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Abstract. Situated within the triangle of the East Asian monsoon, the Indian monsoon, 12 

and the westerlies, the Holocene patterns of climate and vegetation changes on the 13 

north-east Tibetan Plateau are still unclear or even contradictory. By investigating the 14 

distribution of modern pollen taxa on the east Tibetan Plateau, we infer the past 15 

vegetation and climate since 14.2 ka BP (thousand years before present) from a fossil 16 

pollen record extracted from Gahai Lake (102.3133°E, 34.2398°N; 3444 m a.s.l.) 17 

together with multiple proxies (grain-size, contents of total organic carbon and total 18 

nitrogen) on the north-east Tibetan Plateau. Results indicate that the Gahai Basin was 19 

covered by arid alpine steppe or even desert between 14.2 and 7.4 ka BP with dry 20 

climatic conditions, and high percentages of arboreal pollen are thought to be long-21 

distance wind transported grains. Montane forest (dominated by Abies, Picea, and 22 

Pinus) migrated into the Gahai Basin between 7.4 and 3.8 ka BP driven by wet and 23 

warm climatic conditions (the climate optimum within the Holocene) but reverted to 24 

alpine steppe between 3.8 and 2.3 ka BP, indicating a drying climate trend. After 2.3 25 

ka BP, vegetation shifted to alpine meadow represented by increasing abundances of 26 

Cyperaceae, which may reflect a cooling climate. The strange pollen spectra with high 27 

abundances of Cyperaceae and high total pollen concentrations after ca. 0.24 ka BP 28 
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(1710 CE) could be an indication of disturbance by human activities to some extent, 29 

but needs more direct evidence to be confirmed. Our study confirms the occurrence of 30 

a climate optimum in the mid-Holocene on the north-east Tibetan Plateau, which is 31 

consistent with climate records from the fringe areas of the East Asian summer 32 

monsoon, and provides new insights into the fluctuations in the intensity and extent of 33 

the Asian monsoon system. 34 

Keywords: Gahai Lake; pollen; climate reconstruction; vegetation evolution; last 35 

deglacial 36 

1 Introduction 37 

Vegetation, as an essential component in the terrestrial ecosystem, responds to and 38 

represents well environmental and climatic changes. Investigating the patterns and 39 

mechanisms of past vegetation changes provides a reliable analogue for predicting 40 

future climate and vegetation changes (Mykleby et al., 2017; Zhao et al., 2017). Since 41 

the sharp climate warming during the last deglacial (after ca. 15 ka BP in the Northern 42 

Hemisphere; Wang et al., 2001; Andersen et al., 2004; Dykoski et al., 2005; Xu et al., 43 

2013), the response of vegetation to climate warming could be a valuable palaeo-44 

analogue for understanding current vegetation changes under global warming and for 45 

predicting future vegetation trends (Birks, 2019). 46 

The north-east Tibetan Plateau lies in the transition between the East Asian summer 47 

monsoon, the Indian summer monsoon, and the westerlies, is sensitive to climate 48 

change, and is an ideal region to study past vegetation and climate variation (Bryson, 49 

1986; An et al., 2012; Chen et al., 2016). Nevertheless, the climate records from 50 

different lacustrine sediments on the north-east Tibetan Plateau show a lack of 51 

consistency, for example, regarding the climatic conditions during the early Holocene. 52 

Some records reveal that the climate was relatively dry on the north-east Tibetan 53 

Plateau and controlled by the East Asian monsoon during the early Holocene (Shen et 54 

al., 2005; Herzschuh et al., 2006; Cheng et al., 2013), while other records such as 55 

those from Hala Lake and Genggahai Lake show that there was maximum water 56 
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depth and hence a climatic optimum in the early Holocene (Qiang et al., 2013; Yan 57 

and Wünnemann, 2014; Wang et al., 2021). Therefore, more studies are needed to 58 

clarify the early Holocene climatic conditions, which are necessary to resolve the 59 

environmental evolution of the north-east Tibetan Plateau. 60 

Pollen plays an important role in reconstructing the past vegetation and climate owing 61 

to its preservation in various sediment types (Chevalier et al., 2020). However, pollen-62 

based vegetation and climate reconstructions on the Tibetan Plateau are also 63 

confronted with challenges, for instance, the current quantitative reconstructions of 64 

vegetation and climate are based on pollen percentages, which can be biased when 65 

there is much exogenous arboreal pollen, especially in strata with extremely low 66 

pollen concentrations because the exogenous arboreal pollen will form a larger 67 

proportion of the pollen sample (Herzschuh. 2007; Ma et al., 2017; 2019). Exogenous 68 

arboreal pollen can be recognised in areas far away from forested regions, mainly 69 

because no trees grow around the lake or its adjacent areas nowadays, such as 70 

Luanhaizi Lake (Herzschuh et al., 2010), Donggi Cona Lake (Wang et al., 2014), and 71 

Kuhai Lake (Wischnewski et al., 2011). Arboreal pollen can then be excluded in 72 

subsequent analysis to ensure the correct interpretation of vegetation and environment. 73 

However, it is somewhat difficult to recognise the contribution of exogenous pollen 74 

from areas near the forest on the eastern part of the Tibetan Plateau, which could 75 

seriously impact the results of vegetation reconstructions, such as from Naleng Lake 76 

(Kramer et al., 2010) and Qinghai Lake (Shen et al., 2005). Solving this issue of 77 

clarifying the influence of exogenous pollen is an important prerequisite for a better 78 

understanding of the early Holocene climate shifts. Understanding the spatial 79 

distribution characteristics of modern pollen and their relationships may be an 80 

effective way to identify such arboreal pollen properties. 81 

In this study, we integrate multi-proxy records (pollen, grain size, total organic carbon 82 

(TOC), total nitrogen (TN)) of Gahai Lake to reconstruct the climate and vegetation 83 

evolution since the last deglacial. We assess the dispersal ability and biotopes of the 84 

main pollen taxa in the pollen record by investigating the distribution of modern 85 
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pollen and their relationship with climate. We attempt to recognise exogenous pollen 86 

and evaluate its influence on reconstruction results to determine whether the early 87 

