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Abstract: The lightning assimilation (LTA) technique in the Kain-Fritsch convective 19 

parameterization in the WRF model has been updated and applied to continental and hemispheric 20 

simulations using lightning flash data obtained from the National Lightning Detection Network 21 

(NLDN) and the World Wide Lightning Location Network (WWLLN), respectively. The LTA 22 

technique uses lightning data to trigger the Kain-Fritsch convective parameterization via realistic 23 

temperature and moisture perturbations. The impact of different values for cumulus parameters 24 

associated with the Kain-Fritsch scheme on simulations with and without LTA were evaluated 25 

for both the continental and the hemispheric simulations. Comparisons to gauge-based rainfall 26 

products and near-surface meteorological observations indicated that the LTA improved the 27 

model’s performance for most variables. The simulated precipitation with LTA using WWLLN 28 

lightning flashes in the hemispheric applications was significantly improved over the simulations 29 

without LTA when compared to precipitation from satellite observations in the Equatorial 30 

regions. The simulations without LTA showed significant sensitivity to the cumulus parameters 31 

(i.e., user-toggled switches) for monthly precipitation that was as large as 40% during convective 32 

seasons for monthly mean daily precipitations. With LTA, the differences in simulated 33 

precipitation due to the different cumulus parameters were minimized. The horizontal grid 34 

spacing of the modeling domain strongly influenced the LTA technique and the predicted total 35 

precipitation, especially in the coarser scales used for the hemispheric simulation. The user-36 

definable cumulus parameters and domain resolution manifested the complexity of convective 37 

process modeling both with and without LTA. These results revealed sensitivities to domain 38 

resolution, geographic heterogeneity, and the source and quality of the lightning dataset.  39 

 40 

 41 
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1. Introduction 42 

Thunderstorms are natural phenomena that have intrigued human imagination for 43 

thousands of years. Although early efforts in atmospheric science and modeling were focused on 44 

understanding and forecasting thunderstorms, they remain difficult to accurately simulate in 45 

meteorological models. A variety of lightning parameterization schemes have developed in 46 

regional and global atmospheric models (Price and Rind, 1992; Romps et al., 2014; Finney, 47 

2014; Lopez, 2016) based on various physical, dynamical, and cloud properties, but these 48 

schemes marginally reproduce the spatial and temporal variability of lightning flashes with 49 

varying success over different regions of the globe. With the advancement of lightning detection 50 

technologies both at ground level and via satellite in the past decades, observed lightning flashes 51 

with coverage from regional to global scales are available and can be used for lightning 52 

assimilation (LTA). A robust LTA can improve convective simulations in meteorological models 53 

for retrospective atmospheric simulations (e.g., Heath et al., 2016; Marchand and Fuelberg, 54 

2015) or help generate better initial fields for real-time weather forecasting (e.g., Lagouvardos et 55 

al., 2013; Giannaros et al., 2016; Fierro et al., 2012, 2015) by pinpointing where deep convection 56 

occurred and altering the meteorology in what is generally referred to as a hot start (Gan et al., 57 

2021). In addition, lightning also profoundly impacts the chemical composition of the 58 

troposphere by generating and releasing nitrogen oxides (LNOx) that can significantly alter 59 

ground-level ozone (O3) concentrations in some regions (Kang et al., 2020). Because 60 

meteorological models drive air quality simulations, improving meteorological variables with 61 

LTA will cascade to chemistry fields simulated by air quality models (Allen et al., 2012; Kang et 62 

al., 2019a,b). It is especially critical when LNOx emissions are included in air quality models, 63 

since LTA is designed to align LNOx emissions with the time and location when atmospheric 64 



4 
 

convection occurred in the model, so the subsequent chemistry reactions and transport will more 65 

accurately reflect the emissions from lightning (Kang et al., 2019a and 2019b). 66 

Heath et al. (2016) implemented an LTA technique in the Kain-Fritsch (KF) convective 67 

scheme (Kain, 2004) in the Weather Research and Forecasting (WRF) model, which extended 68 

the works of Rogers et al. (2000), Mansell et al. (2007), Lagouvardos et al. (2013), and 69 

Giannaros et al. (2016). In general, the lightning assimilation approach is straightforward, 70 

activating deep convection where lightning is observed and only allowing shallow convection 71 

where it is not. Specifically, the LTA technique uses temperature and moisture perturbations to 72 

trigger KF deep convection where lightning is observed, resulting in a parameterized cloud with 73 

realistic characteristics based on the local environment and our understanding of lightning-74 

producing convective clouds.  It was tested using WRFv3.8 simulations for several months in 75 

2011 using lightning observations from the National Lightning Detection Network (NLDN) over 76 

the contiguous United States (CONUS).  It was found that the simulation of warm-season rainfall 77 

was substantially improved, and other near-surface meteorological variables were clearly 78 

improved in retrospective WRF applications.  The LTA technique has been implemented in 79 

subsequent WRF releases (not publicly available yet) and applied in many meteorology and air 80 

quality studies over the CONUS (e.g., U.S. EPA, 2019; Appel et al, 2021). Although using LTA 81 

improved the predicted meteorological variables, some occasional unwanted departures from 82 

base model predictions without LTA occurred. Most commonly, LTA resulted in a low bias in 83 

summertime rainfall in some regions (U.S. EPA, 2019). 84 

For this reason, it is of interest to investigate two parameters associated with the KF 85 

convective scheme with different optional values, which are specified in the WRF runtime 86 

namelist input file, are often encountered by WRF users 87 
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(https://www2.mmm.ucar.edu/wrf/users/docs/user_guide_v4/contents.html) . One parameter is 88 

called kfeta_trigger (also referred to as trigger for simplicity in this paper) which controls the 89 

conditions to determine how the KF convective scheme is triggered with three optional values: 1, 90 

the default value; 2, moisture-advection based trigger (only for ARW - the advanced research 91 

WRF dynamical solver); and 3, RH-dependent additional perturbation to Option 1 (not tested). 92 

Another parameter is called cudt (namely cumulus time interval, delta t) and its value determines 93 

the minutes between cumulus physics calls (here it is the KF scheme). The default value of 0 94 

indicates that the cumulus physics is called at every model step, and any non-zero value specifies 95 

the interval (minutes) that the cumulus physics is called (for example, cudt=10 means that the 96 

cumulus physics is called every 10 minutes). Even though there are some discussions and 97 

recommendations regarding the choice of these parameter values through online forums or WRF 98 

user mailing list (e.g., https://forum.mmm.ucar.edu/; https://wrfems.info/; 99 

https://www.epa.gov/sites/default/files/2017-02/documents/wrf_with_ltga_userguide.pdf), but 100 

there is no literature evaluating how these parameter values impact model performance when 101 

LTA is used.  102 

The applications and evaluations of the LTA technique were limited to the CONUS, 103 

reflecting the areal coverage of NLDN (Murphy et al., 2021). As the spatial applications of 104 

atmospheric composition modeling are expanded from regional to hemispheric and global scales 105 

and new lightning datasets are available, there is a strong need to examine how this LTA 106 

technique performs at these larger scales when lightning flash data from a less accurate detection 107 

network are used. Thus, lightning flashes from the World Wide Lightning Location Network 108 

