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Abstract. Optimizing radar observation strategies is one of the most important considerations in pre-field campaign periods. 10 

This is especially true for isolated convective clouds that typically evolve faster than the observations captured by 11 

operational radar networks. This study investigates uncertainties in radar observations of the evolution of the microphysical 12 

and dynamical properties of isolated deep convective clouds developing in clean and polluted environments and aims to 13 

optimize the radar observation strategy for deep convection through the use of cloud-resolving model simulations coupled 14 

with a radar simulator and a cell tracking algorithm. Our analysis results include the following four outcomes. First, a 5-7 15 

m s-1 median difference in maximum updrafts of tracked cells was shown between the clean and polluted simulations in the 16 

early stages of the cloud lifetimes. This demonstrates the importance of obtaining accurate estimates of vertical velocity 17 

from observations if aerosol impacts are to be properly resolved. Second, tracking of individual cells and using vertical 18 

cross section scanning every minute captures the evolution of precipitation particle number concentration and size 19 

represented by polarimetric observables better than the operational radar observations that update the volume scan every 5 20 

min. This approach also improves the multi-Doppler radar updraft retrievals above 5 km AGL for regions with updraft 21 

velocities greater than 10 m s-1. Third, we propose an optimized strategy which is composed of cell tracking by quick (1-2 22 

min) vertical cross section scans from more than one radar in addition to the operational volume scans. We also propose the 23 

use of a single range-height indicator updraft retrieval technique for cells close to the radars, where the multi-Doppler radar 24 

retrievals are still challenging. Finally, increasing the number of deep convective cells sampled by such observations better 25 

represents the median maximum updraft evolution with sample sizes of more than 10 deep cells, which decreases the error 26 

associated with sampling the true population to less than 3 m s-1. 27 
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1 Introduction 28 

The quality and performance of remote sensing measurements, especially radar measurements, can strongly depend on 29 

the siting of instruments relative to their targets and the associated sampling strategies (e.g., Bousquet et al., 2008; Potvin 30 

et al., 2012b; Oue et al., 2019). This is especially true for convective storm systems that evolve rapidly over a range of 31 

spatial and temporal scales. The limitations associated with observation strategies influence microphysical, dynamical, and 32 

convective-core property retrievals, resulting in a misinterpretation of the observational data and can limit our understanding 33 

of storm processes. Some of these limitations can be addressed using Model and field Experiment data fusion (ModEx) 34 

concepts such as the optimization of experimental design using models and forward simulators. Using the ModEx 35 

framework, one can appropriately determine optimal radar deployments and scan strategies, as well as quantitatively 36 

understand the observational uncertainties arising from these strategies before field campaigns begin. As such, the goal of 37 

this study is to suggest optimal radar deployments and scan strategies for future radar field campaigns focused on 38 

convection. 39 

In operational radar networks (e.g., the Next Generation Weather Radar (NEXRAD) network), each radar performs 40 

volume scans consisting of plan position indicator (PPI) scans with multiple elevation angles to prioritize collecting data 41 

for large areas. The volume scan strategy (known as volume coverage pattern, VCP) takes approximately 5 minutes to 42 

collect the 3D atmospheric data. While this operational scanning strategy is very valuable for performing surveillance and 43 

collecting a large number of cloud samples, it may not accurately capture fine-scale, rapidly-developing cloud phenomena. 44 

To increase our understanding of the links between convective cloud kinematic and microphysical processes, field 45 

campaigns have recently started to focus on collecting observations at higher temporal and spatial resolutions to understand 46 

fine scale characteristics and phenomena including isolated convection, shallow cumulus clouds, plumes embedded in 47 

mesoscale systems, and convective updrafts and downdrafts (e.g., Verification of the Origins of Rotation in Tornadoes 48 

Experiment 2 (VORTEX2), Wurman et al., 2012; Midlatitude Continental Convective Clouds Experiment (MC3E), Jensen 49 

et al., 2016; CSU Convective Cloud Updraft and Downdraft Experiment (C3LOUD-Ex), van den Heever et al., 2021; 50 

