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Abstract. We describe the development of a block-structured, equal CPU-load, multigrid nesting interface for the Boussinesq

wave model FUNWAVE-TVD. The new model framework does not interfere with the core solver, and thus the core program,

FUNWAVE-TVD, is still a stand-alone model used for a single grid. The nesting interface manages the time sequencing and

two-way nesting processes between the parent grid and child grid with grid refinement in a hierarchical manner. Workload

balance in the MPI-based parallelization is handled by an equal-load scheme. A strategy of shared array allocation is applied5

for data management that allows a large number of nested grids without creating additional memory allocations. Four model

tests are conducted to verify the nesting algorithm with assessments of model accuracy and the robustness in the application in

modeling transoceanic tsunamis and coastal effects.

1 Introduction

To improve the resilience of the world’s highly populated coastal areas to tsunami hazard when tsunamigenic events (typically10

earthquakes or landslides) occur, there has been an increasing need for issuing early warnings and near- and far-field forecast of

tsunami coastal impact. This has led to a growing demand for accurate and efficient models of transoceanic tsunami propaga-

tion, in multiple-nested grid systems that allow refining the discretization towards shore, as depth decreases. Models predicting

tsunami wave evolution from generation at the source, to propagation at the oceanic basin-scale, transformation over the shelf,

and coastal inundation in the nearshore-scale are typically based on the non-dispersive nonlinear shallow water wave equations15

(NSWE, e.g., GeoClaw, George and LeVeque, 2008), dispersive Boussinesq-type equations such as FUNWAVE-TVD (e.g. Shi

et al., 2012; Kirby et al., 2013), or on non-hydrostatic wave equations such as NHWAVE (e.g., Ma et al., 2012; Tappin et al.,

2014; Grilli et al., 2019). Modeling studies of tsunami propagation in the ocean with and without dispersion have indicated

that, even for co-seismic tsunamis, frequency dispersion effects can accumulate to a sufficient degree to change waveforms,

altering the spatial distribution of wave elevations and coastal inundation (Ioualalen et al., 2007; Horrillo et al., 2012; Zhou20

et al., 2012; Kirby et al., 2013; Glimsdal et al., 2013; Kirby, 2016). Due to wave dispersion and nonlinearity, tsunami wave
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crests often evolve into undular bores (a.k.a., dispersive shock waves) as they approach the shoreline, an effect which may

significantly increase tsunami impact (i.e., currents and forces) on coastal structures (Madsen et al., 2008; Schambach et al.,

2019). For landslide-generated tsunamis, wavelengths are relatively shorter, and thus wave dispersion effects cannot be ne-

glected (e.g., Ma et al., 2012; Grilli et al., 2015, 2017; Schambach et al., 2019). As shown in the above studies, the magnitude25

of dispersive effects at given locations is a priori unknown; hence, it can only be estimated by performing simulations with

a dispersive models for each specific event, whether hypothetical, historical or in real time. With this realization, in the last

decade, modelers have gradually acknowledged the need for using a dispersive wave model to accurately assess tsunami haz-

ard, especially nearshore effects. A Boussinesq-type wave model appears to be a more appropriate tool for performing tsunami

simulations relative to other types of dispersive wave models, such as models based on the non-hydrostatic wave equations,30

because the frequency dispersion effects are manifested by so-called ‘dispersive terms’ in the equations, avoiding the pressure

Poisson solver, which is unaffordable for ocean basin-scale simulations.

Although some models use irregular grids or adaptive mesh refinement, the traditional way for carrying out multi-scale

tsunami modeling has been to use nested grids, either with a one-way nesting or two-way nesting method. The grid nesting

method is usually performed by nesting a fine grid within a coarse grid in a two- or multi-grid system with the hierarchical35

structure from coarser (lower-level) to finer grids (upper-level). In a one-way nesting, the model at an upper-level is forced by

the boundary conditions obtained from the output of the lower-level model. There is no feedback from the upper-level grid to

the lower-level grid. The nesting process can be done offline manually by running the model from the lower-level grid to the

upper-level grid without an additional interface developed in the model. Kirby et al. (2013), Tappin et al. (2014), Nemati et al.

(2019), and Schambach et al. (2019, 2020), for instance, are recent examples of using many levels of one-way nested spherical40

and/or Cartesian grids, with FUNWAVE and/or NHWAVE, varying from a few meters or tens of meters nearshore, to 1 or 2

arc-min in the deep ocean. In a two-way nesting, the procedure to force the upper-level grid model is the same as the one-way

nesting, but the feedback from the fine grid to the coarse grid is taken into account by updating the coarse grid solution with the

fine grid solution. To achieve this, the calculations at all grid levels have to perform simultaneously. To this effect, an interface

to handle the interactions between the nested grids has to be developed, which involves a significant programming effort.45

Multi-scale tsunami modeling may also be carried out using adaptive mesh refinement (AMR). In an AMR model, the

calculations at all grid levels have to perform simultaneously, in which the grid resolution is adaptively refined as a function

of chosen features of the flow field, such as a high spatial gradient in the solution. AMR can be implemented using either

an unstructured (e.g., Sleigh et al., 1998; Skoula et al., 2006) or block-structured scheme (Berger and Oliger, 1984; Berger

and Leveque, 1998; Liang, 2012). The latter is very similar to the two-way grid nesting mentioned above, except that the50

grid refinement is processed dynamically rather than prescribed using static sub-domains in the traditional two-way nesting

framework. Over the last decade, the AMR technique has found increasing use in publicly available codes (see the review

paper by Dubey et al., 2014). In tsunami applications, the AMR technique has been used in the NSWE-based models such as

GeoClaw (George and LeVeque, 2008; Watanabe et al., 2012; Arcos and LeVeque, 2015). For Boussinesq-type wave models,

however, the higher-order numerical schemes and tridiagonal matrices, which are derived on a structured grid system, make55

it challenging to implement a quadtree-structured AMR; although a block-structured AMR is relatively easier to implement,
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its efficiency may be penalized by the large data management and computational costs when solving the complex nonlinear

dispersive equations at multi-grid levels. Therefore, the AMR technique has rarely been applied to solving Boussinesq-type

wave equations.