(WWLLN, operated by the University of Washington: http://www.wwlln.com) is a suitable 109 

https://www2.mmm.ucar.edu/wrf/users/docs/user_guide_v4/contents.html
https://forum.mmm.ucar.edu/
https://wrfems.info/
https://www.epa.gov/sites/default/files/2017-02/documents/wrf_with_ltga_userguide.pdf
http://www.wwlln.com/


6 
 

candidate because it has the global coverage, albeit its detection efficiency is lower than the 110 

>95% of NLDN for cloud-to-ground (CG) flashes (Abarca et al., 2010). 111 

Our research has multiple objectives based on the aforementioned open research needs: 112 

1) assess the impact of the parameter values associated with the KF convective scheme on WRF 113 

performance over the CONUS domain without LTA (BASE case) and with LTA using lightning 114 

flashes from NLDN; 2) examine the LTA in WRF using lightning flashes from WWLLN and 115 

compare to the simulations with NLDN lightning flashes; and 3) apply LTA to WRF simulations 116 

over the Northern Hemisphere and evaluate the performance in terms of precipitation and near-117 

surface meteorological variables. In section 2, we describe the updates made to the initial LTA 118 

technique (Heath et al., 2016). Section 3 provides the detailed data and methodologies of the 119 

model simulations and their evaluation. Section 4 presents our analysis on the impact of 120 

parameters with KF convective schemes with and without lightning assimilation over CONUS 121 

using lightning flashes from NLDN and WWLLN. In section 5, we analyze the use of lightning 122 

flashes from WWLLN for LTA and evaluate WRF simulations with and without LTA over the 123 

Northern Hemisphere. And we conclude with key findings and recommendations in section 6. 124 

2. Updates on the LTA technique 125 

The lightning assimilation used here is based on Heath et al. (2016), and a full description 126 

of the method can be found in Heath et al.  Here, we provide only the essential details, along 127 

with recent modifications to the scheme. 128 

First, the lightning data (WWLLN or NLDN) is binned to the WRF domain in both time 129 

and space.  The temporal binning is done every 30 min and includes lightning data from -10 min 130 

to +20 min of the current time.  The spatial regridding searches for a lightning strike within each 131 
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grid box (using the staggered grid edge coordinates) within each time bin.  This process creates a 132 

new lightning file with the same horizontal dimensions as the WRF domain filled with zeros (no 133 

lightning) or ones (lightning) at each 30-minute time step.  During the WRF simulation, if 134 

lightning is present, the scheme first goes through its standard updraft calculations, except that it 135 

uses the layer with the greatest moist static energy as its updraft source layer (USL).  If the 136 

resulting cloud does not meet the criteria for deep convection, 0.1 g kg-1 of water vapor and 0.1 137 

K are incrementally added to the USL until deep convection is forced.  In the original Heath et 138 

al. scheme, only moisture was added to the USL.  We have included temperature perturbations to 139 

further promote activating deep convection in these grid points with lightning. 140 

In the unmodified KF scheme, a cloud must exceed a minimum depth (as a function of 141 

cloud base temperature) to satisfy the deep convection criteria.  Specifically, a cloud base 142 

temperature greater than 20ºC must have a cloud greater than 4 km deep.  For a cloud base 143 

temperature less than 0ºC, the cloud depth only needs to be 2 km.  For cloud bases between 0 – 144 

20ºC, the minimum cloud depth is defined as 2000 + 100TLCL, where TLCL is the temperature at 145 

the lifted condensation level (LCL) (Kain 2004).  Heath et al. (2016) modified this depth for 146 

lightning assimilation to be more consistent with lightning-producing storms.  Specifically, 147 

within WRF, storms with a base temperature greater than or equal to 20ºC must have a cloud 148 

depth of at least 6 km with a cloud top temperature less than -20ºC.  Similarly, in the original 149 

model in Heath et al., storms with a cloud base temperature less than 20ºC must have a cloud 150 

depth of at least 4 km and a cloud top temperature less than -20ºC.  These criteria were set to 151 

ensure that sub-grid deep convective clouds were deep enough to have a mixed-phase layer to 152 

support lightning (e.g., Mansell et al., 2007; Bruning et al., 2014; Preston and Fuelberg, 2015).  153 

In this study, we slightly modified the scheme to require that the cloud top is at least one model 154 
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level above the -20ºC level, ensuring cloud-top temperatures are less than -20ºC (e.g., 155 

Stolzenburg and Marshall, 2009). The prior limit at -20ºC could inadvertently weaken simulated 156 

deep convective clouds, which may contribute to the dry bias in earlier applications of lightning 157 

assimilation approaches (U.S. EPA, 2019).  158 

In Heath et al. (2016), if deep convection could not be achieved after incrementally 159 

adding up to 1 g kg-1 to the USL (which is now 1 g kg-1 and 1 K in our update), then no further 160 

action was taken, and deep convection was not activated by KF.  However, to increase the 161 

realism of the scheme and increase the odds of deep convection the next time the scheme is 162 

called, we have updated the approach as follows.  If a deep convective cloud cannot be activated, 163 

the tallest cloud created is passed into the KF shallow convection scheme.  In the KF scheme, 164 

shallow clouds are re-diagnosed each time the scheme is called.  For example, suppose a shallow 165 

cloud is generated at t=0 and KF is called at 5 min intervals.  In that case, at the t=5 min call, KF 166 

would determine if a shallow cloud is still present.  Thus, the cloud can evolve so that at t=5 min 167 

it could have slightly different characteristics than the one diagnosed at t=0.  This allows shallow 168 

clouds to grow, decay, or persist at short timescales.   169 

Therefore, if the LTA method cannot trigger deep convection, the shallow cloud that is 170 

generated within WRF can precondition the atmosphere, thus increasing the likelihood of deep 171 

convection the next time the KF scheme with LTA is called. Therefore, these refinements to the 172 

LTA scheme in KF more closely replicate how convective initiation is observed in nature, where 173 

shallow cumulus and congestus clouds precondition the environment prior to deep convection 174 

initiation. 175 

Lastly, at grid points without observed lightning, deep convection is suppressed in WRF, 176 

and only the shallow portion of KF is allowed to run (this is referred to as the “ShallowOnly” 177 
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method).  Because convective clouds in nature can form and precipitate without generating 178 

lightning, this suppression technique serves as a realistic approach to reproduce nature given the 179 

constraints of the KF parameterization. 180 

 181 

3. Data and Methodology 182 

3.1. Lightning flash data 183 

Lightning flash data from two ground-based lightning detection networks were used for the 184 

assimilation using the LTA technique in this study. The NLDN provides cloud-to-ground 185 

lightning observations with a detection efficiency of >95% and a location accuracy of about 150 186 

m (Murphy et al., 2021) over the contiguous U.S. (CONUS). The WWLLN provides global 187 

lightning data with lower detection efficiency and location accuracy (Abarca et al., 2010; 188 

Rudlosky and Shea, 2013; Burgesser, 2017) compared to NLDN and the Lightning Imaging 189 

Sensor (LIS) observations (Mach et al., 2007). Since WWLLN has global coverage, even with its 190 

relatively lower detection efficiency and location accuracy compared to NLDN, it could be a 191 

good option for applications beyond CONUS. Figure 1 shows how the average lightning flash 192 

rate (flashes km-2hr-1) from WWLLN compares to NLDN during July and September 2016 when 193 

hourly lightning flash counts are gridded into the CONUS 12-km grid cells. 194 

As shown in Figure 1, the lightning flash rates in NLDN are much higher than those in 195 

