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Importance of non-stationary analysis for assessing extreme sea
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Abstract. Coastal flooding caused by extreme sea levels (ESLs) is one of the major impacts related to the climate change. It
is expected to increase in the future due to sea level rise and storm surge intensification. Estimates of return levels obtained
under the framework provided by extreme events theory might be biased under climatic non-stationarity. Additional
uncertainty is related to the choice of the model. In this work, we fit several extreme values models to a long-term (96 years)
sea level record from the city of Venice (NW Adriatic Sea, Italy): a Generalized Extreme Value distribution (GEV), a
Generalized Pareto Distribution (GPD), a Point Process (PP), the Joint Probability Method (JPM), and the Revised Joint
Probability Method (RIPM) under different detrending strategies. We model non-stationarity with a linear dependence of the

model’s parameters from the mean sea level. Our results show that non-stationary GEV and PP models fit the data better

than stationary models even with detrended data. The non-stationary PP model is able to reproduce the rate of extremes
occurrence fairly well. Actualized estimates of the return levels for non-stationary and detrended models are generally higher
than estimates from stationary, non-detrended models. Thus, projections of return levels in the future might be significantly

different from those calculated using stationary models. Overall, we show that non-stationary extremes analyses can provide

more robust estimates of return levels to be used in coastal protection planning.

1. Introduction

Coastal zones are extremely vulnerable to extreme sea levels (ESLs; Kron, 2013). Exposure to coastal flooding damage is
projected to increase in the future (Jongman et al., 2012) due to higher frequency, magnitude, and duration of extreme sea
levels (Tebaldi et al., 2021; Devlin et al., 2021). Relevant causes are the mean sea level rise (Menéndez and Woodworth,
2010; Marcos et al., 2009), and increases in storm surges intensity (Cid et al., 2016; Vousdoukas et al., 2016). The design of
structures to protect coasts from flooding (minimizing e.g. damages to infrastructures and coastal erosion) relies on the
knowledge of ESLs that are likely to occur with a given probability (Boettle et al., 2016). Extreme events theory provides a
theoretical background to fit historical extremes with specific probability distribution functions (Coles et al., 2001), and is
widely used for estimating the probability of occurrence of ESLs. However, two challenges complicate the development of

solid estimates of such return levels.
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The first challenge is linked to the potential non-stationary behavior of the extremes. The results of extreme value theory are
valid under the assumptions of independence and stationarity of extremes (Khaliq et al., 2006). Here, stationarity means that
all the realizations of the extremes in the data record are generated from the same distribution (Coles et al., 2001). While
independence is satisfied with a proper selection of extremes from the dataset, stationarity is often assumed but not verified
(Khaliq et al., 2006). When dealing with sea level data, several sources of non-stationarity exist, e.g.: changes in coastal
morphology, low frequency climatic variability, and climate change (Salas and Obeysekera, 2014). Assuming stationarity
when data are non-stationary has several practical implications. First, this choice can greatly affect the return levels
estimated for the present day (Razmi et al., 2017; Dixon and Tawn, 1999; Salas and Obeysekera, 2014; Haigh et al., 2010,
JRagno et al., 2019), Non-stationary analyses can lead to very different estimates of the return levels used for designing

structures. For instance, when a 100-years return level is used for the design, it has to be ensured that the value remains valid
until the end of the structure’s lifetime (Mudersbach and Jensen, 2010). The estimation of return levels from stationary
models might not be appropriate because of the implicit assumptions that the characteristics of the extremes remains the
same in the future (Caruso and Marani, 2022).

Several methods were proposed to cope with non-stationary conditions. Records whose length is limited to some decades
could be too short to show non-stationary patterns (Marcos et al., 2009). When the main source of non-stationarity is the
mean sea level change, detrending with annual or long term means is an option (Bernier et al., 2007; Tebaldi et al., 2012;
Mentaschi et al., 2016). However, detrending implicitly attributes the causes of non-stationariety to a single factor (i.e. the
mean sea level), while other causes might be overlooked (Arns et al., 2017). When sufficient amount of data is available, the
extreme value distribution that generates the extremes can be explicitly modeled as dependent from non-stationary factors
such as seasonality (Méndez et al., 2007), meteorology (Grinsted et al., 2013), climate (Cid et al., 2016), sea level rise
(Sweet and Park, 2014), and time (Razmi et al., 2017). However, clear indications on which approach suits better non-
stationary conditions are still missing.