In practical applications of multi-scale tsunami modeling using a dispersive wave model, the traditional multi-grid one-way60

nesting approach has proved efficient and accurate when focusing on nearshore effects, provided the nearshore grid refinement

ratio (i.e., ratio of discretization size from one nested grid to the next) is 4 or smaller. As the coastal area of interest is

usually predetermined when setting up the model, the grid refinement can be generated at the beginning and remain unchanged

throughout the entire simulation. Besides other applications mentioned above, a typical recent example is FUNWAVE-TVD

simulations of the far-field effects of the Tohoku-Oki 2011 tsunami in Crescent City Harbor, California (Tehranirad et al.,65

2020) , using a nested grid system including the ocean basin, regional, and nearshore harbor domains, as shown in Fig. 1. The

basin-scale grid has a 2 arc-min resolution, covering the entire Pacific Ocean; the nested grids are then specified in five levels

along the U.S. west coast, with a hierarchical structure from a resolution of 16 arc-sec to 1/6 arc-sec, downsizing towards

the Crescent City Harbor domain. The fully nonlinear Boussinesq model, FUNWAVE-TVD (Shi et al., 2012; Kirby et al.,

2013) is used in each individual grid with a one-way nesting scheme performed by applying the boundary conditions obtained70

from a lower-level grid model. While this nesting process is straightforward, it involves considerable post-processing effort to

manipulate and interpolate results from one level of nested grid to prepare data for simulating the next level grid. In addition,

the one-way nesting scheme may cause inconsistencies between different grids because of wave reflection at model boundaries.

For example, in the case of the Crescent City Harbor simulation mentioned above, the edge wave effects were not modeled

properly due to the limitation of the small local domains and the one-way nesting algorithm (Tehranirad et al., 2020).75
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Figure 4.19: The bathymetry data used for Ocean-basin modeling of Tohoku-Oki 2011 tsunami in the Pacific Ocean.
The black box shows the computational domain Grilli et al. (2013) used to simulate the tsunami source
with NHWAVE model. The red box depicts the location of gauges deployed in the computational domain
to record surface elevation and velocities for nearshore modeling through nesting.
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Figure 4.22: The nesting process used in this study to scale down the resolution from
16 arc-seconds down to 1/6 arc-second.
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Figure 1. The nested grids in the simulation of Tohoku-Oki 2011 tsunami impact on Crescent City Harbor, Oregon (Tehranirad et al.,

2020). The nesting process scales down the grid resolution from 2 arc-min in the ocean basin domain to 1/6 arc-sec in the harbor domain.

The same simulation was conducted using the present model nesting framework in section 4.4. Courtesy of Google Maps ©2021 Google,

©TerraMetrics.

Yamazaki et al. (2011) implemented two-way nesting method in their dispersive depth-integrated, non-hydrostatic wave

model for tsunami applications. The nesting model framework was based on a block-structured scheme with multiple prescribed

nested grids. They used this model to simulate the 2009 Samoa tsunami and the coastal inundation caused in Pago Pago harbor,

and reported good efficiency and accuracy of the two-way nesting model framework. However, it is not clear whether this

two-way nesting scheme was parallelized and how the mega-data structure was handled in the nesting framework. Recently,80

Chakrabarti et al. (2017) implemented the fully nonlinear and dispersive Boussinesq model FUNWAVE-TVD in the block

structured AMR framework CACTUS, which has been widely used in the field of astrophysics (Löffler et al., 2013). They

showed that shallow water waves could be simulated at higher resolution, with a reasonable computational cost, which also

allowed using an improved higher-order representation of the vegetation drag force. However, in this application, the nested

grids were statically prescribed, to reduce the computational cost from using dynamically adapted grids with a Boussinesq-85

type model. In addition, the CACTUS-based version of FUNWAVE-TVD relies on a specific library package and configuration

(Oler et al., 2016), limiting its general applications in the large user community.
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There are significant challenges implementing an AMR and two-way multi-grid nesting framework in a parallel computing

environment. Load balance, communication between parent and child grids, and mega-data management are major issues in

Message Passing Interface (MPI)-based programs. Load balance is important for CPU scaling, in terms of synchronization90

of solutions across refinement levels. Dubey et al. (2014) reviewed load balancing methods in several public-domain AMR

packages and pointed out the difficulties in achieving workload balance in the AMR framework. In a parallel multi-level grid

system, the parent-child grid communication is also critical to modeling efficiency. Strategies to build direct communication

between multi-level grids cross-ranks can be found in many AMR packages (Dubey et al., 2014). A multi-level grid system

makes the meta-data management more complex, especially for tree-structured data. Finally, it is important to optimize the95

amount of meta-data replication according to both the communication cost and memory cost (Dubey et al., 2014).

The limitation of the prior CACTUS implementation of an AMR version of FUNWAVE-TVD to a specific HPC platform

(Chakrabarti et al., 2017), motivates the development of a more platform-independent implementation of a two-way nesting

scheme. The primary objective for the present development is to provide a generic interface, which can be used with any HPC

platforms. The interface is used as a MASTER program to manage model input/output, the time sequencing and two-way100

nesting processes between grids at two different levels. Data exchanges between parent and child grids are performed using the

linear interpolator and restriction operator. We used an equal-load scheme in workload balance and applied a strategy of shared

array allocation for data management. The interface is developed separately from the core program and does not interfere

with the main solver of FUNWAVE-TVD. Hence, the package of the combined interface and core program can be updated

concurrently.105

In the following, a brief description of the FUNWAVE-TVD model is given in section 2. Section 3 describes the two-way

nesting interface, including the general algorithm, workload balance and flowchart of a MASTER program. Applications are

presented in section 4. Section 5 provides a summary of the present study.

2 FUNWAVE-TVD

2.1 The TVD version of the fully nonlinear Boussinesq model110

The scope of the present work is to develop a multi-grid nesting framework for the Boussinesq-type wave model FUNWAVE-

TVD, a widely-used public domain model in the nearshore and tsunami research community. FUNWAVE was initially devel-

oped by Kirby et al. (1998) based on the fully nonlinear Boussinesq equations derived by Wei et al. (1995). The development

of the Total Variation Diminishing (TVD) version of the model was motivated by a growing demand for phase-resolving

modeling of nearshore waves and coastal inundation during storm or tsunami events. The conservative form of the Boussi-115

nesq equations was discretized by a hybrid method combining finite-volume and finite-difference TVD-type schemes. The

model was developed in both the Cartesian coordinates (Cartesian mode, Shi et al., 2012) and spherical coordinates (Spher-

ical mode, Kirby et al., 2013). The Cartesian mode solves the fully nonlinear Boussinesq equations, initially derived by Wei

et al. (1995), with the second-order correction of vertical vorticity by Chen (2006) and the moving reference level of Kennedy

et al. (2001). The spherical mode solves the weekly nonlinear, weakly dispersive Boussinesq equations in spherical coordinates120
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(Kirby et al., 2013). The code was parallelized using the domain decomposition method based on MPI, for CPU-based High-