WWLLN, especially during July and over the land, and this is generally true (not shown) that 196 

NLDN reported more lightning flashes than WWLLN during warm months over land. The 197 

differences are much smaller during cool months and over the coastal regions where NLDN has 198 

coverage. Note that the absolute difference in flash count may not necessarily translate 199 

proportionally into convective activities in terms of LTA because the LTA technique as 200 
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described in Heath et al. (2016) depends on the detection of lightning occurrence (binary “yes” 201 

or “no” situation), not the actual flash count, in a specific time interval at a grid cell.   202 

3.2. Precipitation Data 203 

 The daily precipitation from the Parameter-elevation Regressions on Independent Slopes 204 

Model (PRISM)’s high-resolution spatial climate data for the United States 205 

(https://climatedataguide.ucar.edu/climate-data/prism-high-resolution-spatial-climate-data-206 

united-states-maxmin-temp-dewpoint) is used to evaluate WRF-simulated precipitation over the 207 

CONUS, and the NOAA Climate Prediction Center (CPC)’s global unified gauge-based analysis 208 

of daily precipitation (https://psl.noaa.gov/data/gridded/data.cpc.globalprecip.html) product is 209 

employed to assess WRF’s hemispheric precipitation predictions. The daily total PRISM 210 

precipitation data are available at 4-km horizontal grid spacing over the CONUS, and the annual 211 

CPC precipitation (partitioned into daily totals) is available globally at 0.5° latitude × 0.5° 212 

longitude grid (720 × 360) resolution. These datasets were regridded to the WRF modeling 213 

domains for the 12-km CONUS and the 108-km Northern Hemisphere to pair with model 214 

simulations in time and space. To assess the simulated precipitation over the oceans, especially 215 

in the tropical regions where no gauge-based measurement is available, products from the Global 216 

Precipitation Measurement (GPM) (Huffman et al., 2015; Asong et al., 2017), a joint mission co-217 

led by NASA and the Japan Aerospace Exploration Agency (JAXA) and comprised of an 218 

international network of satellites that provide the next-generation global observations of rain 219 

and snow, are employed. The Integrated Multi-satellitE Retrievals for GPM (IMERG) Long-term 220 

Precipitation Data Products 221 

(https://arthurhouhttps.pps.eosdis.nasa.gov/gpmdata/YYYY/MM/DD/imerg/; registration is 222 

required for access) cover the entire globe with 0.1° latitude × 0.1° longitude grid resolution. To 223 

https://climatedataguide.ucar.edu/climate-data/prism-high-resolution-spatial-climate-data-united-states-maxmin-temp-dewpoint
https://climatedataguide.ucar.edu/climate-data/prism-high-resolution-spatial-climate-data-united-states-maxmin-temp-dewpoint
https://psl.noaa.gov/data/gridded/data.cpc.globalprecip.html
https://arthurhouhttps.pps.eosdis.nasa.gov/gpmdata/YYYY/MM/DD/imerg/
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compare with WRF simulated hemispheric precipitation, the daily mean precipitation data from 224 

the IMERG V06 dataset (https://gpm.nasa.gov/data/directory) from 2016 is regridded onto the 225 

hemispheric WRF domain. The research-quality gridded IMERG V06 dataset Final Run product 226 

estimates precipitation using quasi-Lagrangian time interpolation, gauge data, and climatological 227 

adjustment. 228 

3.3. Ground-Based Meteorological Data 229 

 The impacts of user-definable parameter values associated with KF and datasets for LTA 230 

were quantified for simulated near-surface meteorological variables such as precipitation, 2-m 231 

temperature (T2), water vapor mixing ratio, wind speed and wind direction. The simulated 232 

meteorological fields from WRF are compared against observations from NOAA National 233 

Centers for Environmental Information (NCEI) land-based stations, which are archived from 234 

data collected globally (https://www.ncei.noaa.gov/products/land-based-station). The 235 

Atmospheric Model Evaluation Tool (AMET) (Appel et al., 2011) is used to pair surface 236 

observations with model predicted values in both space (bilinear interpolation) and time (hourly). 237 

3.4. Model Configurations and Simulation Details 238 

 The WRF model (Skamarock and Klemp, 2008) version 4.1.1 (WRFv411, 239 

https://github.com/wrf-model/WRF/releases/tag/v4.1) with LTA updates to Heath et al. (2016) 240 

(as described in Section 2) is used to perform simulations over the CONUS and the hemispheric 241 

domains. The CONUS domain is configured with 36 vertical levels and 12-km horizontal grid 242 

spacing with 472 × 312 grid points. The hemispheric domain is configured with 45 vertical 243 

levels and 108-km horizontal grid spacing with 200 × 200 grid points that covers the entire 244 

Northern Hemisphere and the northern border of the Southern Hemisphere along the Equator. 245 

The simulation period for CONUS simulations is from April–July in 2016 with 10-day spin-up 246 

https://gpm.nasa.gov/data/directory
https://www.ncei.noaa.gov/products/land-based-station
https://github.com/wrf-model/WRF/releases/tag/v4.1
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period from March 22; for the hemispheric domain, annual simulations for 2016 are performed. 247 

Our analysis focuses on July when convective activities are often the most prevalent over the 248 

CONUS; other months are examined in the hemispheric simulations which simulate the year-249 

round convective activities in the tropics. The detailed configurations of cloud microphysics, 250 

land surface parameters, radiation schemes, and four-dimensional data assimilation (FDDA) are 251 

the same as described in Heath et al. (2016) and sample WRF namelist input files for both the 252 

CONUS and hemispheric simulations are included in the supplementary information (Table S1 253 

and Table S2). Data assimilation in the form of FDDA more specifically follows Heath et al. 254 

(2016) with updates noted in Gilliam et al. (2021) for the hemispheric domain where ~28 km 255 

NCEP Global Forecast System (GFS) analyses were used to nudge tropospheric temperature, 256 

moisture, and wind above the planetary boundary layer. For the CONUS domain the same 257 

nudging was applied, but 12 km North American Mesoscale (NAM) model analyses were 258 

leveraged. These two analysis datasets are a blend of short-term forecast with a comprehensive 259 

set of surface, upper-air, radar, aircraft, satellite, and other observations like sea-surface 260 

temperature that represent the best guess of the state of the atmosphere at any given time. 261 

 The KF scheme includes two options to trigger convective activity. Trigger 1 is based on 262 

a mass-conservative cloud model, which includes parameterized moist downdrafts, entrainment, 263 

and detrainment at the cloud edge (Kain and Fritsch, 1990, 1993) and allows interaction between 264 

cloud and environment, and it is the default option for most applications. Trigger 2 is an alternate 265 

option based on Ma and Tan (2009), and that is a moisture-advection modulated trigger function 266 

to improve results in subtropical regions when large-scale forcing is weak. In addition, the KF 267 

scheme is called by default at every time step, but it can be configured to only update convective 268 

parameters on a user-definable time increment. In this study, sensitivities are conducted to the 269 
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version of the KF trigger (i.e., Trig1 and Trig2, abbreviated as K1 and K2 in Table 1, 270 

respectively), as well as to frequency at which KF is called (i.e., “cudt”). Two sensitivities on 271 

cudt were performed: one where KF is called at each model integration time step (i.e., “Cudt0”, 272 

abbreviated as C0 in Table 1), and the other where KF is updated every 10 minutes of integration 273 

time (i.e., “Cudt10”, abbreviated as C10 in Table 1). The time step is 1 minute (Table S1) and 3 274 

minutes (Table S2) for the CONUS and hemispheric WRF simulations, respectively. The 275 

sensitivities to KF trigger and update frequency are combined in a matrix of simulations that also 276 

are conducted with/without LTA, and they are listed in Table 1. All eight simulations are 277 

performed for both the CONUS and the hemispheric domains. For LTA cases, lightning flashes 278 

from both NLDN and WWLLN are used over the CONUS domain and lightning flashes from 279 