The second challenge is related to the choice of the proper method to conduct the extreme sea level analysis. Several

methods to identify the extreme values in the data (e.g. maxima over blocks of data, or values that exceed a threshold, Coles
et al. 2001): Generalized Extreme Value distributions (Mudersbach and Jensen, 2010), Generalized Pareto distributions
(Wahl et al., 2017), and Point Process (Boettle et al., 2016). Jndirect methods such as the Joint Probability Method, or the
Revised Joint Probability Method (Pugh and Vassie, 1978) also exist. It is expected that different methods might be more or

less suited _(in terms of explained variance, see section 2.3.6) to accommodate non stationary data, and might lead to different

estimates of extreme sea level probabilities (Wahl et al., 2017; Razmi et al., 2017). However, a comparison of the suitability

of different methods for modelling non-stationarity is currently missing.

Given the above knowledge gaps, this paper aims at: (i) assessing which parametric method best accommodates non-

stationary conditions; and (ii) comparing return level and return period estimates from different parametric and non-
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parametric methods. We perform all the analyses using three different detrending strategies. We use a long-term sea level
time series (96 years) recorded at Venice, Punta della Salute station (NE Italy). We compare the implemented methods also

for sea level data from the tide gauge in Marseille (Southern France).

2. Methods
2.1 The Venice Lagoon

The Venice lagoon is the largest Mediterranean lagoon, covering a length of 50 km along the coast, with an area of 500 km?.
The lagoon is connected to the sea by three inlets (Lido, Malamocco and Chioggia). The tide regime is semi-diurnal, with
mean tidal range from 50 cm during neap tide to 100 cm during spring tide (Umgiesser et al., 2021). Around 415 km? are

subject to tide excursion, and a large area (~2400 km?) in the surrounding coastline lies below the mean sea level. Sea level

in the Venice lagoon is determined by the tide and the meteorological surge, driven by atmospheric phenomena at different
spatial scales (Lionello et al., 2021). Among the atmospheric contributions, storm surge is the dominant driver of extreme
sea levels (Ferrarin et al., 2022), and is controlled predominantly by the local atmospheric pressure and the wind (Bora from
north-east and Sirocco from south-east are predominant).

Due to the semi-closed shape of the Adriatic Sea, the Venice Lagoon is exposed to the risk of flooding due to extreme sea
levels (ESLs, Ferrarin et al., 2022). Compared to other sites in the northern Adriatic sea, the Venice Lagoon experienced

higher sea level rise due to the combined effects of subsidence and eustatism (+ 2.5 mm year:! in the last 150 years, Biasio et

al., 2020; Zanchettin et al., 2021). The current long-term mean sea level is about 30 cm above the local 1897 reference
(named Zero Mareografico di Punta della Salute, ZMPS: average sea level for the period 1885-1909 measured at the Punta
della Salute gauging station). As a result, an increase in the frequency and magnitude of ESLs causing flooding of the city of
Venice was recorded (Umgiesser et al., 2021). Additionally, morphological changes (Carniello et al., 2009) affected the
propagation of tide waves in the lagoon (Lionello et al., 2021). The events with the highest recorded sea levels occurred on
November 4th, 1966 (+ 194 cm), and November 12th, 2019 (+ 189 cm, Lionello et al., 2021).

On the contrary, area where the Marseille tide gauge is located has a lower tidal range (around 10 cm, Fig S1), and is located

on a stable background, with a relative sea level rise of + 1.1 mm y;* in the last 150 years (Letetrel et al., 2010; Wéppelmann
etal., 2014).

2.2 Tide gauge data

We used sea level data recorded by the tide gauge station located in Venice (gauge name: Punta della Salute) covering the

period 1924 — 2019._Data from 2020 onwards are affected by the activation of a storm surge barrier system that prevents

longest sea level time series in the Mediterranean Sea (Venezia, Genova, The float-operated tide gauge is located

arseille).

inside a still well; measurements were recorded mechanically until 1988 and electronically from 1989 onwards. Until 1989,
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semidiurnal maxima and minima are available (4 measurements per day); then data were recorded hourly in the period 1989
- 1994, every half hour in 1995 - 2006, every ten minutes in 2007 - 2019. The data have no gaps; a total record length of 96

years was used to fit the models. To calculate long-term mean sea level before 1924, we used yearly mean sea level data

from other tide gauge stations active in_the city of Venice (and thus affected by the same subsidence rate as Punta della [Eliminato: ]

