
 

1 

Assessing Bare Ice Albedo Simulated by MAR over the Greenland Ice Sheet (2000-2021) and 

Implications for Meltwater Production Estimates 

Raf M. Antwerpen1, Marco Tedesco1,2, Xavier Fettweis3, Patrick Alexander1,2, Willem Jan van de 

Berg4 

1Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA 5 

2NASA Goddard Institute for Space Studies, New York, NY, USA 

3Department of Geography, University of Liège, Liège, Belgium 

4Institute for Marine and Atmospheric Research, Utrecht University, Utrecht, The Netherlands 

Correspondence to: Raf Antwerpen (ra3063@columbia.edu) 

Abstract. Surface mass loss from the Greenland ice sheet (GrIS) has accelerated over the past 10 

decades, mainly due to enhanced surface melting and liquid water runoff in response to 

atmospheric warming. A large portion of runoff from the GrIS originates from exposure of the 

darker bare ice in the ablation zone when the overlying snow melts, where surface albedo plays a 

critical role in modulating the energy available for melting. In this regard, it is imperative to 

understand the processes governing albedo variability to accurately project future mass loss from 15 

the GrIS. Bare ice albedo is spatially and temporally variable and contingent on non-linear 

feedbacks and the presence of light-absorbing constituents. An assessment of models aiming at 

simulating albedo variability and associated impacts on meltwater production is crucial for 

improving our understanding of the processes governing these feedbacks and, in turn, surface mass 

loss from Greenland. Here, we report the results of a comparison of the bare ice extent and albedo 20 

simulated by the regional climate model Modèle Atmosphérique Régional (MAR) with satellite 

imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) for the GrIS below 

70° N. Our findings suggest that MAR overestimates bare ice albedo by 22.8% on average in this 

area during the 2000-2021 period with respect to the estimates obtained from MODIS. Using an 

energy balance model to parameterize meltwater production, we find this bare ice albedo bias can 25 

lead to an underestimation of total meltwater production from the bare ice zone below 70° N of 

42.8% during the summers of 2000-2021. 
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1 Introduction 

Global mean sea level (GMSL) rise has significantly accelerated over the past decades 

(Chen et al., 2017), in part as a consequence of the acceleration in Greenland ice mass loss 

(Aschwanden et al., 2019). Ice mass loss from the Greenland ice sheet (GrIS) was one of the largest 

contributors to GMSL rise in the period 1901-2018 with 17-32% and will likely remain so by the 5 

end of this century (Fox-Kemper et al., in press). According to Fox-Kemper et al. (in press), the 

GrIS' contribution to GMSL will constitute ~17% by 2100 for the Shared Socioeconomic Pathway 

SSP5-8.5 (Riahi et al., 2017). From this point of view, it is imperative to improve model 

representation of physical processes responsible for ice mass loss to better constrain projections of 

the future contribution of the GrIS. In this regard, evaluation of climate model outputs vs. 10 

observational data can provide insight into the model's ability to represent the physical processes 

at play and can subsequently highlight regions for model improvement (van den Broeke et al., 

2017). 

The total mass loss from Greenland can be separated into surface losses (e.g., runoff) and 

frontal losses at the terminus of outlet glaciers (e.g., calving). For the 2000-2018 period, 55% of 15 

Greenland’s mass loss originated from surface mass balance (SMB; the balance between 

accumulation and ablation at the ice sheet surface) and 45% from ice discharge from outlet glaciers 

(Mouginot et al., 2019). The SMB losses from the GrIS have been increasing since the late 1990s, 

driven primarily by an increase in melt and subsequent liquid water runoff in response to recent 

atmospheric warming (van den Broeke et al., 2017). An increase in summer surface air 20 

temperatures of ~+2° C has also been observed over Greenland since the early 1990s (Hanna et 

al., 2012; Box, 2013). This has increased runoff by 40%, while the contribution of changes in 

precipitation, sublimation, and erosion since the early 1990s are not as substantial (van den Broeke 

et al., 2016, 2017). The recent increase in observed runoff has also been suggested to be linked to 

changes in atmospheric circulations around Greenland (Hanna et al., 2014; Tedesco and Fettweis, 25 

2020). (Hanna et al., 2018; McLeod and Mote, 2016) suggest that a significant increase in high 

summer pressure blocking over Greenland (Greenland Blocking Index) since the 1990s has been 

a major driver of the recent increase in surface melt over the GrIS (Fettweis et al., 2013; Tedesco 

et al., 2016a). Changes in atmospheric circulation promoting enhanced runoff have been 

characterized by increased shortwave incoming solar radiation (Tedesco and Fettweis, 2020). This, 30 
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in turn, can increase the absorbed solar radiation, depending on surface albedo, which can be 

summarized as the ratio of the energy reflected off a unit area of material over the energy incident 

over that area. 

Besides temperature, albedo also strongly controls surface melting and runoff over the 

GrIS. More specifically, broadband albedo refers to the wavelength-dependent albedo integrated 5 

over the full spectral range, weighted by the contribution of each wavelength. In the case of solar 

radiation, most of the contribution to broadband albedo comes from the visible wavelengths (300-

700nm), since most of the solar energy is concentrated within this band (Liang and Wang, 2020). 

