



# 1 Optimizing Radar Scan Strategies for Observing Deep Convection

# 2 Using Observing System Simulation Experiments

- 3 Mariko Oue<sup>1</sup>, Stephen M. Saleeby<sup>2</sup>, Peter J. Marinescu<sup>2,4</sup>, Pavlos Kollias<sup>1,3</sup>, and
- 4 Susan C. van den Heever<sup>2</sup>
- 5 <sup>1</sup>School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USA
- 6 Department of Atmospheric Science, Colorado State University, Fort Collins, CO, USA
- <sup>3</sup> Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, USA
- 8 <sup>4</sup>Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, CO, USA
- 9 *Correspondence to*: Mariko Oue (mariko.oue@stonybrook.edu)

10 **Abstract.** Optimizing radar observation strategies is one of the most important considerations in pre-field campaign periods. 11 This is especially true for isolated convective clouds that typically evolve faster than the observations captured by operational radar networks. This study investigates uncertainties in radar observations of the evolution of the microphysical 12 13 and dynamical properties of isolated deep convective clouds developing in clean and polluted environments and aims to optimize the radar observation strategy for deep convection through the use of cloud-resolving model simulations coupled 14 15 with a radar simulator and a cell tracking algorithm. Our analysis results include the following four outcomes. First, a 5-7 16 m s<sup>-1</sup> median difference in maximum updrafts of tracked cells was shown between the clean and polluted simulations in the 17 early stages of the cloud lifetimes. This demonstrates the importance of obtaining accurate estimates of vertical velocity 18 from observations if aerosol impacts are to be properly resolved. Second, tracking of individual cells and using vertical cross section scanning every minute captures the evolution of precipitation particle number concentration and size 19 20 represented by polarimetric observables better than the operational radar observations that update the volume scan every 5 21 min. This approach also improves the multi-Doppler radar updraft retrievals above 5 km AGL for regions with updraft 22 velocities greater than 10 m s<sup>-1</sup>. Third, we propose an optimized strategy which is composed of cell tracking by quick (1-2 23 min) vertical cross section scans from more than one radar in addition to the operational volume scans. We also propose the 24 use of a single range-height indicator updraft retrieval technique for cells close to the radars, where the multi-Doppler radar 25 retrievals are still challenging. Finally, increasing the number of deep convective cells sampled by such observations better 26 represents the median maximum updraft evolution with sample sizes of more than 10 deep cells, which decreases the error 27 associated with sampling the true population to less than 3 m s<sup>-1</sup>.





#### 1 Introduction

The quality and performance of remote sensing measurements, especially radar measurements, can strongly depend on the siting of instruments relative to their targets and the associated sampling strategies (e.g., Bousquet et al., 2008; Potvin et al., 2012b; Oue et al., 2019). This is especially true for convective storm systems that evolve rapidly over a range of spatial and temporal scales. The limitations associated with observation strategies influence microphysical, dynamical, and convective-core property retrievals, resulting in a misinterpretation of the observational data and can limit our understanding of storm processes. Some of these limitations can be addressed using Model and field Experiment data fusion (ModEx) concepts such as the optimization of experimental design using models and forward simulators. Using the ModEx framework, one can appropriately determine optimal radar deployments and scan strategies, as well as quantitatively understand the observational uncertainties arising from these strategies before field campaigns begin. As such, the goal of this study is to suggest optimal radar deployments and scan strategies for future radar field campaigns focused on convection.

In operational radar networks (e.g., the Next Generation Weather Radar (NEXRAD) network), each radar performs volume scans consisting of plan position indicator (PPI) scans with multiple elevation angles to prioritize collecting data for large areas. The volume scan strategy (known as volume coverage pattern, VCP) takes approximately 5 minutes to collect the 3D atmospheric data. While this operational scanning strategy is very valuable for performing surveillance and collecting a large number of cloud samples, it may not accurately capture fine-scale, rapidly-developing cloud phenomena. To increase our understanding of the links between convective cloud kinematic and microphysical processes, field campaigns have recently started to focus on collecting observations at higher temporal and spatial resolutions to understand fine scale characteristics and phenomena including isolated convection, shallow cumulus clouds, plumes embedded in mesoscale systems, and convective updrafts and downdrafts (e.g., Verification of the Origins of Rotation in Tornadoes Experiment 2 (VORTEX2), Wurman et al., 2012; Midlatitude Continental Convective Clouds Experiment (MC3E), Jensen et al., 2016; CSU Convective Cloud Updraft and Downdraft Experiment (C³LOUD·Ex), van den Heever et al., 2021; Marinescu et al., 2020). Furthermore, in some of these field campaigns, physically tracking individual convective phenomena using cutting-edge radar systems was employed to prioritize high spatiotemporal sampling (e.g., The Dynamical and Microphysical Evolution of Convective Storms (DYMECS), Stain et al., 2015).

In recent years, as phased array weather radars have become more commonly used for severe weather observations, the sophisticated tracking of atmospheric phenomena has become feasible (e.g., Kollias et al., 2022), thus allowing for sampling of the entire cloud volume and cloud lifecycle. These observations are, however, more sensitive than previous approaches to scan strategies such as sampling time, azimuth/elevation spacings, and deployments (locations and the number of radars), all of which should be appropriately optimized depending on the spatial scale and evolution speed of the target phenomena (Kollias et al., 2020).





Several radar field campaigns aimed at enhancing our understanding of the links between convective cloud kinematic and microphysical processes and life cycles have been planned for the near future (e.g., Tracking Aerosol Convection Interactions ExpeRiment (TRACER), Jensen et al., 2019; Experiment of Sea Breeze Convection, Aerosols, Precipitation and Environment (ESCAPE); Jensen et al., 2022; Atmospheric Radiation Measurements (ARM) Mobile Facility 3 (AMF3) Southeast US deployment, Kang et al., 2021). All of these experiments plan to deploy multiple mobile weather radars, cloud radars, and phased array radars. Optimizing the radar deployments and scan strategies while taking into account campaign costs, deployment limitations, and sampling limitations (i.e., range, scan rate) is a large but critical challenge. In this paper we make use of observing system simulation experiments (OSSEs) focused on deep convection to specifically investigate the impacts of radar scan strategies on the cell tracking performance, microphysical evolution, and dynamical retrievals of convective storms. Specifically, the impacts of varying the scan elevation angles, the period for a volume scan, and the locations of the radars are assessed.

#### 2 Method

Our OSSE approach is comprised of three parts: (1) the Regional Atmospheric Modeling System (RAMS; Cotton et al., 2003; Saleeby and van den Heever, 2013); (2) the Cloud-resolving Radar Simulator (CR-SIM; Out et al., 2020); and (3) the Tracking and Object-Based Analysis of Clouds (*tobac*; Heikenfeld et al., 2019; Sokolowsky et al., 2022). RAMS model output from the Aerosol-Cloud-Precipitation-Climate (ACPC) model intercomparison project (MIP) (van den Heever et al., 2018; Marinescu et al., 2021), which focuses on the development and occurrence of isolated convective cells in the region around Houston, TX, on June 19-20, 2013 (Fig. 1a), form the basis of this study. The convective development is initiated both along the inland propagation of the sea breeze, and later in association with convective cold pools produced by the earlier convection in the simulation. In this study we focus on the time period from 20-24 UTC (15-19 local time) during which period deep convective clouds developed, the dynamical processes of which have been extensively analyzed (Marinescu et al., 2021). One-minute simulated deep convective fields are used as an input to CR-SIM to represent and evaluate the radar observable fields (Fig. 1b). The CR-SIM radar observables are subsequently used to track convective cells using *tobac*.

# **2.1 CR-SIM**

CR-SIM is a sophisticated radar forward operator developed to bridge the gap between high-resolution cloud model output and radar observations (Oue et al., 2020). CR-SIM can be applied to the 3D model output produced by a variety of cloud-resolving models and large-eddy simulation models, including RAMS, the Weather Research and Forecasting (WRF, Powers et al., 2017) model, the System for Atmospheric Modeling (SAM, Khairoutdinov and Randall, 2003), Cloud Model 1 (CM1, Bryan and Fritsch, 2002), and the Icosahedral Nonhydrostatic model (ICON, Zängl et al., 2015). It emulates the interaction between transmitted polarized radar waves and rotationally symmetric hydrometeors and can simulate the power





(equivalent radar reflectivity factor), phase (Doppler velocity), and polarimetric (specific differential phase, differential reflectivity, depolarization) variables with either a fixed elevation angle or varying elevation angles with respect to a specified radar location. The radar simulator has been shown to be especially effective in OSSEs to investigate uncertainties in observational data (Oue et al., 2019).

#### 2.2 tobac

tobac is a python-based software platform specifically developed for tracking atmospheric features, such as isolated convective cells, in both model and observational datasets. tobac has been developed using a modular code structure with data input, feature detection and segmentation, and trajectory linking steps. It uses a watershed algorithm to detect and track individual convective cells, and it has been extensively tested on the ACPC simulations (e.g., Heikenfeld et al., 2019; Marinescu et al., 2021). For this study, tobac is applied to CR-SIM vertically integrated liquid (VIL; Fig. 1c), which represents the total hydrometeor condensate within each vertical column, and is similar to the approach used by Hu et al. (2019). The CR-SIM radar reflectivity is converted into VIL using the following equation:

103 
$$VIL = \sum_{i=0}^{i=imax} 3.44 * 10^{-6} [(Z_i + Z_{i+1})/2]^{4/7} (h_{i+1} - h_i) [kg m^{-2}]$$
 (1)

where Z is radar reflectivity factor (mm $^6$  m $^{-3}$ ), h is height (m), i is the vertical index, and imax is the index at the grid domain top. We calculate VIL using the CR-SIM-simulated total reflectivities greater than or equal to 0 dBZ at all vertical levels and, thus, ensure that we consider all cloudy grid boxes in the tracking analysis. Although this variable is named 'liquid,' we use the total reflectivity from all modeled hydrometeor species to emulate real observations, including cloud droplets, drizzle, rain, cloud ice, snow, aggregates, graupel, and hail. Since "VIL" is a widely-used name, we refer to VIL as this parameter. When considering that clouds may have lower reflectivities (< 0 dBZ) and the radar minimum detectable reflectivity increases with distance from the radar, the reflectivity threshold of 0 dBZ for the VIL calculation is a reasonable value to use in detecting cells in the entire domain regardless of the distance. We also performed the cell tracking using 10 and 40 dBZ thresholds at the height of 2 km above ground level (AGL) to compare the performance of the use of VIL and single-level reflectivity thresholds.