Salute) whose records cover the period 1885 - 1922 (namely: Campo Santo Stefano, Arsenale, and Punta della Salute — [Formattato: Tipo di carattere: Corsivo ]

Canal Grande; for details see Zanchettin et al., 2021). \% Eliminato: - ]

Hourly sea level data recorded at Marseille are available for the time period 1849 — 2017. Measurements were performed [::’rmattat"( [ﬂ]
iminato:

with a float-operated tide gauge until 1988, with an acoustic sensor for 1989 — 2008, and with a radar sensor from 2009

onwards. measurements were recorded mechanically until 1988 and electronically from 1989 onwards (Woppelmann et al.,
2014). A total record length of 77 years (spanning 1903 - 2017) was used to fit the model, since some years were discarded

due to incomplete records.

2.2.1 Data detrending

We used two different strategies for detrending the sea level data before fitting the models: a) we removed from each sea
level observation the yearly average mean sea level (hence after: MSL detrending); b) we removed from each sea level
observation the sea level average calculated over the previous 19 years (hence after: MSL_L detrending), to remove long
term fluctuations due to interferences between lunar precession and solar activity (Valle-Levinson et al., 2021); c) we used
non detrended data to fit the models (hence after: NDT).

2.3 Extreme Values distributions

Formattato

Extreme events are defined as events with a low probability of occurrence (Coles et al., 2001). Given a set of independent Eliminato: X_1,... X n

and identically distributed random variables X;, ..., X,,, With parent distribution F,, a probability distribution function Eliminato: F

describing the occurrence probability of extreme values can be derived with two approaches. The Block Maxima (BM) Formattato
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In this work, we used a block length of one year to extract BM to fit the GEV models. We selected the threshold for POT [E“mi“am: M_n
models (GPD and PP) with a two-step approach. First, data above the 99th percentile were selected, and events separated by [Formattato: Tipo di carattere: 10 pt

Formattato

more than 78 hours were considered independent and retained. This time span corresponds to the average decay time of
[ Formattato: Tipo di carattere: Corsivo

seiches, the lowest-frequency sub seasonal oscillation in the Northern Adriatic sea (Masina and Ciavola, 2011; Raicich et al.,

Formattato
1999). Second, we fitted multiple POT models based on different thresholds, and we selected the lowest value that ensures [E“minato: Pty | oW
the stability of the GPD and PP parameters. This procedure ensures that the threshold excesses can be properly modeled as Formattato

DD DO e DL )

4



160

165

170

175

180

185

extremes, and eq. 2 holds (Coles et al., 2001). Thresholds of 100 and 80 cm are appropriate to select POT for non-detrended
and detrended data, respectively, yielding 319 POT for NDT, 284 for MSL, and 359 for MSL_L.

2.3.1 Generalized Extreme Value Distribution

The BM distribution depends on F, the parent distribution of the random variables in each block via: G(z) = Pr(M,, < z) =

F™(z), converging to the generalized extreme values (GEV) distribution when n is large enough (Coles et al., 2001):
_ SNV
G(z) = exp [— {1 +¢ (T)}+ ] 1)

where a, = max(a, 0), p is the location parameter (proportional to the first-order moment of the distribution), o is the scale
parameter (always positive, proportional to the second-order moment of the distribution), and & is the shape parameter that
determines the type of distribution function: the heavy-tailed Frechet (¢ >_0), the upper-bounded Weibull (¢ < 0), and the
limit-case Gumbel (§ — 0).

2.3.2 Generalized Pareto Distribution

The POT distribution depends on F, the parent distribution of the random variables via: H(y) =Pr(X >u+y|X >u) =
(1-F(u+y)/(1—F(w), with y=z-u, converging to the Generalized Pareto Distribution (GPD) when the threshold is

large enough (Coles et al., 2001):

Hz)=1- [1 +¢ (%)]_1/5 @

+

where u js the threshold, g,, js the GPD scale parameter dependent on the threshold, and & the shape parameter that

determines the type of the distribution function: heavy-tailed Pareto (§_>_0), upper bounded Beta (§_<_0), with the
Exponential as limit-case (¢ —_0). When BM are GEV-distributed, POT is theoretically expected to follow a GPD with the
same shape parameter and scale depending on the GEV parameters o,, = o + &(u — ) (Gilleland and Katz, 2016). This

property can drive the selection of an appropriate threshold u.

