:::::::::
generated

:::
for

:::
the

::::
year

:::::
2001

::
in

:::
the

:::::::
Verdon

:::::
basin

:::::
(later

::::::::
described

:::
in

::::::
Section

::::
2.2)

::
is
::::::::

provided
:::

in
::::::
Figure

::
1.

::::
The

:::::::::
calibration

::
of

:::::
these

:::::::::
ensembles

::::
(i.e.,

:::::::::
calibration

::
of

:::
the

::::::::::
parameters

::
of

:::
the

:::::::::::::
auto-regressive

:::::::::
processes)

::::
play

::
a

::::::
crucial

:::
role

:::
in

:::
the

:::::::::::::
implementation

::
of

:::
the

::::::::::
assimilation

::::::
system

:::
and

::
is

::::::
further

::::::::
discussed

::
in

:::::::
Section

:::
4.1.

:
120

2.2 Hydrological basins and observations

The present study focuses on three mountainous basins: the Verdon at La Mure basin, the Naguilhes basin and the Guil at

Chapelue basin (Figure 2) that are part of the EDF hydroelectricity network.
:::::
These

::::
three

::::::
basins

::::
were

:::::::
selected

::::::::
according

::
to

::::
two

::::::
criteria:

:::
(i)

:::
the

::::::
quality

::
of

:::
the

::::::::::
hydrometric

::::
data

:::
(to

:::::
avoid

::::::::::
assimilating

:::::
poor

::::::
quality

:::::
data);

:::
(ii)

:::
the

::::::::
presence

::
of

::::
CRS

::::
data

:::
on

:::
the

:::::
basin.

::::
They

::::
also

::::
offer

::
a
::::::
variety

::
of

::::::::::::
hydro-climatic

:::::::::
dynamics.125

The Verdon at La Mure basin is a sub-basin of the Durance basin located in the Southern French Alps. The Verdon basin

covers 404 km2 and has an elevation ranging from 972m to 2990m. The Naguilhes basin is located on a tributary of the Ariege

river in the Eastern part of the French Pyrenees. It is the smallest of the studied basins, covering 30 km2 and with an elevation

ranging from 1880 to 2750m. The basin corresponds to the inflow from the Naguilhes hydroelectric damn. The Guil basin is a

tributary of the Durance river, located in the French Alps (Hautes-Alpes). The Guil at Chapelue basin covers 418 km2 and has130

an elevation ranging from 1313m to 3274m. The outlet is located just upstream from Maison du Roy damn.

In each basin, the streamflow data were collected by EDF. The precipitation and temperature are computed from a statistical

reanalysis based on ground network data and weather patterns (Gottardi et al., 2012). These data are then used to calibrate and

force the model.

In this study, three
:::::
Three types of observations are available in the basins: the streamflow, the CRS and the FSC.135

The streamflow is the observed water flow at the basin outlet given in m · s−1. The streamflow
:
It is a direct and reliable

observation of the model state variable Q. The streamflow data are available
::::
have

::::
been

::::::::
collected

:::
by

::::
EDF

:
almost continuously

since 1997 in the Verdon basin, 1962 in the Naguilhes basin and 2004 in the Guil basin.
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Figure 3. Available observation time series in the Verdon basin (left), in the Naguilhes basin (center) and in the Guil basin (right) of

streamflow Q (top), CRS SWE observation (center) and FSC (bottom).

The CRS (Kodama et al., 1979; Paquet and Laval, 2006) is a cosmic ray snow sensor located in every basin as part of the

EDF snow network, and provides the snow water equivalent (SWE) that informs on the state of the snow stock at a specific140

geographical point (see Figure 2 right panels).
:
:

– In the Verdon basin, the instrument is located at the Sanguignères station (V2804) at an altitude of 2050m. The CRS data

are available discontinuously from 2002 to 2017.

– In the Naguilhes basin, the instrument is located at the Les Songes station (V4322) at an altitude of 2030m. The CRS

data are available discontinuously from 2004 to 2017.145

– In the Guil basin, the instrument is located at the Les Marrous station (V2471) at an altitude of 2730m. The CRS data

are available discontinuously from 2005 to 2016.
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:::
The

::::
CRS

::::::::::::
measurement

::::::::
technique

::
is

::::::
known

::
to

:::::::
provide

:::::::
accurate

:::::
SWE

::::::::::
estimations,

::::::
except

::
for

:::::
very

::::::
shallow

::::::::::
snow-depth

::::
due

::
to

::::::::::
instrumental

::::::::::
limitations.

:
It
::::::::
provides

:
a
::::
very

::::
local

::::::::::
observation

::::::
(typical

::::::::
footprint

:::::
about

::::
5m),

:::::
which

::::::
suffers

:::::
from

::::::::::::::
representativness

:::::::::
limitations.

:
In Section 4.3, a detailed discussion is held on how the CRS observations are integrated in the assimilation process.150

The FSC is provided by the MODIS satellite observations (Hall et al., 2006). The FSC is quantified at a 500m- and daily-

resolution by a value ranging from 0 to 1, for zero to full coverage.
::::
FSC

:::
data

::::::
suffer

::::
from

::::::::::
well-known

:::::::::
limitations

::::::::::
concerning

:::::::::
cloud/snow

::::::::::::
discrimitation

:::
and

::::::::
measure

::
on

::::::::
complex

::::::::::::::::::
vegetation/topography

:::::::
terrain.

::
In

:::
our

:::::::::::
experiments,

:
the FSC data are av-

eraged on catchment scale and available discontinuously (depending on cloud cover) from 2001 to 2015 in the Verdon, from

2003 to 2015 in the Naguilhes and from 2002 to 2015 in the Guil basin.155

:::
For

::
all

::::::::::
observation

:::::
types,

:::
the

::::::::::
uncertainty

:
is
:::::::
difficult

::
to

::::::::
quantify.

::::
This

::
is

::
all

:::
the

:::::
more

::::::
difficult

:::
for

:::
the

::::::::::
assimilation

::::::::::
perspective

::::
since

:::::::::::::::
representativeness

:::::::::::
uncertainties

:::::
must

::
be

:::::::::
accounted

:::
for.