Marinescu et al., 2020). Furthermore, in some of these field campaigns, physically tracking individual convective 51 

phenomena using cutting-edge radar systems was employed to prioritize high spatiotemporal sampling (e.g., The Dynamical 52 

and Microphysical Evolution of Convective Storms (DYMECS), Stain et al., 2015). 53 

In recent years, as phased array weather radars have become more commonly used for severe weather observations, the 54 

sophisticated tracking of atmospheric phenomena has become feasible (e.g., Kollias et al., 2022), thus allowing for sampling 55 

of the entire cloud volume and cloud lifecycle.  These observations are, however, more sensitive than previous approaches 56 

to scan strategies such as sampling time, azimuth/elevation spacings, and deployments (locations and the number of radars), 57 

all of which should be appropriately optimized depending on the spatial scale and evolution speed of the target phenomena 58 

(Kollias et al., 2020). 59 
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Several radar field campaigns aimed at enhancing our understanding of the links between convective cloud kinematic 60 

and microphysical processes and life cycles have been planned for the near future (e.g., Tracking Aerosol Convection 61 

Interactions ExpeRiment (TRACER), Jensen et al., 2019; Experiment of Sea Breeze Convection, Aerosols, Precipitation 62 

and Environment (ESCAPE); Jensen et al., 2022; Atmospheric Radiation Measurements (ARM) Mobile Facility 3 (AMF3) 63 

Southeast US deployment, Kang et al., 2021). All of these experiments plan to deploy multiple mobile weather radars, cloud 64 

radars, and phased array radars. Optimizing the radar deployments and scan strategies while taking into account campaign 65 

costs, deployment limitations, and sampling limitations (i.e., range, scan rate) is a large but critical challenge. In this paper 66 

we make use of observing system simulation experiments (OSSEs) focused on deep convection to specifically investigate 67 

the impacts of radar scan strategies on the cell tracking performance, microphysical evolution, and dynamical retrievals of 68 

convective storms. Specifically, the impacts of varying the scan elevation angles, the period for a volume scan, and the 69 

locations of the radars are assessed. 70 

2 Method 71 

Our OSSE approach is comprised of three parts: (1) the Regional Atmospheric Modeling System (RAMS; Cotton et al., 72 

2003; Saleeby and van den Heever, 2013); (2) the Cloud-resolving Radar Simulator (CR-SIM; Out et al., 2020); and (3) the 73 

Tracking and Object-Based Analysis of Clouds (tobac; Heikenfeld et al., 2019; Sokolowsky et al., 2022). RAMS model 74 

output from the Aerosol-Cloud-Precipitation-Climate (ACPC) model intercomparison project (MIP) (van den Heever et al., 75 

2018; Marinescu et al., 2021), which focuses on the development and occurrence of isolated convective cells in the region 76 

around Houston, TX, on June 19-20, 2013 (Fig. 1a), form the basis of this study. The convective development is initiated 77 

both along the inland propagation of the sea breeze, and later in association with convective cold pools produced by the 78 

earlier convection in the simulation. In this study we focus on the time period from 20-24 UTC (15-19 local time) during 79 

which period deep convective clouds developed, the dynamical processes of which have been extensively analyzed 80 

(Marinescu et al., 2021). One-minute simulated deep convective fields are used as an input to CR-SIM to represent and 81 

evaluate the radar observable fields (Fig. 1b). The CR-SIM radar observables are subsequently used to track convective 82 

cells using tobac. 83 

2.1 CR-SIM 84 

CR-SIM is a sophisticated radar forward operator developed to bridge the gap between high-resolution cloud model 85 

output and radar observations (Oue et al., 2020). CR-SIM can be applied to the 3D model output produced by a variety of 86 

cloud-resolving models and large-eddy simulation models, including RAMS, the Weather Research and Forecasting (WRF, 87 

Powers et al., 2017) model, the System for Atmospheric Modeling (SAM, Khairoutdinov and Randall, 2003), Cloud Model 88 