Holocene of the north-east Tibetan Plateau was dry or wet. 88 

2 Study area 89 

Gahai Lake (102.3133°E, 34.2398°N; 3444 m a.s.l.) is situated in the upper reaches of 90 

the Yellow River on the north-east Tibetan Plateau, a transitional zone between the 91 

Tibetan Plateau, the mountainous area of Longnan, and the Loess Plateau (Fig. 1). 92 

Gahai Lake is a typical plateau interior freshwater lake, with a total area of 15 km2 93 

and a mean water depth ranging from 2 to 2.5 m. The water supply of the lake is 94 

mainly from precipitation, groundwater recharge, and surface runoff from surrounding 95 

mountains to the south and south-east including Qiongmuqiequ, Wenniqu, and 96 

Geqiongkuhe rivers, and there is a single outflow stream at the north-western end of 97 

the basin (Duan et al., 2016; Fig. 1). Gahai Lake currently belongs to the alpine humid 98 

climate zone, which is influenced by the West Pacific Subtropical High in summer 99 

and controlled by westerlies in winter. Climate characteristics are rain in the warm 100 

season, and large seasonal and diurnal temperature differences (Liang, 2006). Mean 101 

annual temperature of this region is 1.2℃ and mean annual precipitation is 782 mm, 102 

with about 80% of precipitation falling in the rainy season (from June to September), 103 

and mean annual evaporation is 1150 mm (Duan et al., 2016). 104 

Vegetation cover in Gahai Basin exceeds 90%. There are abundant species in the 105 

grassland community, which is at the intersection of various flora, and perennial herbs 106 

predominate. The dominant plant species include Poa annua, Carex, Clintoniaudensis, 107 

Polygonum, Ranunculus japonicus, Potentilla fruticosa, Neyraudia reynaudiana, and 108 

Elymus nutans. Forest is found in the eastern low mountains with a mosaic 109 

distribution of meadow and shrub, dominated by Abies, Picea, Betula, and 110 

Cupressaceae. Picea is found in damp areas at the foot of mountains and replaced by 111 

Betula as a transitional community after being cut down; Abies occurs on shady and 112 

semi-shady slopes between 3200 and 3400 m a.s.l.; Cupressaceae is distributed mostly 113 
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on sunny and semi-sunny slopes of more than 35 degrees. This region belongs to a 114 

typical stockbreeding district, and the grazing activity focuses on the grassland. In 115 

addition, there is small-scale agriculture along the river valley at low elevations 116 

(Liang et al., 2006; Duan et al., 2016). 117 

 118 

Figure 1. (a) The locations of the related lakes and modern surface samples (Du, 2019). Lakes 119 

referred to in the text: 1, ZB08-C1; 2, ZB10-C14; 3, Hongyuan peatland; 4, Ximencuo Lake; 5, 120 

Dalianhai Lake; 6, Luanhaizi Lake; 7, Qinghai Lake; 8, Genggahai Lake; 9, Kuhai Lake; 10, 121 

Donggi Cona Lake; 11, Koucha Lake; 12, Hala Lake; 13, Gahai Lake (Qaidam basin). (b) 122 

Catchment map and coring site of Gahai Lake. (c) Distribution of modern pollen samples in the 123 

vicinity of Gahai Lake. 124 

3 Material and methods 125 

3.1 Modern pollen data and their climate data 126 

Our modern pollen dataset (n=731) is derived from the east Tibetan Plateau ranging 127 
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from 94.07 to 103.02°E and from 29.13 to 38.48°N, with elevations from 2515 to 128 

5008 m a.s.l. These modern pollen data are mainly from the modern pollen database 129 

of China and Mongolia (Cao et al., 2014) and recently published pollen data for the 130 

east Tibetan Plateau (Cao et al., 2021; Wang et al., 2022). The pollen sites are 131 

generally evenly distributed across the east Tibetan Plateau, covering subalpine forest, 132 

alpine meadow, alpine steppe, and alpine desert (Fig. 1). Pollen sample types include 133 

topsoil, lake surface-sediments, and moss polsters mainly. 134 

We selected four important climate variables including mean annual precipitation 135 

(Pann), mean temperature of the warmest month (Mtwa), mean temperature of the 136 

coldest month (Mtco), and mean annual temperature (Tann), together with elevation 137 

(Elev) to investigate the relationship between pollen assemblages and the environment 138 

because these are important factors influencing the pollen distribution on the Tibetan 139 

Plateau (Lu et al., 2011; Cao et al., 2021; Wang et al., 2022). Modern climatic data 140 

were obtained from the Chinese Meteorological Forcing Dataset (CMFD; gridded 141 

near-surface meteorological dataset), and each sample is assigned to the nearest pixel 142 

of the CMFD using the fields package version 13.3 (Nychka et al., 2021) of R 143 

(version 4.0.3; R Core Team, 2021). The detailed processes of obtaining climatic data 144 

are presented in Fig. A1. 145 

3.2 Sediment sampling and radiocarbon dating 146 

A 329-cm-long sediment core (named GAH) was obtained using a UWITEC platform 147 

from the deepest part of Gahai Lake (ca. 2 m) in January 2019 (Fig. 1), and then 148 

transported to the Institute of the Tibetan Plateau Research for preservation. GAH was 149 

sub-sampled at 1 cm intervals, and all sub-samples were freeze-dried. 150 

The age-depth model for GAH was established by 210Pb, 137Cs, and accelerator mass 151 

spectrometry (AMS) radiocarbon dating. The top 20 cm of the sediment at 1-cm 152 

intervals was measured for 210Pb and 137Cs at the School of Geographical Science, 153 

Nantong University. The constant rate of supply (CRS) model was selected to 154 

calculate the dates due to the non-monotonic variation of unsupported 210Pb activity, 155 
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as the results revealed that the 210Pb dates were inconsistent with the 137Cs peak of 156 

1963 CE (Appleby, 2001). To solve this problem, the core was divided into two 157 

sections using 210Pbex activity variation data using different formulae to calculate the 158 

dates and obtain a good effect. Finally, an age-depth model based on a 210Pb-CRS 159 

model corrected by 137Cs peak was generated (Fig. 4a). Thirteen bulk organic 160 

sediment samples of 1-cm thickness were sent for AMS 14C dating by Beta Analytic 161 