Performance-Computing (HPC) clusters, and the GPU-accelerated program for single- and multi-GPU systems (Yuan et al.,

2020). In tsunami applications, where nearshore waves are expected to be strongly nonlinear, a combination of deep water

spherical and nearshore Cartesian grids has often been used in the one-way coupling nested grid framework (e.g., Grilli et al.,

2013, 2015, 2017; Schambach et al., 2019, 2020; Tappin et al., 2014).125

2.2 Governing equations in the Cartesian and spherical coordinate systems

Although the sets of equations in Cartesian and spherical coordinate systems are different, the two FUNWAVE modes were

developed within the same numerical framework and using the same TVD-type solver. The combined form of the Boussinesq

equations in the two coordinate systems can be written as:

∂Ψ

∂t
+∇ ·Θ(Ψ) = S, (1)130

where Ψ and Θ(Ψ) are the vector of conserved variables and the flux vector function, respectively, given by:

Ψ =


H

U

V

 , Θ =


SpP i +Qj[

SpP
2

H + 1
2Spg(η2 + 2ηh)

]
i + PQ

H j

SpPQ
H i +

[
Q2

H + 1
2g(η2 + 2ηh)

]
j

 , (2)

where (P,Q) are the horizontal volume fluxes:

(P,Q) =H(uα + ū2), (3)

where H = h+ η with h the water depth and η the surface elevation, uα is the horizontal velocity vector at a reference depth135

zα, ū2 is the depth-averaged second-order horizontal velocity of O(µ2), in which µ is ratio of characteristic water depth to a

horizontal length, a dimensionless parameter quantifying the magnitude of wave dispersion. The velocity components (U,V )

combine uα and the dispersive terms V1:

(U,V ) =H(uα + V1). (4)

The velocity uα is obtained by solving a system of equations with a tridiagonal matrix formed by (4).140

In (2), Sp is the spherical coordinate correction factor defined for the spherical mode as:

Sp =
cosθ0

cosθ
, (5)

in which θ and θ0 are the latitude and the reference latitude, respectively (see Kirby et al., 2013). For the Cartesian mode,

Sp = 1. The last term S in (1) contains the Boussinesq source terms, which are detailed in Shi et al. (2012) for the Cartesian

mode and Kirby et al. (2013) for the spherical mode.145
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2.3 Numerical schemes

In FUNWAVE-TVD, the HLL Riemann solver with several options of finite volume schemes in different orders of accuracy was

implemented, By default, the fourth-order accurate MUSCL-TVD scheme (Erduran et al., 2005) was applied for discretizing the

leading order spatial derivative terms of the equations, while the dispersive terms were discretized by a second-order centered

finite difference scheme. Choi et al. (2018) compared the performance of the MUSCL-TVD, WENO and MLP schemes in150

FUNWAVE-TVD, and showed that the MUSCL-TVD scheme with a van-Leer limiter provides an accurate and stable solution

in long-term simulations. Here, we only briefly present the basic methods related to the nesting procedure in the present work.

Readers interested in detailed numerical schemes are referred to Shi et al. (2012) and Choi et al. (2018).

For time stepping scheme, FUNWAVE-TVD uses the third-order Strong Stability-Preserving (SSP) Runge-Kutta scheme

(Gottlieb et al., 2001), with an adaptive time stepping based on the Courant-Friedrichs-Lewy (CFL) condition prescribed as:155

∆t= Ccfl min

(
min

∆x

|uα +
√
gH|

,min
∆y

|vα +
√
gH|

)
, (6)

where Ccfl is the Courant number, and ∆x and ∆y are grid sizes in the x and y directions, respectively.

Although the conservative equations (1) are solved explicitly using the HLL Riemann solver, a system of tridiagonal matrix

equations derived from (3) needs to be solved to get the velocity at the reference level, which is done with Thomas’ algorithm

(Naik et al., 1993).160

Various boundary conditions were implemented in the model, including a wall boundary condition, wave periodic boundary

condition, wavemaker boundary condition, and absorbing or partially absorbing boundary conditions. The wall boundary con-

dition is the main boundary condition, dealing with either full wave reflection or a moving shoreline. Ghost cells are used in

the grid to implement a mirror boundary condition. As mentioned earlier, the multi-grid interface is developed separately from

the core program, and each grid in the nesting system runs the same core program for given initial and boundary conditions.165

2.4 Parallelization

The CPU code uses a domain decomposition technique to subdivide the problem into multiple regions and assign each sub-

domain to a separate processor core. Each subdomain region contains an overlapping area of ghost cells, which is three rows

deep, as required by the fourth-order MUSCL-TVD scheme. MPI with non-blocking communication is used to exchange data

in the overlapping region between neighboring processors. The tridiagonal matrices are solved using the parallel pipelining170

tridiagonal solver described in Naik et al. (1993).

Data exchanges between neighboring subdomains are conducted through the ghost cells at every Runge-Kutta time step. To

increase the model efficiency, the values of dispersive terms, in addition to the major variables (η,P,Q), are also exchanged at

the ghost cell boundaries.
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3 Two-way nesting interface175

3.1 Algorithm

For simplicity, we consider first a two-nested grid system containing the parent grid Ω0 and the child grid Ω1 as shown in

Fig. 2. The parent grid has a larger grid size, ∆x0, while the child grid has a smaller grid size, ∆x1. The grid refinement

ratio is thus defined as, s= ∆x0/∆x1. The boundary of the child grid is denoted by Γ, which has ghost cells. Following the

general procedure for two-way nesting, such as detailed in Debreu and Blayo (2008), the partial differential equation (1) can180

be rewritten as:

∂Ψ

∂t
= L(Ψ), (7)

where L(Ψ) = S−∇ ·Θ(Ψ), represents a general operator. The equation is discretized in Ω0 and Ω1 grids, by:

∂Ψ0

∂t
= L0(Ψ0),

∂Ψ1

∂t
= L1(Ψ1), (8)

respectively, where L0 and L1 denote the discretized form of the same operator L at a different resolution. In the two-way185

nesting framework, the child grid solution is driven by the lateral boundary conditions along Γ, while the parent grid is updated

using the child grid solution. Noting that both of the procedures need interpolation/mapping processes, we define the interpo-

lators, Is and It, and the restriction operator, R. Is and It perform interpolations in space and time, respectively, at Γ, and R

performs the mapping from the child grid solution to the parent grid solution. Assuming the grid refinement factor, s, equals

the time refinement factor based on the CFL condition (6), the two-way nesting can be described by the following pseudo code:190

Ψ0
n+1 = L0(Ψ0

n)

loop i= 1 to s

Ψ1
n+ i

s = L1(Ψ1
n+ i−1

s )

with Ψ1
n+ i

s |Γ = It[Is(Ψ0
n), Is(Ψ0

n+1)]

end loop195

Ψ0
n+1 ∈ Ω1 =R(Ψ1

n+1).