Albedo is one of the key players in the energy balance for the bare ice of the GrIS, which is exposed 

when the overlying seasonal snow melts. Snow is characterized by a high albedo of ~0.7-0.85 10 

(Alexander et al., 2014), while bare ice is compacted, densified and aged snow (Wiscombe and 

Warren, 1980) and is characterized by a low albedo of 0.31-0.57 (Wehrlé et al., 2021). Bare ice 

thus absorbs more solar radiation than snow, increasing the energy available for melting. Even 

though the bare ice zone encompasses only a small fraction (12 ± 2 %) of the GrIS in summer 

along the margins of the ice sheet (Ryan et al., 2019), the bare ice zone was responsible for 78% 15 

of the runoff from the GrIS in the period 1960-2014 (Steger et al., 2017). Since bare ice albedo 

strongly controls the amount of runoff from the bare ice zone, it is of key importance in controlling 

GrIS-wide runoff (Tedesco et al., 2008; van Angelen et al., 2012; Alexander et al., 2019). 

Bare ice albedo is spatio-temporally variable at different scales in response to non-linear 

positive feedbacks between absorbed shortwave radiation and surface melt (Box et al., 2012; Ryan 20 

et al., 2019). Therefore, meltwater production does not only depend on timing and persistence of 

bare ice exposure but also on other modulating factors, such as snowfall, which can cover bare ice 

with a bright, highly reflective layer of fresh snow. The appearance of bare ice reduces the overall 

GrIS albedo, leading to more melting from the bare ice zone as well as feeding a positive feedback 

mechanism which ultimately leads to an acceleration of surface melting (Tedesco et al., 2011). 25 

Bare ice exposure is often associated with the presence of light-absorbing constituents 

(LACs) on the ice, such as dust, black carbon and organic material (Tedstone et al., 2017). These 

LACs can reduce surface albedo to as low as ~0.1, (Wientjes et al., 2012; Tedstone et al., 2017, 

2020), and can subsequently increase melting. Dark bands appear in the bare ice as a consequence 
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of outcropping of ice layers mixed with dust that were deposited in the accumulation zone during 

the late Pleistocene and Holocene and, later, transported to the lower ablation zone through ice 

flow (MacGregor et al., 2020). Black carbon and cryoconite, small cylindrical holes (of a few 

centimeters to a few meters) in the ice surface containing impurities, have also been found to 

reduce the albedo of bare ice (Cook et al., 2016; Goelles and Bøggild, 2017). (Wang et al., 2018; 5 

Stibal et al., 2017) found an abundant presence of supraglacial ice algal blooms in the bare ice 

zone in the Southwestern GrIS, with a direct link between mineral phosphorus in the ice surface 

and glacier ice algae biomass (McCutcheon et al., 2021). These light-absorbing constituents reduce 

the bare ice albedo, further enhancing meltwater production and runoff (Tedesco et al., 2016b; 

Williamson et al., 2018, 2020; Cook et al., 2020). The difficulty in representing bare ice albedo in 10 

climate models partly originates from a lack of understanding of LACs and may result in a reduced 

accuracy of runoff projections (Alexander et al., 2014). 

In this study, we evaluate the performance of the Modèle Atmosphérique Régional (MAR), 

a regional climate model especially developed for simulating polar climates (Fettweis et al., 2020), 

in simulating bare ice extent, bare ice albedo and meltwater production by comparing MAR’s 15 

model output with satellite imagery from the Moderate Resolution Imaging Spectroradiometer 

(MODIS). This study complements the study by (Alexander et al., 2014) who focused on the GrIS-

wide albedo. Here, we specifically focus on the bare ice zone below 70° N, which is currently 

responsible for the majority of meltwater production from the GrIS (Steger et al., 2017). We 

evaluate MAR on a range of spatial resolutions during June, July and August in 2000-2021. We 20 

use an energy balance model to parameterize the meltwater production and to analyze the effect 

of a bias in observed and modeled bare ice albedo on estimates of meltwater production. 

2 Data and methods 

2.1 The MAR RCM 

In this study, we use the Modèle Atmosphérique Régional (MAR) version 3.12 regional 25 

climate model (RCM), which simulates the coupled surface-atmosphere system over the 

Greenland region (Gallée, 1997; Ridder and Schayes, 1997; Lefebre, 2003; Fettweis et al., 2017) 

and is forced by reanalysis data or climate model output. Specifically, we force MAR at the lateral 

boundaries and ocean surface with 6-hourly reanalysis output from ERA5 (Hersbach et al., 2020), 
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produced by the European Centre for Medium-Range Weather Forecasts (ECMWF). The 

MARv3.5.2 is discussed and validated over the GrIS (Fettweis et al., 2017), with updates to 

MARv3.11 discussed in (Fettweis et al., 2021). We point out that in the version we use in this 

study, the geographical projection has been changed to the Standard Polar Stereographic EPSG 

3413 from a previously used custom projection. An issue within the code impacting the snow 5 

temperature at the base of the snowpack has also been corrected in MARv3.12 and it now includes 

a continuous conversion from rainfall to snowfall from 0° C to -2° C as input for the snow model 

instead of a fixed value of -1° C (Fettweis, personal comm.). The atmospheric component of the 

model is described by (Gallée and Schayes, 1994) and the Soil Ice Snow Vegetation Atmosphere 

Transfer scheme (SISVAT) is used as the surface component of the model (Ridder and Schayes, 10 

1997). The surface model incorporates the snow model CROCUS (Brun et al., 1992), which 

simulates a set number of layers of snow, ice, or firn with variable thickness and transports energy 

and mass between each layer. The CROCUS model also provides snow grain properties, which 

are used to simulate snow albedo. In this study, we run the MAR model over Greenland and 

produce daily output of variables pertaining to the atmosphere and ice sheet surface in this region 15 

at horizontal spatial resolutions of 6.5, 10, 15, and 20 km. 