Inc., USA, owing to a lack of macrofossils (Table 2). The age-depth model was 162 

established using the Bayesian age–depth modeling in the rbacon package (version 163 

2.5.7; Blaauw and Christen 2011; Blaauw et al., 2021) in R (R Core Team 2021) and 164 

the IntCal20 radiocarbon calibration curve (Reimer et al., 2020). 165 

3.3 Laboratory analysis 166 

The pollen samples (0.6–22 g; n=111; at 1 to 2 cm intervals) were treated with 167 

hydrofluoric acid sieving-analysis (Fægri and Iversen, 1975). Lycopodium spores (ca. 168 

27,560 grains) were added to the samples to calculate the pollen concentration, then 169 

samples were processed with 10% HCl, 10% KOH, and 36% HF, and sieved through 170 

a 7 μm nylon mesh, followed by acetolysis (9:1 mixture of acetic anhydride and 171 

sulphuric acid) treatment. Finally, glycerin was added to preserve the samples. The 172 

pollen taxa were identified and counted with a 400x LEICA DM 2500 optical 173 

microscope, with the aid of modern pollen reference slides collected from the eastern 174 

and central Tibetan Plateau (including 401 common species of alpine meadow; Cao et 175 

al., 2020) and published atlases for pollen and spores (Wang et al., 1995; Tang et al., 176 

2017). At least 100 terrestrial pollen grains were counted for most samples, except for 177 

10 samples owing to extremely low pollen concentration; and more than 3000 178 

Lycopodium spores were counted for each sample which could reflect the palaeo-179 

vegetation at that time. Because of the low pollen concentrations below the depth 176 180 

cm, only pollen data for the upper part of the core are presented and discussed. 181 

For the grain-size analysis, freeze-dried samples (1 g; n=176; above 176 cm) were 182 

treated with 30% H2O2 to remove organic matter and 10% HCl to remove carbonate, 183 
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cleaned with deionized water and kept stable for 24 h, before adding 0.5 N sodium 184 

hexametaphosphate (10 ml) and undergoing ultrasonic cleaning for 10 minutes. A 185 

laser diffraction particle size analyser MASTERSIZER 3000 (Chen et al., 2013) was 186 

used, with each sample being tested 3 times and their average value used in the final 187 

grain-size data. 188 

A total of 176 samples were analysed to obtain organic matter change since the last 189 

deglacial, including TN and TOC. Catalysts were added to freeze-dried samples and 190 

reacted quickly. TN was measured with an Elementar element analyser (CNS analyser, 191 

Vario MAX Cube)/Elementar Vario EL III which has a measurement accuracy of 192 

0.001. TOC was measured with a Vario MAX C analyser, and has the same accuracy 193 

as TN. All samples were ground to ensure sufficient reaction before testing. The C/N 194 

ratio was calculated by dividing TOC by TN. 195 

3.4 Numerical analyses 196 

Ordination analyses were employed to investigate the modern relationship between 197 

pollen taxa and climatic variables for the eastern Tibetan Plateau. Pollen taxa (with 198 

≥10% maximum and ≥30 occurrences) from the 731 modern pollen assemblages were 199 

used for detrended correspondence analysis (DCA; Hill and Gauch, 1980). The length 200 

of the first axis of the pollen data was 3.29 SD (standard deviation units), indicating 201 

that a linear response model is suitable for the modern pollen dataset (ter Braak and 202 

Verdonschot, 1995). Hence, we performed redundancy analysis (RDA) to visualise 203 

the distribution of pollen species and sampling sites along the climatic gradients. We 204 

used the variance inflation factor (VIF) to determine high collinearities within the 205 

model, and stopped adding variables to ensure all VIF values are lower than 20 (ter 206 

Braak and Prentice, 1988; Table 1). All ordination analyses were run using the rda 207 

function in the rioja package version 0.9–26 (Juggins, 2020) in R, using square-root 208 

transformed modern pollen percentages to optimise the signal-to-noise ratio (Prentice, 209 

1980). 210 

For the fossil pollen dataset obtained from GAH, 22 pollen taxa (those present in at 211 



9 

 

least 3 samples and with a ≥3% maximum) with square-root transformed percentages 212 

were selected for ordination analyses. The length of the first axis was 1.67 SD, 213 

indicating a principal component analysis (PCA) is suitable to investigate the 214 

relationship between the pollen taxa. PCA was run using the rda function in the vegan 215 

package (version 2.5-4; Oksanen et al., 2019) in R. 216 

In addition, weighted-averaging partial least squares (WA-PLS) was employed to 217 

establish a pollen–climate transfer function using the modern pollen dataset, and to 218 

quantitatively reconstruct past climate for the GAH pollen record. More details of the 219 

reconstruction are presented in the Supplement. 220 

Table 1. Summary statistics for redundancy analysis (RDA) with 19 pollen taxa and four climate 221 

variables. VIF: variance inflation factor; Pann: mean annual precipitation (mm); Mtco: mean 222 

temperature of the coldest month (℃); Mtwa: mean temperature of the warmest month (℃); Tann: 223 

mean annual temperature (℃); and Elev: elevation (m a.s.l). 224 

Climate 

variables 

VIF 

(without 

Tann) 

VIF  

(add 

Tann) 

Climate variables as 

sole predictor 

Marginal contribution based on 

climate variables 

Explained variance 

(%) 

Explained variance 

(%) 
p-value 

Pann 3.0 3.1 5.2 7.1 0.001 

Mtco 4.5 133.6 4.9 0.3 0.001 

Mtwa 6.5 111.7 3.7 5.7 0.001 

Elev 2.5 3.0 4.5 0.2 0.001 

Tann - 403.9 - - - 

4 Results 225 

4.1 Relationships of pollen taxa to climatic variables and elevation 226 

The modern pollen dataset for the east Tibetan Plateau contains 107 pollen taxa and 227 

covers a long Pann gradient (161–963 mm) and broad Mtwa gradient (1.8–18.5 ℃) (Fig. 228 

2; A1). High abundances of arboreal pollen taxa including Abies, Quercus (evergreen, 229 

E), Corylus, and Carpinus are mainly distributed in regions with Pann higher than 450 230 

mm and Mtco higher than -15 ℃ (Fig. 2; A1). Pinus (up to 2.3%, mean 0.3%), Picea 231 