Four ghost cells are used along Γ. Here, we want to mention that the number of ghost cells in the MPI-based parallelization is

three, as required by the higher-order numerical schemes used in the model. The nesting scheme needs one more cell for the

requirement because of re-calculating rather than passing values of the ghost cells.
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Ω0
Ω1

Γ

ghost&cells&

Figure 2. Schematic drawing for two-way nesting method. The parent grid Ω0 has a coarse resolution grid while the child grid Ω1 is high

resolution. Ghost cells (4 rows) are specified along the inter-grid boundary Γ.

Based on the assumption that the grid refinement factor equals the time refinement factor and the linear relation between200

time step and grid spacing holds in the CFL criterion, the child time step between two parent time levels is constant and can be

written as

∆tchild = ∆tparent/s (9)

where, ∆tparent and ∆tchild denote the parent time step and child time step, respectively. In addition, the tridiagonal solver

required to solve (4) in each child grid is performed for given nesting boundary conditions at ghost cells.205

3.2 Interpolator and restriction operator

In some two-way nesting methods used in 3D ocean models, the interpolator, Is and It, and the restriction operator, R, are

complex due to issues raised by mass/momentum imbalance, barotropic/baroclinic mode splitting, and the staggered grid

configuration (Debreu et al., 2012). To ensure mass and momentum conservation during the two-way nesting, a correction may

be needed at the nesting boundaries according to specific numerical schemes. This especially occurs in a nesting scheme using210

discretizations of the nonconservative forms of mass and momentum equations, based on finite differences, because the flux of

mass or momentum is expressed by a nonlinear term. Hence, typically, the mass flux, (h+ η)u, is no longer conserved when

performing a linear interpolation individually for η and u at a nesting boundary.

FUNWAVE-TVD is based on the conservative forms of mass and momentum equations, in which advection is performed

using the finite volume method (Shi et al., 2012). The latter makes it possible to use a linear or doubly-linear interpolator in215

the nesting method, without changing the conservative property of the equations. In the AMR application of a NSWE model,

Liang (2012) demonstrated the conservative property of the linear operator used in the finite volume Godunov-type scheme

and, later, pointed out that the operator preserves both mass conservation and the C-property (i.e. conservation property) as

9



the wetting-drying process envolves in the grid nesting. FUNWAVE-TVD uses a finite volume scheme similar to Liang (2012)

and Liang et al. (2015) and, therefore, its conservative property should be maintained when applying a linear operator. Unlike220

Liang (2012), who used a second-order scheme, FUNWAVE-TVD applies a higher-order Godunov-type scheme, hence ghost

cells must be used along nesting boundaries.

Consequently, a doubly-linear interpolation is applied to ghost points in the child domain, using values from the par-

ent grid. Thus, at a ghost point (X,Y ) in the child domain, which is surrounded by four points, (xij ,yij), (xi+1,j ,yi+1,j),

(xi+1,j+1,yi+1,j+1), (xi,j+1,yi,j+1), in the parent domain, a given variable ϕ1 is interpolated as:225

ϕ1 =
[
aϕij + (1− a)ϕi+1,j

]
b+
[
aϕi,j+1 + (1− a)ϕi+1,j+1

]
(1− b), (10)

where,

a=
xi+1,j −X
xi+1,j −xij

, b=
yi,j+1−Y
yi,j+1− yij

, (11)

where ϕij , ϕi+1,j , ϕi,j+1, ϕi+1,j+1 are values of the variable in the parent domain.

The restriction operator uses linear averaging, which guarantees the conservation of mass and momentum. The restriction230

operator can be expressed as

ϕ2 =
1

MN

M∑
i=1

N∑
j=1

ϕ̃i,j (12)

where ϕ2 represents the averaged value passing to the parent grid, ϕ̃i,j is the value at (i, j) in the child grid, (M,N) represent

the numbers of child grid cells in (x,y) directions embedded in each parent grid cell.

Both the interpolator and the restriction operator are performed to η,uα,vα,U and V , which pass the values back and forth235

between the child domain Ω1 and the parent domain Ω0 in the two-way nesting process. It should be pointed out that U and

V are not necessarily included in the interpolation/restriction processes because they can be calculated based on η,uα, and vα.

However, our tests show that directly using the passed U and V can make the model more efficient and does not affect the

results much.

3.3 Workload balance and data management240

The MPI parallelization of FUNWAVE-TVD uses a 2D Cartesian topology for the domain-decomposition, which subdivides

the computational domain into a 2D grid, each cell of which is assigned to a processor. The size of the global arrays is not

necessarily divisible by the number of processors, but an evenly divisible configuration results in a perfectly equal workload. To

ensure workload balance in computations involving multi-grid levels, we used the same domain-decomposition algorithm on

all grid levels with the same number of processors. This algorithm is especially efficient for block-structured or patch-structured245

nesting schemes, as described in Debreu et al. (2012).

Fig. 3 gives an example of the domain-decomposition and communication at two-grid levels in a system of 9 processors.

Both the parent domain and the child domain are decomposed evenly into a 3 × 3 grid, according to the standard 2D Cartesian
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virtual topology used in the MPI library, with ranks named ID=1, 2, ..., 9. For efficient communication between the parent and

child grids in the MPI-based parallel communication system, parent-child spatial proximity is created at the beginning of the250

model run. The parent-child proximity is associated with the parent processor IDs and the child processor IDs at the nesting

boundaries in the image distribution, as shown in Fig. 3. The parent-child proximity records the spatial relation of processor

IDs between the parent and child grids and is saved in a parameter array. Therefore, the communication between the parent and

child grids can be carried out straightforwardly using MPI_SEND and MPI_IRECV (MPI library) with the existing parameter

array whenever a communication is needed. In this example, along the west boundary of the child grid, the child processors255

with ID=1, 2, and 3 communicate directly with parent processors with ID = 4 and 5. In particular, the variables in the ghost

cells located in child processor ID=1 are evaluated by the interpolator in the parent processor ID=4, and so on.