#### **2.3 RAMS**

RAMS is a cloud-resolving model that includes sophisticated microphysical-dynamical feedbacks, as well as aerosol-cloud interactions (Saleeby and van den Heever, 2013). RAMS, along with several other cloud resolving models from around the world participated in the ACPC MIP, focuses on the effects of changing the concentrations of cloud condensation nuclei (CCN) on deep convective clouds (van den Heever et al., 2018). Case study simulations of a period of scattered convective clouds near Houston, Texas were completed with relatively low and high concentrations of CCN that were based on observations from the Houston area (see Figure 2 from Marinescu et al., 2021). The low-CCN simulation is initialized with 500 cm<sup>-3</sup> of CCN in the boundary layer (named CLN in this study), while the high-CCN simulation is initialized with 4000 cm<sup>-3</sup> of CCN in the boundary layer (named POL in this study). The vertical aerosol profiles of both the CLN and POL



123

124125

126

127

128

129

130

131

132

133

134

135

136

137

138

141

142

150

151

152

153



studies decrease linearly from the top of the boundary layer to 150 cm<sup>-3</sup> at ~5 km AGL (the free troposphere), above which they remain constant. RAMS allows for the advection, nucleation, wet and dry deposition, and regeneration of aerosol particles via hydrometeor evaporation and sublimation. These simulations have been performed using a horizontal grid resolution of 500m and RAMS' two-moment bin-emulating bulk-microphysics scheme, which predicts the mass and number of eight hydrometeor types. The model data are output at a frequency of 1-minute. Additional details about the RAMS model parameterizations and experimental setup used for these simulations can be found in Table 1 of Marinescu et al. (2021).

### 2.4 Observation simulation processes

In this study, the cell tracking is applied to the CR-SIM-simulated radar observation field (VIL) to detect and track individual convective storm cells. Using the tracking results for all cells, we investigate the performance of the cell tracking using VIL and the impact of the scan strategy on the VIL estimates (Sect. 3.1) and the statistical impact of aerosols on the cell dynamical evolution (Sect. 3.3). One of the tracked, isolated, deep convective cells with a single precipitation core is chosen to investigate the following: 1) the impacts of the scan strategy on the examination of polarimetric observables and related microphysical studies (Sect. 3.2); and 2) the influences of different sets of the scan strategies on the multi-Doppler vertical velocity retrievals (Sect. 3.3).

# 2.4.1. Tracking convective cells

- The *tobac* cell tracking is coupled with CR-SIM radar observables obtained using the RAMS model output in the following manner:
  - 1) The RAMS model output from the ACPC MIP for an isolated convective case over the Houston area (Fig. 1a) is used as an input to the CR-SIM runs;
- 143 2) The radar observable fields (Fig. 1b) are simulated using CR-SIM;
- The CR-SIM simulated radar reflectivity is converted into VIL if the reflectivity exceeds 0 dBZ at all levels (Fig.1c);
- 4) *tobac* is applied to the VIL field to track the convective cells (Fig. 1d). We used the VIL thresholds of 0, 0.1, 1.0, and 5.0 kg m<sup>-2</sup> to identify/track individual cells, including those embedded in larger precipitation areas; and
- 148 5) Apply steps 1-4 above to the CLN and POL RAMS simulations to investigate the impact of aerosols on the cell dynamical evolutions in the entire simulation domain.

#### 2.4.2. Emulating radar scan strategies

The various radar scan strategies emulated in this study are listed in Table 1. We first emulate cell tracking using sector range-height indicator (RHI) scans, each of which is composed of full elevation angles from 0.5° to 89.5° with a 1° increment in an azimuth sector and takes approximately 1 minutes (1-min RHI in Table 1). The 1-min RHI scan uses a snapshot of





data to complete a full elevation scan for a sector. The second emulation of cell trackings is also a full elevation scan for an azimuth sector similar to 1-min RHI but takes 2 minutes using two continuous snapshots (2-min SEC); the first snapshot is composed of angles from  $0.5^{\circ}$  to  $44.5^{\circ}$  over the elevation and the other is composed from  $45.5^{\circ}$  to  $89.5^{\circ}$  over the elevation (we intended this simulation as 2-min "RHI" in which each of the two snapshots should be used for a half of the azimuth sector for full elevation angles, however, for technical and computational reasons, we separated the elevation angles into the two snapshots).

The sector scans for 1-min RHI and 2-min SEC follow an individual cell based on the results of the cell tracking using *tobac*. Each azimuth sector is assumed to cover the 10-km width centered around the individual cells defined by *tobac*. Therefore, the number of RHI sweeps for each cell varies as a function of the distance between the radar and the target cell. The radar configuration for the RHI simulation is assumed to be a general scanning radar such as the ARM precipitation radars. The angle range for an azimuth sector at the radar range of 40 km is approximately 14°. With the radar beam width of 1°, the total beam for the sector scan is 90 (over elevation) x 14 (over azimuth) = 1260 beams. Assuming that each beam uses ~96 radar pulse samples, the sector scan includes 120960 pulses in total. If the radar operates with 1.5 KHz pulse repetition frequency (PRF) (typical value for C-band radars), then the sector scan takes 80 sec; and if the radar operates with 2.5 kHz PRF (typical value for X-band radars), then the scan takes 48 sec. These numbers (scans within 1-2 min) are easy to get for phased-array radar observations. For a reflector radar that needs 33% overhead time due to acceleration and deceleration of the antenna, these scan times become 106 sec and 64 sec respectively.

The second strategy we investigate is the 5-min VCP. This strategy follows the standard NEXRAD VCP precipitation mode (VCP 12, https://www.weather.gov/jetstream/vcp\_max) and is composed of 14 PPI scans. Since our model output is every minute, for the 5-min VCP simulation, a volume scan is composed of 5 snapshots from the 1-min model outputs. A single snapshot is used to create two or three PPI sweeps (two or three elevation angles).

Finally, we evaluate an "ideal" simulation where a volume scan with full elevation and azimuth scans with a 1.0° increment over both elevation and azimuth is performed within 1-min (referred to as "Full" in Table 1). This approach will be feasible when a network of rapid scan or electronically scanning radars is available. Although such observations are not realistic, they can serve as an upper boundary in terms of observational capabilities and will be used for an evaluation of VIL from 5-min VCP in Section 3.1.

We use an S-band frequency for the 5-min VCP simulation (emulating NEXRAD radars) and a C-band frequency for 1-min RHI, 2-min SEC, and Full simulations (assuming the C-band Scanning ARM Precipitation Radar (C-SAPR), or any equivalent performance radar). Since we use unattenuated radar observables in this study, the impacts of the radar frequency on the simulation results should not be significant.

#### 2.4.3. Multi Doppler radar wind retrieval





For the investigation of the impacts of scan and deployment strategies on multi-Doppler vertical velocity retrievals, this study employs a three dimensional variational (3DVAR) multi-Doppler radar wind retrieval technique developed by North et al. (2017). While this investigation focuses on uncertainties caused by scan and deployment strategies, it does not account for other sources of errors such as attenuation, nor the particle fall speed assumed in the 3DVAR wind retrieval technique. We use unattenuated radar reflectivity and reflectivity-weighted fall speed calculated by CR-SIM in the all present wind retrieval simulations. The details of the 3DVAR retrieval settings are presented in Oue et al. (2019). As described in Oue et al. (2019), the 3DVAR wind retrieval technique is applied to the gridded radar observable fields. The radar observables that are resampled following the radar scan strategies in the previous sections are then regridded into a Cartesian coordinate of 250 km x 250 km x 14 km domain with 0.25-km horizontal and vertical spacings using Barnes distance-dependent weightings (Barnes, 1964).

### 3. Results

#### 3.1 Uncertainty in tracking parameters

Many previous convective cell tracking studies have employed reflectivity criteria at a given height (e.g., Steiner et al., 1995; Shusse et al., 2006; Oue et al., 2014). This technique, however, can miss some of the early stages of convective cell development that initiate at different (typical lower) heights. Figure 2a shows a comparison of the durations of *tobac* detected and tracked cells in the CLN simulation as a function of the use of VIL, as well as 10 and 40 dBZ thresholds at 2 km altitude. The VIL-based tracking has the largest total number of cells detected since the VIL better captures the presence of hydrometeor condensate throughout the vertical columns and is not dependent on the presence of condensate at a specific level. All of the frequency distributions, perhaps unsurprisingly, peak at shorter durations for both CLN and POL cases. The VIL-based and 10-dBZ-based tracking are more comparable, although the VIL-based tracking has higher frequencies at even longer durations (> 90 min) compared to the 10-dBZ-based tracking. The 40-dBZ-based tracking generally has lower frequencies at all duration time bins compared to the 10-dBZ- and VIL-based tracking, but it is more similar to the 10-dBZ-based tracking in the 25-40 minute time bins. The frequency distributions of tracked cell lifetimes suggest that VIL can better capture longer life cycles of individual cells, including their initial development and decay stages, due to its ability to include information about hydrometeors in the entire column.