(up to 25.7%, mean 0.5%), and Betula (up to 5.7%, mean 0.4%) are also widely 232 

distributed and appear in extreme dry and cold sampling sites where Pann is lower than  233 
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 234 

Figure 2. Pollen assemblages of surface sediment samples with annual precipitation (Pann) from 235 

the eastern Tibetan Plateau. 236 

450 mm and Mtco lower than -15 ℃, although their high abundances are restricted to 237 

warm and wet areas (Fig. 2; A1). Drought-tolerant taxa such as Chenopodiaceae and 238 

Ephedra are restricted to regions with low Pann and high Mtwa, and they have quite 239 

low abundances in wet areas (Fig. 2). In addition, elevation is also an important factor 240 

influencing the pollen distribution on the eastern Tibetan Plateau. Arboreal pollen taxa 241 
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including Pinus, Picea, Abies, Betula, Quercus (deciduous, D), and Corylus are 242 

mainly distributed in areas below 3900 m a.s.l., while Quercus (E) is concentrated in 243 

areas above 3700 m a.s.l. The high percentages of Cyperaceae, Artemisia, and 244 

Chenopodiaceae are mainly concentrated in the lower elevations (below 3200 m a.s.l.). 245 

Redundancy analysis shows that the first two axes explain 28% of the pollen data 246 

(axis 1: 15.5%; axis 2: 12.5%; Fig. 3). Arboreal pollen taxa are located in the left of 247 

the biplot and are positively correlated with Pann and Mtco. Asteraceae, Poaceae, 248 

Thalictrum, Ranunculaceae, Caryophyllaceae, and Cyperaceae show a negative 249 

relationship with Mtwa and Mtco while positive with Elev and are situated in the lower 250 

right of the biplot. Drought-tolerant pollen including Chenopodiaceae, Artemisia, and 251 

Ephedra are situated at the upper right of the biplot, showing positive correlations 252 

with temperature variables and negative correlations with precipitation (Fig. 3). 253 

 254 

Figure 3. Redundancy analysis (RDA) of modern pollen samples along with three climate 255 

variables and elevation. 256 

4.2 Sedimentary lithology and chronology 257 

The sedimentary lithology of the GAH core is comprised of black silt in the upper 258 

part (0–99 cm), brown clay in the central part (99–240 cm), and dark-brown fine silt 259 
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in the lower part (240–329 cm; Fig. 4). Our study concentrates on the vegetation and 260 

environment evolution of the upper 176 cm due to the extremely low pollen 261 

concentrations in the lower part, insufficient for statistical analyses. 262 

 263 

Figure 4. Age-depth model of the Gahai Lake sediment core derived from 137Cs, 210Pb, and 14C 264 

dating. (a) Black line with triangles: 137Cs age; black line with solid circles: 210Pb:210Pbex age; 265 

black line with squares: mean age based on annual lamination counting. (b) Age-depth curve 266 

based on a 210Pb profile of recent sediments and 13 AMS radiocarbon dates from Gahai Lake. The 267 

range of the two grey dashed lines indicate the 95% confidence intervals, and the red dashed lines 268 

show the single “best” model based on the weighted mean age for each depth. 269 

The chronology of the upper 20 cm sediment is established by the 210Pb-CRS model, 270 

with dates falling between 1828 and 2013 CE. The AMS 14C ages of GAH exhibit a 271 

linear regression with depth, while there is a transient inversion between 191 and 279 272 
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cm, which is probably due to increased erosion input to the basin, leading to some old 273 

carbon accumulating in the lake. The ages of the upper 20 cm are calculated based on 274 

their relationship (Table 2), and the age difference between 14C and 210Pb of the same 275 

depth is considered as the reservoir age. We selected two depths (6 cm and 10 cm) to 276 

calculate an average to reduce errors and obtained a reservoir age of 483 years. The 277 

age-depth model suggests that the basal age of GAH is about 24 ka BP, with the age 278 

of sediments between 191 and 279 cm basically remaining the same, probably 279 

because of lake sediment collapse or rapid input of terrigenous clastic materials since 280 

the lithology also changes markedly between 190 and 280 cm, confirming that the 281 

lake underwent rapid deposition during this phase. The sedimentation rate is relatively 282 

stable since 15 ka BP, and our research focuses on the vegetation and environmental 283 

evolution since 14.2 ka BP (Fig. 4). 284 

Table 2. AMS radiocarbon dates for Gahai Lake 285 

Lab ID Depth 

(cm) 

δ13C 

(‰) 

14C age 

(yr BP) 

Error 

(±yr) 

Beta-546102 10 -25.6 440 30 

Beta-546103 25 -25.1 1740 30 

Beta-539751 40 -25.7 1960 30 

Beta-539752 80 -24.8 3880 30 

Beta-546104 99 -24.3 6390 30 

Beta-539753 120 -22.1 8180 40 

Beta-546105 144 -22.9 10240 30 

Beta-539754 170 -23 10590 30 

Beta-575823 191 -24.4 15070 40 

Beta-546120 229 -25.4 14870 50 

Beta-550230 275 -23.5 18930 60 

Beta-546121 279 -22.6 15550 50 

Beta-546122 319 -20.5 19440 70 

4.3 Pollen record of GAH since the last deglacial 286 

In our study, 52 pollen taxa were identified in the 111 samples from the upper part of 287 

GAH (0–176 cm), with Cyperaceae, Pinus, Asteraceae, and Artemisia as dominant 288 
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taxa, while Poaceae, Ranunculaceae, Ulmus, and Picea are common taxa. The pollen 289 

record can be demarcated into four zones (Fig. 5). Pollen concertation is extremely 290 

low (mean 33.5 grains/g) before 7.4 ka BP, and the pollen spectra are dominated by  291 

 292 

Figure 5. Pollen diagram of the main fossil pollen taxa in Gahai Lake, north-east Tibetan Plateau. 293 
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arboreal pollen taxa including Pinus, Picea, Ulmus, and Betula, together with 294 

abundant drought-tolerant pollen taxa (such as Chenopodiaceae and Ephedra). Pollen 295 

concentration increases remarkably after 7.4 ka BP, and the percentage of drought-296 

tolerant pollen taxa decreases while that of Pinus increases in the pollen spectra. 297 

