Supplement of Vertical profiles of cloud condensation nuclei number concentration and its empirical estimate from aerosol optical properties over the **North China Plain** Rui Zhang¹, Yuying Wang¹, Zhanqing Li^{2,3}, Zhibin Wang⁴, Russell R. Dickerson³, Xinrong Ren³, Hao He³, Fei Wang⁵, Ying Gao⁶, Xi Chen¹, Jialu Xu¹, Yafang Cheng⁷, Hang Su⁸ ¹ Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, School of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing 210044, China ² State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China ³ Earth System Science Interdisciplinary Center, Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD, USA ⁴ Research Center for Air Pollution and Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China ⁵ Key Laboratory for Cloud Physics, Chinese Academy of Meteorological Sciences, Beijing, 100081, China ⁶ School of Atmospheric Sciences, Nanjing University, Nanjing 210008, China ⁷Minerva Research Group, Max Planck Institute for Chemistry, 55128 Mainz, Germany ⁸Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany Correspondence to: Yuying Wang (yuyingwang@nuist.edu.cn) Table S1. The fitting results of Eq. (1) for the 11 level flights | Flight code | Altitude(km) | C | k | \mathbb{R}^2 | |-------------|--------------|-------|------|----------------| | RF1_a | 3.6 | 156 | 0.18 | 0.59 | | RF2_a | 0.4 | 3029 | 1.71 | 0.94 | | RF2_b | 3.6 | 2317 | 0.86 | 0.88 | | RF2_c | 0.4 | 6560 | 1.75 | 0.92 | | RF6_a | 2.5 | 282 | 0.46 | 0.91 | | RF6_b | 1.1 | 9981 | 0.79 | 0.83 | | RF7_a | 3.1 | 391 | 0.62 | 0.95 | | RF7_b | 0.4 | 3218 | 0.65 | 0.73 | | RF7_c | 1.8 | 828 | 0.37 | 0.91 | | RF8_a | 0.6 | 8120 | 0.89 | 0.91 | | RF11_a | 0.7 | 10310 | 0.97 | 0.96 | **Figure S1.** Seventy-two-hour HYSPLIT back trajectories in southeast air masses at 0.5, 1.5, 2.5, and 3.5 km starting altitudes (showing RF6_1 as the example). **Figure S2.** Same as Fig.3 but for RF2_2 $N_{\rm CCN}$ profile with no TIL. **Figure S3.** Same as Fig.3 but for RF6_2, RF7_1, RF7_2, RF8_1, and RF11_1 *N*_{CCN} profiles with one TIL. **Figure S4.** Same as Fig.3 but for RF1_2 *N*_{CCN} profiles with dual TIL. **Figure S5.** Same as Fig. 6b but in (a) RF1_2, (b) RF6_1, (c) RF6_2, (d) RF7_1, (e) RF7_2, and (f) RF8_1 vertical spiral flight.