1 (CM1, Bryan and Fritsch, 2002), and the Icosahedral Nonhydrostatic model (ICON, Zängl et al., 2015). It emulates the 89 

interaction between transmitted polarized radar waves and rotationally symmetric hydrometeors and can simulate the power 90 
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(equivalent radar reflectivity factor), phase (Doppler velocity), and polarimetric (specific differential phase, differential 91 

reflectivity, depolarization) variables with either a fixed elevation angle or varying elevation angles with respect to a 92 

specified radar location. The radar simulator has been shown to be especially effective in OSSEs to investigate uncertainties 93 

in observational data (Oue et al., 2019). 94 

2.2 tobac 95 

tobac is a python-based software platform specifically developed for tracking atmospheric features, such as isolated 96 

convective cells, in both model and observational datasets. tobac has been developed using a modular code structure with 97 

data input, feature detection and segmentation, and trajectory linking steps. It uses a watershed algorithm to detect and track 98 

individual convective cells, and it has been extensively tested on the ACPC simulations (e.g., Heikenfeld et al., 2019; 99 

Marinescu et al., 2021). For this study, tobac is applied to CR-SIM vertically integrated liquid (VIL; Fig. 1c), which 100 

represents the total hydrometeor condensate within each vertical column, and is similar to the approach used by Hu et al. 101 

(2019). The CR-SIM radar reflectivity is converted into VIL using the following equation: 102 

𝑉𝐼𝐿 = ∑!"!#$%!"& 3.44 ∗ 10'([(𝑍!+𝑍!)*)/2]+/-(ℎ!)* − ℎ!)			[𝑘𝑔	𝑚'.]   (1) 103 

where Z is radar reflectivity factor (mm6 m-3), ℎ is height (m), 𝑖 is the vertical index, and 𝑖max	is the index at the grid 104 

domain top. We calculate VIL using the CR-SIM-simulated total reflectivities greater than or equal to 0 dBZ at all vertical 105 

levels and, thus, ensure that we consider all cloudy grid boxes in the tracking analysis. Although this variable is named 106 

‘liquid,’ we use the total reflectivity from all modeled hydrometeor species to emulate real observations, including cloud 107 

droplets, drizzle, rain, cloud ice, snow, aggregates, graupel, and hail. Since “VIL” is a widely-used name, we refer to VIL 108 

as this parameter. When considering that clouds may have lower reflectivities (< 0 dBZ) and the radar minimum detectable 109 

reflectivity increases with distance from the radar, the reflectivity threshold of 0 dBZ for the VIL calculation is a reasonable 110 

value to use in detecting cells in the entire domain regardless of the distance. We also performed the cell tracking using 10 111 

and 40 dBZ thresholds at the height of 2 km above ground level (AGL) to compare the performance of the use of VIL and 112 

single-level reflectivity thresholds. 113 

2.3 RAMS 114 

RAMS is a cloud-resolving model that includes sophisticated microphysical-dynamical feedbacks, as well as aerosol-115 

cloud interactions (Saleeby and van den Heever, 2013). RAMS, along with several other cloud resolving models from 116 

around the world participated in the ACPC MIP, focuses on the effects of changing the concentrations of cloud condensation 117 

nuclei (CCN) on deep convective clouds (van den Heever et al., 2018). Case study simulations of a period of scattered 118 

convective clouds near Houston, Texas were completed with relatively low and high concentrations of CCN that were based 119 

on observations from the Houston area (see Figure 2 from Marinescu et al., 2021). The low-CCN simulation is initialized 120 

with 500 cm-3 of CCN in the boundary layer (named CLN in this study), while the high-CCN simulation is initialized with 121 

