Supplement of

Vertical profiles of cloud condensation nuclei number concentration

and its empirical estimate from aerosol optical properties over the

North China Plain

Rui Zhang¹, Yuying Wang¹, Zhanqing Li^{2,3}, Zhibin Wang⁴, Russell R. Dickerson³, Xinrong Ren³,

Hao He³, Fei Wang⁵, Ying Gao⁶, Xi Chen¹, Jialu Xu¹, Yafang Cheng⁷, Hang Su⁸

¹ Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, School

of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing

210044, China

² State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System

Science, Beijing Normal University, Beijing 100875, China

³ Earth System Science Interdisciplinary Center, Department of Atmospheric and Oceanic Science,

University of Maryland, College Park, MD, USA

⁴ Research Center for Air Pollution and Health, College of Environmental and Resource Science,

Zhejiang University, Hangzhou 310058, China

⁵ Key Laboratory for Cloud Physics, Chinese Academy of Meteorological Sciences, Beijing,

100081, China

⁶ School of Atmospheric Sciences, Nanjing University, Nanjing 210008, China

⁷Minerva Research Group, Max Planck Institute for Chemistry, 55128 Mainz, Germany

⁸Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany

Correspondence to: Yuying Wang (yuyingwang@nuist.edu.cn)

Table S1. The fitting results of Eq. (1) for the 11 level flights

Flight code	Altitude(km)	C	k	\mathbb{R}^2
RF1_a	3.6	156	0.18	0.59
RF2_a	0.4	3029	1.71	0.94
RF2_b	3.6	2317	0.86	0.88
RF2_c	0.4	6560	1.75	0.92
RF6_a	2.5	282	0.46	0.91
RF6_b	1.1	9981	0.79	0.83
RF7_a	3.1	391	0.62	0.95
RF7_b	0.4	3218	0.65	0.73
RF7_c	1.8	828	0.37	0.91
RF8_a	0.6	8120	0.89	0.91
RF11_a	0.7	10310	0.97	0.96

Figure S1. Seventy-two-hour HYSPLIT back trajectories in southeast air masses at 0.5, 1.5, 2.5, and 3.5 km starting altitudes (showing RF6_1 as the example).

Figure S2. Same as Fig.3 but for RF2_2 $N_{\rm CCN}$ profile with no TIL.

Figure S3. Same as Fig.3 but for RF6_2, RF7_1, RF7_2, RF8_1, and RF11_1 *N*_{CCN} profiles with one TIL.

Figure S4. Same as Fig.3 but for RF1_2 *N*_{CCN} profiles with dual TIL.

Figure S5. Same as Fig. 6b but in (a) RF1_2, (b) RF6_1, (c) RF6_2, (d) RF7_1, (e) RF7_2, and (f) RF8_1 vertical spiral flight.