2.2 MODIS data 

We obtained MOD09GA Version 6 (Vermote and Wolfe 2015) surface reflectance images 

over the GrIS from the Moderate Resolution Imaging Spectroradiometer (MODIS) on board 

NASA’s Terra satellite through Google Earth Engine (Gorelick et al. 2017). We use daily summer 20 

(June, July, and August; JJA) images over the period 2000-2021 with a horizontal spatial 

resolution of 500 m. Corrections have been applied to this product for atmospheric conditions such 

as aerosols, gasses and Rayleigh scattering (Vermote and Wolfe 2015). We also collected daily 

snow cover images from MOD10A1 Version 6 from Google Earth Engine over the same period. 

This product includes a daily cloud mask which we use in this study to flag clouds in the 25 

MOD09GA images. The MOD10A1 product also contains daily broadband albedo values (Hall et 

al. 2016), though albedo values above a latitude of 70° N may be positively biased due to viewing 

geometry and large solar zenith angle (Alexander et al., 2014). Consequently, we omit MOD10A1 

albedo data above 70º N from our albedo and meltwater production analysis. Note that we do 

include MOD09GA surface reflectance data above 70º N in our bare ice extent analysis. We choose 30 
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the summer 2000-2021 study period to accommodate the observation period of MODIS and to 

account for the seasonal variability of bare ice exposure on the GrIS, when surface albedo has the 

largest impact on SMB (Alexander et al., 2014). To allow for a daily pixel-by-pixel comparison, 

we first use GDAL (GDAL/OGR contributors) to reproject the daily MODIS data (MOD09GA 

and MOD10A1) to the MAR’s native projection and simultaneously rescale it to the resolution of 5 

each of the MAR products. 

2.3 Bare ice extent 

Bare ice is exposed when the snow blanketing it is removed through surface melting. Most 

of the areas where bare ice occurs are located in the ablation zone, where ablation is larger than 

accumulation and the SMB is negative. At the transition between the ablation and accumulation 10 

zones lies the equilibrium line altitude (ELA), denoting the elevation where ablation is equal to 

accumulation and the SMB is 0 (Noël et al., 2019). In order to study the behavior of bare ice 

exposure we determine a long-term average ELA from the daily MAR outputs of SMB over the 

GrIS. We estimate the average ELA at 1679 m a.s.l. for the period 2000-2021 over the entire ice 

sheet as the 95th percentile value of the elevation values in the ablation zone. Taking the 95th 15 

percentile of the long-term average values supports the omission of sporadically high ablation cell 

detections and provides a conservative estimate of the ELA. We note that this method may provide 

a conservative estimate of the bare ice extent during warm, high-melt years, as the ELA in such 

years may lie at a higher elevation than the long-term average ELA. Then, we constrain bare ice 

as modeled by MAR to cells below the long-term average ELA. This is a first simplified estimate 20 

of the bare ice extent, which is further refined by the following two conditions: 1) snow is absent 

(i.e. snow depth is 0 m) and 2) the average density in the top 1 m exceeds 907 kg/m3. A thin layer 

of fresh snow (300 kg/m3 in MAR) could cover the ice (920 kg/m3 in MAR) following a brief 

snowfall event. Solar radiation will not attenuate much in a thin layer of snow and will thus not 

significantly affect absorption into the underlying ice (Warren et al., 2006). A thin layer of fresh 25 

snow will lower the density of the top layer, however. Therefore, setting a lower limit of 907 kg/m3 

for the average density of the top 1 m allows for 2 cm of fresh snow to cover the ice, while also 

allowing the cell to still be detected as bare ice and not as snow. Taking the average density also 

ensures that ice lenses are not detected as bare ice. We use the static ice mask and digital elevation 

model (DEM) of the GrIS as described by the Greenland Ice Mapping Project (GIMP) to select 30 
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areas where the ice sheet is present (vs. where land is present) and to produce the satellite-derived 

extent and elevation of the GrIS (Howat et al., 2014). 

We note that the static GIMP ice mask and DEM are constructed from Landsat-7 and 

RADARSAT-1 imagery acquired between 1999 and 2002, which only overlaps for 3 out of the 22 

years of the study period in this study. However, the impact on the estimated bare ice extent should 5 

be small given estimates for ice margin retreat rates and thinning rates (Helm et al., 2014; Lesnek 

et al., 2020; Young et al., 2021). We therefore believe that the static GIMP ice mask suffices for 

the purposes of this study. 

We extract the satellite-derived bare ice extent (BIE) on the GrIS by applying an upper threshold 

of 0.6 to band 2 (841-876 nm) in the MOD09GA product (Shimada et al., 2016). Following the 10 

same study, we define pixels with reflectance values above 0.6 in band 2 as snow. We define the 

annual maximum BIE as the area covered by those pixels that are detected as bare ice for a 

minimum of 10% of the observed days in JJA in one year. The aim of this is providing a 

conservative estimate of bare ice extent while ensuring omission of sporadic and erroneous bare 

ice detections by MODIS, such as superimposed ice and meltwater lakes and streams. We define 15 

a lower estimate of the MODIS-derived annual maximum BIE as the area covered by the pixels 

below the long-term average ELA that are detected as bare ice for a minimum of 10% of the 

observed days in JJA. We also define an upper estimate of the annual maximum BIE, which 

includes: 1) the area found for lower estimate and 2) the area covered by the pixels that are flagged 

as clouds in MOD10A1 for a minimum of 90% of the observed days in JJA. For pixels that are 20 

covered by clouds for more than 90% of the observed days in JJA, the view of the surface of the 

GrIS is obstructed to such an extended degree that bare ice cannot be detected for more than 10% 

of the observed days in JJA. This automatically excludes them as a possible bare ice pixel, leading 

to potentially missed bare ice area. 