::::::
Those

:::
are

:::::::::
impossible

::
to

::::::::
quantify

::::
with

:::
the

::::::::
available

:::::
model

::::
and

:::::::::::
observations,

:::
and

::::
may

::
be

:::::
larger

::::
than

:::::::::::
instrumental

:::::::::::
uncertainties.

:::
For

:::::
these

:::::::
reasons,

:::
the

:::::
levels

::
of

:::::::::::
uncertainties

:::::
(error

:::::::::
variances)

::::
have

::::
been

::::::::::
empirically

:::::
tuned

::
in

::
the

::::
data

::::::::::
assimilation

:::::::
system

::
to

::::
avoid

:::::::::
significant

::::
data

::::::::
rejection,

:::::
which

::::::
occurs

:::::
when

::::::::::
observation

::::::::::
uncertainties

:::
are

::::::::::::::
under-estimated.

:
160

The three types of observations are displayed for each basin in Figure 3.

:::
The

:::::::::::
performance

::
of

:::
the

:::::
model

::
is

:::::
good

::
on

:::
the

::::
three

::::::
basins

::
of

:::::::
interest,

::::
with

::::::::::::
Nash-Sutcliffe

::::::::::
Efficiencies

:::::
equal

::
to

:::::
0.846,

::::::
0.760,

:::::
0.926

::::::::::
respectively

::
for

:::
the

:::::::
Verdon,

:::::::::
Naguilhes

:::
and

::::
Guil

::::::
basins

::::
over

:::
the

:::::::::
calibration

::::::
periods

:::::::::::
(respectively

::::::::::
1998-2013,

:::::::::
1987-2012

:::
and

::::::::::
2004-2013).

:

3 Sensitivity experiment165

3.1 Sobol indices

In order to better understand the sensitivity, and thus the controlability, of the Mordor-SD model, we seek to determine which

variables generate the most uncertainty in the streamflow estimate at the basin outlet. To do so, we perform a sensitivity study

of the system based on the Sobol indices (Sobol’, 1990; Nossent et al., 2011).

The Sobol indices evaluate the sensitivity of an output variable to an input variable. If a model links one or more random170

variables Xi, i ∈ [1,n] (input variables) to one random variable Y (output variable), the Sobol index (of first order) of the

variable Xi is based on a variance decomposition and is defined by :

Si =
Var [E [Y |Xi]]

Var [Y ]
. (1)

3.2 Mordor-SD sensitivity

In the case of the Mordor model, one can see the
:::
SSS

:
value as an output variable and all other state variables of the model as175

input variables. It is then possible to run a set of ensemble simulations by perturbing each variable independently to compute

Var [E [Y |Xi]] and another set by perturbing all the variables at once to compute Var [Y ]. This gives the
::::
SSS sensitivity to

each state variable in the model.
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Figure 4.
:::::
Sobol

:::::
indices

:::
(in

::
%)

::
in

:::
the

:::::
Verdon

:::::::::::
configuration

::::::
between

:::
the

::::
years

::::
1968

:::
and

:::::
2018,

::
for

::
a
:::
10%

::::::::::
perturbation

::
on

::::
each

::::::
variable.

::::
The

::::
Sobol

::::::
indices

::::
show

:::
the

::::::::
sensitivity

::
of

::
the

::::
SSS

::::
value

::
to
:::
the

:::::::
variables

::::::
surface

:::::
storage

::::
(U),

:::::::
hillslope

:::::
storage

::::
(L),

:::::::
capillarity

::::::
storage

:::
(Z),

:::::
snow

::::
stocks

:::
(S)

:::
and

:::::
snow

:::
pack

:::::::::
temperature

:::::
(TST)

::
at
:::
the

:
8
::::::
altitude

:::::
levels

::::::
(number

::
1

:
is
:::
the

:::::
lowest

:::::::
altitude).

:::
The

:::
last

::::::
column

:::
Av

::::
gives

:::
the

::::::
average

:::
over

:::
the

::::
entire

::::
time

:::::
period.

::::
The

:::::
darkest

::::::
squares

::::::
indicate

:
a
:::::::
stronger

:::::::
sensitivity

::
of

:::
the

:::
SSS

::
to

::::::::::
uncertainties

::
on

::
the

:::::
snow

:::::
stocks

::::::
between

::::::
altitude

:::
level

::
5
:::
and

::
7.

:
It
::
is
::
to
:::

be
:::::
noted

::::
that

:::
the

::::::
Sobol’

::::::::
equations

:::::
make

:::
the

::::::::::
assumption

::::
that

:::
the

:::::::
variable

:::
Xi:::

are
:::::::::::
independent

::
of

::::
each

:::::
other.

:::::
This

:
is
::::::
clearly

::::
not

:::
the

::::
case

:::
for

:::
the

:::::::
Mordor

::::::::
variables,

::::::::
however,

:::
the

::::
goal

::
of
::::

this
::::::::::
experiment

::
is

:::
not

::
to

:::::::
attribute

::::
the

:::::::
causality

:::
of

:::
the180

::::::::::
uncertainties

:::
on

::
Y

:::
but

::
to

:::::
assess

:::
the

:::::::
potential

::::::::::::
controlability

::
of

:::
the

:::::
model

:::
by

::::
each

:::::::
variable.

::
In

:::::
other

::::::
words,

:
if
:::
we

:::::
were

::
to

::::::
control

:::
and

::::::
reduce

:::
the

:::::::::::
uncertainties

::
on

::::
Xi,::::

with
:::::::::::
observations

:::
for

:::::::
instance,

:::
the

::::::
Sobol

::::::
indices

:::
can

::::
tell

::
us

::::
how

::::::::
effective

:::::
would

:::
be

:::
the

:::::::::
uncertainty

::::::::
reduction

:::
on

::
Y .