Between 3.8 and 2.3 ka BP, Pinus and Picea decrease sharply, while Artemisia, 298 

Poaceae, Asteraceae, and Thalictrum increase significantly. Pollen concentration 299 

increases greatly and the pollen spectra are dominated by Cyperaceae after 2.3 ka BP. 300 

Cyperaceae rises sharply and becomes overwhelmingly dominant in the pollen spectra, 301 

and the pollen concentration also increases strongly in the last 0.24 ka BP (Fig. 5). 302 

4.4 PCA results 303 

The first two axes of the principal component analysis (PCA) explain 72% of the total 304 

pollen data (axis 1: 59.2%; axis 2: 12.8%; Fig. 6a). The PCA divides arboreal pollen 305 

taxa (such as Pinus, Picea, Betula, Ulmus), alpine steppe taxa (including Artemisia, 306 

Poaceae, Asteraceae), and meadow taxa (Cyperaceae) into three clear groups. In 307 

addition, pollen samples of Zones I and II are consistent with arboreal taxa, pollen 308 

samples from Zone III contain abundant steppe taxa, while samples in Zone IV are 309 

dominated by Cyperaceae (Fig. 6b). 310 

 311 

Figure 6. Principal component analysis (PCA) of fossil pollen taxa (a) and pollen zones (b) from 312 

Gahai Lake (see Fig. 5 for the pollen zones). 313 
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4.5 Sedimentology and conventional geochemistry 314 

The size fractions (volume, %) were classified as clay (<4 μm), silt (fine: 4–16 μm; 315 

medium: 16–32 μm; coarse: 32–63 μm – combined into one category for the 316 

discussion), and sand (>63 μm), and the specific details are shown in Fig. A2. The 317 

grain-size parameters of GAH include mean grain size, which ranges from 17.5 to 60 318 

μm. The combined silt fraction (4–63 μm) accounts for the maximal proportion (58–319 

75%; mean 66%) in general (Fig. 7). The clay fraction (15–33%; mean 23%) forms 320 

the highest proportion during 14.2–10.8 ka BP, then decreases significantly and 321 

remains stable after 10.8 ka BP (Fig. 7). The silt fraction (57.6–74.7%; mean 63.9%) 322 

is lowest during 14.2–10.8 ka BP, then increases and reaches a peak during 7.4–3.8 ka 323 

BP, after which the mean value decreases to 65.8% (Fig. 7). The sand fraction 324 

correlates with the silt fraction before 10.8 ka BP, while later the variation is 325 

anticorrelated. Mean grain size closely correlates with the sand fraction in general 326 

(Fig. 7). 327 

TOC, TN, and C/N ratios fluctuate greatly after 14.2 ka BP, and TOC and TN present 328 

simultaneous change trends (Fig. 7). TOC and TN values are remarkably low and C/N 329 

ratios are lower than 10 between 14.2 and 7 ka BP. TOC, TN, and C/N ratios increase 330 

significantly and C/N ratios are higher than 10 between 7 and 3.8 ka BP. TOC, TN, 331 

and C/N ratios reduce slightly but are still higher than 10 after 3.8 ka BP. TOC and 332 

TN values increase drastically while C/N ratios have no obvious change during the 333 

last 0.24 ka BP (since 1710 CE). 334 
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 335 

Figure 7. Comparison of the multi-proxy records from Gahai Lake. (a) total nitrogen (TN); (b) 336 

total organic carbon (TOC); (c) C/N ratio; (d) pollen concentration; (e-h) grain size distribution 337 

and mean grain size; (i) quantitative reconstruction of mean temperature of the warmest month 338 

(Mtwa). The dark purple curve indicates the reconstruction based on the pollen assemblages 339 

including the arboreal pollen and the light purple curve represents the reconstruction based on the 340 
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pollen assemblages removing the arboreal pollen (before 7.4 ka only); (j) the quantitative 341 

reconstructions of mean annual precipitation (Pann). The dark blue curve is the reconstruction 342 

based on the pollen assemblages including the arboreal pollen, and the light blue curve is the 343 

reconstruction based on the pollen assemblages without the arboreal pollen (before 7.4 ka only). 344 

The grey shading denotes the different pollen zones of Gahai Lake. 345 

5 Discussion 346 

5.1 Patterns and interpretation of the proxies 347 

TOC is a proxy for the abundance of organic matter which originates from aquatic 348 

organisms and terrestrial vegetation, and TN represents the nutritional conditions of 349 

the lake. In addition, TOC is an effective index to evaluate the summer monsoon 350 

intensity, where low values reflect a cold and dry climate (An et al., 2012; Optiz et al., 351 

2012). C/N ratios are used to trace the plant source of the organic matter. C/N ratios of 352 

the nonvascular aquatic plants and algae are generally between 4 and 10, and C/N 353 

ratios >20 indicate that organic matter mainly originates from terrestrial vascular 354 

plants. Ratios ranging from 10 to 20 suggest that the organic matter is derived from a 355 

mixture of aquatic and terrestrial plants (Meyers and Ishiwatari, 1993; Meyers, 2003; 356 

Kasper et al., 2015). High values of TOC and C/N ratios in the Tibetan Plateau lakes 357 

suggest a warm and wet climate (Chen et al., 2021). 358 

The grain-size composition of lake sediments can be used to trace the source of clastic 359 

particles, aeolian activity, and water-level fluctuations, which reflect the regional 360 

climate conditions (Håkanson and Jansson, 1983; Liu et al., 2016). The sources of 361 

lacustrine sediments include clastic materials carried by inflow rivers, aeolian inputs, 362 

and authigenic chemical deposition, and mean grain size reflects the intensity of 363 

transport dynamics (Folk and Ward, 1957; Xiao et al., 2013). There have been many 364 

particle-size analyses from lacustrine sediments or loess deposits on the north-eastern 365 

Tibetan Plateau. For example, Qiang et al. (2014) analysed the grain size of 366 

Genggahai lake and propound that the sand fraction (>63 μm) reflects aeolian activity. 367 

Chen et al. (2013) investigated Sugan Lake in the Qaidam basin and argue that 368 



19 

 

changes in the >63 μm fraction reflect the frequencies of dust storms and strong winds. 369 