We use forecast verification to quantify MAR’s ability to simulate bare ice vs. snow. We 25 

assess MAR’s forecast quality by examining the statistical characteristics of the dichotomous 

categorical forecasts of bare ice (true) vs. snow (false) as compared with observations from 

MODIS. The forecast and observation counts of both bare ice and of snow are listed in a 

contingency table. To assess MAR’s performance in simulating bare ice, we use Frequency Bias 
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Index. This statistic indicates a perfect forecaster with a score of 1, an underforecaster with a score 

lower than 1, and an overforecaster with a score higher than 1 (Wilks, 2011). 

2.4 Bare ice albedo 

We evaluate the performance of MAR in simulating bare ice albedo by comparing MAR’s 

modeled albedo values with the albedo values observed by MODIS on the overlapping BIE. The 5 

output from MAR contains daily albedo values over the entire GrIS. The bare ice albedo scheme 

in MARv2 originally consisted of simply assigning a fixed value of 0.55 to bare ice albedo. 

Nevertheless, the improved MARv3 we use in this study simulates bare ice albedo as a function 

of accumulated surface water height and slope of the ice sheet, following an exponential relation 

between pure bare ice albedo and water albedo (Alexander et al., 2014). MAR includes lower and 10 

upper boundaries for the bare ice albedo of 0.5 and 0.55. However, every year, large areas with 

albedo values lower than 0.5 are observed by MODIS and by some PROMICE automatic weather 

stations (Tedesco et al., 2016b). An analysis by (Wehrlé et al., 2021) shows that the average albedo 

from the 20 stations included in the study is lower than 0.5 for more than a month during the melt 

season. Therefore, values for the surface albedo below 0.5 can be considered a common event 15 

across the bare ice zone. Such low albedo values in part result from the presence of LACs on the 

bare ice, which are not taken into consideration in the MARv3 bare ice albedo scheme. Low albedo 

values can also arise from accumulated meltwater on the surface of the ice in the form of streams 

and lakes, but the relative effect of meltwater has been estimated to be smaller than that of 

impurities (Ryan et al., 2018). 20 

2.5 Meltwater production 

We use an energy balance model to parameterize the energy available for meltwater 

production over the bare ice zone and to isolate the effect of albedo on meltwater production 

estimates from the bare ice zone below 70° N. Following (Pellicciotti et al., 2008), we parameterize 

the energy available for meltwater production as: 25 

𝑀𝐸 = (𝑎 ⋅ (1 − 𝛼) ⋅ SWdown +𝑏 ⋅ LWnet +𝑐 ⋅ 𝑆𝐻𝐹 + 𝑑 ⋅ 𝐿𝐻𝐹) / (𝜌w⋅Lm),        (1) 

with daily values for meltwater production (ME), albedo (𝛼), downward shortwave radiation 

(SWdown), net longwave radiation (LWnet), and sensible and latent heat fluxes (SHF and LHF) 
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simulated by MAR. The numerator on the right hand side is equal to the energy available for melt. 

Dividing by density (𝜌w = 1000 kg/m3) and the latent heat of fusion of water (Lm = 3.34⋅105 J/kg) 

gives the potential meltwater production in mmWE/day. For this purpose, we use the MAR outputs 

generated at a horizontal spatial resolution of 6.5 km. We determine the parameters a, b, c, and d 

by finding the minimum of this unconstrained multivariable function on a daily basis. Figure 1 5 

shows the linear regression between the parameterized meltwater production and the meltwater 

production simulated by MAR, with an R2 of 0.92, mean bias of -0.728 mmWE/day and root mean 

square error of 3.97 mmWE/day. As seen in Figure 1 and from the negative mean bias, the 

parameterization tends to underestimate meltwater production slightly relative to the meltwater 

simulated by MAR. This could be due to the fact that MAR calculates meltwater production every 10 

minute and the parameterization calculates melt only once per day since it uses daily MAR output. 

Moreover, the feedbacks between air and surface processes are not captured in the parametrization 

scheme. Lastly, days with melt occurring only during a part of the day occur at the beginning and 

end of the melt season with the parameters (a, b, c, and d) not being able to fully account for this 

variation. The fractional contribution to meltwater production of each constituent in Equation 1 15 

are calculated by multiplying each parameter with the respective net energy flux and dividing by 

the total meltwater production on a daily basis. 
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Figure 1: Linear regression of daily meltwater production simulated by MAR and 

parameterized meltwater production using modeled albedo. 

We calculate daily meltwater production estimates with the meltwater production 

parameterization twice, using the same values for the coefficients, once using the albedo modeled 

by MAR and once using the albedo observed by MODIS. The goal of this is to isolate the effect 5 

of bare ice albedo on meltwater production. As a reminder, we exclude cells above a latitude of 

70° N to account for the potentially reduced accuracy of albedo values in the MOD10A1 product 

in this region. In order to increase the fairness of the comparison we include only those areas and 

days where we simultaneously detect bare ice with both MAR and MODIS. Since we are interested 

in the effect of bare ice albedo on meltwater production, we only include cells that are melting as 10 

prescribed by MAR (>1 mmWE/day). This ensures that any absorbed energy fluxes predominantly 

go into the enthalpy of fusion of ice, i.e. leading to melt, and not into changing the temperature of 

the ice. 