4000 cm-3 of CCN in the boundary layer (named POL in this study). The vertical aerosol profiles of both the CLN and POL 122 
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studies decrease linearly from the top of the boundary layer to 150 cm-3 at ~5 km AGL (the free troposphere), above which 123 

they remain constant. RAMS allows for the advection, nucleation, wet and dry deposition, and regeneration of aerosol 124 

particles via hydrometeor evaporation and sublimation. These simulations have been performed using a horizontal grid 125 

resolution of 500m and RAMS’ two-moment bin-emulating bulk-microphysics scheme, which predicts the mass and number 126 

of eight hydrometeor types. The model data are output at a frequency of 1-minute. Additional details about the RAMS 127 

model parameterizations and experimental setup used for these simulations can be found in Table 1 of Marinescu et al. 128 

(2021). 129 

2.4 Observation simulation processes 130 

In this study, the cell tracking is applied to the CR-SIM-simulated radar observation field (VIL) to detect and track 131 

individual convective storm cells. Using the tracking results for all cells, we investigate the performance of the cell tracking 132 

using VIL and the impact of the scan strategy on the VIL estimates (Sect. 3.1) and the statistical impact of aerosols on the 133 

cell dynamical evolution (Sect. 3.3). One of the tracked, isolated, deep convective cells with a single precipitation core is 134 

chosen to investigate the following: 1) the impacts of the scan strategy on the examination of polarimetric observables and 135 

related microphysical studies (Sect. 3.2); and 2) the influences of different sets of the scan strategies on the multi-Doppler 136 

vertical velocity retrievals (Sect. 3.3).  137 

2.4.1. Tracking convective cells 138 

The tobac cell tracking is coupled with CR-SIM radar observables obtained using the RAMS model output in the 139 

following manner: 140 

1) The RAMS model output from the ACPC MIP for an isolated convective case over the Houston area (Fig. 1a) is 141 

used as an input to the CR-SIM runs; 142 

2) The radar observable fields (Fig. 1b) are simulated using CR-SIM;  143 

3) The CR-SIM simulated radar reflectivity is converted into VIL if the reflectivity exceeds 0 dBZ at all levels 144 

(Fig.1c); 145 

4) tobac is applied to the VIL field to track the convective cells (Fig. 1d). We used the VIL thresholds of 0, 0.1, 1.0, 146 

and 5.0 kg m-2 to identify/track individual cells, including those embedded in larger precipitation areas; and 147 

5) Apply steps 1-4 above to the CLN and POL RAMS simulations to investigate the impact of aerosols on the cell 148 

dynamical evolutions in the entire simulation domain.  149 

2.4.2. Emulating radar scan strategies 150 

The various radar scan strategies emulated in this study are listed in Table 1. We first emulate cell tracking using sector 151 

range-height indicator (RHI) scans, each of which is composed of full elevation angles from 0.5° to 89.5° with a 1° increment 152 

in an azimuth sector and takes approximately 1 minutes (1-min RHI in Table 1). The 1-min RHI scan uses a snapshot of 153 
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data to complete a full elevation scan for a sector. The second emulation of cell trackings is also a  full elevation scan for 154 

an azimuth sector similar to 1-min RHI but takes 2 minutes using two continuous snapshots (2-min SEC); the first snapshot 155 

is composed of angles from 0.5° to 44.5° over the elevation and the other is composed from 45.5° to 89.5° over the elevation 156 

(we intended this simulation as 2-min “RHI” in which each of the two snapshots should be used for a half of the azimuth 157 

sector for full elevation angles, however, for technical and computational reasons, we separated the elevation angles into 158 

the two snapshots).  159 

The sector scans for 1-min RHI and 2-min SEC follow an individual cell based on the results of the cell tracking using 160 

tobac. Each azimuth sector is assumed to cover the 10-km width centered around the individual cells defined by tobac. 161 

Therefore, the number of RHI sweeps for each cell varies as a function of the distance between the radar and the target cell. 162 

The radar configuration for the RHI simulation is assumed to be a general scanning radar such as the ARM precipitation 163 

radars. The angle range for an azimuth sector at the radar range of 40 km is approximately 14°.With the radar beam width 164 

of 1°, the total beam for the sector scan is 90 (over elevation) x 14 (over azimuth) = 1260 beams. Assuming that each beam 165 

uses ~96 radar pulse samples, the sector scan includes 120960 pulses in total. If the radar operates with 1.5 KHz pulse 166 

repetition frequency (PRF) (typical value for C-band radars), then the sector scan takes 80 sec; and if the radar operates with 167 