In addition, Wang et al. (2015) analysed a loess deposit from Ledu on the north-370 

eastern Tibetan Plateau and also conclude that a grain-size of 60 μm is locally 371 

transported by strong winds during cold climatic intervals. The sand fraction (>63 μm) 372 

is also found in modern river sediments although the percentage is typically low. A 373 

single extreme rain event under an arid climate could lead to an abrupt sand fraction 374 

increase (Ding et al., 2005; Li et al., 2012; Liu et al., 2016; Ota et al., 2017; Zhou et 375 

al., 2018). Therefore, the sand fraction is mainly transported by winds and any peak or 376 

abnormal increase of the coarse grain size (especially the sand fraction) is likely 377 

related to flood events. In our study, a high proportion of the sand fraction (>63 μm) 378 

mainly represents aeolian activity intensity.  379 

Particle-size variation can reflect changes in water level or precipitation, taking into 380 

account the different lake recharge types, hydrological conditions, and lake sizes. 381 

There has been debate about how to interpret the grain-size index because the coarse 382 

particle fraction is positively correlated with precipitation and water level in small 383 

lakes dominated by summer rainfall but not in large lakes (Peng et al., 2005; Chen et 384 

al., 2021). Gahai Lake is a small, shallow lake and receives most of its precipitation in 385 

summer. The coarse particle fraction reflects a humid climate and high lake level 386 

owing to strong hydrological dynamics (Håkanson and Jansson, 1983; Peng et al., 387 

2005; Liu et al., 2008). The silt fraction (4–63 μm) in our study is driven by the 388 

medium silt (16–32 μm) fraction, while the fine and coarse silt fractions remain 389 

almost unchanged during the Holocene, hence the fine, medium, and coarse silt are 390 

combined into the total silt fraction (4–63 μm) for discussion. In addition, the mean 391 

grain size is closely related to the sand fraction and poorly reflects the climatic 392 

moisture and lake level. Therefore, we speculate that a high silt fraction (4–63 μm) in 393 

Gahai Lake reflects an increased lake level, while a high clay fraction (<4 μm) 394 

content reflects a low stand.  395 
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5.2 Determination of exogenous pollen grains 396 

According to modern pollen research from the Tibetan Plateau and northern China, 397 

Pinus, Picea, and Betula are dominant pollen taxa in forest samples, and these taxa 398 

have a good diffusion capacity with their pollen easily transported for long distances 399 

from their source (Lu et al. 2004; Ma et al., 2008). Ulmus also has good diffusion and 400 

can spread up to 40 km away, and can therefore show up as a regional vegetation 401 

component in a pollen assemblage (Xu et al., 2007). In addition, we analysed the non-402 

woodland topsoil samples within 30 km of Gahai Lake (n=22). Results show that 403 

arboreal pollen taxa including Pinus, Picea, and Betula are always present (usually at 404 

<40%) in the pollen samples, indicating that they have good diffusivity and are easily 405 

transported to areas beyond their pollen source (Fig. A3; A4). Therefore, the main 406 

arboreal pollen taxa in the GAH core including Pinus, Picea, Betula, and Ulmus are 407 

highly diffusive species which may bias the vegetation reconstruction unless their far-408 

distance transport is accounted for. 409 

The main pollen taxa have notable spatial distribution characteristics owing to their 410 

ecological environment based on modern pollen research and the modern pollen 411 

dataset. Arboreal taxa including Pinus, Picea, and Betula are mainly distributed in a 412 

warm and humid environment (Lu et al., 2004). Ulmus is a drought-tolerant and light-413 

demanding plant which can survive at precipitation levels lower than 200 mm per year 414 

(Shen et al., 2005). Previous modern pollen studies reveal that Chenopodiaceae and 415 

Ephedra are commonly found in the desert, indicating a tolerance for dry climatic 416 

conditions (Yu et al., 2001; Huang et al., 2018; Qin, 2021); and our modern pollen 417 

dataset for the east Tibetan Plateau suggests that xerophilous taxa such as Ephedra 418 

and Chenopodiaceae are restricted to areas with Pann lower than 400 mm, and almost 419 

absent in samples with high precipitation (Fig. 2). Fossil pollen spectra from the 420 

Tibetan Plateau with abundant arboreal pollen taxa together with low pollen 421 

concentrations are considered to represent extreme arid conditions and sparse 422 

vegetation (Kramer et al., 2010; Ma et al., 2019). Therefore, we argue that the 423 

arboreal pollen including Pinus, Picea, and Ulmus has been transported by wind from 424 



21 

 

beyond the watershed, and that the high abundance of drought-tolerant herbaceous 425 

taxa (weak dispersal ability) and low pollen concentrations indicate a sparse 426 

vegetation cover around the lake between 14.2 and 7.4 ka BP, suggesting an extremely 427 

arid climate. 428 

5.3 Evolution of vegetation and climate history since the last glacial 429 

Palaeo-vegetation and palaeo-climate is reconstructed based on the fossil pollen, TOC, 430 

TN, C/N ratios, and grain-size record of Gahai Lake since the last deglacial. 431 

From 14.2 to 10.8 ka BP, alpine steppe or desert covered the study area with the 432 

arboreal pollen derived from the surrounding mountains in the south-east of the basin. 433 

Pollen-based past Pann reconstructions are mainly in the range of higher than 418 mm 434 

(excluding arboreal taxa from pollen spectra) but less than 610 mm (including 435 

arboreal taxa from pollen spectra). Remarkably, however, there is little difference 436 

between the reconstructed Mtwa based on excluding arboreal taxa (mean 9.1℃) and 437 

including arboreal pollen (mean 9.6℃), thus the climate was probably warm and arid 438 

during this period (Fig. 7). Quite low TOC and TN contents, and C/N ratios (< 4) 439 

suggest that the organic matter is mainly derived from aquatic plants and little 440 

terrestrial biomass productivity under a dry and cold environment (Fig. 7; Zhu et al., 441 

2015). Maximum clay fraction and high sand fraction in the lake sediments reflect 442 

low water level and intense aeolian activity (Fig. 7). In summary, Gahai was probably 443 

a small and shallow pond during this period, with the surrounding vegetation 444 

dominated by alpine steppe or desert. 445 

From 10.8 to 7.4 ka BP, Ranunculaceae and Cyperaceae show a slight increase, and 446 

alpine steppe occurs across the region (Fig. 5). The reconstruction suggests that Mtwa 447 