3 Results 

3.1 Bare ice extent 15 

The average number of days when bare ice is exposed during June, July, and August (JJA) 

for our study period (2000-2021) obtained from MODIS (Fig. 2a) and MAR (Fig. 2b) as well as 

their difference (Fig. 2c) are shown in Figure 2. The number of bare ice days observed by MODIS 

show slightly more inland variation, especially in the northern regions of the ice sheet. For 

instance, a large round feature in the northeast reveals that bare ice is exposed for up to 12 days on 20 

average during JJA. The geothermal heat flux map of Greenland created by (Martos et al., 2018) 

shows a round feature of similar size in the same area with an enhanced heat flux. Increased heat 

flux from the bedrock to the ice sheet surface could lead to higher ice sheet surface temperatures, 

which enhances bare ice exposure. This pattern is not captured by the MAR simulations. 
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Figure 2: Number of days bare ice is exposed in JJA, averaged over 2000-2021: a) observed 

by MODIS on 500 m, b) modeled by MAR on 6.5 km, and c) their difference (MODIS minus 

MAR) on 6.5 km. 

The inter-annual variability of the maximum extent of the bare ice zone on the GrIS we 5 

obtained from the remote sensing and modeled data for the 2000-2021 study period is reported in 

Figure 3a. The modeled results (lines of different shades of blue, depending on the horizontal 

spatial resolution) show that MAR agrees well with the general trend of the inter-annual variation 

in maximum bare ice extent estimated by MODIS. We find R2-values of 0.72, 0.70, 0.65, and 0.65 

between the lower MODIS estimate and MAR on 6.5, 10, 15, and 20 km, respectively. In this 10 

regard, the MAR output produced at the highest horizontal spatial resolutions (6.5 and 10 km) fit 

best with the observed inter-annual BIE. 
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Figure 3: a) annual maximum bare ice extent in 2000-2021, averaged over JJA and b) 

seasonal bare ice extent in JJA, averaged over 2000-2021. 
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Years with a high maximum BIE, such as 2012 and 2019, correspond to known high-melt 

years (Tedesco and Fettweis, 2020). This is as expected since warmer temperatures or positive 

energy balance anomalies lead to more snowmelt, exposing the underlying bare ice. Additionally, 

exposed bare ice leads to increased absorption of solar radiation, generating higher melt rates 

(Ryan et al., 2019). In these high-BIE years MAR overestimates the BIE relative to the 5 

observations. This indicates that MAR potentially overestimates the amount of snow that is melted 

away in these years and exposes more bare ice than is actually the case. Some snowfall events may 

also have been missed by MAR, which would have otherwise reduced the BIE by temporarily 

covering the ice with a thin layer of fresh snow. Conversely, in years with a low maximum BIE, 

such as 2006 and 2018, MAR generally underestimates the BIE, suggesting that MAR 10 

underestimates the amount of snow that is melted away in these years. Because MAR respectively 

under/overestimates snow melt in colder/warmer years, this suggests that MAR could be too 

sensitive to temperature. The BIE shows a positive trend during the study period for both MODIS 

(1,486 km2/yr) and MAR (2,303, 2,082, 1,951, and 2,409 km2/yr on 6.5, 10, 15, and 20 km, 

respectively). The significantly lower value for the average observed BIE stems from the inclusion 15 

of 2021 data, where estimates between observation and model differ vastly. This difference is 

potentially caused in part by an anomalously high amount of clouds over the bare ice zone in mid-

August of 2021, obstructing view of potential BIE which MAR does model as bare ice. Excluding 

the 2021 MODIS data provides a trend of 2.272 km2/yr, which is more similar to the trend 

simulated by MAR. 20 

The observed and modeled seasonal BIE exhibit a peak from mid-July through mid-August 

(Figure 3b). The resolutions we use in MAR have minimal effect on the timing and magnitude of 

the BIE. The initial modeled BIE is slightly lower than the observed BIE, indicating that the 0.6 

threshold for band 2 in MOD09GA could be too high or that the onset of bare ice is delayed in 

MAR relative to the observed onset. The lower initial modeled BIE may also suggest that MAR 25 

misses uncovering of ice by snowdrift which would blow snow into crevasses and holes. In early 

July, the modeled BIE quickly surpasses the minimum observed estimate. The late-July dip in 

modeled BIE is in part due to snowfall events over the BIE as simulated by MAR. 

Table 1 shows the contingency table of the dichotomous categorical forecasts (MAR) and 

observations (MODIS) of bare ice versus snow. MAR has a Frequency Bias Index of 0.651, 30 
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showing that, when bare ice is observed by MODIS, MAR simulates bare ice on the same pixel 

65.1% of the time. In other words, MAR underforecasts bare ice exposure (Wilks, 2011). 

Table 1: Contingency table of forecasts (MAR) and observations (MODIS) in terms of 

determining either bare ice or snow. Bare ice is both forecast and observed is a hit (a), bare 

ice is forecast but snow is observed is a false alarm (b), snow is forecast but bare ice is 5 

observed is a miss (c), snow is both forecast and observed is a correct rejection (d). Results 

are shown as a percentage of the total number of observations (n). 

 Bare ice observations Snow observations Marginal totals 

Bare ice forecasts a = 10.14% b = 6.49% a+b = 16.63% 

Snow forecasts c = 15.43% d = 67.94% c+d = 83.37% 

Marginal totals a+c = 25.56% b+d = 74.44% n = 16081178 

 

3.2 Bare ice albedo 

The average observed bare ice albedo over 2000-2021 exhibits high spatial variability 10 

(Figure 4a), with large sections of low albedo values (< 0.4) in the southern region of the GrIS, 

especially over the dark ice zone in the southwest. The low albedo values in the dark ice zone 

suggest the presence of abundant LACs, such as black carbon, mineral dust, volcanic ash, 

cryoconite and ice algal blooms (Tedstone et al., 2017). We observe little to no variability in 

average bare ice albedo for MAR (Figure 4b). This is expected from the bare ice albedo scheme 15 

in MAR since it does not account for any form of LACs. Albedo values higher than expected for 

bare ice are detected by MODIS in the northern section of the ice sheet. This is an artifact of the 

positively biased MOD10A1 product above latitudes of 70° N (Alexander et al., 2014). The 

difference in bare ice albedo values between MODIS and MAR (Figure 4c) indicates that the dark 

ice zone albedo is highly overestimated by MAR, as compared to MODIS. 20 
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Figure 4: Maps of bare ice albedo over maximum bare ice extent averaged over JJA in 2000-

2021 on 6.5km: a) observed by MODIS, b) modeled by MAR, and c) their difference (MODIS 

minus MAR). The dashed line denotes 70° N. 