2.3.3 Point process approach

The occurrence of POT can be modeled also as a point process. Under stationary conditions, the process follows a Poisson
distribution (Coles et al., 2001; Menéndez and Woodworth, 2010):

0(k) = Pr(X = k) =

©)

Akek
k!

where A is the rate of the process (number of events over a reference time period). The process rate depends on the GEV

parameters (Gilleland and Katz, 2016; Boettle et al., 2016; Cid et al., 2016):

a=[ee () @

[ Formattato: Tipo di carattere:

: Corsivo

Formattato: Tipo di carattere

110 pt

Eliminato: u

: 10 pt

Formattato: Tipo di carattere!

: 10 pt

(
(
[ Formattato: Tipo di carattere!
(
(

Eliminato: 5_u

O )




190

195

200

205

210

When location and scale are not constant (e.g. a dependence from a covariate is introduced), the point process is non
homogeneous (Cebrién et al., 2015).

2.3.4 Joint Probability and Revised Joint Probability methods

Unlike the methods mentioned above, the joint probability method (JPM) is non-parametric. The JPM is based on the

decomposition of the sea level z in the tide (x) and surge (y) components (Pugh and Vassie, 1978). The probability
distribution of the sea level P(z) results from the convolution of the distributions of the tide and the surge:

P(2) = [ Pr(z —y) Ps(») dy ®)

where,z = x + y, Pr(x),is the distribution of the tide, and Pg(y),is the distribution of the surge_(both obtained from hourly
records), assumed to be independent (Marcos et al., 2009). N\

The revised Joint Probability Method (RJPM) improves the JPM by fitting the surge distribution with a probability ' “{Ff’fmattam: Tipo di carattere:

distribution function, to allow for the smoothing of the empirical distributions, and for projections beyond the highest
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measured surge (Tawn et al., 1989).
For both JPM and RJPM, an extremal index can be calculated to account for dependencies in the hourly data. The extremal

index is used as a correction factor in the return period calculation based on P(z) (see section 2.3.7), and is defined as the

average number of measurements an extreme sea level cluster is usually composed of (Tawn et al., 1989).

The tidal component of the mean sea level used in the JPM was calculated with the ‘oce’ package (Kelley, 2018) in the R
computing environment v4.1.2 (R Core Team, 2021), using the yearly detrended sea level data (MSL), 7 harmonic constants
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(M2, S2, N2, K2, K1, 01, P1) for Venice, and 21 harmonic constants for Marseille (W6ppelmann et al., 2014). The surge
was calculated as the difference between the sea level observation and the corresponding tide. We used 1990-2019 hourly
data from for Venice and 1968-2016 for Marseille (record length of 30 years for both stations).

For the JPM, we used all the tide and surge data from the sea level decomposition to generate the empirical frequency

distribution over classes of width 10 cm. The maximum theoretical sea level (sum of maximum tide and maximum surge)

falls within the highest class. Then, we calculated the discrete convolution between the two histograms. For the RJPM, and

fitted a Gumbel distribution function to the annual maxima of the surge (following Tawn et al., 1989). Then we calculated
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the probability for each histogram class as the integral of the distribution. ;The guantiles of the obtained histogram Eliminato: We used our own script to generate the empirical sea
. L. s level distribution function according to the JPM. We first generated
representing the empirical sea level distribution were calculated based on the frequency of each class, and used for the the empirical distribution histograms for the tide and the surge using

a bin width of 10 cm for the classification, and then we calculated the
convolution between the two histograms.

estimation of return levels (Pugh and Vassie, 1978; Marcos et al., 2009). We found extremal indices of 5.5 and 13 to be

appropriate for Venice and Marseille, respectively. [Eliminato: empirical

2.3.5 Models fitting

We used the package ‘ExtRemes’ (Gilleland and Katz, 2016) to fit the parametric models (GEV, GPD, PP) based on the
Maximum Likelihood criterion (Castillo et al., 2005; Coles et al., 2001).
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2.3.5 Stationarity and parameters dependence

Both BM and POT approaches require the modeled random variables to follow the same parent distribution F. Non
stationary conditions can be modeled by including covariates in the GEV, GPD, and PP parameters (Méndez et al., 2007).
For instance, a linear dependence of location () and scale (o) parameters can be assumed from the covariate ¢ and can be

expressed as (Coles et al., 2001):

u(e) = po + pac (6)
log(a(c)) = gy + 0yC @)

where the logarithm on the scale parameter in eqn. 7 is used to constrain the scale parameter to positive values.