:

To carry out this sensitivity study, a set of simulations is generated in each basin on April 1st of each year and the impact

on the seasonal streamflow supply on August 31st is evaluated. Figure 4, 5 and 6 show the Sobol indices (in percent), in the185
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Figure 5.
::::
Sobol

::::::
indices

::
(in

:::
%)

::
in

::
the

::::::::
Naguilhes

::::::::::
configuration

::::::
between

:::
the

::::
years

::::
1968

:::
and

::::
2018,

:::
for

:
a
::::
10%

:::::::::
perturbation

::
on

::::
each

:::::::
variable.

:::
The

::::
Sobol

::::::
indices

::::
show

:::
the

::::::::
sensitivity

::
of

::
the

::::
SSS

::::
value

::
to
:::
the

:::::::
variables

::::::
surface

:::::
storage

::::
(U),

:::::::
hillslope

:::::
storage

::::
(L),

:::::::
capillarity

::::::
storage

:::
(Z),

:::::
snow

::::
stocks

:::
(S)

:::
and

:::::
snow

:::
pack

::::::::::
temperature

::::
(TST)

::
at
:::
the

:
4
::::::
altitude

:::::::::::
levels(number

:
1
::

is
:::
the

:::::
lowest

:::::::
altitude).

:::
The

:::
last

::::::
column

:::
Av

::::
gives

:::
the

::::::
average

:::
over

:::
the

::::
entire

::::
time

:::::
period.

::::
The

:::::
darkest

::::::
squares

::::::
indicate

::
a

::::::
stronger

::::::::
sensitivity

::
of

::
the

::::
SSS

::
to

:::::::::
uncertainties

::
on

:::
the

::::
snow

:::::
stocks

::
at

::::::
altitude

::::
level

:
2
:::
and

::
3.

Verdon, the Naguilhes and the Guil basins respectively, for a perturbation on each variable of 10% of its initial value (April

1st).
:::
The

:::::::
Figures

::::
show

:::
the

:::::
Sobol

::::::
indices

:::::::
between

:::::
1968

:::
and

:::::
2018,

:::
the

:::
last

:::::::
column

::
Av

::
is
:::
the

:::::::
average

::::
over

:::
the

:::::
entire

::::
time

::::::
period.

:::
The

:::::
Sobol

:::::::
indices

::::
show

:::
the

:::::::::
sensitivity

::
of
::::

the
:::
SSS

:::::
value

::
to
::::

the
:::
five

::::
state

:::::::::
variables:

::::::
surface

::::::
storage

::::
(U),

::::::::
hillslope

::::::
storage

::::
(L),

::::::::
capillarity

::::::
storage

::::
(Z),

::::
snow

::::::
stocks

:::
(S)

:::
and

::
to

:::
the

::::
snow

::::
pack

::::::::::
temperature

::::::
(TST)

:
at
:::
the

::
8,

::
4

:::
and

:
8
:::::::
altitude

:::::
levels

::
in

:::::
Figure

::
4,

:
5
::::
and

::
6,

::::::::::
respectively.

::::
The

::::::
darkest

:::::::
squares

::::::
indicate

::
a
:::::::
stronger

:::::::::
sensitivity

::
of

:::
the

::::
SSS

::
to

:::::::::::
uncertainties

::
on

:::
the

::::::::::::
corresponding

:::::::::
variables.190

:::
The

:::
U,

::
L

:::
and

::
Z

:::::::
storages

:::
are

::::::::
expected

::
to

:::::
have

:
a
:::::::::
short-term

::::::
impact

:::
on

:::
the

::::::
runoff

::
at

:::
the

:::::
basin

:::::
outlet,

::::::
hence,

:::::::::::
uncertainties

:::
on

::::
these

:::::::
storages

:::
on

:::::
April

:::
1st

:::::
should

:::::::
impact

:::
less

:::
the

::::
SSS

::::::::::
uncertainty.

::::
This

::
is

::::::
indeed

:::::::::
confirmed

::
by

:::
the

:::::
small

:::::
Sobol

:::::::
indices

::::
they
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Figure 6.
::::
Sobol

:::::
indices

:::
(in

:::
%)

::
in

::
the

::::
Guil

::::::::::
configuration

:::::::
between

:::
the

::::
years

::::
1968

:::
and

:::::
2018,

:::
for

:
a
::::
10%

:::::::::
perturbation

:::
on

::::
each

::::::
variable.

::::
The

::::
Sobol

::::::
indices

::::
show

:::
the

::::::::
sensitivity

::
of

::
the

::::
SSS

::::
value

::
to
:::
the

:::::::
variables

::::::
surface

:::::
storage

::::
(U),

:::::::
hillslope

:::::
storage

::::
(L),

:::::::
capillarity

::::::
storage

:::
(Z),

:::::
snow

::::
stocks

:::
(S)

:::
and

::::
snow

::::
pack

:::::::::
temperature

:::::
(TST)

::
at

::
the

:
8
::::::
altitude

:::::
levels

::::::
(number

:
1
::
is
:::
the

:::::
lowest

:::::::
altitude).

:::
The

:::
last

::::::::
columnow

::
Av

::::
gives

:::
the

::::::
average

:::
over

:::
the

::::
entire

::::
time

:::::
period.

::::
The

:::::
darkest

::::::
squares

::::::
indicate

:
a
:::::::
stronger

:::::::
sensitivity

::
of

:::
the

:::
SSS

::
to

::::::::::
uncertainties

::
on

::
the

:::::
snow

:::::
stocks

::::::
between

::::::
altitude

:::
level

::
4
:::
and

::
7.

:::::::
generate

::
on

:::
the

:::::
SSS.

::::::::::
Uncertainty

::
on

:::
the

:::::::::::
temperature

::
of

:::
the

:::::
snow

::::
pack

::::
TST

::
at

:::::
April

:::
1st

:::::
seems

::
to
:::::

have
::::
also

:::
not

:::::
much

::::::
impact

::
on

:::
the

::::
SSS

::::::::::
uncertainty. However, it can be seen that for all years the variable uncertainties that lead to the largest uncertainties

in cumulative streamflow are the uncertainties on snow stocks at the altitude bands from S4 to S7 in the Verdon, from S2 to S4195

in the Naguilhes and from S4 to S7 in the Guil basin.
:::
The

:::::::::
differences

:::::::
between

::::::::
elevation

:::::
bands

::
is

::::::
mainly

:::
due

::
to
:::
the

::::::::::
differences

::
of

::::
their

:::::::
absolute

:::::
snow

:::::::
content.