As mentioned in the introduction, our goal in development is to make a generic grid nesting interface without altering the

main FUNWAVE-TVD code. To achieve this, we treated the main program of the original model as a kernel, which performs

computations at all grid levels. The kernel is called from the MASTER program, which manages the time sequencing and260

nesting processes. A strategy of shared array allocation is used, whereby the arrays are allocated with the maximum dimension

of all grids at the initialization stage, and grids at all levels share the same memory allocations. For example, in the case

presented later in section 4.1, the nesting system has four grid levels, the dimensions of which are (48, 48), (73, 73), (92, 92),

and (91, 91) for grids 1-4, respectively. A two-dimensional array for η will be allocated in η(92,92), the maximum dimension

among the four grids. The four grids share the same array η(92,92), while the grids with a dimension smaller than (92,92) only265

use part of allocation, i.e., (48,48) for grid 1, (73,73) for grid 2, and (91, 91) for grid 4. There is no additional array allocation

needed for a specific child grid with such a shared allocation strategy. It can apparently save a significant amount of computer

memory and does not create an extra burden for a large number of nested grids.

Additional storage arrays are created to store the nesting boundary conditions at different grid levels. There is no additional

data structure implemented in the meta-data management.270
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Figure 3. Decomposed domain by MPI and the relation between parent processor ID and child processor ID.

3.4 Flowchart

Fig. 4 summarizes the flowchart of the MASTER program. After the MPI initialization, the program reads input data, includ-

ing model parameters needed in the original model and nested grid information. As mentioned earlier, array allocation and

initialization are performed based on the maximum dimension of all grid levels. Additional arrays for the storage of boundary

conditions are also allocated at this stage. Then the program starts the main time loop based on time stepping of the background275

(first level parent) grid. The calculations at each grid level are conducted hierarchically inside the main time loop, with a time

step based on (9). At each grid level, the model is assigned by the initial condition (solution at last time level) and boundary

conditions obtained from the Is and It interpolation processes. Then the core FUNWAVE-TVD program is called at the grid

level and stores boundary values for the child grid. All parent grids are updated based on the child grid results through the R

process, after all subgrid levels computations are completed.280
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Start%

MPI%ini+aliza+on%

Input%data,%including%nested%grid%informa+on%

Array%alloca+on%and%ini+aliza+on%

Con+nue%

Assignments%of%grid%and%boundary%condi+ons%(%%%%%%%%%%%%%%%%%%%%%%%%%)%

Grid%loop%

FUNWAVEFTVD%

Store%boundary%values%for%child%grid%

Con+nue%

Update%parent%grids%using%child%grids%results%(%%%%%%%%%%%%%%%%%%%%%%%%)%

Time%loop%

End%

t%<%total%+me%

n%<%nest%grid%number%

η,uα,vα,U,V

η,uα,vα,U,V

Figure 4. Flowchart of the two-way nesting interface. t and n represent time and grid level, respectively.

In summary, the hierarchical-type grid refinement processes are sequential and the synchronization is conducted at each grid

level. Therefore, there is no additional optimization for MPI partitions needed for the nesting framework.
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4 Applications

Hereafter we test our new two-way coupled nested grid solution with FUNWAVE-TVD on a series of standard idealized or

benchmarking applications, and then on the Tohoku 2011 tsunami case study discussed earlier.285

4.1 Evolution of an initial rectangular-shaped hump

The evolution of waves generated from an initial arbitrary rectangular-shaped hump on the free surface is used to test the

consistency of the multi-grid nesting system and effects of the higher-resolution resulting from the grid refinement. As shown

in Fig. 5, a 100 m × 100 m hump with an elevation of 1 m is specified, with no initial velocity, at the center of a 500 m × 500

m rectangular domain with a 5 m water depth. Wall boundary conditions (fully reflective) are specified at the four boundaries290

of the domain. The initial still water level can thus be defined as:

Figure 5. Wave generation from an initial 1 m elevation still water hump. The parent Grid 1 covers the entire domain and solid/dashed lines

mark the boundary of Grid 2/3. Bullets mark locations of numerical wave gauges for comparing free surface elevations.

η(x,0) =

 1.0m, 200m≤ x≤ 300m,200m≤ y ≤ 300m,

0.0m, elsewhere.

14



The consistency and accuracy of the two-way nested grid algorithm is first assessed by defining a three-level nested grid

system with identical grid resolution ∆x= ∆y = 2.5 m in Cartesian coordinates, hence a grid refinement ratio s= 1. Grid 1

is the background parent grid and Grids 2 and 3 are nested grids located in 10.0 m ≤ x,y ≤ 247.5 m and 30.0 m ≤ x,y ≤295

207.5 m, respectively. Because the refinement ratio is 1, the same numerical solution is expected whether nesting is used or

not. To verify this, surface elevation time series were computed at 4 numerical wave gauges located at, (x,y) = (125,125),

(375,125), (125,375), and (375,375) m (see Fig. 5). The bottom left gauge is located within the two nested grids and its time

series computed in Grid 3 is compared to those at the three gauges located in Grid 1. Because of the symmetry of the initial

solution, results at the four gauges should be identical, which was verified by the comparison (not shown here), hence assessing300

the consistency of the nested grid model.
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(a) (b)

(c) (d)

Figure 6. Wave generation from an initial 1 m elevation still water hump. Snapshots of surface elevations computed at t = 23 s in: (a) two-

level grids, (b) three-level grids, (c) four-level grids, with discretization of 10, 5, 2.5, and 1.25 m, respectively (s = 2), and (d) single level

grid with a resolution of 1.25 m. Dashed lines denote the boundary of child grids.
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Especially, the result by single grid using grid resolution of 1.25m is included in Fig.7 with the units. 

 

Fig. 7. Wave generation from an initial 1 m elevation still water hump. Snapshots of surface elevations 
computed at t = 23 s in: (a) two-level grids, (b) three-level grids, and (c) four-level grids, with 
discretization of 10, 5, 2.5, and 1.25 m, respectively (s = 2). Dashed lines denote the boundary of child 
grids. (d) shows the result of single grid (△x=△y=1.25m) at the same time. 

 

Related with this result, detailed comparison between the results along the transect crossing (0,0) - 
(250,250) m is also presented as below. 