(mean: 8.5 to 9.0℃) slightly decreases compared with the former stage, whereas 448 

reconstructed Pann (mean: 468 to 619 mm) is basically steady but still influenced by 449 

the exaggerated contribution of exogenous arboreal pollen (Fig. 7). TOC and C/N 450 

ratios rise during the early Holocene, implying an increase in biological productivity 451 

although still mainly from aquatic plants (Fig. 7). The silt fraction significantly 452 
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increases while the clay fraction decreases sharply with small fluctuations in the sand 453 

fraction, indicating a slight rise in the water level and intense aeolian activity during 454 

the early Holocene (Fig. 7). Therefore, we infer that the vegetation of Gahai Basin 455 

was covered by alpine steppe under dry climatic conditions during the early Holocene.  456 

The pollen spectra are dominated by Pinus and Picea while drought-tolerant taxa 457 

(such as Chenopodiaceae and Ephedra) have low abundances, indicating a vegetation 458 

shift from alpine steppe to montane forest between 7.4 and 3.8 ka BP. In addition, the 459 

pollen concentration increases markedly, reflecting a greatly enhanced vegetation and 460 

better climate after 7.4 ka BP (Kramer et al., 2010; Ma et al., 2019). The climate 461 

reconstruction shows that Pann (mean: 634 mm) and Mtwa (mean: 9.3 ℃) reach their 462 

peaks, suggesting that Gahai Lake is under a warm and wet climate optimum during 463 

this period (Fig. 7). In addition, the silt fraction significantly increases to a peak 464 

(mean: 70%), and TOC, TN, and C/N ratios (> 10) markedly increase suggesting that 465 

Gahai Lake was at a high stand with increased terrestrial organic matter input having 466 

grown from a small pond since 7.4 ka BP. At the same time, the sand fraction 467 

decreases to its nadir (mean: 11.7%), indicating weakened aeolian activity during this 468 

period, which could be related to the increased vegetation cover and moisture (Fig. 7). 469 

In summary, as Gahai Lake expanded, the surrounding vegetation became montane 470 

forest as seen by a shift in the arboreal pollen from extra-regional to within catchment. 471 

To support this vegetation, the climate was warm and wet, while aeolian activity was 472 

weak during the mid-Holocene (Fig. 7).  473 

Between 3.8 and 2.3 ka BP, the pollen spectra are characterised by a high percentage 474 

of Poaceae, Artemisia, and Asteraceae (major components of alpine steppe), while 475 

arboreal pollen taxa, especially Pinus and Picea, sharply decrease, indicating the tree-476 

line retreated to a lower elevation and a shift in vegetation type to alpine steppe 477 

(Herzschuh et al., 2010; Shen et al., 2021; Fig. 5). Reconstructed Pann (mean: 547 mm) 478 

and Mtwa (mean: 8.3 ℃) decrease significantly, suggesting climatic conditions 479 

deteriorated (Fig. 7). TOC, TN, and C/N ratios slightly decrease compared with the 480 

previous stage, suggesting the input of organic matter weakened (Fig. 7). The silt 481 
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fraction substantially decreases while the sand fraction has an increasing trend, 482 

suggesting the lake level decreased and aeolian activity increased (Fig. 7). In brief, the 483 

climate tended to be arid with enhanced aeolian activity and deteriorating 484 

environmental conditions. Alpine steppe dominated across the study region during 485 

this period. 486 

From 2.3 to 0.24 ka BP, the dominant taxa change from alpine steppe (Poaceae, 487 

Artemisia, and Asteraceae) (Ma et al., 2017; Qin, 2021) to alpine meadow 488 

(Cyperaceae) components (Herzschuh et al., 2007; 2010; Fig. 5), and a decrease in 489 

reconstructed Pann (537 mm) and Mtwa (7.3 ℃) suggests an arid and cold environment 490 

(Fig. 7). TOC, TN, and C/N ratios are almost unchanged suggesting similar total 491 

biogenic productivity to the previous stage (Fig. 7). The silt fraction decreases while 492 

the sand fraction increases, indicating a lower lake level and stronger aeolian activity 493 

than the former stage. Therefore, in this period, the vegetation turned to alpine 494 

meadow under an arid and cold climate, and lake level dropped while aeolian activity 495 

increased. 496 

After 0.24 ka BP (1710 CE), the pollen spectra are dominated by Cyperaceae 497 

(maximum, 95%; Fig. 5), with the percentage of Poaceae decreasing while 498 

Ranunculaceae increases. Previous vegetation investigations suggest that overgrazing 499 

causes the proportion of Cyperaceae to increase and become the dominant taxon, and 500 

thus could be an indicator of human activities (Yuan et al., 2004; Miehe et al., 2014; 501 

Lin et al., 2016). In addition, modern pollen research also suggests that pollen 502 

assemblages are dominated by Cyperaceae in overgrazed sites of alpine steppe and 503 

alpine meadow (Duan et al., 2021). According to earlier topsoil studies, 504 

Ranunculaceae and Poaceae are important indicators of grazing activities on the 505 

north-east Tibetan Plateau, with pollen percentages changing significantly in the 506 

overgrazed sites (Wei et al., 2018; Duan et al., 2021). Hence the vegetation during this 507 

period could have been disturbed by human activities. In addition, TOC, TN, and 508 

pollen concentration notably increase, indicating terrestrial material input 509 

strengthened, possibly as a result of increased surface erosion (silt fraction increases; 510 



24 

 