2.5 kHz PRF (typical value for X-band radars), then the scan takes 48 sec. These numbers (scans within 1-2 min) are easy 168 

to get for phased-array radar observations. For a reflector radar that needs 33% overhead time due to acceleration and 169 

deceleration of the antenna, these scan times become 106 sec and 64 sec respectively.  170 

The second strategy we investigate is the 5-min VCP. This strategy follows the standard NEXRAD VCP precipitation 171 

mode (VCP 12, https://www.weather.gov/jetstream/vcp_max) and is composed of 14 PPI scans. Since our model output is 172 

every minute, for the 5-min VCP simulation, a volume scan is composed of 5 snapshots from the 1-min model outputs. A 173 

single snapshot is used to create two or three PPI sweeps (two or three elevation angles).  174 

Finally, we evaluate an “ideal” simulation where a volume scan with full elevation and azimuth scans with a 1.0° 175 

increment over both elevation and azimuth is performed within 1-min (referred to as “Full” in Table 1). This approach will 176 

be feasible when a network of rapid scan or electronically scanning radars is available. Although such observations are not 177 

realistic, they can serve as an upper boundary in terms of observational capabilities and will be used for an evaluation of 178 

VIL from 5-min VCP in Section 3.1. 179 

We use an S-band frequency for the 5-min VCP simulation (emulating NEXRAD radars) and a C-band frequency for 180 

1-min RHI, 2-min SEC, and Full simulations (assuming the C-band Scanning ARM Precipitation Radar (C-SAPR) , or any 181 

equivalent performance radar). Since we use unattenuated radar observables in this study, the impacts of the radar frequency 182 

on the simulation results should not be significant. 183 

 184 

2.4.3. Multi Doppler radar wind retrieval 185 
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For the investigation of the impacts of scan and deployment strategies on multi-Doppler vertical velocity retrievals, this 186 

study employs a three dimensional variational (3DVAR) multi-Doppler radar wind retrieval technique developed by North 187 

et al. (2017). While this investigation focuses on uncertainties caused by scan and deployment strategies, it does not account 188 

for other sources of errors such as attenuation, nor the particle fall speed assumed in the 3DVAR wind retrieval technique. 189 

We use unattenuated radar reflectivity and reflectivity-weighted fall speed calculated by CR-SIM in the all present wind 190 

retrieval simulations. The details of the 3DVAR retrieval settings are presented in Oue et al. (2019). As described in Oue et 191 

al. (2019), the 3DVAR wind retrieval technique is applied to the gridded radar observable fields. The radar observables that 192 

are resampled following the radar scan strategies in the previous sections are then regridded into a Cartesian coordinate of 193 

250 km x 250 km x 14 km domain with 0.25-km horizontal and vertical spacings using Barnes distance-dependent 194 

weightings (Barnes, 1964). 195 

 196 

3. Results 197 
 198 

3.1 Uncertainty in tracking parameters 199 

Many previous convective cell tracking studies have employed reflectivity criteria at a given height (e.g., Steiner et al., 200 

1995; Shusse et al., 2006; Oue et al., 2014). This technique, however, can miss some of the early stages of convective cell 201 

development that initiate at different (typical lower) heights. Figure 2a shows a comparison of the durations of tobac 202 

detected and tracked cells in the CLN simulation as a function of the use of VIL, as well as 10 and 40 dBZ thresholds at 2 203 

km altitude. The VIL-based tracking has the largest total number of cells detected since the VIL better captures the presence 204 

of hydrometeor condensate throughout the vertical columns and is not dependent on the presence of condensate at a specific 205 

level. All of the frequency distributions, perhaps unsurprisingly, peak at shorter durations for both CLN and POL cases. The 206 