WWLLN are used for the hemispheric domain. For convenience of description, the cases without 280 

LTA are collectively referred to as BASE cases, and the cases with LTA are referred to as LTA 281 

cases. To further distinguish the lightning networks, the LTA cases are also referred to as LTA 282 

NLDN (or simply NLDN) and LTA WWLLN (or simply WWLLN) cases, respectively. 283 

3.5. Evaluation Methodologies 284 

The assessment of the impact of LTA on model performance is focused on precipitation 285 

since that is the most affected variable, though other near-surface variables are also evaluated. 286 

Due to the highly heterogeneous nature of thunderstorms and lightning over space, in addition to 287 

examining the overall statistics across the modeling domain, statistics are analyzed to assess the 288 

impact of LTA over U.S. climate regions (https://www.ncei.noaa.gov/monitoring-289 

references/maps/us-climate-regions) in both domains and some of the larger countries in the 290 

hemispheric simulations. Figure 2 shows these climate regions over the CONUS modeling 291 
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domain and the selected countries (also referred to as regions) in the hemispheric modeling 292 

domain. 293 

 The statistical metrics in this analysis include the widely used correlation coefficient (r) 294 

to measure the linear association of measured and simulated variables, mean bias (MB) and 295 

normalized mean bias (NMB) to quantify the departure of simulated values from measured 296 

values, and root mean square error (RMSE) and normalized mean error (NME) to elucidate the 297 

errors associated with model simulations. More emphasis is placed on certain metrics than others 298 

depending on the nature of the simulated quantity. For instance, with precipitation, correlation 299 

coefficient (if the model can simulate rainfall at the right time and location) and MB and NMB 300 

(if the model over- or under-estimate rainfall amount) are more straightforward than the error 301 

metrics (though they are still relevant), but MB and NMB are inappropriate to evaluate wind 302 

directions. 303 

 304 

4. CONUS WRF Simulations 305 

As shown in Table 1, four BASE (without LTA) cases, four LTA cases using lightning flash 306 

data from NLDN, and four LTA cases using lightning flash data from WWLLN over the 307 

CONUS domain were performed using the combinations of two trigger options and two 308 

convective update (cudt) intervals, respectively. For the LTA cases, when lightning flashes were 309 

not present, the ShallowOnly option (Heath et al., 2016) was used (Table S1). 310 

4.1. Precipitation 311 

 Figure 3 displays the July 2016 mean statistics generated by pairing the gridded WRF 312 

precipitation with the values from PRISM in time and space for each of the U.S. climatological 313 

regions. As shown in Figure 3, the BASE simulations present the more dramatic fluctuations 314 
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among cumulus parameter sensitivities than the LTA cases. With Trig1, when the cudt is 315 

changed from 0 to 10, the correlation coefficient is substantially reduced across all the regions 316 

(Figure 3a), and increases in biases (overestimate of precipitation, Figures 3b&c) and errors 317 

(Figures 3d&e) are also worsened by less frequent cumulus updates. With trigger 2, the biases 318 

(MB and NMB) changed from overestimation to underestimation, and the errors (RMSE and 319 

NME) were smaller compared to Trig1. Though the setting for cudt altered simulations with 320 

Trig2, the difference was smaller than the cases with Trig1. In general, the Trig1 cases tended to 321 

produce more precipitation (overestimate compared to PRISM precipitation) than the Trig2 cases 322 

(underestimate compared to PRISM precipitation), and the Cudt10 cases generated more 323 

precipitation than the Cudt0 cases. Among the four cases in the BASE model simulations, the 324 

K1C0 case (Trig1, Cudt0) is the most favorable in terms of the correlation coefficients and 325 

precipitation biases, but the error statistics, especially NME, may not be the most desirable.  326 

 Using LTA (Figure 3), the correlation coefficients significantly increased over the 327 

domain and across the regions (from the range of ~0.25 to ~0.40 to the range of ~0.30 to ~0.48) 328 

relative to the BASE cases. Though the LTA WWLLN cases had lower correlation compared to 329 

the LTA NLDN cases due to the lower detection efficiency of lightning flashes in WWLLN, the 330 

improvement was still rather considerable compared to the BASE cases. The biases in the LTA 331 

NLDN cases are most favorable with values negative but closest to zero (small underestimate). 332 

The LTA WWLLN cases produced larger negative biases than the BASE cases and LTA NLDN 333 

cases, again, related to detection efficiency of the networks. All the LTA cases (both NLDN and 334 

WWLLN) produced smaller errors than the BASE cases, and the differences between the NLDN 335 

cases and WWLLN cases were minimal. Comparing the LTA cases with the BASE cases, one 336 

noticeable feature is that with the different trigger and cudt values, all the statistics fluctuated 337 
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dramatically from one case to another in the BASE cases, but fluctuation among the LTA cases 338 

was minimized and negligible. This is expected, as the moisture and temperature perturbations 339 

used to trigger convection with LTA (Section 2) will take precedence over the trigger options 340 

and grouping the lightning data into 30-minute bins should mitigate the influence of the cudt 341 

option.  These features were deliberately incorporated into the LTA technique for precisely these 342 

reasons, but this paper documents their systematic testing. 343 

 Examination of the statistics across the climatological regions over the CONUS domain 344 

indicates that the Ohio Valley (OVC) stands out among all the regions with the lowest 345 

correlation coefficients and largest RMSE values in all the BASE cases. However, with LTA, the 346 

correlation coefficients in OVC were brought to the median range among other regions, though 347 

the RMSE values were still the largest in that region; these features in OVC are more 348 

understandable as manifested in Figure 12, examined in detail in Section 5. Other statistics in 349 

OVC with LTA were comparable with other regions except for relatively larger negative MB 350 

values associated with the LTA WWLLN cases. Another obvious characteristic with regards to 351 

correlation coefficients and errors (RMSE and NME) was that there was more spread among the 352 

regions in the LTA cases than in the BASE cases (except in OVC), which resulted from the 353 

geographically heterogeneous nature of convective precipitation and the associated observed 354 

lightning intensity across the regions.  355 

 To alleviate the underestimation of precipitation in the LTA WWLLN cases, additional 356 

simulations (K1C10Ws0 and K2C10Ws0; where K1C10W and K2C10W are the same as in 357 

Table 1, while s0 means zero suppress when lightning flash is not present) were performed by 358 

switching the suppression option as described in Heath et al. (2016) from “ShallowOnly” to 359 