The POL simulation (dashed line in Figure 2a) shows a similar tracked cell lifetime distribution to the CLN case. However, there are some notable differences. The POL case has fewer cells detected (~15% fewer), which is consistent with Marinescu et al. (2021), who also found fewer deep convective updrafts in the POL case using different analyses (their Figure 7). When considering the relative frequency distribution (not shown), the POL case also has a distribution shift towards relatively fewer long-lived cells (lifetimes > 20 mins) and more frequent short-lived cells (lifetimes < 20 mins), as compared to the CLN case. The relatively fewer long-lived cells in the POL case are associated with deep convection. There





could be several reasons for the difference in cell lifetimes related to microphysical-dynamical feedback processes, such as those associated with cold pools (e.g., Grant and van den Heever, 2015). These differences between CLN and POL are being examined in a separate manuscript. We, hereafter, use the CLN case to examine the effects of scan strategy on the radar polarimetric observables and vertical velocity retrievals.

Since VIL integrates reflectivity from the surface to the observed echo top, it better captures hydrometeor condensate in the entire vertical column. Conventional VCPs that do not include higher elevation angles or that have sparse elevation scans, therefore, tend to produce an underestimation of VIL. Moreover, averaging inhomogeneities within large range-bin volumes, which occur at distances far from the radar, can also cause uncertainties when using VIL. To assess these uncertainties, we investigate the VIL as a function of distance from the radar.

Figure 3 compares contoured frequency by distance distributions of VIL from the 5-min VCP and Full scan (from 0° to 90° over elevation) strategies. Although we use the horizontal distance from the radar instead of altitude in constructing our contoured frequency by altitude diagram, we use the term 'CFAD' to refer to this kind of distribution diagram in this study. Overall, both scans produce small differences in the frequency of less than 0.05 in the CFADs, except within the 30 km range from the radar. For 5-min VCP, there is a shift to higher frequencies of smaller VIL values (red color at distance < 30 km and < -12 dB in Fig. 3b). At distances within 30 km of the radar, both radars have sufficient sensitivity (< -9 dBZ). This underestimation is, therefore, likely due to the fact that 5-min VCP does not observe the upper parts of the clouds. The smaller differences that occur at distances > 90 km, which are shown in both scan strategies, are likely due to the minimum detectable reflectivity, which increases with distance from the radar. It can be concluded that even the NEXRAD VCP captures the VIL well except for distances less than 30 km from the radar and is, thus, very valuable for the surveillance of convective cells.

#### 3.2 Evolution of polarimetric variables associated with microphysics

Polarimetric observables (e.g., differential reflectivity ZDR and differential propagation phase KDP) have frequently been used by past studies as an indicator of microphysical and updraft evolution (e.g., Kumjian and Ryzhkov, 2008; Kumjian et al., 2014; Snyder et al., 2013;). The NEXRAD' polarimetric measurements are very important for capturing the precipitation microphysical properties, however, its poor spatiotemporal sampling (i.e., limited PPI elevation angles, time for volume scan) provides only a limited view in convective storms (Fridlind et al., 2019). Here, we assess the impact of the NEXRAD spatiotemporal sampling by simulating the polarimetric observables from the 1-minute RHI tracking (1-min RHI in Table 1) and the 5-minute conventional PPI volume scan (5-min VCP in Table 1). We randomly select 12 cells from the 453 deep convective cells tracked in the CLN simulation. These cells all have maximum radar reflectivity exceeding 45 dBZ and 20-dBZ echo top heights greater than 8 km AGL during their lifetime. We then examine the evolution of microphysical and dynamical characteristics such as number concentration and mean diameter for each simulated





hydrometeor species, as well as the vertical velocity. Nine of the cells have 40-dBZ mean echo top heights that exceed the freezing level (approximately 5 km AGL) and attain 8 km altitude, which signify stronger convection. These 9 cells show similar evolution of  $K_{DP}$ ,  $Z_{DR}$ , and maximum updrafts, all of which have magnitudes greater than 20 m s<sup>-1</sup> in the middle of their lifetimes. Three of the twelve cells do not have 40-dBZ echo top heights extending above the freezing level. From the 9 vigorous, deep convective cells, one cell is chosen for a detailed OSSE analysis based on its isolated nature and development near the NEXRAD radar and other radar locations, planned for TRACER and ESCAPE. Figure 4 shows the evolution of the mass-weighted mean diameter ( $D_m$ ) and number density for the rain and hail species for the chosen cell. Large rain  $D_m$  (> 1.5 mm) is evident near the freezing level during the later stage of the cell lifetime as the echo top height descends (after 21:50 UTC in Fig. 4c). Around this time, the largest  $D_m$  for hail is also apparent (Fig. 4d). This indicates that the large hail melts as it falls through the freezing level, thereby, producing large raindrops. The hail number concentration (Fig. 4f) is also strongly correlated with updraft magnitude (Fig. 4b), thus, demonstrating the strong link between the updraft dynamics and hail formation. Furthermore, the total hydrometeor mixing ratio (Fig. 4a) is consistent with the number concentrations from both rain and hail (Figs. 4e and 4f).

Figures 5a,d,g (left column in Fig. 5) show simulated reflectivity,  $Z_{DR}$ , and  $K_{DP}$ , respectively, averaged over the region with reflectivies > 40 dBZ from the original, cartesian model grid. The evolution of raindrops as represented by rain  $D_m$  (Fig. 4c) is evident by the large values in the  $Z_{DR}$  field (Fig. 5d). The relatively large  $K_{DP}$  and reflectivity values also seem to accurately represent the high number concentrations of rain in the early stage of the cell lifetime (Figs. 4e and 5a,g). These characteristics of reflectivity,  $Z_{DR}$ , and  $K_{DP}$  are compared with those from the different scan strategies: 1-min RHI (middle column) and 5-min VCP (right column). The RHI tracking reconstructs the magnitudes and evolution of the polarimetric observables well (Figs. 5e and 5h) so that they represent the hail  $D_m$  and cell evolution (Figs. 4a,b,d). Meanwhile, the conventional volume scan cannot capture the fine-scale structure and magnitudes of the hail-rain evolution observed by  $Z_{DR}$  and  $K_{DP}$  (Figs. 5f and 5i) due to the coarse time resolution. The RHI tracking performs well in capturing the  $K_{DP}$  enhancement and its streak as the raindrops fall (Fig. 5h). Note that the NEXRAD S-band frequency (3.0 GHz) is assumed for the 5-min VCP simulation, while C-band frequency (5.5 GHz) is assumed for the model and RHI simulation. Therefore, the  $K_{DP}$  values in this figure do include the frequency dependency. The S-band  $K_{DP}$  (Fig. 5i) is approximately 1.8 (5.5 GHz/3.0 GHz) times smaller than the C-band  $K_{DP}$  (Fig. 5h). This indicates that the  $K_{DP}$  measurements from the shorter-wavelength radar are more sensitive to the  $K_{DP}$  evolution and therefore, can provide more insights on the microphysical evolution of precipitation.

# 3.3 Dynamical evolution

One of the benefits of cell tracking using VIL is that it can better capture the dynamical evolution of convective cells over their lifetimes (Fig. 2). Figure 6 represents the maximum updrafts in the CLN and POL individual tracked cells as a function of their lifetime for all of those deep convective cells in which their 20 dBZ echo top heights exceed the freezing



283

284285

286

287

288

289

290

291

292

293

294

295296

297

298

299

300301

302

303

304

305

306

307

308

309

310311

312

313314

315



level. Many of the cells attain maximum updrafts > 10 m s<sup>-1</sup> within the first third of their lifetimes in both the CLN and POL simulations. The peak occurrence for the POL simulation is found for updrafts that are approximately 5 m s<sup>-1</sup> stronger than those of the CLN simulation, suggesting that stronger updrafts are more frequent in the POL than CLN convective cells in the earlier stages of the cells' lifecycles. Since the earlier stages of convection are driven by warm-phase processes, this finding is consistent with Marinescu et al. (2021), who found stronger updrafts in the warm-phase region of deep convective updrafts, but not in the cold-phase region (i.e., above the freezing level) in the POL environment. The stronger updrafts support the development of larger hail produced in the POL simulation (not shown). This result suggests that it is important to estimate vertical velocity with a high level of accuracy if the impact of aerosols on convective dynamics is to be properly resolved in observations. We use the CLN simulation outputs as well as the individual CLN case deep convective cell shown in Figs. 4 and 5 to further investigate the uncertainties associated with the multi-Doppler radar vertical velocity retrievals in this section. Figure 7 shows the maximum updraft velocity in the cell column at each time as a function of the normalized lifetime for the nine deep convective cells from the CLN simulation selected in the previous section. They all have peak updrafts exceeding 20 m s<sup>-1</sup>, which mostly occur in the first half of the cells' lifetimes. The black line represents the profile from the target cell analyzed for the OSSE in this section. It is clear from Figure 7 that the selected cell has a relatively typical dynamical evolution when compared with the other nine cells, although it does reach its maximum updraft velocity a little earlier in its lifecycle.