The annual average observed albedo over the overlapping bare ice extent below 70° N 5 

shows significant variability throughout the study period for all resolutions, with little to no 

variability between MAR resolutions (Figure 5a). The variability in annual average modeled bare 

ice albedo is negligible and remains almost constant at around 0.55, on average 0.12 (or 27.5%) 

higher than the average of 0.43 observed by MODIS. The observed bare ice albedo shows an 

average trend of -0.015 ± 0.0025 per decade. We have given each resolution equal weight in the 10 

calculations of the means and trends. 
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Figure 5: a) annual bare ice albedo in 2000-2021, averaged over JJA and b) seasonal bare ice 

albedo in JJA, averaged over 2000-2021. 

The seasonal average observed bare ice albedo below 70° N exhibits significant changes 5 

throughout the JJA season (Figure 5b). The observed albedo (on 15 and 20 km resolution) in June 
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shows high variability, which is a result of the minimal bare ice extent on the GrIS in this period 

and the even smaller bare ice extent overlapping between model and observation. Hence, for the 

first ~20 days of June only a small number of cells is available (less than 10 cells per day) from 

which to determine the average bare ice albedo, making anomalous values weigh more heavily in 

the average. The observed albedo declines rapidly in June and reaches a sustained minimum of 5 

~0.41 from early July until early August. Throughout the season, MAR overestimates bare ice 

albedo relative to the observations fairly constantly at ~0.55. The difference between observed and 

modeled albedo originates in part from the missing representation of LACs in the bare ice albedo 

scheme in MAR (Fettweis et al., 2017). The dipping trend in observed albedo suggests an increase 

in spatial distribution or intensification of LAC concentrations. Algal blooms flourish and multiply 10 

(Wang et al., 2018, 2020). Holocene dust and black carbon are exposed through melting deeper 

and older ice layers. Holocene dust and black carbon are continuously being outcropped through 

melting of deeper and older ice layers and can accumulate on the surface of the ice (Doherty et al., 

2013). Significant aeolian depositions of black carbon have also been observed (Goelles and 

Bøggild, 2017). Volcanic ash will play only a minor role in lowering the albedo as it is distributed 15 

only in short time intervals during volcanic eruptions. Despite its dark surface, cryoconite has been 

shown to play a minor role in lowering albedo due to its sparse spatial distribution (Ryan et al., 

2018). A part of the seasonal decrease in bare ice albedo also arises from accumulated surface 

meltwater on the bare ice, which may be misrepresented in MAR. 

3.3 Meltwater production 20 

Figure 6a and 6b show annual and seasonal averages, respectively, of the fractional 

contributions of each of the constituents in the meltwater production parameterization, where we 

use albedo values from MODIS in the shortwave radiation term. The shortwave radiation term is 

consistently the largest term contributing to meltwater production owing to the low albedo of bare 

ice and the long days during boreal summer. Shortwave radiation contributes on average 5 - 5.5 25 

times more to meltwater production than sensible heat flux, the second largest contributor. 

Longwave radiation contributes to a net loss of heat in general during the study period, releasing 

more energy from the surface of the ice than it absorbs. This leads to a net negative contribution 

to meltwater production. Sensible heat flux contributes a small but rather constant fraction to 

meltwater production. The contribution of latent heat flux to meltwater production is very small 30 
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and often negative (-0.11 - 0.02), meaning that the latent heat flux on average results more in 

evaporation and sublimation than condensation and deposition. 

 

 

Figure 6: Fractional contributions of energy fluxes to meltwater production over the bare 5 

ice zone: a) annual averages for 2000-2021 and b) seasonal averages for JJA. 
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We quantify the effect of the bare ice albedo bias by determining the meltwater production 

in two scenarios: once with the observed albedo and once with the modeled albedo as input to the 

meltwater production parameterization. We use the ratio of the daily averages of these two 

meltwater production estimates to isolate the effect of bare ice albedo on meltwater production 

from the bare ice zone below 70° N on a daily basis (Figure 7). A positive ratio indicates that using 5 

the modeled albedo in the parameterization results in an underestimation of the average meltwater 

production on that day, compared to using the observed albedo. 

 

Figure 7: Ratio of daily parameterized meltwater production with observed albedo to 

parameterized meltwater production with modeled albedo. The vertical and horizontal bars 10 

show annual and seasonal averages. 