“NoSuppress.”  This modification still triggers deep convection where lightning is observed; 360 
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however, at grid points without lightning, the KF scheme is configured to run normally (i.e., the 361 

same as in the BASE cases). As shown in Figure S1, the correlation coefficients in the 362 

WWLLN+s0 cases were comparable with other LTA cases, and the values in the K2C10Ws0 363 

case were similar to the NLDN cases and improved upon the K1C10W case. The MB in the 364 

WWLLN+s0 cases were mostly positive (overestimate), which is expected because the KF 365 

scheme has more freedom to activate deep convection. The K2C10Ws0 case produced the most 366 

desirable results (domain mean MB is nearly zero) among all the cases. However, the biases 367 

associated with LTA simulations using the “NoSuppress” option are affected by both the 368 

lightning detection efficiency and the domain resolutions, which is more evident in the LTA 369 

simulations over the hemispheric domain in Section 5. 370 

4.2. Other Near-Surface Meteorological Variables 371 

 Besides precipitation, T2, water vapor mixing ratio, wind speed, and wind direction are 372 

also analyzed. As shown in Figure 4, T2 in the BASE cases has correlation coefficients over the 373 

CONUS domain and all the regions ranging from ~0.95–0.98. With LTA, the correlations for T2 374 

were further improved for all the regions, with WWLLN cases performing slightly worse than 375 

the NLDN cases. The impact of cumulus parameters on correlations was minimal for the BASE 376 

and LTA cases. However, the cumulus parameters seem to impact the biases (MB and NMB, 377 

Figures 4b,c) and errors (RMSE and NME, Figure 4d,e) in the BASE cases across all the regions, 378 

and like precipitation, all the LTA cases minimized the impact of different cumulus parameter 379 

values. All the LTA cases reduced the errors (RMSE and NME) associated with T2 across all the 380 

regions, with NLDN slightly better than WWLLN. In summary, the T2 statistics were improved 381 

by using LTA, and the WWLLN cases were comparable to the NLDN cases with a slight 382 

degradation for all the regions. 383 
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The 2-m water vapor mixing ratios metrics (Figure 5) of the cases, in general, resemble 384 

those of T2, in that the LTA cases have slightly increased the correlation coefficients from the 385 

already well-simulated BASE cases. More spread occurs for biases (MB and NMB, Figures 5b,c) 386 

and within the BASE cases for errors (RMSE and NME, Figures 5d,e). Regional spread in these 387 

statistics is attributed to the diverse air mass types that drive large differences in the moisture 388 

content and convective activity. Even though the values were low for both errors and biases (< 389 

0.5%), using either LTA technique is an improvement over the BASE cases. 390 

 The cumulus parameters and LTA showed less impact on the correlations for 10-m wind 391 

speed, but the impacts on biases and errors were noticeable (Figure 6). All the model cases 392 

underestimate wind speed (~5–12%, depending on regions and model cases), and the cumulus 393 

parameters caused relatively large differences in the metrics of the BASE cases with both trigger 394 

and cudt options contributing most. Overall, using Trig2 with Cudt10 is most favorable in terms 395 

of biases (less underestimate) and errors (smaller errors) among the BASE cases. In all the LTA 396 

cases, the underestimation was reduced when compared to the BASE cases, and errors were 397 

reduced with negligible differences among the cases with different cumulus parameters and 398 

assimilating lightning data from the different networks. Similar behavior was observed for wind 399 

direction where only correlation coefficient, MB, and RMSE are displayed in Figure S2 because 400 

normalized metrics do not apply. 401 

 402 

5. Northern Hemispheric WRF Simulations 403 

As shown in Table 1, the model cases performed over the Northern Hemisphere are 404 

similar to those performed over the CONUS, but with LTA cases using lightning data from 405 

WWLLN that was gridded on the domain with 108-km horizontal grid spacing. 406 
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5.1. Precipitation 407 

Before comparing the simulated precipitation with available observations, the examination 408 

begins with how the WRF-simulated precipitation with and without LTA compares spatially over 409 

the Northern Hemisphere. Figure 7 displays the mean daily precipitation during July 2016 from 410 

two LTA cases and two BASE cases (Trig1 and Trig2) and the corresponding differences between 411 

LTA and BASE (LTA – BASE) cases with the same trigger values, and Figure S3 presents the 412 

mean daily precipitation differences between HK1C0W and HK1C0B cases throughout 2016. 413 

Compared to the BASE cases, the LTA cases produced significantly less rainfall along the 414 

Equatorial regions but generally more rainfall away from the Equator, especially over the 415 

midlatitude land regions. Because no gauge-based observational data are available over the ocean, 416 

the IMERG precipitation for July 2016 is presented in Figure 7g with the difference plots from the 417 

base case (HK1C0B) and the LTA case (HK1C0W) being displayed in Figures 7h and 7i, 418 

respectively. Over the Equatorial regions, the precipitation simulated by the LTA cases (Figures 419 

7b and 7e) more closely resembled the IMERG precipitation than the BASE cases. The difference 420 

plots clearly indicate that the base cases significantly overestimated, and the LTA cases slightly 421 

underestimated the precipitation over large areas in the Equatorial regions. Similar results persisted 422 

throughout the year as shown in Figure S4 (the difference of mean daily precipitation by month 423 

between the base case, HK1C0B, and the IMERG product) and Figure S5 (the difference of mean 424 

daily precipitation by month between the LTA case, HK1COW, and the IMERG product). Next, 425 

the WRF simulated precipitation is compared with the CPC gauge-based analysis values over land. 426 

Figure 8 displays the CPC rainfall and simulated mean daily precipitation during July 2016 along 427 

with the estimates from the LTA and BASE cases with different cumulus parameters. Since the 428 

gauge-based observational values are only available over land, the simulated values in Figure 8 429 
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are only displayed over land. As shown in Figure 8, all the model cases simulated the overall 430 

spatial pattern of higher values in the tropical regions and lower values in high latitude regions. 431 

However, subtle differences existed from case to case in different regions. For example, the 432 

HK1C10B case (Figure 8d) and the HK2C10B case (Figure 8f) produced the highest and the lowest 433 

precipitation over Africa and South America (along the Mexico coast to the South American 434 

continent) within the modeling domain. 435 

 All the LTA cases uniformly produced larger correlation coefficients than the BASE 436 

cases (Figure 9) when and where convective activities were prevalent. In the U.S., convective 437 

activities occur during warm months (from May to September), while in Mexico and India, 438 

convection is active throughout the year. In Canada, convective activities are less frequent 439 

because of the cooler temperatures and low moisture at the high latitude. When and where 440 

convection was active, the cumulus parameters produced significant differences in modeled 441 

convective activity, as correlation coefficients are higher in the BASE cases with Trig1. Same as 442 

the simulations over the CONUS domain, the cumulus parameters had a minor impact on the 443 

correlation coefficients for the LTA cases regardless the regions. This indicates that, even with 444 

the less dense WWLLN lightning observations, using LTA improves the timing and location of 445 

deep convection. 446 

 RMSE were comparable for all the model cases across the selected regions (Figure 10), 447 

with the LTA cases pointing to lower values than the BASE cases at all the regions except for the 448 