2.3.6 Comparing different models configurations

The likelihood ratio test is employed to assess whether the inclusion of a covariate in the model formulation improved

significantly the fit. Two nested competing models M,,c M, can be compared using the deviance statistic (Coles et al.,

2001). For example, M, can be a model that whose parameters depend on covariates, while M, a model whose parameters do

not depend from covariates. The deviance is expressed as;
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definition a lower complexity than M,, which is the case when covariates on the model’s parameters are added_to M;. High |
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hypothesis is rejected when D > ¢, where c, is the (1 — ) quantile of a y?Z distribution, where k is the difference in “‘\‘

dimensionality between M; and M,.

2.3.7 Return levels estimation

The return period is defined as: Tr(z) = [1 — G(z)]~!, where G is the Probability Distribution Function for the GEV, GPD,
or PP models (Caruso and Marani, 2022). In practice, the extreme levels of the random variable are calculated as a function
of the return period via the PDF quantiles (Coles et al., 2001). In a non-stationary analysis, the model’s PDF is not constant
in time (Fig. 1), and the quantiles are not uniquely determined. To allow for the comparison of estimated return levels from
non-stationary models, in this work we first fixed the covariates values, and then calculated the quantiles of the resulting

probability distribution function.
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2.4 Data analysis

Before fitting the models, we employed a Mann-Kendall test to check if BM and POT resulting from different detrending
strategies follow a temporal trend. Additionally, we used linear models and quantile regressions (75th quantile) to relate BM
and POT with the mean sea level, and used the significance of the regressions as indication for stationarity.

To check if the inclusion of non-stationary covariates can improve the models (objective i), we fitted different configurations
of GEV, GPD, and PP models to the full dataset (96 years). We fitted: a) models without covariates; b) models with the
location linearly depending on the yearly mean sea level; and c) models with location and logarithm of the scale linearly
depending on the yearly mean sea level. We used the likelihood ratio test (eg. 8) to assess whether the inclusion of mean sea
level-dependent parameters improved the fit significantly.

To check visually the dependence of parameters from the mean sea level, we fitted stationary GEV, GPD, and PP models
(i.e. without covariates on the scale and location parameters) to BM and POT subsets using a 30-years moving time window.
We can assume that data sampled in a 30-years window can be considered stationary. We tested for the presence of a trend in
the fitted parameters with a Mann-Kendall test. We plotted the sequence of stationary parameters together with non-

stationary ones_as a mean to visually check the uncertainty related to parameters estimation (Cheng et al., 2014).

The PP models were further validated by comparing the process rate (eq. 4) and the empirical rate of POT exceedances
(number of excesses per year) with a Pearson’s correlation test.

After fitting the models, we compared the estimates of the return level for different return periods (objective ii). For the non-
stationary models, we first calculated the location and scale parameters with a yearly mean sea level of + 35 cm (equal to the
2000 - 2019 long-term mean sea level). Once the model’s parameters were fixed, we calculated the sea levels corresponding
to return periods of 2, 20, 100, and 200 years. Estimates of return levels from models fitted to detrended data were added
back the long term mean sea level. This additive procedure is simplified and neglects the non-linear interactions between

future mean sea level and the occurrence of extremes (Arns et al., 2015, 2017).

Finally, we derived the curves from non detrended, non-stationary models under different covariates values. For Venice, we

used + 0 cm; + 25 cm (annual mean sea level in 1966, the year of the largest ESL on record); + 35 cm (annual mean sea level
for 2019, the last year used in the analysis); and + 51 cm (expected annual mean sea level in 2050 under IPPC scenario
SSP2-4.5, Garner et al., 2021; Masson-Delmotte et al., 2021). For Marseille, we used + 54 cm (annual mean sea level for

2019), and + 71 (expected annual mean sea level in 2050 under IPPC scenario SSP2-4.5).

3. Results

Regarding the data used to fit the models, the Mann-Kendall tests detected a significant trend for the non-detrended BM, a
marginally significant trend for the detrended BM, and no trend for POT for Venice (Fig. 2). We found evidence for a
dependence of the median BM on the mean sea level for both detrended and non-detrended data. The median POT, and the
upper POT quantile were significantly dependent from the mean sea level only for the MSL_L detrending method (Table 1).