 

 
Figure 7. The detailed comparison between two-level, three-level, four-level grid, and single higher-resolution grid configurations along the

transect crossing (0,0) – (250,250) m.

Next, we examine the effects of grid refinement in a hierarchical nested grid system, for the same application. Here, the Grid

1 resolution is ∆x= ∆y = 10 m and Grid 2 and Grid 3 are nested within Grid 1, as before, but with grid resolutions of 5 m and

2.5 m, respectively. Grid 2 is located in 10.0 m ≤ x,y ≤ 245 m and Grid 3 in 35.0 m ≤ x,y ≤ 215 m. An additional grid, Grid

4 was added within Grid 3, located in 67.5 m≤ x,y ≤ 181.25 m with a grid resolution of 1.25 m. The dimensions for grids 1-4305

are (48, 48), (73, 73), (92, 92), and (91, 91), respectively. Note that this is the example we mentioned earlier in the last section

to explain the strategy of the shared array allocation. Three computations were performed using two- to four-level of nested

grids. Additionally, we carried out a test using a single grid with the highest resolution (1.25 m) for a comparison as suggested

by one of the reviewers. Fig. 6 shows a comparison of surface elevation computed at t= 23 s between two- to four-level of

nested grids and the single grid. Because wave dispersive effects are related to grid resolution, the solution in a finer grid is not310

exactly the same as in a coarser grid, resulting in asymmetric distributions of surface elevations in the figure. With a two-level

nested grid system (Grids 1 and 2), Fig. 6(a) shows the appearance of sharper crests (dark red) in Grid 2, as compared to the

solution in Grid 1. As more levels of nested grids are used, Figs. 6(b) and (c) show that shorter waves increasingly appear in

the finer grids, consistent with the result from the single fine grid. Fig. 7 provides the detailed comparison between the four
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grid configurations along the transect crossing (0,0) – (250,250) m. Short waves induced by the dispersion effect appear to be315

more and more apparent as nesting levels increase, closer to the result from the single fine grid.

4.2 Wave refraction-diffraction over a shoal on a sloping bottom topography

Although the main targeted applications of our new two-way grid nesting model system are tsunami simulations in multi-scale

cases, the method can also be applied to the modeling of ocean wave transformations in coastal areas. This is demonstrated here

by simulating the laboratory experiments of Berkhoff et al. (1982), for wave refraction-diffraction over a shoal on a 1/50 sloping320

bottom topography, both rotated by 20◦ off the y-axis (Fig. 8). This experimental dataset has served as a standard benchmark for

assessing the accuracy and performances of numerical wave models for simulating wave shoaling, refraction, diffraction, and

nonlinear dispersion. Shi et al. (2011) showed that the original version of FUNWAVE-TVD accurately reproduces measured

wave heights in this experiment.

x (m)

y 
(m

)

Grid 1

Grid 2

0.45 0.35 0.25 0.15

(a) (b) (c) (d) (e)

(f)

(g)

(h)

−10.0 −5.0 0.0 5.0 10.0 15.0
−10.0

−5.0

0.0

5.0

10.0

Figure 8. Computational domain and bottom topography of Berkhoff et al. (1982) experiments of wave transformations over a tilted elliptical

shoal on a sloping bottom. The bold dashed line box marks the area of nested Grid 2. Dashed lines (a) - (h) are transects for model/data

comparisons.

Two numerical simulations were carried out for: (i) the original single grid model; and (ii) a two-level nested grid model (Fig.325

8). Both models are set up in a rectangular domain with Cartesian coordinates,−13m≤ x≤ 16.9m and−10m≤ y ≤ 10m.
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The single grid model has grid resolutions of ∆x= 0.025 m and ∆y = 0.05 m. In the two-level grid model, Grid 1 is coarser

with ∆x= 0.1 m and ∆y = 0.2 m resolutions, and the finer Grid 2 is nested in the region of −9.9 m ≤ x≤ 11.075 m and −6

m ≤ y ≤ 6 m, with resolution ∆x= 0.025 m and ∆y = 0.05 m identical to those of the single grid model, corresponding to a

grid refinement ratio is thus s= 4. Total numbers of cells in Grid 1 and 2 are 30,300 and 202,440, respectively, which is much330

smaller than the 480,000 cells of the single grid model.

In both model setups, regular waves with a period T = 1 s and an amplitude A= 4.64 cm are generated, as in experiments,

by a wavemaker located at x=−10 m. Sponge layers with a width of 2 m were specified on the left and right boundaries of

both the single grid domain and Grid 1 in the nested grid model.
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(a)

(b)

Figure 9. Experimental benchmark of Fig. 8. Snapshots of free surface elevation at t = 40 s, computed in: (a) the single grid; and (b) the

nested grid models.
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Figure 10. Experimental benchmark of Fig. 8. Comparison of wave height distribution along transects (a)-(h) in: (o) experimental data and

results of (dash) single grid, and (solid) nested grid model.

Fig. 9 shows snapshots of surface elevation computed at t= 40 s in both model setups. Compared to the single grid model,335

which uses the finest grid resolution over the entire domain, the nested grid model, which only uses it in Grid 2, shows that

waves are numerically damped due to the coarse grid resolution used outside of Grid 2. Over the shoal and slope behind it,

results in both the nested Grid 2 and the single grid show similar intense wave shoaling, refraction, and diffraction patterns.
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However, in the nested grid model, additional spurious wave diffraction effects can be seen around the lateral nesting boundaries

due to the wave damping on the coarse grid side.340

Fig. 10 shows comparisons of both model results with experimental data for the wave height variation along the transects

marked in Fig. 8. For all transects, both the single grid and nested grid model results agree well with the data. As expected

from the spurious diffraction effects, compared to the single grid model, the nested grid model predicts slightly smaller wave

heights at the ends of transects (a) – (e).

Regarding computational efficiency, in this application, the cost of the nested grid model is about 46.5 % of the single grid345

model. It should be mentioned that this test is only for verification of the nested grid algorithm and is not a typical case for

demonstrating the efficiency of the nested grid method.
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4.3 Solitary wave runup on a shelf with an island
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Figure 11. Solitary wave runup on a shelf with an island Lynett et al. (2010). Bathymetry contours (solid lines, in meters) and measurement

locations in the computational domain. The parent Grid 1 covers the entire domain; blocks with dashed lines mark the boundaries of nested

Grids 2 and 3 . Symbols mark locations of: (�) physical/numerical wave gauges E1–E9, and (4) velocimeters (ADVs), V1–V3.
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Figure 12. Case of Fig. 11. Surface elevations simulated at t = 4.0, 6.5, 9.0, 14.5, 21.0 and 27.5 s in nested grid system.
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Figure 13. Case of Fig. 11. Comparison of surface elevations at wave gauges in: (solid) experiments; (blue/red dash) present nested mod-

el/original FUNWAVE-TVD results.
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Figure 14. Case of Fig. 11. Comparison of velocities at ADV locations in: (solid) experiments; (blue/red dash) present nested model/original

FUNWAVE-TVD results.

