

1 *Supplement of*

2 **An arid early Holocene revealed by palynological evidence for the north-east**
3 **Tibetan Plateau**

4 Nannan Wang et al.

5 *Correspondence to: Xianyong Cao (xcao@itpcas.ac.cn)*

6

7

8

9 **Quantitative climatic reconstruction of Gahai Lake**

10 **1. Modern pollen dataset and the meteorological data**

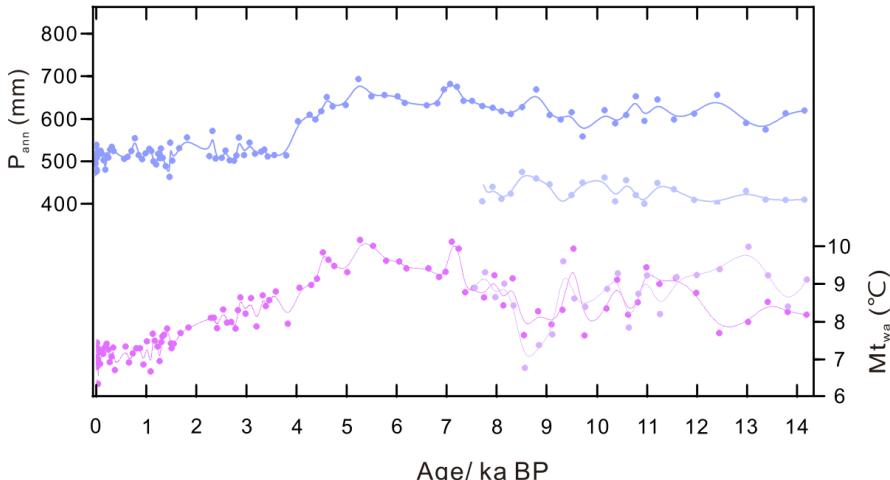
11 The modern pollen dataset ($n=731$) is derived from the eastern Tibetan Plateau, which
12 spans from 94.07–103.02°E and 29.13–38.48°N with an elevation between 2515 and
13 5008 m a.s.l. (Fig.1 of the main text). This modern pollen dataset is derived from Cao
14 et al. (2014) plus the recently published pollen data from Cao et al. (2021) and Wang
15 et al. (2022).

16 Modern climatic data were obtained from the Chinese Meteorological Forcing Dataset
17 (CMFD; gridded near-surface meteorological dataset) which contains remote-sensing
18 products, reanalysis datasets, and in situ station data between 1979 and 2018 (He et al.,
19 2020). This dataset has high spatial and temporal resolution, and its high reliability
20 has already been confirmed for Tibetan Plateau. The climate data are assigned to the
21 nearest 1 km × 1 km grid, which is calculated by smoothing spline interpolation of
22 multi-annual means of climatic data from nearby meteorological stations, and this is
23 achieved using the *rdist.earth* function in the *fields* package version 9.6.1 (Nychka et
24 al., 2019) for R (version 3.6.0; R Core Team, 2020). We extracted climate data for
25 each sample site of mean annual precipitation (P_{ann}), mean temperature of the coldest
26 month (Mt_{co}) and warmest month (Mt_{wa}), and mean annual temperature (T_{ann}).

27 **2. Establishment of the pollen-climate transfer function**

28 Weighted averaging partial least squares regression (WA-PLS) was employed to
29 evaluate the potential of the pollen dataset for past climate reconstruction and its
30 performance was tested using “leave-one-out” cross-validation (ter Braak & Juggins,
31 1993) with R^2 (coefficient of determination between observed and predicted values)
32 and RMSEP (root mean square error of prediction) (Birks, 1998). The number of
33 WA-PLS components used was selected using a randomisation *t*-test (Juggins and
34 Birks, 2012). The climate reconstruction was made using R software with the *rioja*
35 package version 0.7–3 (Juggins, 2012), and the pollen assemblages were square-root
36 transformed before reconstruction to reduce noise (Prentice, 1980).

37 **3. Reliability of the pollen-climate transfer function and reconstructions for**
38 **Gahai Lake**


39 Ordination analysis indicated that P_{ann} and Mt_{wa} are important climatic determinants
40 of pollen distribution, thus pollen–climate calibration-sets including P_{ann} and Mt_{wa}
41 were established to assess the predictive power of this pollen dataset. The results of
42 “leave-one-out” cross-validation showed that the first component for P_{ann} ($R^2=0.61$,
43 RMSEP=109.58 mm) and Mt_{wa} ($R^2=0.37$, RMSEP=2.56°C) performed well, which
44 generally makes for a reliable for reconstruction (Table S1).

45 **Table S1.** Model performance statistics as assessed by “leave-one-out” cross-validation for the
46 five components of the weighted averaging partial least square regression (WA-PLS). RMSEP:
47 root mean squared error of prediction; R^2 : coefficient of determination between bootstrap
48 predicted and observed values; Ave. Bias: the average bias of the parameter estimate; Max. Bias:
49 the maximum bias of the parameter estimate; Rand. *t*-test: randomised *t*-test.