U.S. where the LTA and BASE cases alternated to have slightly lower RMSE values over each 449 

other during the year. Alternatively, the MB values varied significantly among the model cases 450 

and across the regions as shown in Figure 11. One common feature is that the differences among 451 

the LTA cases were small, but two distinctly separate groups among the BASE cases were noted 452 
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in all the regions; the cases with Trig1 had always significantly greater precipitation values than 453 

the cases with Trig2. In China and Mexico, all the simulations overestimated the precipitation 454 

through the year except for small underestimate during the cool months (October–December). In 455 

India, the overestimate and underestimate were equally split among the model cases, with 456 

dramatic changes from month to month in the same model case. The behavior of MB values 457 

among the model cases and through the year was more stable for the U.S. (to a lesser extent in 458 

Canada) than in other regions, in which the BASE cases with Trig1 have the best performance 459 

(MB values near zero), the BASE cases with Trig2 significantly underestimated precipitation 460 

over land during convective season, and all the LTA cases overestimated precipitation over land 461 

during the warm months. Here we offer two plausible explanations for the drastically different 462 

behaviors of the MB values associated with precipitation in different regions.  463 

First, from the modeling point of view, the WRF model is widely studied and applied in 464 

North America, especially in the U.S. As a result, more accurate observation-based datasets are 465 

available to nudge WRF through FDDA (Liu et al., 2008), and all the work has led to the best 466 

performance over the U.S. for the recommended default set of convective trigger and update 467 

frequency for the cumulus scheme. Second, from the observational point of view, the CPC 468 

rainfall dataset is built upon field gauge measurements that may vary in accuracy and 469 

consistency from county to county. As shown in Figure S6, the NMB values were generally in 470 

the range of -50% to 50% in the U.S. and Canada (comparable to the NMB values for the 12-km 471 

CONUS simulations against PRISM precipitation as shown in Figure 3c), but in other countries, 472 

especially during cool months, the values were up to hundreds or even thousands of percent that 473 

suggests possible few observations available in the denominator in NMB calculations. For 474 
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instance, the highest NMB value in China coincided with the Spring Festival that is often a long 475 

holiday for China suggesting possible gaps for data collection. 476 

 We next focus on the high MB values associated with the LTA cases in the U.S. 477 

Consistent in the analysis in Figure 3b, the LTA WWLLN cases over the 12-km CONUS domain 478 

always had larger negative MB (underestimates) than the LTA NLDN cases due to the lower 479 

detection efficiency of lightning flashes in WWLLN than in NLDN. However, in the 108-km 480 

hemispheric simulations, the same WWLLN datasets produced large positive MB 481 

(overestimates) for precipitation. To understand this phenomenon, we need to first examine how 482 

the LTA method works.  Because it uses a yes/no lightning indicator to trigger convection, 108-483 

km grid spacing might be too coarse for such a simplistic approach to work.  For example, one 484 

lightning strike within a 108-km grid cell will trigger deep convection, which, because of the 485 

large spatial coverage of the grid cell, can contribute to the high bias in precipitation because 486 

convective rainfall is realistically more localized.  Although the KF scheme sets a fixed radius 487 

for thunderstorms (e.g., Equation 6 in Kain 2004), applying the resulting rain over the entire 108-488 

km × 108-km grid box could partially explain the excess rainfall. This may also be explained by 489 

the fact that the convective time-scale formulation in KF scheme was originally developed at 490 

grid lengths of 20–25 km (Sims et al., 2017). A potential developmental pathway for the LTA 491 

method at these scales is to test different thresholds of the 30-min flash density to ensure 492 

sufficient lightning is present to trigger deep convection. Overall, compared to the CPC rainfall, 493 

the LTA technique significantly improved the temporal and spatial correlation of convective 494 

precipitation, but the precipitation amount was overestimated over the U.S. and other regions for 495 

the 108-km modeling domain.  496 
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 To further examine the impact of modeling domain resolutions on convective 497 

precipitation, Figure 12 displays the spatial precipitation from PRISM, CPC (regridded onto the 498 

12-km CONUS domain), and simulated precipitation from one BASE case and two LTA cases 499 

with NLDN and WWLLN data, respectively, over the 12-km CONUS domain and one LTA case 500 

over the 108-km hemispheric domain that has been regridded to the 12-km CONUS domain. As 501 

shown in Figures 12a,b, the two observation-based precipitation products, PRISM and CPC, 502 

compared well to each other, noting that the PRISM product displays more subtle granularity 503 

than the CPC product due to the large difference in spatial resolutions (4-km for PRISM versus 504 

0.5° for CPC).  The overall spatial pattern of mean daily precipitation was captured by both the 505 

12-km LTA simulations (Figures 12d,e), and the 108-km LTA simulation (Figure 12f). The 506 

heaviest rainfall was centered in the OVC area in the observation-based and the simulated 507 

precipitation maps, but the shape and spread of the rain band were different. The rain band in the 508 

12-km BASE case (Figure 12c) was more spread and scattered with southwest-to-northeast 509 

orientation, while the observation-based products and the LTA cases indicated a relatively 510 

smaller area with west-east direction. Thus, the LTA cases (12-km CONUS simulations) 511 

compared better to the observation-based products spatially than the BASE case. The K2C10W 512 

case (with WWLLN) tended to produce less precipitation than the K2C10N case (with NLDN) 513 

and both observation-based products. These spatial discrepancies for precipitation in OVC 514 

between PRISM and the model cases were reflected by the unique statistical behavior as 515 

displayed in Figure 3 and discussed in Section 4.1. As a likely artifact of excessively activated 516 

convection within the 108-km grid cells with a spatial scale much larger than most thunderstorm 517 

scales, the HK2C10W case indicated areas of heavy precipitation that were also shown in the 518 

observation-based products and the 12-km LTA cases (both K2C10W and K2C10N) at 519 
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approximately same locations but with much less spatial extent. To resonate with the large 520 

discrepancies in the MB values shown in Figure 11a among the BASE cases, the precipitation 521 

from HK2C10B and HK2C10B cases is similarly displayed in Figures 12g,h. The case with 522 

Trig1 was clearly more comparable to the CONUS cases than the Trig2 case in that the 523 

precipitation from Trig2 was severely underestimated across the entire U.S. These hemispheric 524 

simulations amplified the impact of the trigger options on precipitation during warm months 525 

among the BASE cases, resulting in differences in daily total precipitation of up to 40% in the 526 

U.S. (Figure S6a). These results underscore the need to carefully set cumulus parameters for the 527 

KF scheme in WRF simulations.  528 

 The mismatch of the spatial scales between domain resolution and thunderstorms in the 529 

108-km simulations is a limitation of current LTA scheme that could be improved in future 530 

development. In addition to using lightning density to trigger convection, another option is to 531 

implement the LTA scheme in the MultiScale Kain-Fritsch (MSKF) scheme (Glotfelty et al., 532 