We observe a strong increasing seasonal trend in the average seasonal ratio of 0.0245 per 

week from June through August with seasonal average ratios for June, July and August of 1.32, 

1.42, and 1.54, respectively, indicating a seasonally increasing underestimation of parameterized 

meltwater production using the modeled albedo. The increase in the seasonal average ratio of 15 

meltwater production indicates that the spatial distribution and intensity of LAC concentrations on 

bare ice could be increasing during the season, reaching peak values in late August. Increasing 

amounts of accumulated surface meltwater could also be a cause of the increasing trend in the 

ratio. As shown earlier, the daily bare ice extent significantly decreases after mid-August. This 

means there is a smaller area over which meltwater production is calculated, increasing its 20 
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variability. The seasonal average reaches a low of 1.19 on June 7, and a peak of 1.75 on August 

24. The meltwater production ratio exhibits significant daily variability throughout the study 

period. Daily ratios in June vary from 0.34 to 3.04, though these extreme ratios are sporadic. Since 

the overlapping bare ice extent between observation and model is small in early June, this period 

shows extreme variability in observed bare ice albedo and, thus, in meltwater production estimates. 5 

Hence, strong conclusions cannot be drawn for early June. The minimum and maximum daily 

ratios in July are 0.81 and 2.11, respectively. August exhibits numerous extremely high daily 

ratios, especially in late August, with minimum and maximum ratios of 0.98 and 3.09, respectively. 

The average annual ratio exhibits an increasing trend of 0.043 per decade from 2000 through 2021, 

indicating that parameterized meltwater production from the bare ice zone below 70° N is being 10 

increasingly underestimated when using modeled albedo versus observed albedo. One explanation 

for this could be an annually increasing amount of LACs that are deposited onto and exposed in 

the bare ice zone during the summer. Increasing temperatures and accumulated surface meltwater 

could also create more favorable conditions for algal bloom growth. The minimum and maximum 

annual average ratios are 1.26 and 1.58, in 2004 and 2019, respectively. Averaged over the bare 15 

ice zone below 70° N and the entire study period, the MAR-derived meltwater production using 

the modeled albedo could be underestimated by 42.8%, owing to an average overestimation of 

modeled bare ice albedo of 22.8%. The meltwater productions using observed and modeled albedo 

have a correlation coefficient of R2 = 0.60. 

In addition to the examination of time series, we average the meltwater production ratios 20 

over the study period and map them onto the bare ice extent (Figure 8). We find high ratios over 

the dark ice zone in southwest Greenland, which is as expected from the high LAC concentrations 

in this area (Wang et al., 2020). Moreover, we find values between 0.4 and 1 higher up in the 

ablation zone in southwest Greenland. In this region, meltwater production estimates are close to 

0 using both observed and modeled albedo. Melting also occurs significantly less frequently with 25 

increasing elevation in this region. Hence, a small difference in albedo can result in a large 

percentage change of simulated meltwater production. We find extremely high ratios along the 

eastern margin where the observed albedo is significantly lower than the ~0.55 simulated by MAR 

(Figure 4). The large albedo differences and low number of melting days in this area makes 

meltwater production estimates more variable. 30 
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Figure 8: Ratio of parameterized meltwater production with observed albedo to 

parameterized meltwater production with modeled albedo, averaged over the entire study 

period. 

4. Discussion 5 

An analysis by (Ryan et al., 2018) on sources of spatial albedo variability along a transect 

in the dark ice zone, perpendicular to the ice margin, found that 73% of spatial albedo variability 

can be attributed to LACs on the surface of bare ice; a mixture of algae, dust and black carbon. 

Only 15% of the spatial variability of albedo is explained by accumulated surface meltwater in 

rivers, streams, ponds and lakes. Crevasses are responsible for 12% of the observed albedo 10 

variability. Despite the very low albedo of cryoconite, due to its low abundance it accounts for 

only 0.6% of the albedo variability. Moreover, accumulated surface meltwater may act as a 

distributor of LACs; a small change in accumulated surface meltwater may thus result in larger 

albedo changes than merely the added surface water. Granted, the analysis by (Ryan et al., 2018) 

only holds for one transect covering 12.5 km2 on August 6, 2014, and may not necessarily be 15 
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representative of the entire bare ice area. A modeling study from (Goelles and Bøggild, 2017) 

suggests that melt-out of englacial black carbon and dust are responsible for most of the LAC-

driven meltwater production. Atmospheric deposition of black carbon and dust has a significantly 

lower effect on meltwater production in their study. These results hold for the location of an AWS 

(KAN_M) at 1270 m a.s.l, in the dark ice zone, for 2010-2015. It should be noted that biological 5 

activity is not included in their model, so they could be interpreting some albedo changes due to 

biological activity as effects from black carbon and dust. It thus remains unclear how the effect of 

algae relates to the effect of dust and black carbon on bare ice albedo and meltwater production. 

Though, qualitatively, we assume the conclusions drawn by (Goelles and Bøggild, 2017; Ryan et 

al., 2018) hold for the albedo differences between model and observations we find in our analysis. 10 

We recognize that the choice of the threshold in band 2 of MOD09GA to determine the 

bare ice extent adds additional uncertainty to our results. (Shimada et al., 2016) determined the 0.6 

threshold from only one image of southwest Greenland from MODIS’ sub-sampled calibrated 

radiance product MOD02SSH from July 12, 2012 on 5km spatial resolution. The authors picked 

this image because of the maximum variability in surface conditions within the image. The 0.6 15 

threshold is simply defined as the mean of the spectral reflectance of snow and bare ice in band 2 

(841-876 nm). Despite the small range of spatial and spectral data used in defining this threshold, 

a comparison with a coincident image from Landsat 8/OLI shows a good agreement in surface 

condition classification. A relative error in bare ice classification of only 0.16% leads us to believe 

that the threshold of 0.6 for bare ice classification found by (Shimada et al., 2016) is robust. As a 20 

sensitivity test, we reprocessed the MOD09GA data using a slightly lower threshold for bare ice 

classification of 0.55 for the year 2009, whose bare ice extent is representative as an average year 

in the period 2000-2021. We find that the maximum annual bare ice extent is 17.22% lower if we 

use a threshold of 0.55 as opposed to 0.6. On average, from June 1 through August 31, the daily 

bare ice extent is 23.73% lower if we use a threshold of 0.55. This shows that the bare ice extent 25 

is sensitive to the choice of the threshold in band 2 of MOD09GA. However, no other estimates 

for this threshold are available in the current literature. We therefore believe that the 0.6 threshold 

is currently the best estimate. 