Fig. 7) due to the destruction of vegetation by grazing and pastoral activities. Reduced 511 

precipitation and monsoonal activity are also suggested by the increases in TOC, TN, 512 

and pollen concentration. 513 

5.4 Comparison of the regional climate and vegetation records from the north-east 514 

Tibetan Plateau in the early Holocene 515 

Climate and vegetation as revealed by pollen records covering the early Holocene on 516 

the north-east Tibetan Plateau are inconsistent, which may be due to the following 517 

reasons: local factors have a greater effect than regional climate (Chen et al., 2020); 518 

the distance of sampling sites from forested areas affects the results of vegetation 519 

reconstruction (Sun et al., 2017); and different climatic factors influence the regional 520 

vegetation distribution of the eastern Tibetan Plateau (Zhao et al., 2011). Based on the 521 

results of TOC, grain size, and reconstructed precipitation based on pollen analysis, 522 

we infer that Gahai Lake was surrounded by alpine steppe vegetation under an arid 523 

climate, and that the arboreal pollen was mainly transported by wind from the 524 

surrounding mountains during the early Holocene (Fig. 8a; b; c). Other records from 525 

the north-east Tibetan Plateau support these general features of climate and vegetation 526 

during the early Holocene. For example, reconstructions from adjacent areas show 527 

that the climate and vegetation of the Zoige Basin and Ximencuo Lake based on the 528 

pollen records reached their optimum during the mid-Holocene and had a cooler 529 

temperature and lower humidity during the early Holocene (Fig. 8f, g, h, i; Zhou et al., 530 

2010; Zhao et al., 2011; Sun et al., 2017; Herzschuh et al., 2014). Multi-proxies (e.g. 531 

carbonate content, oxygen and carbon stable isotope compositions of authicarbonate) 532 

also from Gahai Lake suggest that the climate was arid, becoming warm during the 533 

early Holocene and then moist, on the whole, during the mid-Holocene (Chen et al., 534 

2007). Cheng et al. (2013) analysed the pollen record of Dalianhai Lake (from 16 ka 535 

BP) and conclude that this region had a dry climate and was covered by steppe desert 536 

during the early Holocene (Fig. 8d). Multi-proxy records from Qinghai Lake 537 

including pollen, carbonate, TOC, TN, δ13C of organic matter, redness records, and 538 
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 539 

Figure 8. Comparison of the Gahai Lake results with other lake records on the north-eastern 540 

Tibetan Plateau. (a-c) Total organic carbon (TOC), silt fraction, and pollen-based precipitation 541 

reconstruction of the Gahai Lake record (this paper); (d) arboreal pollen percentages of Dalianhai 542 

Lake (Cheng et al., 2013); (e) arboreal pollen percentages of Qinghai Lake (Shen et al., 2005); (f) 543 

arboreal pollen percentages of the Hongyuan peatland (Zhou et al., 2010); (g) arboreal pollen 544 

percentages of the central Zoige basin (Zhao er al., 2011); (h-i) Pann and Tann reconstructed from 545 
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pollen records from Ximencuo Lake (Herzschuh et al., 2014); (j-k) Tann and Pann reconstructed 546 

from pollen records from Koucha Lake (Herzschuh et al., 2009); (l) Pann reconstructed from pollen 547 

records from Kuhai Lake (Wischnewski et al., 2011); (m) synthesized mean moisture index of arid 548 

central Asia (Chen et al., 2008); (n) Pann reconstructed from pollen records from Donggi Cona 549 

Lake (Wang et al., 2014); (o) Pann reconstructed from pollen records from Donggi Cona Lake 550 

(Herzschuh et al., 2010). 551 

lake level reveal that this region had a dry climate and weak East Asian summer 552 

monsoon (Fig. 8e; Shen et al., 2005; Ji et al., 2005; Liu et al., 2015; Chen et al., 2016). 553 

Similar records are found from Koucha Lake (Fig. 8j, k; Pann and Tann based on pollen 554 

record; Herzschuh et al., 2009), Kuhai Lake (Fig. 8l; Pann based on pollen record; 555 

Wischnewski et al., 2011), the arid region of central Asian (moisture variation based 556 

on eleven records integrated during the early Holocene: Fig. 8m; Chen et al., 2008; 557 

2020), and Luanhaizi Lake (Fig. 8o; Tann based on pollen record; Herzschuh et al., 558 

2005; 2010). The pollen assemblages of Donggi Cona Lake show a high percentage of 559 

Ephedra, which suggests an arid environment in the early Holocene, although the 560 

quantitative reconstruction (Fig. 8n; Pann based on pollen record) shows this period is 561 

the wettest stage in the Holocene (Wang et al., 2014; Huang et al., 2018). Based on 562 

the above investigations, we can conclude that the climate was arid on the north-east 563 

Tibetan Plateau during the early Holocene. 564 

6. Conclusions 565 

Based on modern pollen investigations for the eastern Tibetan Plateau, arboreal pollen 566 

can be determined as exogenous taxa when they appear together with drought-tolerant 567 

taxa and low pollen concentrations in fossil pollen spectra. The Gahai Basin was 568 

covered by alpine steppe or desert under dry climatic conditions during 14.2–7.4 ka 569 

BP; montane forest migrated into the basin and the climate reached an optimum 570 

between 7.4 and 3.8 ka BP according to the evidence of TN, TOC, C/N, and grain-size 571 

records; the vegetation reverted to alpine steppe owing to a drying climate from 3.8 to 572 

2.3 ka BP, after which steppe was replaced by alpine meadow as the climate cooled. 573 
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In addition, the vegetation showed signs of being influenced by human activity during 574 

the last 0.24 ka BP. 575 
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Appendices 921 

 922 

 923 

 924 

Figure A1. Pollen assemblages of the surface sediment samples arranged along a gradient of 925 

climate data from the eastern Tibetan Plateau. Elev: Elevation (m); Mtco: mean temperature of 926 

the coldest month (℃); Mtwa: mean temperature of the warmest month (℃). 927 
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 929 

Figure A2. The percentage of different grain size components and mean grain size derived from 930 

Gahai Lake since 14.2 ka BP. 931 

 932 

As noted in the main text, the silt fraction includes fine silt (4-16 μm), medium silt 933 

(16-32 μm), and coarse silt (32-63 μm). The proportions of the fine and coarse silt 934 

remain almost unchanged during the Holocene, while the medium silt fraction shows 935 

the most significant variation. In the sections below, we, therefore, use the whole silt 936 

fraction (4–63 μm) rather than the different grain sizes of silt fractions. 937 

 938 

 939 

 940 

Figure A3. Location of the modern pollen samples (n=22) in the vicinity of Gahai Lake. 941 
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 944 

Figure A4. Pollen diagram of the modern pollen samples (n=22) in the vicinity of the Gahai Lake.  945 
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