:::
For

::::::::
example,

:::
the

::::
high

:::::::
elevation

:::::
bands

:::::
have

::::::
smaller

:::::
areas

:::
(by

::::::::
definition

::
of

:::
the

::::::::
elevation

::::::
bands)

:::::
hence

::::
they

::::
have

::::
less

:::::
snow

::::::
content

::::::
which

::::
leads

:::
to

:::
less

::::::::::
uncertainty.

:::::::::
Similarly,

:::::::::
differences

::::::::
between

::::
years

:::
are

:::::
most

:::::
likely

::::
due

11



::
to

:::::::::
differences

::
in

:::::::
snowfall

:::::
since

:::
the

:::::::::::
perturbations

:::
are

:::::::::
prescribed

:::::::
relative

::
to

:::
the

::::
state

::::::::
variables

:::
(10

:::
%)

:::
but

:::
the

:::::::::
sensitivity

::
of

:::
the

:::::::::
streamflow

::
is

:::::::
absolute.

:
200

This
::
A

:::::::::
substancial

:::::::::
difference

::
in

::::::::
sensitivity

:::::::
between

:::
the

:::::
three

::::::
basins

:
is
::
to
:::
be

:::::
noted.

::::
The

::::::
Verdon

:::::
basin

:::::
shows

::
a
:::::::::
maximum

::
of

::::
36%

::
of

:::::::::
sensitivity,

:::
the

:::::::::
Naguilhes

:::::
basin

::
of

::::
99%

::::
and

:::
the

::::
Guil

:::::
basin

::
of

:::::
28%.

::::
This

:::::
could

:::::
imply

::::
that

::
in

:::
the

::::::::
Naguilhes

::::::
basin,

:::
for

:::::::
instance,

::::::::::
introducing

:::::::
accurate

::::::::::
information

:::
on

:::
the

:::::
snow

:::::
stocks

::::::
might

::::
have

:
a
:::::

very
::::::
positive

:::::::
impact

::
on

:::
the

::::
SSS

::::::::::
estimation.

:::
On

::
the

:::::
other

:::::
hand,

::
in

:::
the

:::::
other

::::
two

::::::
basins,

:
a
::::::
control

:::
of

:::
the

::::
snow

::::::
stocks

:::::
could

:::::::
improve

:::
the

::::
SSS

:::::::::
estimation

:::
but

::::::
maybe

::
to

::
a

:::::
lesser

:::::
extent.

::::
This

:
sensitivity study confirms nonetheless that controlling the snow stocks at the end of winter seems to be the most205

important lever to improve the SSS prediction.

Verdon basin Naghuiles basin Guil basin

Figure 7. CRPSS of free ensemble simulations computed for AR1 parameter calibration (σP ,σT ). The maximum CRPSS occurs at Verdon

basin for (0.3,0.3), at Naguilhes basin for (0.3,0.8) and at Guil basin for (0.3,0.5).

4 Experimental protocol

4.1 Protocol and diagnostics

The experiments are performed during the years when CRS and streamflow observations are available: from 2002 to 2017 in the

Verdon basin, from 2004 to 2017 in the Naguilhes basin and from 2005 to 2016 in the Guil basin. Every year, data assimilation210

is performed between September, 1st and March, 31st, this period is called the reanalysis period. The assimilated ensemble is

then forecasted freely from April, 1st to August, 31st, this period is called the forecast period. The streamflow estimations are

diagnosed during both the reanalysis and the forecast period. The
:::
SSS

:
estimation, i.e., the cumulated streamflow during the

forecast period, is also diagnosed.

The diagnostics performed are the continuous rank probability score skill (CRPSS; see Hersbach, 2000 for details on the215

CRPS and Piazzi et al., 2018 for details on the CRPSS) according to the formulation described by Bontron (2004), with a

thinness component (FinS) and a correctness component (JustS). A score of 1 represents a perfect ensemble and lower than 0

an ensemble less accurate than the climatology of the system. The FinS score can be seen as a measurement of the dispersion
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of the ensemble and the JustS a distance between the median of the ensemble and the observations. A second diagnostic is used

to assess the
::::
SSS estimation: the root-mean-square error (RMSE). The RMSE is the euclidian distance between the ensemble220

mean
:::
SSS

:
estimation and the observed

:::
SSS and is computed, here, in hm3. A perfect RMSE score is equal to 0.

4.2 Meteorological forcing perturbations

The free ensemble simulations and the assimilation ensemble simulations are generated using perturbations with AR1 pro-

cesses on the forcings. The AR1 autocorrelation parameters are prescribed for all experiments as 0.9 for temperature and 0

for precipitation. Note that the AR1 process applied on precipitation is multiplicative and the one applied on temperature is225

additive. The AR1 standard deviations for the free ensemble were tuned to provide the most accurate
:::
SSS

:
prediction. Figure 7

shows the CRPSS on the
::::
SSS estimation for free ensembles with several sets of AR1 standard deviations parameters (σP ,σT )

applied to the forings (P,T).

A reproducibility issue was encountered during the assimilation experiments (several experiments with the same parameters

produced different results) probably due to the high non-linearities of the system and the finite number of ensemble members.230

To avoid this problem, the standard deviations σP and σT of the AR1 processes on the forcings used for the assimilation were

increased to stabilize the results, during the reanalysis period. Then, during the forecast period, the assimilation ensemble uses

the same AR1 process parameters as the free ensemble. Table 1 summarizes the AR1 parameters used in the experiments.