2019; Zheng et al., 2016), a “scale-aware” variant of KF that refines the convective tendencies 533 

based on the grid spacing used in the simulation.   534 

5.2. Impact on Other Meteorological Variables 535 

The impact of the cumulus parameters and LTA scheme on near-surface meteorological 536 

variables of the 108-km hemispheric simulations are evaluated like the 12-km CONUS 537 

simulations. However, due to the lack of observation data beyond North America, the analysis is 538 

mainly focused on the U.S. regions, but all the available data within the hemispheric domain is 539 

collectively referred to as “ALL” regardless of where the data originated. Affected by the coarser 540 

domain resolution, all the statistical measures for T2 (Figure 13) from the hemispheric 541 

simulations indicated degradations in model performance relative to the 12-km CONUS domain 542 
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(Figure 4). As in the CONUS simulations, the LTA cases increased correlation coefficients and 543 

decreased errors (RMSE and NME) compared to the BASE cases. Like the CONUS simulations, 544 

the cumulus parameters minimally affected the LTA cases, while significant deviations were 545 

produced among the BASE cases. Unlike the CONUS simulations where both trigger and cudt 546 

contributed to T2 differences, the large differences among the BASE cases for the hemispheric 547 

simulations were attributed to the trigger options. Though all the cases tended to underestimate 548 

T2 (contrary to the CONUS simulations where T2 was generally overestimated), among the 549 

BASE cases, greater underestimates were associated with Trig1 than Trig2. The LTA cases 550 

uniformly underestimated T2 consistent with the Trig1 BASE cases. The performance of 551 

hemispheric simulations for 2-m water vapor mixing ratio (Figure 14) resembles T2 in the 552 

comparison to the CONUS simulations (Figure 5), which produced smaller correlation 553 

coefficients and larger errors and biases (mainly overestimates for both CONUS and hemispheric 554 

simulations). Without exception, the LTA cases consistently performed better in terms of 555 

correlation coefficients and errors than the BASE cases. However, different from other 556 

meteorological variables, the MB and NMB associated with water vapor mixing ratio are 557 

affected by both cumulus parameters (trigger and cudt) for all the model cases (both BASE cases 558 

and LTA cases). The LTA cases with Trig1 performed better than the cases with Trig2, and with 559 

the same trigger value, cudt=0 is preferable to cudt=10; however, for the BASE cases, it was the 560 

opposite, though with smaller differences. At the 108-km grid spacing, the 10-m wind speed 561 

(Figure S7) and wind direction (not shown) statistics were comparable among the cumulus 562 

parameters and the application of LTA. 563 

 564 

6. Discussion and Recommendations 565 
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This study corroborated that the simple observation-based LTA scheme implemented in 566 

Heath et al. (2016) improved WRF simulated precipitation and other near-surface meteorological 567 

variables as evidenced by the simulations over multiple spatial scales and over a longer test 568 

period. Testing on a 12-km CONUS domain using lightning flashes from WWLLN instead of 569 

NLDN slightly reduced the correlation coefficients and locally increased errors due to the lower 570 

detection efficiency of WWLLN. The update of the LTA technique reduced the underestimate of 571 

precipitation that was often reported in the application of WRF simulations conducted over the 572 

CONUS domain (U.S. EPA, 2019). Changing lightning flash data from NDLN to WWLLN 573 

resulted in additional underestimate of precipitation due to fewer lightning flashes in WWLLN 574 

than the NLDN dataset. However, when the WWLLN data was used in the hemispheric 575 

simulations, the model performance for precipitation over the Equatorial regions was 576 

significantly improved from significant overestimation in the base cases to slight 577 

underestimation in the LTA cases, and the precipitation over land was generally overestimated 578 

during the convective season for almost all the selected regions, especially over North America.  579 

The application of LTA in the hemispheric simulations with a 108-km domain exposed a 580 

shortcoming of this simple LTA scheme. When the model grid cell is substantially larger than 581 

most thunderstorm scales (Murphy and Konrad II, 2005), over-triggering of convection within the 582 

entire grid cell leads to overestimated precipitation. With the current LTA implementation and 583 

the high lightning detection efficiency network, such as NLDN, the 12-km grid spacing is 584 

suitable for LTA because thunderstorms often have a radial distance of 1–10 km. When lightning 585 

data from low detection efficiency networks (such as WWLLN) are used over finer resolution 586 

domains (≤12 km), the “NoSuppress” option with LTA could balance increasing precipitation 587 

while maintaining reasonable levels of uncertainty in the other variables for a more holistic 588 
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model evaluation. The effect of domain resolution on precipitation simulation with LTA 589 

portends further development and improvement of the LTA technique. Two potential 590 

developmental directions are to use criteria values of lightning flash density dependent on grid 591 

resolution to trigger deep convection and/or to implement the LTA scheme in the MSKF scheme 592 

in WRF to adapt to different simulation scales. Preliminary experimentation on the 108-km scale 593 

(not shown) suggests that MSKF could improve these comparisons with observations (compared 594 

to the KF scheme presented here), including better cloud and precipitation fields (Hogrefe et al., 595 

2021).   596 

The experiment of cumulus parameters (trigger and cudt) associated with the KF scheme was 597 

performed for both the CONUS and hemispheric WRF simulations. Results revealed several key 598 

behaviors in both the BASE case simulations and LTA case simulations. First, the BASE case 599 

simulations were sensitive to both trigger and cudt options over the CONUS domain, but only 600 

trigger options produced significant variations for the hemispheric simulations. Second, the 601 

impact of the cumulus parameters on LTA cases was insignificant for both modeling domains. 602 

Separately, the original LTA technique as described in Heath et al. (2016) showed influence 603 

from the cumulus parameters on the LTA cases (Figure S8), but after implementing the updated 604 

cloud top height (one model level above -20° C) and the additional pre-conditioning shallow 605 

convection (see Section 2), the fluctuations among the LTA cases were significantly reduced. 606 

Third, the most pronounced impact of cumulus parameters was on the amount of precipitation in 607 

the BASE cases. The Trig1 option generated up to a 10% overestimate of month-mean daily 608 

precipitation over the CONUS with cudt=0 and an additional 10–15% overestimate with cudt=10 609 

during July 2016.  With Trig2, the simulated precipitation became underestimated by about 10–610 

15%, with the cudt contributing to ~5% difference; Cudt10 had less underestimate than Cudt0. 611 
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However, over the hemispheric domain, only the trigger option dramatically affected simulated 612 

precipitation; during the summer months (June, July, and August), the Trig2 cases 613 

underestimated the mean daily precipitation by up to 40% more than the Trig1 cases that 614 

matched the observation-based precipitation products within 10%. In summary, without LTA, 615 

the recommended default values (trigger=1 and cudt=0) by WRF documentation remain the best 616 

option for both the CONUS and hemispheric simulations to achieve the best model performance, 617 

especially for North America, and with LTA, all the options performed equally well. 618 

As one of the most prominent meteorological models, WRF has been widely used in a variety 619 

of applications from regional to global scales and from weather and climate studies to air 620 

pollution transport in air quality forecast and regulatory compliances. It is important to improve 621 

the convective processes (e.g., convective transport of air pollutants matching the times and 622 

locations of lightning NOx production) to have more accurate precipitation and other 623 

meteorological fields with more resources being available including observational datasets, 624 

computing capability, and advanced scheme development. Observation-based data assimilation 625 

has been historically proven to be one of the most effective methods to improve model’s 626 

performance in time and space. This research is emerging to consider and use the lightning 627 

observations that have become available in various formats and scales in the past decades to 628 

improve convection simulations through LTA. Additional networks of lightning observations 629 

and more detailed properties associated with the process of lightning discharge are becoming 630 

available (such as the strokes per flash, the strength of lightning energy level, and the separation 631 

of cloud-to-ground and inter- or intra-cloud strikes being more accurately quantified, especially 632 

with the available satellite lightning products from Geostationary Lightning Mapper (GLM) 633 

detection systems borne on the GOES‐16 and ‐17 satellites (Goodman et al., 2013)). 634 
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Accordingly, lightning assimilation techniques will continue to evolve and build upon the 635 

research presented here. 636 

  637 
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Code and data availability 638 