A second experimental benchmark, for the runup of a solitary wave over a complex nearshore bathymetry with an island

(Fig. 11), is simulated to assess the accuracy of the wetting and drying algorithm along the model shoreline, in a nested grid350

system. These experiments were performed in the large wave basin of Oregon State University’s O.H. Hinsdale Wave Research

Laboratory (Lynett et al., 2010). The 3D bathymetry was constructed in the 48.8 m long and 26.5 m wide basin, with a 2.1 m

depth. It consists of a 1/30 plane slope connected to a triangular shelf with a conical island over the shelf (Figs. 11 and 12).

Surface elevations were measured at nine locations using wave gauges (E1 – E9 in Fig. 11), and velocities were measured at

three locations by Acoustic Doppler Velocimeters (ADVs) (V1 – V3 in Fig. 11). Details of the experiment can be found in355

Lynett et al. (2010). Shi et al. (2012) applied the original version of FUNWAVE-TVD to this case.

In the model simulations, a three-level nested grid system is set-up with Grid 1, Grid 2, and Grid 3 shown in Fig. 11. The

model setup for Grid 1 is similar to Shi et al. (2012), except that grid resolution is coarser, with ∆x= ∆y = 0.4 m, versus 0.1
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Table 1. Grid information for the solitary wave experiment.

Domain x range (m) y range (m) mx × ny ∆x, ∆y (m)

Grid 1 -5.0 ∼ 44.6 -13.0 ∼ 13.0 66 × 125 0.4

Grid 2 5.4 ∼ 39.2 -12.2 ∼ 12.2 123 × 170 0.2

Grid 3 6.0 ∼ 35.9 -7.0 ∼ 7.0 141 × 300 0.1

m in the original model. The nested grids, Grid 2 and 3, have 0.2 m and 0.1 m resolution, respectively (hence, s= 2), and are

centered in the middle of the domain where wetting and drying frequently occur due to the moving shoreline during runup.360

As measured in experiments, an incident solitary wave of height Ho = 0.39 m is specified in Grid 1, in the constant depth

ho = 0.78 m region on the left side of the model, from -5 m < x < 5 m, with its crest initially located at x= 0. The initial

solitary wave condition is based on Nwogu’s extended Boussinesq equations (Wei and Kirby, 1998). With Ho/ho = 0.5 this

represents a strongly nonlinear incident wave. A summary of the nested grid configuration is given in Table 1.

Fig. 12 shows snapshots of surface elevations simulated in the nested grid model, constructed using results from all grids,365

wherever the highest resolution results are available. Results show successively that wave breaking occurs at t= 4.0 s, edge

wave collide behind the island at t= 6.5 s, a breaking bore forms at t= 9.0 s, with its front running-up and -down the upper

slope and beach terrace, from t= 9.0 to 27.5 s. These are all quite complex processes that appear well-resolved in the nested

grids.

Fig. 13 shows the comparison of model results with experimental data for surface elevations measured at the nine wave370

gauges (E1 – E9 in Fig. 11). Results from the single grid model (with grid resolution 0.1 m) are also plotted in the figure

for comparison. Surface elevations simulated in the new nested grid model are quite close to those in the original single grid

model, and both agree well with the experimental data. Slight differences between the nested grid and single grid models can

be seen at Gauge 9, likely because this gauge is located in Grid 2, for which the resolution is lower than that in the single grid

model; all the other gauges are located in Grid 3 which has the same resolution as the original single grid model.375

Fig. 14 similarly compares time series of simulated and measured mean horizontal velocity at 3 ADVs (V1 – V3 in Fig. 11).

Results from the nested grid model are all close to those of the original single grid model and both agree well with the data.

We note that all ADVs are located in Grid 3, which has the same grid resolution as the original single grid model, hence results

of both models are expected to be consistent.

4.4 Tohoku-Oki 2011 tsunami impact on Crescent City harbor, CA380

As mentioned in the introduction, the multi-scale modeling of transoceanic tsunamis is a typical application of the nesting grid

technique. Tehranirad et al. (2020) used the one-way nesting technique with six-level nested grids to simulate the impact of

the Tohoku-Oki 2011 tsunami, particularly morphological changes, in Crescent City Harbor, CA. This harbor is known for its

vulnerability to tsunamis due to wave-guiding effects caused by a ridge feature in the bottom topography of the Pacific Ocean

(Grilli et al., 2013). During the 2011 tsunami, Crescent City Harbor experienced extensive damage caused by a significant385
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Table 2. Grid parameters for the 2011 Tohoku-Oki tsunami simulation.

Domain Range of longitude (◦E) Range of latitude (◦N) mx × ny Resolution

(arc-min)

Grid 1 132.0000 ∼ 292.0000 -60.0000 ∼ 60.0000 2400 × 1800 4

Grid 2 205.0833 ∼ 238.4000 29.7500 ∼ 49.7333 2000 × 1200 1

Grid 3 221.7000 ∼ 236.6917 37.2000 ∼ 45.5250 1800 × 1000 1/2

Grid 4 232.9250 ∼ 236.2542 40.6750 ∼ 43.1708 800 × 600 1/4

Grid 5 234.8292 ∼ 235.9521 41.4750 ∼ 42.4313 540 × 460 1/8

Grid 6 235.6563 ∼ 235.9052 41.5833 ∼ 41.8531 240 × 260 1/16

Grid 7 235.7677 ∼ 235.8401 41.6844 ∼ 41.7359 140 × 100 1/32

inundation, but most of all strong currents induced within the harbor by successive long waves in the incoming tsunami wave

train. Tsunami-induced oscillations of the harbor, and currents, were reported to have lasted for several days in the harbor

(Wilson et al., 2012), due to nearshore edge waves associated with the tsunami event. When using that many levels of grids, the

multi-scale modeling using the one-way nesting technique is particularly cumbersome, in terms of the manual post processing

it involves. Hereafter, we repeat this simulation using the new two-way nesting framework. Unlike the three earlier tests, which390

used the Cartesian mode, this test uses spherical coordinates.
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The units are included in the Fig.15, and the axis labels are improved as below. 