VIL-based and 10-dBZ-based tracking are more comparable, although the VIL-based tracking has higher frequencies at 207 

even longer durations (> 90 min) compared to the 10-dBZ-based tracking. The 40-dBZ-based tracking generally has lower 208 

frequencies at all duration time bins compared to the 10-dBZ- and VIL-based tracking, but it is more similar to the 10-dBZ-209 

based tracking in the  25-40 minute time bins. The frequency distributions of tracked cell lifetimes suggest that VIL can 210 

better capture longer life cycles of individual cells, including their initial development and decay stages, due to its ability to 211 

include information about hydrometeors in the entire column. 212 

The POL simulation (dashed line in Figure 2a) shows a similar tracked cell lifetime distribution to the CLN case. 213 

However, there are some notable differences. The POL case has fewer cells detected (~15% fewer), which is consistent with 214 

Marinescu et al. (2021), who also found fewer deep convective updrafts in the POL case using different analyses (their 215 

Figure 7). When considering the relative frequency distribution (not shown), the POL case also has a distribution shift 216 

towards relatively fewer long-lived cells (lifetimes > 20 mins) and more frequent short-lived cells (lifetimes < 20 mins), as 217 

compared to the CLN case. The relatively fewer long-lived cells in the POL case are associated with deep convection. There 218 
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could be several reasons for the difference in cell lifetimes related to microphysical-dynamical feedback processes, such as 219 

those associated with cold pools (e.g., Grant and van den Heever, 2015). These differences between CLN and POL are being 220 

examined in a separate manuscript. We, hereafter, use the CLN case to examine the effects of scan strategy on the radar 221 

polarimetric observables and vertical velocity retrievals. 222 

Since VIL integrates reflectivity from the surface to the observed echo top, it better captures hydrometeor condensate 223 

in the entire vertical column. Conventional VCPs that do not include higher elevation angles or that have sparse elevation 224 

scans, therefore, tend to produce an underestimation of VIL. Moreover, averaging inhomogeneities within large range-bin 225 

volumes, which occur at distances far from the radar, can also cause uncertainties when using VIL. To assess these 226 

uncertainties, we investigate the VIL as a function of distance from the radar.  227 

Figure 3 compares contoured frequency by distance distributions of VIL from the 5-min VCP and Full scan (from 0° 228 

to 90° over elevation) strategies. Although we use the horizontal distance from the radar instead of altitude in constructing 229 

our contoured frequency by altitude diagram, we use the term ‘CFAD’ to refer to this kind of distribution diagram in this 230 

study. Overall, both scans produce small differences in the frequency of less than 0.05 in the CFADs, except within the 30 231 

km range from the radar. For 5-min VCP, there is a shift to higher frequencies of smaller VIL values (red color at distance 232 

< 30 km and < -12 dB in Fig. 3b). At distances within 30 km of the radar, both radars have sufficient sensitivity (< -9 dBZ). 233 

This underestimation is, therefore, likely due to the fact that 5-min VCP does not observe the upper parts of the clouds. The 234 

smaller differences that occur at distances > 90 km, which are shown in both scan strategies, are likely due to the minimum 235 

detectable reflectivity, which increases with distance from the radar. It can be concluded that even the NEXRAD VCP 236 

captures the VIL well except for distances less than 30 km from the radar and is, thus, very valuable for the surveillance of 237 

convective cells. 238 

 239 

3.2 Evolution of polarimetric variables associated with microphysics 240 

Polarimetric observables (e.g., differential reflectivity ZDR and differential propagation phase KDP) have frequently 241 

been used by past studies as an indicator of microphysical and updraft evolution (e.g., Kumjian and Ryzhkov, 2008; Kumjian 242 

et al., 2014; Snyder et al., 2013;). The NEXRAD’ polarimetric measurements are very important for capturing the 243 

precipitation microphysical properties, however, its poor spatiotemporal sampling (i.e., limited PPI elevation angles, time 244 

for volume scan) provides only a limited view in convective storms (Fridlind et al., 2019). Here, we assess the impact of 245 

the NEXRAD spatiotemporal sampling by simulating the polarimetric observables from the 1-minute RHI tracking (1-min 246 