Verdon basin Naguilhes basin Guil basin

σP σT σP σT σP σT

Free 0.3 0.3 0.3 0.8 0.3 0.5

Q assim 0.4 0.4 0.5 1.1 0.4 0.5

(Q,FSC) assim 0.8 0.8 0.6 1.2 0.4 0.6

(Q,CRS) assim 0.8 0.8 0.6 1.2 0.4 0.6

(Q,CRS,FSC) assim 1.0 1.0 0.8 1.4 0.5 0.7

Table 1. AR1 processes parameters applied on precipitation (φP ,σP ) and temperature (φT ,σT ) forcings, for the free ensemble and the

assimilation ensembles during the reanalysis period (September to March) and the forecast period (April to August).

4.3 Assimilation setup

The assimilation is performed using a particle filter (PF) with sequential importance resampling (Gordon et al., 1993; Van Leeuwen,235

2009). The PF determines sequentially, within an ensemble of simulations (also called particles or members), the simulations

having a model state close to the observations. The PF describes the prior probability density of the system state as a Dirac sum

of equal weights 1/N for N the size of the ensemble. Using Bayes’ theorem, the analysis assigns larger weights to the simula-

tions closer to the observations. The weights are then used to resample the simulations farthest from the observations so that

the simulations closest to the observations are duplicated. In this study, we use a stratified resampling method introduced by240
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Figure 8. Streamflow time series Q, during the year 2002 for the Verdon basin, of the observed streamflow (blue), the climatological

ensemble (black), the free ensemble (top panel ; green) and the assimilated ensemble (middle panel ; red) for the assimilation of Q. Bottom

panel represent the ensemble respective medians. The vertical dotted black line represents the separation between the reanalysis period

(before the line) and the forecast period (after the line).

Kitagawa (1996). The duplicated simulations are not perturbed after resampling. The dispersion of the ensemble is maintained

only by the perturbations on the forcings. Several studies showed the need for additional perturbation after resampling in order

to avoid ensemble collapse yet it does not seem necessary in our system.

:::
The

::::
free

::::::::
ensemble

:::
and

:::
the

::::::::::
assimilation

::::::::
ensemble

:::
are

:::::::::
composed

::
of

::::
900

::::::::
members.

:::
The

:::
PF

::::::::
provides

::
the

:::::
exact

:::::::::::::
Bayes’theorem

::::::
solution

:::
for

::
an

::::::::
infinitely

::::
large

::::::::
ensemble

:::
but

:::::::
quickly

:::::
suffers

:::::
from

::
the

:::::
curse

::
of

::::::::::::
dimensionality

::::::::::::::::::
(Snyder et al., 2008)

::
and

:::::::::::::
underperforms245

::::
with

::::
small

::::::::
ensemble

:::::
sizes.

:::::
Some

:::::::::::
experiments

::::
have

::::
been

:::::::::
performed

::::
with

::::::
smaller

:::::::::
ensembles

::::
(not

::::::
shown

::::
here)

::::
and

::::::
confirm

::::
this

::::
issue.

:::::
Due

::
to

:::
the

::::
very

::::::::
nonlinear

::::::
nature

::
of
::::

the
::::::::::
hydrological

:::::::
model,

:::
the

::::::::::
assimilation

:::::::::::
performance

:::::
were

:::
not

:::::::::
necessarily

:::::
poor
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:::
but

:::::::
unstable,

:::::::::
meaning,

::::
they

:::::
would

::::::::
fluctuate

:::::
when

::::::::
repeated.

:::::
Since

:::
the

::::
goal

:::
of

:::
the

::::::
present

::::::
paper

::
is

:::
not

::
to

:::::::
suggest

:::
the

:::::
most

:::::::::
appropriate

::::::::::
assimilation

:::::::
method

::
for

::::::::::
operational

::::
use,

::
but

::
is
:::::
rather

::
to
::::::
assess

:
if
::::::::::
information

:::
on

:::
the

:::
SSS

:::::
exists

::::
and

:::
can

::
be

::::::::
retrieved

::::
from

:::::
snow

::::
stock

:::::::::::
observations,

:::
we

::::
have

::::::
chosen

::
to
::::
use

:
a
::::
very

:::::
large

::::::::
ensemble.

:
250

The assimilation window for all experiments is a 3-day window, i.e., an analysis is performed every three days using the last

three daily observations.

Verdon basin Naguilhes basin Guil basin

Free Q assimilation Free Q assimilation Free Q assimilation

FinS 0.701 0.665 −0.015 0.218 0.755 0.830

JustS 0.371 0.796 0.311 0.440 −0.366 0.410

CRPSS 0.476 0.754 0.205 0.368 0.393 0.694

Table 2. Probabilistic scores on streamflow Q during reanalysis period, from September to March, for the free ensemble (Free) and the

streamflow assimilation (Q assimilation).

4.4 Observation operators

In order to allow small time lags between simulated and observed streamflow, the three streamflow observations in the 3-day

assimilation window are averaged to make a single observation. Streamflow observation error variance is then prescribed as a255

function of the observed streamflow Qobs (similarly to Clark et al., 2008; Weerts and El Serafy, 2006; and Piazzi et al., 2021):

σ2
Q = α ·Q2

obs, (2)

with α= 0.3. Also, a minimal threshold of σ2
Q = 0.2 is used so as to avoid unreasonably low uncertainties for very small

streamflow.

The ssimilation is performed using the FSC normalized anomalies. The anomalies are computed by substracting the daily260

FSC climatologic average to the daily FSC value of the current year and this difference is then divided by the climatologic

average. The anomaly indicates with a positive or a negative value if the snow cover is especially high or low this year on

that day. The same is done to the fraction snow cover computed by the model. The observation error variances of the FSC

normalized anomalies are prescribed at σFSC = 0.3.

Finally, as previously mentioned, CRS observations are local data and do not necessarily represent the snow dynamics of an265

entire basin. Hence, the first step of the CRS observation operator is to consider the CRS normalized anomalies, similarly to the

FSC observations. However, after several tests (not shown here), the CRS normalized anomaly does not provide the correction

needed for the model snow stock anomaly at the appropriate altitude band. A second step of the CRS observation operator was

then to systematically compare, at each assimilation window, the CRS anomaly to the forecasted model snowpack anomaly

at all altitude bands. The closest (in terms of CRPSS) altitude band is then considered to be the observed band. This can be270

seen as an adaptative observation operator. This process does slightly impact the computation time (as it has to be performed
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every three days, in this case), but significantly improves the results in our study. The observation error variances of the CRS

anomalies are prescribed at σCRS = 0.3.