 

Fig. 15. Nested grid simulation of the 2011 Tohoku-Oki tsunami. Bottom topography and 
computational domains for Grids 1 to 7. Red circles in Grid 7 denote numerical wave gauge locations. 

 

  

Figure 15. Nested grid simulation of the 2011 Tohoku-Oki tsunami. Bottom topography and computational domains for Grids 1 to 7. Red

circles in Grid 7 denote numerical wave gauge locations.
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The nested grid system uses seven levels, with grid resolutions varying from 4 arc-min at the ocean basin scale to 1/32 arc-

min around the harbor, and a nesting ratio s= 2. As shown in Fig. 15, with a high resolution of 1/32 arc-min in Grid 7 (or about

53 m), the model is able to resolve the harbor structures quite well. Following Tehranirad et al. (2020), the bathymetry used

to define the model grids was constructed by combining 1 arc-min ETOPO-1 data (Amante and Eakins, 2009), 3 arc-second395

Coastal Relief Model (CRM) data (NOAA National Geophysical Data Center, 2013), and the local 10 m resolution tsunami

DEM of Crescent City Harbor (Grothe et al., 2011). The tsunami was generated using the same source configuration as in

Grilli et al. (2013) and Kirby et al. (2013). Model parameters were specified according to Tehranirad et al. (2020). Table 2

summarizes the locations, dimensions, and grid sizes of the nested grids.

Fig. 16 shows snapshots of tsunami surface elevations computed in the basin-scale Grid 1 and the nested grids, Grid 5 and400

Grid 7, at t= 11.18 and 11.43 hr, when the water surface elevation within the harbor reaches its maximum and minimum

levels, respectively (Fig. 17). The model shows the generation of edge waves propagating along the coast (Grid 5), which were

not simulated in Tehranirad et al. (2020) one-way nesting computations. The two-way nesting is a more relevant technique to

model waves propagating across nesting boundaries, without significant wave reflection from the boundaries.

Fig. 17 compares the modeled surface elevation with the data measured at the gauge location within the harbor (red circle in405

Grid 7 in Fig. 15). Following Tehranirad et al. (2020), the model result were shifted by 8 minutes backward to compensate for

the time delay identified in earlier studies, which was possibly caused by compressibility and earth elasticity effects (Allgeyer

and Cummins, 2014; Wang, 2015; Abdolali and Kirby, 2017; Abdolali et al., 2019). Overall, the model shows a good agreement

with the data, although the largest wave crests are slightly over predicted.
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The units are included in the Fig.16, and the axis labels are improved as below. 

 

Fig. 16. Same case as Fig. 15. Snapshots of tsunami surface elevations simulated in Grid 1, Grid 5, 
and Grid 7 at t = 11.18 and 11.43 hr. 

 

(Young-Kwang’s opinion: The above figure (Fig.16) is different with the figure in the manuscript. By 
my mistake, the figure at wrong time was included in the manuscript. As shown in Fig.17, maximum 
and minimum levels are recorded at t=11.18 and 11.43 hour, respectively. Therefore, the results at 
t=11.18 and 11.43 hour are presented in Fig.16 as above.) 

Figure 16. Same case as Fig. 15. Snapshots of tsunami surface elevations simulated in Grid 1, Grid 5, and Grid 7 at t = 11.18 and 11.43 hr.

Courtesy of Google Maps ©2021 Google, ©TerraMetrics.
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Figure 17. Same case as Fig. 15. Comparison between model result and measured data inside the Crescent City harbor.

5 Conclusions410

The main goal of this study was to develop a multigrid nesting interface for the Boussinesq wave model, FUNWAVE-TVD,

which can be used as a MASTER program to manage time sequencing and nesting processes, and make it both easier and

more accurate and efficient performing multi-scale tsunami simulations. The background model couples a series of submodels

with grid refinement in a hierarchical manner. Unlike other AMR-type models, the new modeling framework does not alter the

original solver, and hence FUNWAVE-TVD can still be used as a stand-alone program for each individual grid.415

The nesting algorithm performs a two-way coupling between the parent and child grids. The child grid is driven by the

boundary conditions provided by the parent grid. Linear interpolators are performed both in time and space at the ghost cells of

nesting boundaries. The parent grid is updated with results from the child grids using a linear restriction operator. No correction

of mass and momentum is needed during the nesting process because of the use of conservative forms of mass and momentum

equations.420

Workload balance is handled by an equal-load scheme, which performs the same domain-decomposition algorithm on all

grid-levels using the same number of processors, guaranteeing equal CPU-load over the entire computation. Communication

between the parent and child grids is direct without a data-gathering process. The parent-child proximity is pre-calculated at

the beginning of the model run and, hence, does not cause additional computational cost. A strategy of shared array allocations

is used in data management. Grids at all levels share the same memory allocations, and no additional memory allocation is425

required, allowing for a large number of nesting levels to share the same memory allocation.

The nested grid model was verified on four applications, three of which are standard benchmarks and one is a tsunami case

study. The numerical test of wave evolution from a rectangular hump examined the consistency and general performance of the

nesting algorithm. The simulation of Berkhoff et al. (1982) experiment showed that the model is capable of simulating surface

waves and their transformation in shallow water, which involves dispersive and nonlinear effects. The simulation of experiments430

for solitary wave runup on a shelf with an island was used to assess the accuracy of the wetting and drying processes in the

nested grid system. The last application, the simulation of the Tohoku-Oki 2011 tsunami and its effects on Crescent City
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Harbor, CA, demonstrated the robustness of the two-way nesting model for the multi-scale modeling of transoceanic tsunamis

and their coastal effects.

As mentioned at the beginning of the paper, a combination of the weakly nonlinear spherical mode and the fully nonlinear435

Cartesian mode has often been used in the one-way coupling nested grid framework for transoceanic tsunami simulations.

However, the nesting interface developed in the present study cannot be used for such mixed-mode applications. It is necessary

to further develop the spherical mode based on the fully nonlinear Boussinesq equations. This development may be left for

future work, noting that any new developments in the model will not interfere with the nesting interface developed here. Future

work may also include the development of an interface for the GPU version of FUNWAVE-TVD and of an adaptive mesh440

refinement algorithm for the nesting framework.
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