Figure 8 shows the impacts of sets of radar scan strategies for multi-Doppler updraft retrievals for the selected convective cell using a 3DVAR technique (North et al., 2017; Oue et al., 2019). This cell is the same cell examined in the previous section (Figs. 4 and 5). We simulate different combinations of the scan strategies using 1-min RHI that scans around the center of the cell and 5-min VCP. Recall, Table 1 provides the details of the scan strategies, and Figure 1 shows the locations of the radars with these scan strategies and the targeted OSSE cell. The sets of radars for the multi-Doppler wind retrieval simulations are: 1) two radars, each using a 1-min RHI (red dot and cross in Fig. 1, called 2RHI); 2) two radars, each using a 5-min VCP (called 2VCP); 3) two radars, with one using a 1-min RHI (red dot in Fig. 1) and the other using a 5-min VCP (red cross in Fig. 1) (called RHIVCP); and 4) three radars, with two using 1-min RHIs (red and blue dots in Fig. 1) and one using a 5-min VCP (red cross in Fig. 1) (called 2RHIVCP). Table 2 represents the root mean square errors (RMSEs) of the retrieved vertical velocity at four different heights, as well as at all heights. The 2VCP simulation (Figure 8c; green in Figure 8f) significantly underestimates the updraft, with the error exceeding 5 m s<sup>-1</sup> above 5 km AGL, where the cell produces mean updrafts stronger than 12 m s<sup>-1</sup>. The 2VCP radar pair, whose volume scan takes 5 minutes, does not resolve the updraft evolution well. We note that other studies also found an underestimation of vertical velocity retrievals using two 5-min VCPs. For example, Marinescu et al. (2020) used two 5-min VCPs to estimate strong updrafts in supercells and found an underestimation in the region from 5-10 km AGL when compared with radiosonde estimates of vertical velocity. This pair of 5-min VCPs (2VCP) does, however, produce less error below 4 km AGL where the cell produces weaker updrafts (< 5 m s<sup>-1</sup>) when compared with the other sets of radar combinations. This suggests that the conventional PPI scans, which have



316

317

318319

320

321

322

323

324325

326

327

328

329

330331

332

333

334

335

336337

338

339

340

341

342

343

344

345346

347

348



dense scans at low elevation angles, well capture the low-level horizontal inflow, and the mass continuity assumption is well satisfied at the low levels. It is interesting that while 5-min VCP represents VIL well for the distance > 30 km as shown in Fig. 3, its limitations produce significant uncertainties in the convective dynamical retrieval of individual clouds above ~5 km AGL even though the cell is observed at a distance > 30 km from the radar (Fig. 1).

With an RHI scan every minute, even when adding only one RHI, cell tracking improves the retrievals above 5 km altitude (Figs. 8b,d,e; 2RHI, RHIVCP, and 2RHIVCP; red, magenta, and blue, respectively in Figure 8f). The improvements are particularly significant for regions in which the updraft velocities are stronger than 10 m s<sup>-1</sup>. The RHIVCP simulation shows the best estimate at the middle altitude (~6 km) among the four simulations, followed by 2RHIVCP, and thirdly 2RHI. The 2RHI and 2RHIVCP simulations show RMSEs less than 6 m s<sup>-1</sup> at all altitudes and better estimates than the other two simulations at the higher altitudes (8 and 10 km AGL). The RHI scan has better sampling in the higher elevations than 5-min VCP, resulting in a better retrieval at these higher altitudes.

As the profile and Table 2 show, 2RHI and 2RHIVCP have the lowest RMSEs when considering all altitudes (Table 2, bottom row). In addition, 2RHIVCP shows better results at altitudes < 10 km than 2RHI. This suggests that the conventional 5-min VCP scan can be used for further improvement of the RHI-only tracking retrievals for the low and middle altitudes. Since the 5-min VCP has dense scans at lower elevations, this can help to provide enough data covering the horizontal domain of the cell, which may better represent the low-level horizontal wind convergence, thereby, better constraining the cost functions in the 3DVAR.

We also investigate the impacts of the radar radial locations relative to the same cell as in Figs. 4, 5 and 8. Radars horizontally extending from 10 to 70 km (in 10 km increments) radially away from the cell are assessed. For this analysis, we use the scan strategy with the lowest errors from our prior analysis, i.e., two radars performing 2-min SECs and one radar performing 5-min VCP (e.g., Table 2, the tracking radars used 2-min SEC rather than 1-min RHI; we believe that 1min RHI can be feasible with electrical scan or mechanical rapid scan radars, but 2-min SEC can be sometime more reasonable when the cell is relatively close to the radars and need to be scanned until higher elevations, as discussed in Sect. 2.4.2). Figure 9a shows the radar locations for the seven simulations and Figure 9b demonstrates the vertical profiles of errors of the retrieved updrafts averaged over a 20 km x 20 km box with reflectivity > 30 dBZ at 21:42 UTC. For each retrieval, the largest error is evident above an altitude of ~9 km AGL where the stronger updrafts are simulated by the model (Fig. 8a). The largest error among the retrievals is found in the retrieval with the radars closest to the cell (red profile in Fig. 9b). This occurs since the PPI volume scan does not cover the upper part of the cell and/or the horizontal wind convergence at higher elevation angles may not be retrieved from the RHI measurements accurately. When each radar has a distance greater than or equal to 20 km from the cell, the retrievals are improved by 5-10 m s<sup>-1</sup> between 5 to 11 km altitudes. The retrievals in which the radar distances from the cell fall between 20 and 50 km show errors less than 5 m s<sup>-1</sup> below 11 km AGL. Such accuracies in the retrievals may allow for resolving the aerosol impacts on updraft velocities shown in Fig. 6. The errors are then found to increase again above 10 km AGL, especially for the radars located 60 and 70 km away from





the cell. This investigation suggests that the radars should target cells that are between 20-50 km from the radar for optimal multi-Doppler radar retrievals. This finding is consistent with previous field campaigns using multi-Doppler radar measurements (e.g., Wurman et al., 2012; Collis et al., 2013; Jensen et al., 2016) and OSSE studies (e.g., Potvin et al., 2012a).

In nature, convective cells often do not nicely evolve over pre-defined multi-Doppler regions and move outside the region of optimal analysis. Therefore, we also propose a single-RHI vertical velocity retrieval which can be used on a much larger sample of convective cells in the vertical in the vicinity of the radar compared to fixed, multi-Doppler platforms. The single-RHI vertical velocity retrieval extracts the vertical air motion component from the radial velocity (Doppler velocity) which is composed of the vertical air motion, horizontal air velocity, and hydrometeor fall velocity (Lamer et al., 2014). To apply this technique to real observations, horizontal velocity and hydrometeor fall velocity should be provided. Generally, the horizontal velocity profile can be provided from a velocity-azimuth display (VAD) technique using PPI measurements or sounding measurements, assuming that the horizontal wind is constant at each level. However, this assumption is a major source of the uncertainty in the single-RHI vertical velocity retrieval technique, particularly at lower elevation angles. At these lower elevation angles, the horizontal wind component dominates the radial velocity, but the coverage of these lower elevation angles often do not properly capture the variability in the horizontal wind, especially close to the radar. We therefore investigate the impact of the distance of the radar from the cell on the single-RHI retrieval. In the simulations, we use the reflectivity-weighted hydrometeor fall velocity simulated by CR-SIM, similar to the present multi-Doppler retrieval simulations, to exclude the uncertainty related to the fall velocity estimates.

Figure 10 shows the simulated single RHI vertical velocity retrieval from the selected convective cell. Profiles in Figs. 10c and 10d are retrieved vertical velocity at the convective core (distance = 0 km) and the errors from the truth, respectively. We investigate this technique for a profile at 21:42 UTC of the cell (same as Figs. 8f and 9b), where the strongest updraft is simulated. This single-RHI Doppler velocity technique works very well at the distance = 0 km (red), where the horizontal wind component can be ignored, as evidenced by the error profile being equal to 0 at all altitudes (red line). However, below 6km AGL, the error significantly increases with the radar distance from the core. Interestingly, the characteristics of the error distribution are opposite to those of the multi-Doppler retrievals (Figs. 8f and 9b). We would, therefore, suggest the complementary use of the multi-Doppler wind retrieval and the single-RHI vertical velocity retrieval for better vertical velocity estimates of convective cells. For example, in a tracking strategy in which two radars track a targeted cell, the optimal scenario can be one in which the two radars track the cell with sector RHI/PPI scans at intervals of ~2 min when the distance of the cell from both radars is greater than 20 km. However, when the distance of the cell from one of the radars is less than 20 km, the radar's scan is then switched to hemispheric RHI.

This study highlights the importance of focusing on high-spatiotemporal observations of individual convective cells rather than utilizing conventional surveillance scans. Such high-spatiotemporal observations can be accomplished by tracking cells using fast scan RHI measurements facilitated by rapid-scan radars. However, it is not hard to anticipate that the number of individual cells tracked successfully during a short-term IOP period will also be limited. Therefore, we have



383

384

385

386

387

388

389

390

391

392

393

394

395

396

397398

399

400

401

402

403

404

405

406

407

408

409

410

411 412

413414

415

416



investigated the sample size of cells needed to represent the typical convective evolution of deep convective cells using the median maximum updraft metric shown in Fig. 6. This specific analysis accounts for the error regarding cell sampling, but it does not account for the wind retrieval uncertainty from the scan strategy. Figures 11a and 11c show boxplots of the maximum vertical velocity as a function of the normalized lifetime from all convective cells detected (910 tracked cells including deep and shallow cells) in the CLN case and from deep convective cells defined in Fig. 6a (453 tracked cells), respectively. These figures indicate high variability in the maximum updraft magnitude as a function of time, and that potentially, one randomly sampled convective cell may not represent the typical evolution of vertical velocity. Figure 11b depicts the relationship between the sample size and the errors associated with estimating the full population median evolution of the maximum updraft magnitude. We randomly sample convective cells from all of the tobac-detected cells in the CLN simulation (910 tracked cells) and estimate the median value of maximum updrafts at each time bin with different numbers of samples. The median values for the different sample sizes are then compared to the median values from the all deep convective cells detected and shown as a black line in Fig. 6a to estimate RMSEs. Figure 11b suggests that increasing the sample size generally decreases the RMSE to less than 4.5 m s<sup>-1</sup> until a population of 10 cell samples is reached and converges to approximately 2.6 m s<sup>-1</sup> for a sample size of 20 or more samples. When focusing the analysis on deep convective cells only (Fig. 11d), the RMSE decreases to approximately 3 m s<sup>-1</sup> for 10 cell samples and converges to approximately 1 m s<sup>-1</sup> for 40 or more samples.