Figure 9. Same as the bottom panel of Figure 8, during the year 2011 in the Verdon, for the Q assimilation (top) and the (Q,CRS) assimilation

(bottom).

5 Assimilation results

5.1 Streamflow reanalysis, September to March275

During the September to March period, the observations are available daily. In this subsection, only streamflow observations

are assimilated. As an illustration, Figure 8 shows the time series of Q during the year 2002 in the Verdon basin. The reanalysis

period corresponds to the times left of the vertical dotted black line and the forecast period to the times right of that line. While

the top two panels highlight the high confidence of the assimilated ensemble (red lines) versus the free ensemble (green lines)

with a reduction in dispersion, the bottom panel shows that the median after assimilation (red line) is more accurate than the280

median without assimilation (green line) with respect to the observations (blue line).

The first conclusions drawn from the year 2002 are confirmed over the 16 years 2002-2017 in the Verdon, the 12 available

years between 2004 and 2017 in the Naguilhes and the 10 available years between 2005 and 2016 in the Guil basin, with the

use of the probabilistic score CRPSS and its components FinS and JustS summarized in Table 2. The FinS of the free ensemble
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is higher than the FinS of the assimilated ensemble which is not abnormal since the ensembles have not been generated with285

the same perturbations and the assimilated ensemble perturbations were much stronger. However, the assimilation increases

the JustS of the free ensemble from 37.1% to 79.6% in the Verdon, 31.1% to 44% in the Naguilhes and -36.6% to 41% in the

Guil basin. This results in a CRPSS of 75.4%, 36.8% and 69.4% after assimilation when the free ensemble CRPSS was 47.6%,

20.5% and 39.3% in the three basins, respectively.

Assimilation of streamflow observations combined with CRS and FSC observations have been compared to streamflow-290

only assimilation and has very little to no impact on the results during this reanalysis period (not shown here). This is due to

the very straightforward task of constraining simulated streamflows using the accurately observed streamflow. Indeed, the PF

sequentially selects and resamples the simulations with a streamflow closer to the observations.

An interesting specificity of the particle filter, as a data assimilation method, is that each time not only the accurate stream-

flows are selected but also all the corresponding state variables. In other word, one can hope that the assimilation will have also295

selected more accurate snow stocks which will then help produce better streamflow predictions during the following spring

and summer seasons.

Verdon basin

Naguilhes basin

Guil basin

Figure 10. Probabilistic scores (bottom) for the forecasted streamflow Q by the free ensemble (Free) and the four assimilation experiments.
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5.2 Streamflow forecast, April to August

Figure 9 shows the streamflow time series of the ensemble medians (climatologic ensemble in black, free ensemble in green

and assimilated ensemble in red) and the observed streamflow (in blue) during the year 2011 in the Verdon basin for the Q300

assimilation (top panel) and the (Q, CRS) assimilation (bottom panel). The streamflow assimilation (Figure 9 top panel) seem

to improve the short term (first 5 to 10 days) streamflow forecast. But, the streamflow forecast is then overestimated after

a couple of weeks. However, a good control of the snow pack with (Q, CRS) assimilation (Figure 9 bottom panel) reduces

this long term streamflow forecast overestimation. Hence, the overall streamflow forecast remains improved in the first few

weeks of the forecast period in comparison to the free ensemble and the overestimation during the rest of the forecast period is305

avoided.

This result is confirmed by the probabilistic score CRPSS for all years available and in two of the three basins: Verdon and

Naguilhes basins (Figure 10). Both (Q,CRS) and (Q, FSC) assimilation show CRPSS increase in comparison to Q only assim-

ilation.
::
In

:::
the

::::::::
Naguilhes

::::::
basin,

::
in

::::::::
particular,

:::
the

::::::::::
streamflow

::::::::::
assimilation

:::::::::::
improvement

::::
over

:::
the

::::
Free

::::::::
ensemble

:::::::::::::
(approximately

::::
from

:
a
:::::::
CRPSS

::
of

::::
0.44

::
to
::::::

0.455)
::
is

::::::
almost

:::::::
doubled

:::
by

:::
the

::::::::
additional

:::
use

:::
of

::::
CRS

:::::::::::::
(approximately

::
to

:
a
:::::::

CRPSS
::
of

:::::::
0.465).

::::
This310

::::::::
significant

::::::::::::
improvement

::
in

:::
the

:::::::::
Naguilhes

:::::
basin

:::::
could

:::
be

:::
due

:::
to

:::
the

:::::
strong

:::::::::
sensitivity

:::
of

:::
the

:::::::::
streamflow

:::
to

:::
the

:::::
snow

:::::
stock

:::::::::
uncertainty

::
as

:::::::
implied

::
by

:::
the

:::::
Sobol

::::::::::
experiment

::::::::::
conclusions

:::::::
(Section

:::
3).

In the Guil basin, the streamflow forecast is degraded by the use of CRS data. This overall result is in fact due to some years

in particular where the CRS information is contradictory to the observed streamflow. The case of the Guil basin will be further

discussed in the following section.315

In general, the improvement brought by an accurately controlled snow pack to the streamflow estimation is slim in terms of

scores. The variation in the CRPSS is almost always smaller than 5%. This is due to the fact that, even though the snow stock

might be improved, the timing of the streamflow runoff is mainly driven by the anticipated meteorological forcings during the

forecast period. The cumulated streamflow, or seasonal streamflow supply, however should be less impacted by the timing of

the runoff and should be significantly improved by a better estimated snow stock.320