The WRF model is available for download through the WRF website (http://www.wrf-639 
model.org/index.php). The LTA code is not publicly available yet but interested users can 640 
contact the corresponding author to acquire the source code. The raw lightning flash observation 641 
data can be purchased through Vaisala Inc. (https:// 642 
www.vaisala.com/en/products/systems/lightning-detection), and the WWLLN raw data are also 643 
available for purchase at http://wwlln.net. The immediate data except the lightning flash data 644 
behind the figures are available from doi: https://doi.org/10.5281/zenodo.6493145. PRISM 645 
Precipitation data for the United States are retrieved from https://climatedataguide.ucar.edu/climate-646 
data/prism-high-resolution-spatial-climate-data-united-states-maxmin-temp-dewpoint and the CPC Global 647 
Unified Precipitation data provided by the NOAA/OAR/ESRL PSL, Boulder, Colorado, USA, from their 648 
Web site at https://psl.noaa.gov/data/gridded/data.cpc.globalprecip.html. The IMERG data were provided 649 
by the NASA/Goddard Space Flight Center's Precipitation Measurement Missions (PMM) Science Team 650 
and Precipitation Processing System (PPS), which develop and compute the IMERG as a contribution to 651 
GPM, and archived at the NASA GES DISC. 652 
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 800 

Table 1. Model Cases used in this study. The case names are comprised of elements from 801 
the other four columns, which describe the simulation domain (blank = CONUS, H = 802 
hemispheric), the version of the Kain-Fritsch trigger that was applied (trigger 1 = K1, 803 
trigger 2 = K2), the frequency that the convective properties was updated (every time step 804 
= C0, every 10 minutes = C10), and the lightning data that were assimilated in the 805 
simulation (B = Base/none, N = NLDN, W = WWLLN). 806 

Case Name Domain 
(none or H) 

trigger 
 (K1 or K2) 

cudt 
(C0 or C10) 

LTA Network 
(B, N, W) 

K1C0B CONUS 1 0 Base/none 

K1C10B CONUS 1 10 Base/none 

K2C0B CONUS 2 0 Base/none 

K2C10B CONUS 2 10 Base/none 

K1C0N CONUS 1 0 NLDN 

K1C10N CONUS 1 10 NLDN 

K2C0N CONUS 2 0 NLDN 

K2C10N CONUS 2 10 NLDN 

K1C0W CONUS 1 0 WWLLN 

K1C10W CONUS 1 10 WWLLN 

K2C0W 

 

CONUS 2 0 WWLLN 

K2C10W CONUS 2 10 WWLLN 

HK1C0B Hemisphere 1 0 Base/none 

HK1C10B Hemisphere 1 10 Base/none 

HK2C0B Hemisphere 2 0 Base/none 

HK2C10B Hemisphere 2 10 Base/none 

HK1C0W Hemisphere 1 0 WWLLN 

HK1C10W Hemisphere 1 10 WWLLN 

HK2C0W 

 

Hemisphere 2 0 WWLLN 

HK2C10W Hemisphere 2 10 WWLLN 

 807 

  808 
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 809 

 810 

Figure 1. The mean hourly lightning flash rate from NLDN and WWLLN over the 12km 811 

CONUS domain in July and September 2016.  812 
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  813 

Figure 2. Analysis Regions (Countries), a. the climate regions in the CONUS, and b. the 814 

countries over the northern hemisphere – US: United States; CA: Canada; MX: Mexico; CN: 815 

China; IN: India; ROH: Other countries/regions except the five specific countries in the 816 

hemispheric domain. The U.S. climate regions are: Northeast (NE), Southeast (SE), Ohio Valey 817 

Central (OVC), Upper Midwest (UM), South, West North Central (WNC), Southwest (SW), 818 

Northwest (NW), and West.  819 
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 821 

 822 

Figure 3. Monthly mean statistics for precipitation from BASE and LTA simulations 823 

comparing to the values from PRISM for the modeling domain and the climatological 824 

regions over the CONUS, respectively, during July 2016: a) correlation coefficient, b) MB, 825 

c) NMB, d) RMSE, and e) NME. In each plot, there are three sets of simulations (BASE, 826 

LTA with NLDN, and LTA with WWLLN) and each having four cases from the 827 

combinations of cumulus parameters.  828 
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 830 

 831 

Figure 4. Same as Figure 3, but for 2-m temperature (T2) in that the simulated T2 values are 832 
paired with observations from NCEI’s land-based stations in time and space (hourly mean 833 
values). 834 
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  837 

Figure 5. Same as Figure 4, but for 2-m water vapor mixing ratio. 838 
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 840 

 841 

Figure 6. Same as Figure 4, but for 10-m wind speed. 842 
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 845 

 846 

 847 

Figure 7. The mean daily rainfall during July 2016 simulated by base model cases (a. HK1C0B 848 
and d. HK2C0B), LTA cases (b. HK1C0W and e. HK2C0W), and the satellite GPM 849 
produced rainfall (g), and the differences between the LTA and BASE cases (c. 850 
HK1C0W – HK1C0B and f. HK2C0W – HK2C0B) and between the simulated cases and 851 
satellite IMERG products (h. HK1C0B – IMERG and i. HK1C0W – IMERG). Note that 852 
the left legend applies to the rain maps (a, b, d, e, and g), and the right legend applies to 853 
the difference plots (c, f, h, and i). 854 
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 856 

 857 

Figure 8.  CPC rainfall (a) and simulated (b-f) mean daily precipitation during July 2016 over the 858 
hemispheric domain. The LTA configuration is represented by one case (b. HK2C10W) since all 859 
the LTA cases with different cumulus parameters produced similar results. All BASE cases are 860 
shown here (c-f) because the cumulus parameters do impact the simulated precipitation when not 861 
using LTA.  862 
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 864 

 865 

Figure 9. The monthly correlation coefficient between CPC and simulated precipitation in 866 
selected countries: a. United States, b. Canada, c. Mexico, d, China, and e. India. Note 867 
that all the BASE cases are plotted in cool colors and LTA cases in warm colors. 868 
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 871 

Figure 10. Same as Figure 9, but for RMSE. 872 

  873 



48 
 

 874 

 875 

Figure 11. Same as Figure 9, but for MB. 876 
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 878 

 879 

Figure 12. Mean daily precipitation over the CONUS during July 2016 from a) PRISM, b) CPC, 880 
c) K2C10B, d) K2C10N, e) K2C10W, and f) HK2C10W, g) HK1C10B, and h) 881 
HK2C10B. Note that all the observational based products and the 108 km hemispheric 882 
simulations are regridded onto the 12 km CONUS domain. 883 
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 886 

Figure 13. Monthly mean statistics for 2-m temperature from hemispheric BASE and LTA 887 
simulations comparing to surface observations during July 2016: a) correlation coefficient, b) 888 
MB, c) NMB, d) RMSE, and e) NME. 889 
  890 
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 892 

Figure 14. Same as Figure 12, but for 2-m water vapor mixing ratio.  893 
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