This study focuses on isolated deep convective cells, each of which has a single core. Although we provide a detailed investigation of one selected cell using OSSEs, the result should be robust for the other cells that have a similar vertical structure to that shown in Sect. 3.2. The error values presented in this study, however, may depend on cloud type. In particular, as the larger errors of the multi-Doppler radar wind retrievals were shown to exist in the higher altitudes in this study, the heights of convection could influence the observational uncertainties (i.e., height of maximum updraft). Moreover, in a strong wind shear environment where storms advect quickly, the impact of the use of quick updates of RHI scans would be more effective (e.g., Clark et al., 1980; Oue et al., 2019). Various convective cloud morphologies have been investigated in terms of uncertainties in observations, including mesoscale convective systems (e.g., Bousquet et al., 2008; Oue et al., 2019), supercells (e.g., Potvin et al., 2012; Marinescu et al., 2020), and convection embedded in stratiform precipitation (e.g., Bousquet et al., 2008). However, the qualitative characteristics found in this study, such as the error profile trends, the dependency on the radar locations, and the dependency on scan strategy, are likely to be common to those deep convective cloud systems, as well.

#### 4 Summary

Optimizing radar observation strategies has been one of the most important topics in pre-field-campaign periods, especially when the focus is on atmospheric phenomena that rapidly evolve on timescales that standard operational radar networks cannot resolve. This study uses the Cloud-resolving Radar Simulator (CR-SIM) and the *tobac* cloud object





tracking algorithm to investigate observational uncertainties of isolated deep convective clouds associated with pre-existing and planned radar deployments and strategies. The focus of this manuscript is to optimize the radar observation strategies for the TRACER/ESCAPE field campaign, but the results are generally applicable to all field campaigns focused on radar observations of deep convection.

The following results and associated recommendations are made:

- The cell tracking algorithm works better with the use of VIL compared with the use of reflectivity thresholds at individual altitudes to detect and track more convective cells for longer time periods, including the early-developing and dissipating stages of isolated storms.
- An analysis of low-CCN (CLN) and high-CCN (POL) simulations, used to quantify the impact of aerosols on the convective dynamical evolution, show a 5-7 m s<sup>-1</sup> difference in maximum updraft at the early stages of convective development. This suggests the importance of accurate vertical velocity estimates using the radar observations if the impact of aerosols on convective updrafts is to be assessed. Fast scanning of the individual convective cells every minute captures the microphysics and dynamics better than the operational radar observations that update the volume scan every 5 min. The tracking of cells using RHI every minute better captures the evolution of K<sub>DP</sub> in the early stage and Z<sub>DR</sub> in the later stage, which are primarily associated with the rain number concentration and hydrometeor particle (hail and rain) size, respectively.
- Tracking using RHI improves the multi-Doppler radar updraft retrievals above 5 km AGL, particularly for regions with updraft velocities greater than 10 m s<sup>-1</sup>. The conventional 5-min PPI volume scan can be used for further improvement of the RHI-tracking-only retrievals.
- The multi-Doppler radar updraft retrievals, even when using RHI, are still challenging, especially for cells that are close to the radars (e.g., within 10 km of the radar). This approach can be complemented by a single RHI updraft retrieval technique.
- Based on these results, the suggested best strategy to better capture microphysics and dynamics of deep convective cells is tracking by frequent RHI scans from more than one radar (blue and red scans in Fig. 12), in addition to the operational PPI volume scans generally performed by the NEXRAD radars (green scans in Fig. 12). We also suggest a hybrid radar scan strategy which switches between the RHI cell tracking and hemispheric RHI measurements depending on the distance between the radar and the targeted cell (red and orange scans in Fig. 12). Such RHI tracking measurements would be possible with conventional mobile radars, but the fast-scanning Doppler radars (Wurman, 2001), and/or phased array radars (Kollias et al., 2022) would have more advantages in faster updating, better spatial resolution, and higher quality datasets.
- Increasing the number of deep convective cells sampled by such observations better represents the population median maximum updraft evolution. When increasing the number of deep cells sampled to more than 10, the RMSE decreases to less than 3 m s<sup>-1</sup>, and when increasing the sample size to more than 40, the RMSE further decreases to less than 1 m s<sup>-1</sup>.



451452

453

454

455

456

457

458 459 460

461462

463464

465

466467

468

469

470471

472

473

474

475

476 477 478



Finally, this study highlights the importance of using OSSEs in developing radar strategies during pre-field campaign periods. The use of a radar simulator in the OSSEs provides several advantages including 1) facilitating instrument deployments such as the radar locations and the number of radars required; 2) optimizing radar configurations such as the scan rate, elevation angles, update time of scans, and trade offs; and 3) quantifying errors of the observables and retrievals. Effective OSSEs can lead to successful, state-of-the-art field campaigns and provide high-quality, unique datasets that can allow for new insights of the atmospheric phenomena. Code availability. The source code and user manual for the Cloud Resolving Model Radar Simulator (CR-SIM) are available at https://www.bnl.gov/CMAS/cr-sim.php, last access: 21 April 2022, and those for Tracking and Object-Based Analysis of Clouds (tobac) are available at https://tobac.readthedocs.io/en/latest/. Data availability. The ACPC model intercomparison project deep convection simulation data used for the input of CR-SIM are stored and can be accessed on the U.K. CEDA JASMIN supercomputer. Author contributions. The radar simulator and cell tracking work and analysis were made by MO. Conceptualization of the method, interpretation, and writing were shared between MO, PK, SMS, PJM, and SCV. The radar simulator was developed by MO and PK's group, and the cell tracking code was developed by SCV's group. Competing interests. The authors declare that they have no conflict of interest. Acknowledgements. M. Oue, S. M. Saleeby, and S. C. van den Heever were supported by Atmospheric System Research (grant no. DE-SC0021160). M. Oue and P Kollias were also supported by National Science Foundation Grant FAIN-2019932.





#### 479 References

- 480 Barnes, S. L.: A Technique for maximizing details in numerical weather map analysis, J. Appl. Meteorol., 3, 396–409,
- 481 1964.
- 482 Bousquet, O., Tabary, P., and Parent du Ch telet, J.: Operational multiple-Doppler wind retrieval inferred from long-
- 483 range radial velocity measurements, J. Appl. Meteor. Climatol., 47, 2929–2945,
- 484 https://doi.org/10.1175/2008JAMC1878.1, 2008.
- 485 Bryan, G. H., and Fritsch, J. M.: A benchmark simulation for moist nonhydrostatic numerical models. Monthly Weather
- 486 Review, 130, 2917–2928, 2002.
- Clark, T. L., Harris, F. I., and Mohr, C. G.: Errors in wind fields derived from multiple-Doppler radars: Random errors
- and temporal errors associated with advection and evolution, J. Appl. Meteorol., 19, 1273–1284, 1980.
- 489 Collis, C., Protat, A., May, P. T., and Williams, C.: Statistics of storm updraft velocities from TWP-ICE including
- verification with profiling measurements, J. Appl. Meteor. Climatol., 52, 1909–1922, https://doi.org/10.1175/JAMC-
- 491 D-12-0230.1, 2013.
- 492 Cotton, W. R., and Coauthors: RAMS 2001: Current status and future directions. Meteor. Atmos. Phys., 82, 5-29,
- 493 https://doi.org/10.1007/s00703-001-0584-9, 2003.
- 494 Kang, C., Giangrande, S.E., Serbin, S. P., Campbell, P., Hickmon, N., Ritsche, M. 2021: Science and Deployment Plan
- 495 for the DOE 3rd Atmospheric Radiation Measurement Mobile Facility in the Southeastern United States, 2021 AGU
- 496 Fall Meeting, New Orleans and Online, 13 17 December 2021, online available at
- https://www.arm.gov/uploads/2021 AGU SE US TownHall Slides.pdf
- 498 Fridlind, A. M., van Lier-Walqui, M., Collis, S., Giangrande, S. E., Jackson, R. C., Li, X., Matsui, T., Orville, R., Picel,
- M. H., Rosenfeld, D., Ryzhkov, A., Weitz, R., and Zhang, P: Use of polarimetric radar measurements to constrain
- simulated convective cell evolution: a pilot study with Lagrangian tracking, Atmos. Meas. Tech., 12, 2979–3000,
- 501 https://doi.org/10.5194/amt-12-2979-2019, 2019.
- Heikenfeld, M., Marinescu, P. J., Christensen, M., Watson-Parris, D., Senf, F., van den Heever, S. C., and Stier, P.: Tobac
- 503 1.2: Towards a flexible framework for tracking and analysis of clouds in diverse datasets. Geosci. Model Dev., 12,
- 504 4551–4570, https://doi.org/10.5194/gmd-12-4551-2019, 2019
- 505 Hu, J., Rosenfeld, D., Zrnic, D., Williams, E., Zhang, P., Snyder, J. C., Ryzhkov, A., Hashimshoni, E., Zhang, R., Weitz,
- R.: Tracking and characterization of convective cells through their maturation into stratiform storm elements using
- 507 polarimetric radar and lightning detection, Atmospheric Research, 226, 192-207, 2019,
- 508 https://doi.org/10.1016/j.atmosres.2019.04.015.
- Jensen, M., Bruning, E., Collins, D., Fridlind, A., Kollias, P., Kuang, C., Rosenfeld, D., Ryzhkov, A., Varble, A., Brooks,
- 510 S.D., Collis, S., Defer, E., Fan, J., Flynn, J., Giangrande, S., Griffin, R., Hu, J., Jackson, R., Kumjian, M., Logan, T.,
- 511 Matsui, T., McFarquhar, G., Nowotarski, C., Quaas, J., Oue, M., Sheesley, R., Snyder, J., Stier, P., Usenko, S., van den