5.3 Seasonal streamflow supply
:::
SSS forecast

Global scores have been computed to assess the abilities of the different assimilation configurations to estimate the seasonal

streamflow supply
:::
SSS, i.e., the cumulated runoff between April and August. Similarly to Figure 10, Figure 11 shows the

global CRPSS, FinS and JustS of the
::::
SSS ensemble estimations in the three basins and Figure 12 shows the RMSE of the

ensemble means.325

As for the streamflow estimation, the
::::
SSS estimation is improved by assimilating all the available data in the Verdon basin

and the Naguilhes basin. In the Verdon basin, the Q assimilation increases the CRPSS from 77% (free ensemble) to 80.5% and

the (Q, FSC, CRS) assimilation further increases the CRPSS to 82.7%. Meanwhile, the RMSE of the free ensemble
:::
SSS mean

(200 hm3) is almost halved by the (Q, FSC, CRS) assimilation and reduced to a little over 100 hm3. In the Naguilhes basin,

the Q assimilation increases the CRPSS from 58.7% (free ensemble) to 62.2%, the (Q, CRS) assimilation further increases330
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the CRPSS to 75% and the (Q, FSC, CRS) assimilation CRPSS is slightly lower at 74.6%. The RMSE is strongly reduced by

the use of CRS observations. Both (Q, CRS) and (Q, FSC, CRS) assimilations reduce the free ensemble
:::
SSS

:
mean RMSE,

which is over 10 hm3, down to under 4 hm3.
:::::
Once

:::::
again,

::::
these

:::::
very

::::
good

:::::::::::
performances

::
in
:::

the
:::::::::
Naguilhes

:::::
basin,

:::
are

:::::
likely

::::
due

::
to

:::
the

::::::::
significant

:::::::::
sensitivity

::
of

:::
the

::::
SSS

:::::::::
estimation

::
to

:::
the

:::::
snow

:::::
stock

:::::::::
uncertainty

::::
that

::::
was

:::::::::
highlighted

:::
by

:::
the

:::::
Sobol

:::::::::
sensitivity

:::::::::
experiment

:::::::
(Section

:::
3).335

The yearly
::::
SSS CRPSS histograms presented in Figure 13 and Figure 14 allow to understand how combining all the ob-

servations improve the global scores. Every year, the free ensemble
:::
SSS

:
CRPSS (green) is compared to the

::::
SSS CRPSS of

the assimilated ensemble (red) for the different assimilation configurations. As a reminder, a negative CRPSS indicates that

the ensemble estimation is less accurate (in terms of CRPS) than the climatological ensemble. In the Verdon basin, the main

inaccurate free ensemble
::::
SSS estimation occurs in 2014. During that year, only the assimilation configurations containing CRS340

observations are able to truly correct that estimation. Meanwhile, in 2003 for instance, (Q, CRS) assimilation deteriorates the

:::
SSS

:
estimation. But, only assimilating (Q,CRS,FSC) manages to improve both 2003 and 2014. Similarly, in the Naguilhes

basin, the years 2004 and 2011 are poorly estimated by the free ensemble, the Q assimilation and the (Q, FSC) assimilation but

both the (Q, CRS) and the (Q, FSC, CRS) assimilations significantly increase the
::::
SSS CRPSS. These yearly variations show

that the hydrological problem considered here is not a linear and Gaussian problem where adding observations systematically345

improves the estimation every year. These variations can be due to the quality or representativity of those observations which

can also variate from one year to the next. But in this case, the benefits of combining multivariate data comes from the par-

ticle filter selection process which behaves as a data cross validation of sort that will take advantage of the most appropriate

observations each year. This remains true, however, as long as none of the observations are widely inaccurate.

For instance, in the Guil basin, the detrimental impact of the CRS observations is even larger on the
::::
SSS estimation than350

it is on the streamflow estimation. The average CRPSS declines from approximately 75% to 65% (Figure 10) and the RMSE

increases from 120 hm3 up to 280 hm3 (Figure 11). Similarly to Figure 13 and Figure 14, the yearly histograms in Figure

15 reveal that the assimilation performances differ significantly from one year to the next. In particular, the histograms reveal

that the
:::
SSS estimation in 2012 is improved by the CRS observations. However, for the years 2008, 2013 and 2014, the CRS

observations seem to completely mislead the
:::
SSS

:
estimation. This behavior can be explained by

::
(1)

:::
the

::::::::::
particularly

:::::
wide355

:::
area

:::::::
covered

:::
by

:::
the

::::
Guil

:::::
basin

::::
and

:::
(2) specific atmospheric events during those years,

:::::
both rending the CRS observations

unrepresentative of the hydrological situation of the basins
::::
basin. In particular, for the year 2008, the poor results can be

explained both by the non-representativity of the CRS observations and by a historical flooding episode at the end of May,

associated with strong uncertainties on precipitation.

6 Summary and conclusions360

The objective of this work is to assess the potential of using local snow observations such as cosmic ray sensor observations

(CRS) and fractional snow cover (FSC) data in order to improve the estimation of the seasonal streamflow supply at the outlet

of mountainous basin. The assimilation of streamflow measurements is commonly performed and is known to improve the
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Verdon basin

Naguilhes basin

Guil basin

Figure 11. Probabilistic scores for the forecasted seasonal streamflow supply
:::
SSS by the free ensemble (Free) and the four assimilation

experiments.

short term prediction of hydrological system evolution. However, combining different snow pack observations at basin-scale,

such as FSC data, and at local scale, such as CRS data,
:::::
could

:::::::
improve

:::
the

:::::::::
prediction

::
of

:::::::
seasonal

::::::::::
streamflow

:::::
supply

::::::::
between365

::::
April

::::
and

::::::
August

::::::
(SSS).

As a first step, a sensitivity test performed in Section 3 shows that snow stock control has the potential to strongly reduce

the uncertainties on the seasonal streamflow supply. The Sobol indices (relative variances) demonstrate a significant sensitivity

of the seasonal streamflow supply
::::
SSS to uncertainties on the snow stocks at different altitudes (S4 to S8 in the Verdon, S2

to S4 in the Naguilhes and S4 to S7 in the Guil basin). Although expected, this result supports the idea that assimilating data370

containing snow stock information can improve
:::
SSS estimation.