Variables	Method	RMSEP	R^2	Ave. Bias	Max. Bias	Rand. <i>t</i> -test
P_{ann}	Component 1	109.58	0.6105	-0.60344	165.7842	0.001
	Component 2	106.33	0.6367	-0.17538	173.9644	0.048
	Component 3	104.33	0.6493	-0.08673	150.1874	0.077
	Component 4	104.37	0.6501	-1.22009	149.6598	0.527
	Component 5	104.88	0.6479	-0.02029	155.7057	0.800
Mt_{wa}	Component 1	2.55976	0.36841	0.05264	6.02357	0.001
	Component 2	2.49063	0.40540	0.07848	5.89699	0.025

Component 3	2.49095	0.40748	-0.00082	5.39354	0.526
Component 4	2.51670	0.40148	0.01266	4.97078	0.872
Component 5	2.55368	0.39158	-0.00821	5.04967	0.935

50 We argue in detail that the arboreal pollen should be treated as exogenous components
 51 before 7.4 ka BP in the main text, and we reconstructed P_{ann} and Mt_{wa} based on the
 52 fossil pollen record either including or excluding arboreal pollen taxa, to investigate
 53 the potential ranges of P_{ann} and Mt_{wa} between 14.2 and 7.4 ka BP.
 54 The quantitative reconstructions show that the exogenous arboreal pollen taxa have no
 55 significant effect on Mt_{wa} , but do have a great impact on P_{ann} between 14.2 and 7.4 ka
 56 BP (Fig. S1). From 14.2 to 7.4 ka BP, P_{ann} ranges from 400 to 734 mm, and Mt_{wa}
 57 varies between 7.7 and 10°C. Mt_{wa} shows a slight decrease during 10.8–7.4 ka BP,
 58 whereas P_{ann} has no significant change compared with the former stage. The highest
 59 values of P_{ann} and Mt_{wa} occur between 7.4 and 3.8 ka BP. After 3.8 ka BP, P_{ann}
 60 decreases continuously while Mt_{wa} holds low values with little temporal changes (Fig.
 61 S1).

62
 63 **Figure S1.** Reconstructions of P_{ann} and Mt_{wa} for Gahai Lake based on the fossil pollen record
 64 either including (darker lines) or excluding (lighter lines) arboreal pollen taxa before 7.4 ka BP.

65 **Supplementary References**

66 Birk, H. J. B.: Numerical tools in quantitative palaeolimnology: Progress,
 67 potentialities, and problems, J. Paleolimnol., 20, 301–332, doi:
 68 10.1023/A:1008038808690, 1998.

69 Cao, X., Herzschuh, U., Telford, R. J., and Ni, J.: A modern pollen-climate dataset
70 from China and Mongolia: Assessing its potential for climate reconstruction, *Rev.*
71 *Palaeobot. Palynol.*, 211, 87–96, doi: 10.1016/j.revpalbo.2014.08.007, 2014.

72 Cao, X., Tian, F., Li, K., Ni, J., Yu, X., Liu, L., and Wang, N.: Lake surface-sediment
73 pollen dataset for the alpine meadow vegetation type from the eastern Tibetan
74 Plateau and its potential in past climate reconstructions, *Earth Syst. Sci. Data*, 13,
75 3525–3537, doi: 10.5194/essd-13-3525-2021, 2021.

76 He, J., Yang, K., Tang, W., Lu, H., Qin, J., Chen, Y., and Li, X.: The first
77 high-resolution meteorological forcing dataset for land process studies over
78 China, *Sci. Data*, 7, 25, doi: 10.1038/s41597-020-0369-y, 2020.

79 Juggins, S.: Rioja: analysis of Quaternary Science Data version 0.7-3, available at:
80 <http://cran.r-project.org/web/packages/rioja/index.html> (last access: June 2020),
81 2012.

82 Juggins, S. and Birks, H. J. B.: Quantitative environmental reconstructions from
83 biological data, in: Birks, H. J. B., Lotter, A. F., Juggins, S., and Smol, J. P.,
84 *Tracking environmental change using lake sediments* (vol. 5): Data handling and
85 numerical techniques, Springer, Dordrecht, 431–494, 2012.

86 Nychka, D., Furrer, R., Paige, J., and Sain, S.: *fields: Tools for spatial data, version*
87 *9.6.1*, available at: <https://cran.r-project.org/web/packages/fields/> (last access:
88 June 2020), 2019.

89 R Core Team.: *R, A language and environment for statistical computing*. R
90 Foundation for Statistical Computing, Vienna, 2020.

91 ter Braak, C. J. F., and Juggins, S.: Weighted averaging partial least squares regression
92 (WA-PLS): an improved method for reconstructing environmental variables from
93 species assemblages, *Hydrobiologia*, 269–270, 485–502, doi:
94 10.1007/BF00028046, 1993.

95 Wang, N., Liu, L., Zhang, Y., and Cao, X.: A modern pollen dataset for the
96 forest-meadow-steppe ecotone from the Tibetan Plateau and its potential use in
97 past vegetation reconstruction, *Boreas*, doi: 10.1111/bor.12589, 2022.