- Heever, S., van Lier Walqui, M., Wang, Y., Xu, Y., and Zhang, G.: Tracking Aerosol Convection Interactions
- 513 ExpeRiment (TRACER) Science Plan. Ed. by Robert Stafford, DOE/SC-ARM-19-017, 2019.
- Jensen, M. P., Petersen, W. A., Bansemer, A., Bharadwaj, N., Carey, L. D., Cecil, D. J., Collis, S. M., Del Genio, A. D.,
- 515 Dolan, B., Gerlach, J., Giangrande, S. E., Heymsfield, A., Heymsfield, G., Kollias, P., Lang, T. J., Nesbitt, S. W.,
- Neumann, A., Poellot, M., Rutledge, S. A., Schwaller, M., Tokay, A., Williams, C. R., Wolff, D. B., Xie, S., & Zipser,
- 517 E. J. (2016). The Midlatitude Continental Convective Clouds Experiment (MC3E), Bulletin of the American
- 518 Meteorological Society, 97(9), 1667-1686.
- Jensen, M. P., Flynn, J. H., Judd, L. M., Kollias, P., Kuang, C., Mcfarquhar, G., Nadkarni, R., Powers, H., & Sullivan, J.
- 520 (2022). A Succession of Cloud, Precipitation, Aerosol, and Air Quality Field Experiments in the Coastal Urban
- 521 Environment, Bulletin of the American Meteorological Society, 103(2), 103-105.
- Khairoutdinov, M. F., and Randall, D.A.: Cloud-resolving modeling of the ARM summer 1997 IOP: Model formulation,
- results, uncertainties and sensitivities. J. Atmos. Sci., 60, 607-625, 2003.
- Kollias, P., Luke, E., Oue, M., and Lamer, K.: Agile adaptive radar sampling of fast-evolving atmospheric phenomena
- 525 guided by satellite imagery and surface cameras. Geophysical Research Letters, 45, e2020GL088440.
- 526 https://doi.org/10.1029/2020GL088440, 2020.
- Kollias, P., Luke, E., Tuftedal, K., Dubois, M. Knapp, E.J.: Agile Weather Observations using a Dual-Polarization X-
- band Phased Array Radar. IEEE Radar Conference New York, NY.,2022.
- 529 Kumjian, M. R., and Ryzhkov, A. V.: Polarimetric signatures in supercell thunderstorms. J. Appl. Meteor. Climatol., 47,
- 530 1940–1961, doi:10.1175/2007JAMC1874.1, 2008
- Kumjian, M. R., Khain A. P., Benmoshe N., Ilotoviz E., Ryzhkov A. V., and Phillips V. T. J.: The anatomy and physics
- of ZDR columns: Investigating a polarimetric radar signature with a spectral bin microphysical model. J. Appl. Meteor.
- 533 *Climatol.*, **53**, 1820–1843, doi:10.1175/JAMC-D-13-0354.1. 2014.
- Marinescu, P. J., Kennedy, P. C., Bell, M. M., Drager, A. J., Grant, L. D., Freeman, S. W.,, and van den Heever, S. C.:
- 535 Updraft vertical velocity observations and uncertainties in High Plains supercells using radiosondes and radars. Mon.
- 536 Wea. Rev., 148, 4435–4452, 2020, https://doi.org/10.1175/MWR-D-20-0071.1.
- Marinescu, P. J., van den Heever, S. C., Heikenfeld, M., Barrett, A. I., Barthlott, C., Hoose, C., Fan, J., Fridlind, A. M.,
- Matsui, T., Miltenberger, A. K., Stier, P., Vie, B., White, B. A., and Zhang, Y.: Impacts of Varying Concentrations of
- 539 Cloud Condensation Nuclei on Deep Convective Cloud Updrafts—A Multimodel Assessment, Journal of the
- 540 Atmospheric Sciences, 78(4), 1147-1172, 2021.
- 541 ModEx Approach Environmental System Science Program, U.S. DOE Environmental System Science Program,
- 542 https://ess.science.energy.gov (accessed [May 11, 2022])
- North, K. W., Oue, M., Kollias, P., Giangrande, S. E., Collis, S. M., and Potvin, C. K.: Vertical air motion retrievals in
- deep convective clouds using the ARM scanning radar network in Oklahoma during MC3E, Atmos. Meas. Tech., 10,
- 545 2785–2806, https://doi.org/10.5194/amt-10-2785-2017, 2017.





- Oue, M., Kollias, P., Shapiro, A., Tatarevic, A., and Matsui, T.: Investigation of observational error sources in multi-
- 547 Doppler-radar three-dimensional variational vertical air motion retrievals, Atmos. Meas. Tech., 12, 1999–2018,
- 548 https://doi.org/10.5194/amt-12-1999-2019, 2019.
- 549 Oue, M., Tatarevic, A., Kollias, P., Wang, D., Yu, K., and Vogelmann, A. M.: The Cloud-resolving model Radar
- 550 SIMulator (CR-SIM) Version 3.3: description and applications of a virtual observatory, Geosci. Model Dev., 13, 1975–
- 551 1998, https://doi.org/10.5194/gmd-13-1975-2020, 2020.
- Potvin, C. K., Betten, D., Wicker, L. J., Elmore, K. L., and Biggerstaff, M. I.: 3DVAR versus traditional dual-Doppler
- wind retrievals of a simulated supercell thunderstorm, Mon. Weather Rev., 140, 3487–3494,
- 554 https://doi.org/10.1175/MWRD-12-00063.1, 2012a.
- Potvin, C. K., Wicker, L. J., and Shapiro A.: Assessing errors in variational dual-Doppler wind syntheses of supercell
- 556 thunderstorms observed by storm-scale mobile radars, J. Atmos. Ocean. Tech., 29, 1009–1025
- 557 https://doi.org/10.1175/JTECHD-11-00177.1, 2012b.
- Powers, J. G., Klemp, J. B., Skamarock, W. C., Davis, C. A., Dudhia, J., Gill, D. O., Coen, J. L., Gochis, D. J., Ahmadov,
- R., Peckham, S. E., Grell, G. A., Michalakes, J., Trahan, S., Benjamin, S. G., Alexander, C. R., Dimego, G. J., Wang,
- W., Schwartz, C. S., Romine, G. S., Liu, Z., Snyder, C., Chen, F., Barlage, M. J., Yu, W., and Duda, M. G.: The
- Weather Research and Forecasting Model: Overview, System Efforts, and Future Directions, Bulletin of the American
- Meteorological Society, 98(8), 1717-1737, 2017.
- Rasmussen, E. N., J. M. Straka, R. P. Davies-Jones, C. A. Doswell, F. H. Carr, M. D. Eilts and A. and D. R.
- MacGorman,: Verification of the Origins of Rotation in Tornadoes Experiment: VORTEX. Bull. Amer. Meteor. Soc.,
- 565 75, 995–1006, 1994.
- 566 Shusse, Y., and Tsuboki, K.: Dimension Characteristics and Precipitation Efficiency of Cumulonimbus Clouds in the
- Region Far South from the Mei-Yu Front over the Eastern Asian Continent, Monthly Weather Review, 134(7), 1942-
- 568 1953.,
- 569 Stein, T. H. M., Hogan, R. J., Clark, P. A., Halliwell, C. E., Hanley, K. E., Lean, H. W., Nicol, J. C., and Plant, R. S.: The
- 570 DYMECS Project: A Statistical Approach for the Evaluation of Convective Storms in High-Resolution NWP Models,
- Bulletin of the American Meteorological Society, 96(6), 939-951, 2015.
- 572 Steiner, M., Houze, R. A., Jr., and Yuter, S. E.: Climatological Characterization of Three-Dimensional Storm Structure
- from Operational Radar and Rain Gauge Data, Journal of Applied Meteorology and Climatology, 34(9), 1978-2007,
- 574 1995.
- Wurman, J., Dowell, D., Richardson, Y., Markowski, P., Rasmussen, E., Burgess, D., Wicker, L., & Bluestein, H. B.:
- 576 The Second Verification of the Origins of Rotation in Tornadoes Experiment: VORTEX2, Bulletin of the American
- 577 Meteorological Society, 93(8), 1147-1170, 2012.
- van den Heever, S. C., Grant, L. D., Freeman, S. W., Marinescu, P. J., Barnum, J., Bukowski, J., Casas, E., Drager, A. J.,
- 579 Fuchs, B., Herman, G. R., Hitchcock, S. M., Kennedy, P. C., Nielsen, E. R., Park, J. M., Rasmussen, K., Razin, M. N.,



584585

586

587

588

589

590591592593594

595596

597

598



Riesenberg, R., Dellaripa, E. R., Slocum, C. J., Toms, B. A., & van den Heever, A.: The Colorado State University Convective Cloud Outflows and UpDrafts Experiment (C3LOUD-Ex), Bulletin of the American Meteorological Society, 102(7), E1283-E1305.