8
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After fitting the models, the likelihood ratio test for VVenice data shows that the inclusion of the covariate (mean sea level)
improves the fit significantly for the location () parameter of both GEV and PP for NDT and MSL L data, and only for
GEV for MSL data (Table 2). The addition of a dependence on the scale (o) parameter was marginally significant for the
GPD for NDT and MSL_L data. The inclusion of the dependence from the scale on the PP improved the fit only for MSL_L
data (Table 2)._In Marseille, the inclusion of the covariate improved the fit for the location for GEV and PP for NDT, and
for the location of PP for MSL_L data

Models validation_for Venice showed that the location parameter dependent on the covariate well reproduces the temporal
trends of the corresponding stationary parameters obtained from the time-window analysis in GEV and PP. The location is
included in the scale parameter of the GPD that does not improve the fit (Fig. 3). The scale parameter improves the fit only
marginally also for GEV and PP.

Additionally, the PP models estimated the occurrence rate of threshold exceedances_in Venice in good agreement with those
calculated from the POT data (Table 3).

The return levels_ gstimated by non-stationary models_for Venice were in the range 133 — 146 cm for a return period of 2

higher discrepancies for non detrended data.

Finally, we compared how the return levels for return periods of 2, 20, 100, and 200 years_differ among models (Fig. 5,
Table S1). Among stationary models, the GPD yields conservative estimates for 2 years and the GEV is more conservative
for 20 and 100 years for all detrending configurations. Among models with covariates on the location, GEV yields higher
return levels estimates. Among non-stationary models fitted to non-detrended data, GPD models with covariate on the scale
yield conservative estimates for all return periods. Estimates from GEV models with covariates on location and scale fitted

to detrended data are more conservative for 20, 100, and 200 years. The JPM_and RJPM vyields projections that are in

agreement with parametric_models. Return levels from models without covariates fitted to non detrended data were

consistently the less conservative for all return periods and both Venice and Marseille. The highest differences between

detrended, non detrended and stationary models were higher for short return periods. Among all the analysed methods, in

Venice the GEV with covariate on the location, the JPM, and RJIPM yield the most conservative estimates of return levels for

longer return time (>50 yr), while for return time of 2 and 20 years the RJPM is less conservative than other methods. A

similar behaviour is observed in Marsille for RIPM. Differently, in Marsille the JMP provides less conservative return level

for all return times. A consistent behaviour was observed when stationary models fitted to data covering 30 years were
compared with JPM and RIPM (Figure S2).

Extrapolations of non detrended, non-stationary models for the future showed that estimates of future ESLs are strongly

influenced by the future mean sea level (Fig. 6). Events that currently have a return level above 200 y are projected to have
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return levels < 30 y (for GEV and GPD) and < 50 y (PP) already in 2050 _for Venice. For Marseille, events that currently

have a return level above 200 y are projected to have return levels < 30 y (for GEV and GPD) and < 100 y (PP) already in
205Q

4. Discussion
4.1 Including non-stationarity in extreme events modeling

Our results show that most of the fitted ESL models benefit from the inclusion of covariates on either the location and the
scale parameters. We used only the yearly averaged mean sea level as covariate to build simple models, but other predictors
can be used. For instance, the North Atlantic Oscillation Index, the Arctic Oscillation, the East Atlantic/Western Russia
Oscillation index can be used to include a dependence from climate (Menéndez and Woodworth, 2010). Where climatic
predictors are missing, seasonality effects can be included e.g. with an harmonic dependences from the yearly Julian day
(Méndez et al., 2006). Other predictors could include global and regional meteorological parameters, which could influence
storm surges intensities and frequencies (Grinsted et al., 2013). A dependence from time can be also included (Mudersbach
and Jensen, 2010). However, particular care should be used in the choice of the predictors. Complex models can be useful
for explaining historical pattern, but might be of little utility for future projections. For instance, bias could arise due to
uncertainties in predictor’s future trajectories, or to future predictor’s values out of the ranges used to calibrate the models. In
this regard, simpler models can be helpful for future projections when clear links between extremes occurrence and specific
predictor’s classes are established.