We want to emphasize that our results on albedo and meltwater production only hold for 

the bare ice extent below 70° N that is simultaneously observed by MODIS and modeled by MAR. 30 
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Since the MOD10A1 product may be less reliable above 70° N, we exclude this region from this 

part of our analysis. This means that the albedo and meltwater production results shown in this 

study cannot be extrapolated to the northern half of the GrIS, though we expect the physical 

processes to be fairly similar over the entire GrIS. An improved understanding of errors in satellite-

derived albedo measurements, including additional high-quality in situ measurements, would be 5 

useful for properly analyzing the effects of albedo on meltwater production above 70° N. 

The ratios we mention in Section 3.3 pertain to the parameterized meltwater production 

using observed albedo and modeled albedo. No direct conclusions can thus be drawn on the 

performance of MAR in simulating meltwater production over the bare ice zone. However, in the 

Methods section we show that the parameterized meltwater production using the modeled albedo 10 

and the original meltwater production in MAR have a very high correlation (R2 = 0.92). We 

therefore believe that our conclusions are likely transferable and applicable to the performance of 

MAR in simulating meltwater production. 

It is also important to note that the SMB simulated by MAR compares very well with SMB 

observations from the Programme for Monitoring the Greenland Ice Sheet (PROMICE) on average 15 

over the entire GrIS (Fettweis et al., 2020). This suggests that the effects on meltwater production 

of a too high bare ice albedo through absorption of shortwave radiation might be compensated by 

other energy fluxes (LWnet, SHF, LHF) in the energy balance equation of MAR over the bare ice 

area. This is discussed in (Fettweis et al., 2017), who highlighted an overestimation of albedo and 

downward shortwave radiation but an underestimation of downward longwave radiation. 20 

However, MAR underestimates melt at AWS locations in the ablation zone where melt is larger 

than 2 mWE/yr (Fettweis et al., 2020), suggesting that at these locations a lower bare ice albedo 

would improve comparison of modeled SMB with observations from PROMICE. At these 

locations, the SMB modeled by the Regional Atmospheric Climate Model (RACMO2.3p2) 

compares better with PROMICE than the SMB from MAR does, most likely since RACMO 25 

integrates MODIS albedo into their model (Noël et al., 2019). 

5. Conclusions 

Using remote sensing observations and an energy balance model to parameterize meltwater 

production, we analyze the performance of the regional climate model MAR in simulating the 
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spatio-temporal variability of the bare ice extent and albedo as observed by MODIS. We have 

shown that MAR performs reasonably well in simulating the bare ice extent on an annual basis. 

Despite the similarities in maximum annual bare ice extent, MAR overestimates the daily bare ice 

extent during peak bare ice season from mid-July through mid-August. We also conclude that 

MAR overestimates bare ice albedo below 70° N on average by 22.8% during the study period. 5 

This complements and builds further on a study by Alexander et al. 2014, who analyzed surface 

albedo over the entire GrIS. We advocate that this significant difference in bare ice albedo arises 

in substantial part from the lack of LAC representation in MAR’s bare ice albedo scheme. A 

misrepresentation of accumulated surface meltwater on bare ice in MAR may also in part cause 

the difference between observed and modeled bare ice albedo. Using the meltwater production 10 

parameterization, we isolate the effect of the bias in observed and modeled bare ice albedo on the 

meltwater production from the bare ice zone below 70° N. We find that, using the modeled albedo 

in the parameterization, meltwater production is underestimated on average by 42.8% during the 

study period. The underestimation of meltwater production increases on average with 2.45% per 

week from June through August and with 4.3% per decade from 2000 through 2021. The largest 15 

discrepancies in meltwater production are located over the dark ice zone, where the highest LAC 

concentrations are found, and along the eastern margins of the ice sheet, where simulating bare ice 

extent is more difficult owing to the steep topography of the fjords and cliffs. Since meltwater 

production estimates from MAR and estimates from the parameterization with the modeled albedo 

are closely linked (R2 = 0.92), we believe that the results pertaining to meltwater production are 20 

likely transferable and applicable to MAR’s performance in simulating meltwater production. 

The results of this study show that research efforts should be directed towards uncovering 

the spatial and temporal variability of the distribution and trends of LAC concentrations on bare 

ice. Regional climate models, such as MAR, should work towards adopting a bare ice albedo 

scheme that allows for inputting spatially and temporally variable LAC concentrations on bare ice. 25 

Radiative transfer models such as the SNow ICe and Aerosol Radiative model SNICAR are being 

improved to allow for inputting black carbon, brown carbon, dust, ash, and algae with a range of 

properties in a variable concentration (Whicker et al. 2021, in press). However, no GrIS-wide, or 

dark ice zone-wide, quantification of distributions and trends are available yet. Hence, this aspect 

of LACs on bare ice still has to be parameterized. 30 
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As global, and more so Arctic, atmospheric temperature continues to rise, more bare ice 

will be exposed by melting the snow that usually blankets the bare ice, increasing meltwater 

production from the ablation zone of the GrIS. Correctly modeling and predicting bare ice albedo, 

and in particular LAC concentrations on bare ice, is thus becoming increasingly imperative for 

proper projections of meltwater production from the GrIS by regional climate models and general 5 

circulation models. 
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