Wurman, J.: The DOW mobile multiple-Doppler network. Preprints, 30<sup>th</sup> Int. Conf. on Radar Meteorology, Munich, Germany, Am. Meteorol. Soc., 95–97, 2001.

Wurman, J., D. Dowell, Y. Richardson, P. Markowski, E. Rasmussen, D. Burgess, L. Wicker, H.B. Bluestein: The Second Verification of the Origins of Rotation in Tornadoes Experiment: VORTEX2. Bull. Amer. Meteor. Soc., 93, 1147-1170, doi: 10.1175/BAMS-D-11-00010.1, 2012.

Zängl, G., Reinert, D., Rípodas, P. and Baldauf, M.: The ICON (ICOsahedral Non-hydrostatic) modelling framework of DWD and MPI-M: Description of the non-hydrostatic dynamical core. Q.J.R. Meteorol. Soc., 141: 563-579. https://doi.org/10.1002/qj.2378, 2015.

Table 1. Radar scan strategies simulated in this study.

|                  | T = 1,                            | T =                          |                      |
|------------------|-----------------------------------|------------------------------|----------------------|
| Strategy         | Full elevation scan for an        | 5-min volume coverage        | Full                 |
|                  | azimuth sector tracking cells (1- | pattern (5-min VCP)          | elevation/azimuth    |
|                  | min RHI, 2-min SEC)               |                              | scan (Full)          |
| Beam width       | 1.0°                              | 0.9°                         | 1.0°                 |
| Elevation angles | From 0.5° to 89.5° every 1°       | 0.48, 0.88, 1.32, 1.8, 2.42, | From 0° to 90° every |
|                  |                                   | 3.12, 4.0, 5.1, 6.42, 8.0,   | 1°                   |
|                  |                                   | 10.02, 12.48, 15.6, and      |                      |
|                  |                                   | 19.51°                       |                      |
| Azimuth range    | 14.5° at 40 km radar range        | From 0° to 360° with a 0.5°  | From 0° to 360° with |
|                  | (Sector to cover a 10-km width    | increment                    | a 1.0° increment     |
|                  | centered around the individual    |                              |                      |
|                  | cells with 1° spacing)            |                              |                      |
| Time for volume  | 1 minute or 2 minutes*            | 5 minutes                    | 1 minute             |
| scan             |                                   |                              |                      |

\*With the radar beam width of 1°, the total beam for the sector scan is 90 (over elevation) x 14 (over azimuth) = 1260 beams. Assuming that each beam needs ~96 radar samples, the total number of pulses is 120960. This takes 1-2 min with typical pulse repetition ratios (1.5 - 2.5 kHz) for C- and X-band radars. See detailed discussion in Sect. 2.4.2





Table 2. The root-mean-square error (RMSE) of the retrieved updraft averaged over the regions with reflectivity ≥40 dBZ at four different altitudes as well as all heights for a variety of scan strategies for the entire lifetime.

|             | 1. Two 1-min RHIs | 2. Two 5-min | 3. One 1-min RHI + one 5- | 4. Two 1-min RHIs + one |
|-------------|-------------------|--------------|---------------------------|-------------------------|
|             | (2RHIs)           | VCPs (2VCPs) | min VCP (RHIVCP)          | 5-min VCP (2RHIVCP)     |
| 10 km       | 4.794             | 16.82        | 7.995                     | 4.800                   |
| 8 km        | 5.371             | 7.396        | 5.609                     | 5.112                   |
| 6 km        | 5.862             | 6.601        | 4.764                     | 4.895                   |
| 4 km        | 4.232             | 3.178        | 3.625                     | 3.511                   |
| All heights | 5.030             | 6.763        | 5.539                     | 4.535                   |

[dBZ] [g/kg] (a) Total hydrometeor mixing ratio (b) Radar reflectivity 30.6 30.6 30.4 30.4 40 30.2 30.2 30 30 3.5 30 29.8 29.8 20 29.6 29.6 2.5 29.4 29.4 2 10 29.2 29.2 1.5 29 29 28.8 28.8 Latitude [∘N] 28.6 28.6 -94.5 [log<sub>10</sub>(kg/m<sup>2</sup>)] (c) log<sub>10</sub>VIL (d) Cell tracks 30.6 30.6 30.4 30.4 30.2 30.2 30 0.5 30 29.8 29.8 0 29.6 29.6 29.4 29.4 -0.5 29.2 29.2 29 29 28.8 28.8 28.6 28.6 -94.5 -94 -95.5 -95 -94.5 -94 -95.5 -95 Longitude [∘E]

602





Fig. 1: (a) A snapshot of the RAMS-simulated total hydrometeor condensate field at 21:09 UTC at 5.5 km ASL; (b) CR-SIM simulated radar reflectivity field at the same height and same time as (a); (c) vertically integrated liquid (VIL) estimated from the CR-SIM C-band total reflectivity (from total liquid and ice hydrometeor condensate) at the same time as (a); and (d) tracks of precipitating convective cells detected between 20:00 and 23:59 UTC using *tobac*. On each panel, the red "X" marks the location of a radar performing 5-min VCP (i.e., NEXRAD KHGX), the red solid dot represents the location of a radar performing a different 5-min VCP or RHI, and the blue solid dot represents the location of another radar performing RHI. The red rectangle represents the tracked cell of interest used for multi-Doppler radar retrieval and polarimetric evolution analysis.

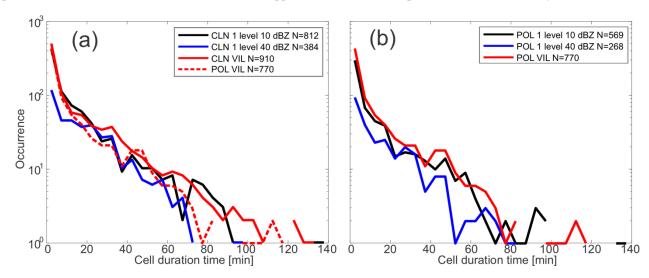


Fig. 2: Frequency distributions of cell duration time from the *tobac* cell tracking using VIL (red), 10 dBZ threshold at 2 km height (blue), and 40 dBZ threshold at 2 km height (black) for (a) CLN and (b) POL cases. The legend displays the total number of detected cells (N) for each tracking parameter utilized. Panel (a) also includes the cell tracking using VIL for the POL case shown as the red dashed line.



617618

619

620



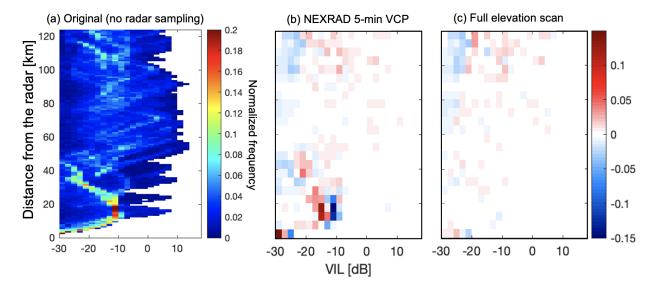


Figure 3: (a) Contoured frequency by distance (from the radar) distribution of the VIL from the original, cartesian model grid from the 1-minute output over the 4-hour analysis time period; (b) difference between the VIL from the 5-min VCP scan strategy and (a); and (c) difference between the VIL from the Full scan strategy and (a). The VILs from the 5-min VCP and Full scan strategies are estimated from the gridded reflectivity fields with 250 m horizontal and vertical spacing and 1-minute output over the 4-hour time period.



624



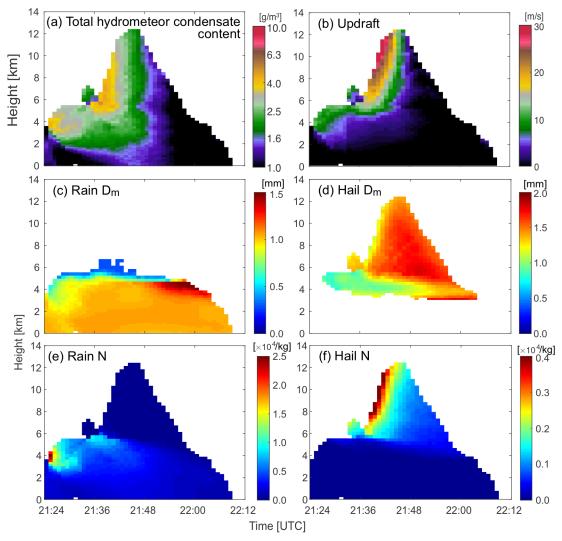


Fig. 4: Height-versus-time cross sections of the (a) total hydrometeor condensate content, (b) updraft, (c-d) the mass-weighted mean diameter  $(D_m)$  for (c) rain and (d) hail, and the number density (N) for (e) rain and (f) hail, averaged for areas with reflectivity > 40 dBZ of the selected convective cell from the CLN case.





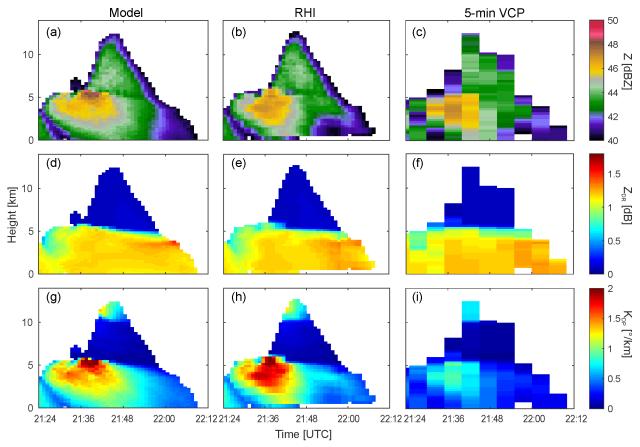


Fig. 5: Time-height cross sections of C-band radar reflectivity (top row),  $K_{DP}$  (middle row), and  $Z_{DR}$  (bottom row), averaged for areas with reflectivity > 40 dBZ for the selected convective cell for (a,d,g) the model simulation truth, (b,e,h) simulated RHI tracking strategy, and (c,f,i) simulated 5-min volume scan strategy. The cell in this figure is the same as that shown in the box in Fig. 4 and is from the CLN case. Note that the NEXRAD S-band frequency is assumed for the 5-min VCP simulation, while C-band frequency is assumed for the model and RHI simulation. Therefore, the  $K_{DP}$  values in this figure include the frequency dependency.