In this work, we used the mean sea level as covariate because of the strong link with storm surges occurrences (Lionello et
al., 2021). Our results show that mean sea level-dependent location of both GEV and PP models improve the ESLs fit. The
location parameter is the first-order moment of the extremes distributions. The inclusion of a linear dependence from the
mean sea level translates rigidly the distribution function towards higher (positive slope) or lower (negative slope) values
without affecting the shape of the distribution. GEV and PP models also marginally improved with a dependence on the
scale. The scale parameter relates to the second-order moment of the distribution (the “spreading™): the dependence could
suggest that the mean sea level influences also the variability in the storm surge magnitude. In shallow area an higher sea
level corresponds to lower dissipation of the tidal energy, yielding higher ESLs (Arns et al., 2017). In the Venice lagoon, this
factor might be influenced also by the morphological transformations that the Venice Lagoon underwent during the 20th
century and that might have affected the dynamics of the tide propagation (Caruso and Marani, 2022). Different explanations
for this pattern are possible. For instance, the North Atlantic Oscillation Index (NAO), not included in this analysis, might
act as a latent variable: negative NAO phases in the Mediterranean basin can lead to increases in monthly mean sea levels
and in the number of storms (Cid et al., 2016).
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Overall, this work shows how including non-stationarity in extreme events analysis can support an improved understanding
of extreme events. Including dependences from the mean sea levels allows for flexible forecasts of ESLs also under sea level

rise scenarios.

4.2 Comparison of the models

The significant covariate dependencies could be also influenced by the used type of data. The BM data show clear increasing
trends, which were captured by the GEV model. BM could be extracted with different methods, such as monthly blocks, or
for r-largest yearly values. A global analysis (Wahl et al., 2017) showed that the annual maxima is the more conservative
method (i.e. yields higher return period estimates). However, this aspect should be checked as part of a sensitivity analysis
from case to case. POT data do not have a trend in the mean or in the higher quantiles, thus should yield models that are less
affected by non-stationarity. However, a trend in the frequency of occurrences of POT (Ferrarin et al., 2022) was observed,
which might invalidate the homogeneity assumptions of GDP and PP models. The non-homogeneity of the POT distribution
can be mitigated by introducing a dependence of the threshold from a covariate (Roth et al., 2012). However, using a non-
constant threshold introduces a significant uncertainty that might result in biased estimates of the return levels (Agilan et al.,
2021). On the contrary, the PP explicitly models the rate of threshold exceedances: the detected significant dependence of
location from the mean sea level implies a process with non-constant occurrence rate (i.e. a non-homogeneous process, eq. 6,
Cid et al., 2016).

While all the parametric methods improved with the inclusion of non-stationarity, the JPM is the method that should be least
influenced by non-stationarity, since the methodology requires to detrend the data before the calculation of tide and surge
histograms. However, as the residual trend on detrended BM _for VVenice shows, the removal of the mean sea level might not
be sufficient to make the series stationary. Thus, also estimates of the return level with the JPM might be biased. Estimations
of return levels for long return periods are not possible due to the lack of surge and tide events that are needed to populate
the extremal classes of the distribution. In our analysis, JPM allows for estimating return periods_corresponding to levels of +

233 cm in Venice (corresponding to the sum of the maximum recorded tide, + 57 cm, the maximum recorded surge, + 141

cm, and the current mean sea level, + 35 cm) and + 163 ¢cm in Marseille (tide: + 20 cm, surge: + 89 cm, current mean sea

level: + 54 cm), but for shortest series, this limitation might be stronger,,

All the parametric models were improved by the inclusion of covariates on the location (GEV and PP) or on the scale (GPD),
with a stronger influence on models fitted to non detrended data. Particular care should be taken when detrending data prior
to the model fit, as this action implicitly assumes that the mean sea level is the main responsible of data non-stationarity, and
higher order interactions are neglected. In shallow area this could not be the case (Arns et al., 2017). Thus, inclusion of
covariates on the model’s parameters could be an alternative to detrending in such cases. With our data, the use of the mean
sea level as covariate results in a rigid translation towards higher return levels for GEV and PP plots due to the significance

of the location dependence. The effect on GPD is also in a change in slope due to the significance of the scale parameter.
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Data from different gauging stations might show different behaviors. For instance, sites where the sea level variability
increases with mean sea level might show a significant dependence in the scale parameter also in GEV and PP.
Overall, we show that using different methods allows to critically examine strengths and weaknesses of each method and to

critically evaluate the results to drive the choice of the method that best fits the specific case.