The streamflow assimilation is confirmed to be beneficial for the streamflow estimation during the reanalysis period from

September to March (Section 5.1), the streamflow prediction (after the assimilation) from April to August (Section 5.2) and

for the
::::
SSS estimation (Section 5.3). Indeed, in the three basins, the Q assimilation significantly improves the streamflow

estimation during the reanalysis period: from 47.6% to 75.4% in the Verdon basin, from 20.5% to 36.8% in the Naguilhes basin375

and from 39.3% to 69.4% in the Guil basin. Also, the streamflow forecast during the 5 month forecast period is systematically
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Verdon basin

Naguilhes basin

Guil basin

Figure 12. RMSE for the forecasted seasonal streamflow supply
:::
SSS by the free ensemble (Free) and the four assimilation experiments. Not

shown here, the climatology RMSE are: 3603.43 hm3 in the Verdon basin, 57.26 hm3 in the Naguilhes basin and 2079.76 hm3 in the Guil

basin.

improved by the Q assimilation, albeit slightly. Finally, the
::::
SSS CRPSS of the Q assimilation is increased compared to the one

of the free ensemble for both the Verdon and the Naguilhes basin and remains approximately constant in the Guil basin. In all

the basins, the
:::
SSS

:
RMSE of the Q assimilation ensemble mean is smaller than the free ensemble mean.

Moreover, in
::::
Since

:::
the

:::::::::
streamflow

::::::::::
assimilation

:::::
seems

::
to

:::
be

::::::::
improving

:::
the

::::
SSS

:::::::::
estimation,

::::::
further

::::::::::
experiments

::::
were

:::::::::
performed380

::
in

::::::
Section

:::
5.2

::
to

::::::
assess

:::
the

::::::::::
combination

::
of

::::::::::
streamflow

:::
and

:::::
other

:::::::::::
observations.

::::
Also,

::::::::
seperate

::::
tests

::::
were

:::::::::
performed

::
to

:::::
assess

::
a

::::::::
CRS-only

:::
and

::
a
::::::::
FSC-only

::::::::::
assimilation

::
in

:::
the

:::::::::::
hydrological

::::::
system

::::
(not

:::::
shown

:::::
here)

:::
but

:::
not

:::::
using

:::
the

:::::::::
streamflow

:::::::::::
observations

::::::
seemed

::
to

:::::::
strongly

:::::::::
deteriorate

:::
the

::::
SSS

:::::::::
estimation.

:::::::
Section

:::
5.2

:::::
shows

::::
that,

::
in

:
two of the three basins, the addition

::::::::::
combination

of FSC and CRS
::
to

::
Q

:
in the assimilation process has proven to be very beneficial to the

:::
SSS

:
estimation. In the Verdon and

the Naguilhes basins, where it was identified that FSC and CRS are beneficial, the best strategy seems to be that all available385

observations are to be included in the assimilation process so that if some years one observation type is misrepresenting the

hydrological situation the others can counteract its effect. For instance, in the Verdon basin, the (Q, FSC) assimilation degrades

the estimation in 2014 and in 2003 the (Q, CRS) assimilation degrades the estimation but when assimilating (Q,CRS,FSC)

both those years are improved. The overall scores show that the (Q, FSC, CRS) assimilation when compared to the Q only
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assimilation increases the
:::
SSS

:
estimation CRPSS by 2% in the Verdon and by 22% in the Naguilhes basin and reduces the

::::
SSS390

estimation RMSE by 19.7 hm3 in the Verdon, corresponding to a 15.9 % improvement, and by 4.8 hm3 in the Naguilhes basin

, corresponding to a 56.6 % improvement.

A caution must be made on this strategy since, in the Guil basin during specific years, the CRS observations can be largely

misrepresenting the hydrological situation thus significantly deteriorating the streamflow and
:::
SSS

:
estimations. More specif-

ically, during three years (2008, 2013 and 2014) the CRS observations appear to be in contradiction with the streamflow395

observations hence misleading the
:::
SSS

:
estimation. This can be explained by specific atmospheric events occurring during

those years and leading to highly heterogeneous precipitation patterns.

Verdon basin

Figure 13. Yearly CRPSS of the seasonal streamflow supply
:::
SSS

:
for the free ensemble (green) and the assimilated ensemble (red) from the

Q assimilation, (Q,FSC) assimilation, (Q,CRS) assimilation and (Q,CRS,FSC) assimilation (10 experiments each year) in the Verdon basin.
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Naguilhes basin

Figure 14. Same as Figure 13 in the Naguilhes basin.

The present study showed that assimilating multivariate data in a basin scale hydrological model is possible and can improve

long term predictions such as the seasonal streamflow supply estimation. In two of the three basins, the assimilation of snow

observations has proved beneficial, improving the overall performances. This result was achieved by incorporating local CRS400

data into a basin model through the use of an adaptive observation operator on the elevation band. Albeit heuristic, the adaptive

observation operator has proven to be successful in most cases. However, some years, the poor representativity of local CRS

observations can degrade the performance of the DA process. Combining the sources of observations therefore appears to

be the best guarantee of robustness for operational purposes. Also, the multivariate assimilation allowed to highlight that the
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Guil basin

Figure 15. Same as Figure 13 in the Guil basin.

CRS observations in one of the studied basins and during specific years are not appropriate for assimilation and should be405

disregarded.

As a continuation of this work and to keep improving
:::
SSS

:
prediction in operational forecasting systems, several other

aspects must be further investigated. First, a wider study should be conducted using the same experimental set up to assess the

benefits and issues of the available observations, in particular the CRS data, in a larger panel of hydrological basins. Options to

compensate for the lack of representativity of the CRS data in some basins are limited. A study on the cost-benefit to densify410

the observation network in the concerned basins should be conducted by operational centers. A more attractive, because less

expensive, alternative could be to better characterized and/or improve the representativity of SWE data at basin scale by using

the existing large network of snow poles that may contain complementing SWE information. Finally, moving from the semi-

24



distributed MORDOR model to the fully spatialized MORDOR model (Rouhier et al., 2017) should make the integration of

local CRS information into the physics of a basin model more realistic and ultimately improve the
:::
SSS

:
estimation.415
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