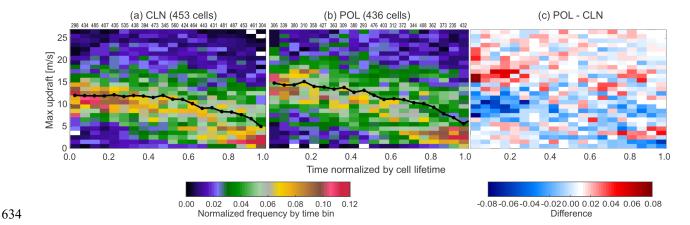


Fig. 6: Frequency of maximum updraft magnitudes in detected individual cells as a function of time normalized by the cell duration for the (a) CLN and (b) POL case simulations, and (c) the difference between the CLN and POL cases (POL – CLN). Here we present only those deep convective cells with 20 dBZ echo top heights that exceeded the freezing level during their lifetimes. Color shading in (a) and (b) represents normalized frequency by cell lifetime, and that in (c) represents the difference in the normalized frequency. The sample size at each time bin is presented on the top of (a) and (b). Black lines in (a) and (b) represent the median value in each time bin.

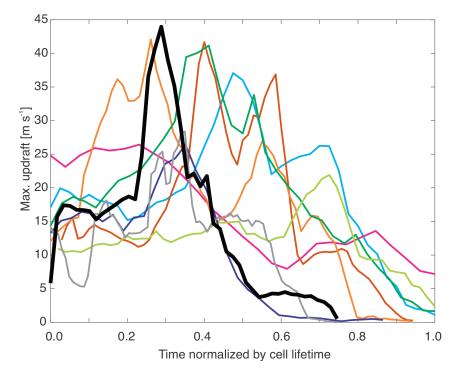


Figure 7: Maximum updraft velocity in the cell column at each time represented as a function of the normalized lifetime for the nine deep convective cells from the CLN simulation. These cells were randomly selected, as described in Section 3.2, and were required to have the maximum radar reflectivity greater than 45 dBZ, the echo top height of 40 dBZ exceeding 5 km in altitude,





and the echo top height of 20 dBZ extending above 8 km altitude during the storm lifecycle. The black line represents the target cell that was analyzed for the present OSSE. Note that because the plot displays the maximum updraft found in regions with reflectivity greater than 45 dBZ, some lines do not end at time=1.0 when the maximum reflectivity is below 45 dBZ.

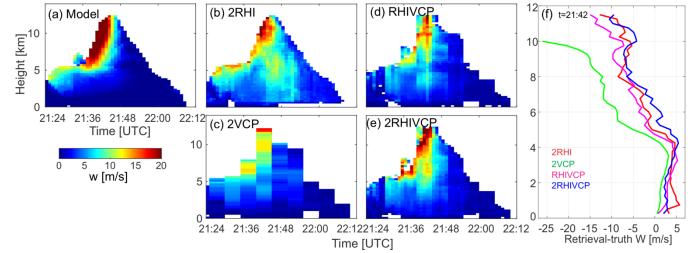


Fig. 8: Height-time cross sections of the updraft velocity averaged over the area with reflectivity > 40 dBZ from (a) the model (truth) and (b-e) the simulated retrievals, as well as the (f) errors of the simulated multi-Doppler vertical velocity retrievals (retrieval - truth) at 21:42 UTC, when the maximum updraft was produced by the cell.

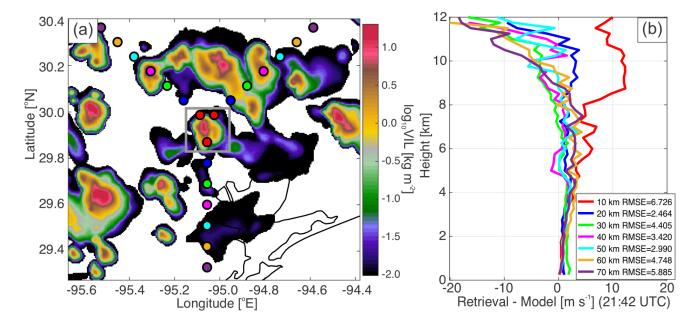




Fig. 9: (a) Horizontal distribution of VIL centered around one identified convective cell (gray box, the same cell shown in Figs. 4, 5, and 8) at 21:42 UTC from the CLN simulation and (b) vertical profiles of errors of simulated retrievals (retrieval - model) averaged over a 20 km x 20 km box with reflectivity > 30 dBZ at 21:42 UTC for the identified convective cell. The colored dots in (a) represent the radar locations for the multi-Doppler radar wind retrievals. The colors of the dots correspond to the colors of the set of the radars for the multi-Doppler radar wind retrievals shown in (b). The two radars to the north of the cell performed 2-min RHIs, and the other performed 5-min VCP. The RMSE for each profile is displayed in (b).

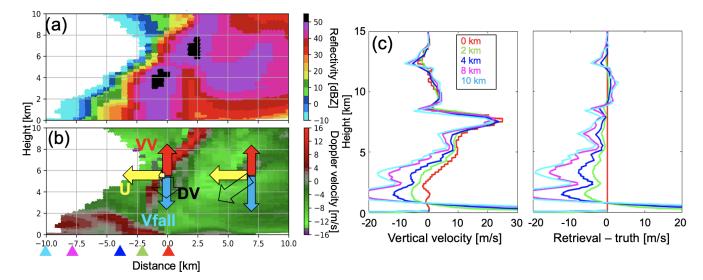


Fig. 10: Vertical cross section of (a) radar reflectivity and (b) Doppler velocity from the simulated RHI measurement for a convective cell and vertical profiles of (c) retrieved vertical air motion and (d) errors (retrieval – model), simulated with different distances between the radar and the center of the convective cell (distance = 0 km in b) at 21:42 UTC. The location of the radars from the center of the convective cell in (c-d) are indicated by their corresponding colored triangle in panel (b). A negative Doppler velocity in (b) represents motion toward the radar.





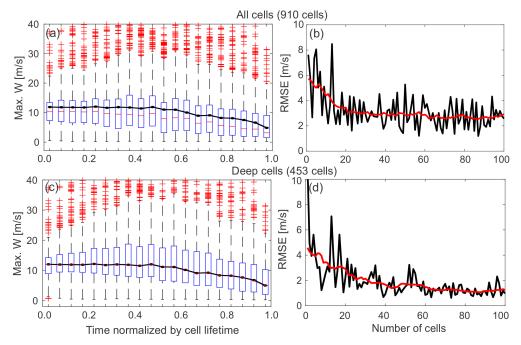


Figure 11: (a,c) Boxplots of maximum vertical velocity as a function of the normalized lifetime from all convective cells detected (910 cells including deep and shallow cells) from the CLN case and from the deep convective cells (453 cells) defined in Fig. 6a, respectively. For each boxplot, the central red mark indicates the median, and the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively. The whiskers extend to the most extreme data points excluding outliers. Outliers are plotted individually using the cross symbol. Black solid lines in (a) and (c) represent the temporal evolution of the median values of maximum updrafts for deep cells as a function of time. (b,d) The RMSEs of median values of the maximum vertical velocity as a function of the number of cells randomly sampled from all convective cells detected in the CLN simulation (b) and from deep convective cells defined in Fig. 6a (d). The RMSEs are estimated from the median profiles as a function of the normalized lifetime from the random sampling and that from the all deep convective cells (black line in Fig. 6a).





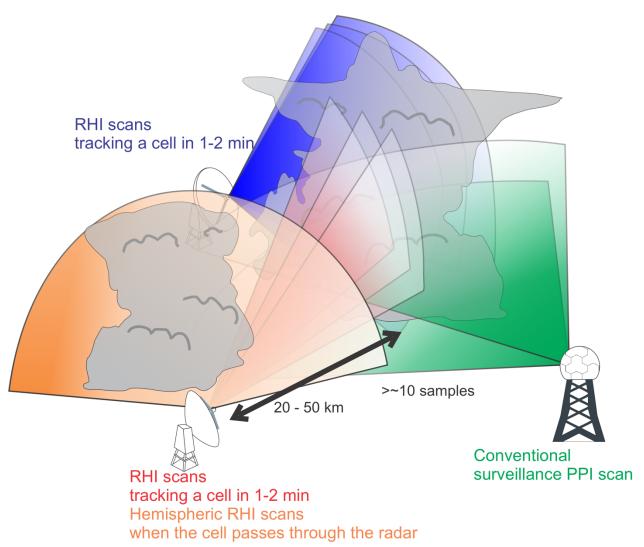


Figure 12: A schematic image of a suggested scan strategy optimized for observing convective cell evolution. Optimal cell tracking is achieved by frequent RHI scans from more than one radar (blue and red scans) in addition to the operational PPI volume scans generally performed by the NEXRAD radars (green scans). The schematic also suggests an optimal hybrid radar scan strategy which switches between cell tracking by frequent RHI measurements and hemispheric RHI measurements depending on the distance between the radar and the target cell (red and orange scans).