Conclusions

In this paper, we fitted different extreme value models to long-term sea level data. We show that including non-stationarity
in the analysis of extreme events improves the fit of most of the models. Non-stationary analyses also yield higher estimates

of long-term return levels, while sfationary analysis on non-detrended data underestimates the return levels. Overall, we

show that non-stationary extremes analyses can provide more robust estimates of return levels to be used in coastal

protection planning.
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Figure 1: Example of the effects of curves parameters on the return period estimation. GEV curves with different location (1) and
scale (o) parameters corresponding to three time periods are represented. The shape (¢) parameter is kept constant The return

period is calculated based on the highlighted area (see section 2.3.7). Different location and scale yield different return period
estimates. Under non-stationary conditions, the curve’s parameters change with time.
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Figure 2: Venice tide gauge data used to fit the models. Plots are grouped vertically according to the detrending method (MSL: [ Eliminato: D

mean sea level, MSL_L: long term mean sea level, NDT: non detrended), and horizontally according to the maxima typology (BM:
block maxima, POT: peak over threshold). The text in the label on the top-left corner of each plot shows the significance level of
the Mann-Kendall trend test (n.s.: non significant; .: p < 0.1; *: p < 0.05; **: p < 0.01; ***: p < 0.001). The continuous line
represents the mean sea level value; the dashed line represents the long-term mean sea level.
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Figure 4: Return level plot actualized to 2019 for Venice. Plots are grouped vertically according to the detrending method (MSL:
mean sea level, MSL_L: long term mean sea level, NDT: non detrended), and horizontally according to the distribution function
(GEV: generalized extreme values, GPD: generalized pareto, PP: point process). The dashed line is the empirical return level for
the joint probability method (JPM). Curves are color-coded based on the model configuration. Note: horizontal axis is logarithmic.
Return level curves for direct models with covariates are showed only if the addition of the covariate improves the fit significantly

(p<0.01; see Table 2).
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Figure 5: Difference of return levels between each fitted model and a non-detrended, GEV fit for different return periods. Return

levels of models with covariates are showed only if the model significantly improves the fit compared to models without covariates

(p <0.01; see Table 2). Plots are grouped vertically according to the detrending method (MSL: mean sea level, MSL_L: long term

mean sea level, NDT: non detrended), and horizontally according to the distribution function (GEV: generalized extreme values,
GP: generalized pareto, PP: point process).,
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Table 1: Trend in the data used to fit the models. Im: linear model; qr: quantile regression (0.75" data quantile).

Extreme selection | Regression
Detrending Regression type Test statistic R?
method Type
NDT BM Im F(1,94) = 61.089 p = 7.75 102+ 0.38
NDT POT Im F(1,317) = 3.265 p=0.071. 0.007
NDT POT qr F(1,317) = 2.733 p =0.099. -
MSL BM Im F(1,94) = 7.662 p = 0.006** 0.06
MSL POT Im F(1,282) = 2.417 p=0.12ns. 0.004
MSL POT qr F(1,282) = 1.102 p=0.29ns. -
MSL_L BM Im F(1,94) = 14.276 p=2.76 105+ 0.12
MSL_L POT Im F(1,357) = 5.432 p = 0.020* 0.01
MSL_L POT qr F(1,357) = 5.058 p = 0.025* -
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635

Table 2: Likelihood ratio test results. The column test type describes which models configurations were compared: nc-l1 no
covariates compared with covariates on location, I-sl: covariates on the location compared with covariates on both location and
scale, nc-s no covariates compared with covariates on scale.

VE = Venice; MS = Marseille.
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|670 Table 3: Comparisons between the rates fitted by the point process (PP)_for Venice and the empirical process rate of models with
covariates on the location (Model Type = 1), and models with covariates on location and scale (Model Type =s)

Detrending | Model Test statistic p-value R2
Type

NDT | t(94) = 12.092 p=7.37 102*** 10,78
NDT Is t(94) = 12.344 p = 2.22 10721%** 0.78
MSL [ 1(94) = 1.8 p =0.07. 0.18
MSL Is t(94) = 1.754 p =0.08. 0.17
MSL_L [ 1(94) = 3.608 p=497 107 | 0.34
MSL_L Is t(94) = 3.451 p = 8.39 10-4*** 0.33
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