RHI in Table 1) and the 5-minute conventional PPI volume scan (5-min VCP in Table 1). We randomly select 12 cells from 247 

the 453 deep convective cells tracked in the CLN simulation. These cells all have maximum radar reflectivity exceeding 45 248 

dBZ and 20-dBZ echo top heights greater than 8 km AGL during their lifetime. We then examine the evolution of 249 

microphysical and dynamical characteristics such as number concentration and mean diameter for each simulated 250 
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hydrometeor species, as well as the vertical velocity. Nine of the cells have 40-dBZ mean echo top heights that exceed the 251 

freezing level (approximately 5 km AGL) and attain 8 km altitude, which signify stronger convection. These 9 cells show 252 

similar evolution of KDP, ZDR, and maximum updrafts, all of which have magnitudes greater than 20 m s-1 in the middle of 253 

their lifetimes. Three of the twelve cells do not have 40-dBZ echo top heights extending above the freezing level. From the 254 

9 vigorous, deep convective cells, one cell is chosen for a detailed OSSE analysis based on its isolated nature and 255 

development near the NEXRAD radar and other radar locations, planned for TRACER and ESCAPE. Figure 4 shows the 256 

evolution of the mass-weighted mean diameter (Dm) and number density for the rain and hail species for the chosen cell. 257 

Large rain Dm (> 1.5 mm) is evident near the freezing level during the later stage of the cell lifetime as the echo top height 258 

descends (after 21:50 UTC in Fig. 4c). Around this time, the largest Dm for hail is also apparent (Fig. 4d). This indicates 259 

that the large hail melts as it falls through the freezing level, thereby, producing large raindrops. The hail number 260 

concentration (Fig. 4f) is also strongly correlated with updraft magnitude (Fig. 4b), thus, demonstrating the strong link 261 

between the updraft dynamics and hail formation. Furthermore, the total hydrometeor mixing ratio (Fig. 4a) is consistent 262 

with the number concentrations from both rain and hail (Figs. 4e and 4f). 263 

Figures 5a,d,g (left column in Fig. 5) show simulated reflectivity, ZDR, and KDP, respectively, averaged over the region 264 

with reflectivies > 40 dBZ from the original, cartesian model grid. The evolution of raindrops as represented by rain Dm 265 

(Fig. 4c) is evident by the large values in the ZDR field (Fig. 5d). The relatively large KDP and reflectivity values also seem 266 

to accurately represent the high number concentrations of rain in the early stage of the cell lifetime (Figs. 4e and 5a,g). 267 

These characteristics of reflectivity, ZDR, and KDP are compared with those from the different scan strategies: 1-min RHI 268 

(middle column) and 5-min VCP (right column). The RHI tracking reconstructs the magnitudes and evolution of the 269 

polarimetric observables well (Figs. 5e and 5h) so that they represent the hail Dm and cell evolution (Figs. 4a,b,d). 270 

Meanwhile, the conventional volume scan cannot capture the fine-scale structure and magnitudes of the hail-rain evolution 271 

observed by ZDR and KDP (Figs. 5f and 5i) due to the coarse time resolution. The RHI tracking performs well in capturing 272 

the KDP enhancement and its streak as the raindrops fall (Fig. 5h). Note that the NEXRAD S-band frequency (3.0 GHz) is 273 

assumed for the 5-min VCP simulation, while C-band frequency (5.5 GHz) is assumed for the model and RHI simulation. 274 

Therefore, the KDP values in this figure do include the frequency dependency. The S-band KDP (Fig. 5i) is approximately 275 

1.8 (5.5 GHz/3.0 GHz) times smaller than the C-band KDP (Fig. 5h). This indicates that the KDP measurements from the 276 

shorter-wavelength radar are more sensitive to the KDP evolution and therefore, can provide more insights on  the 277 

microphysical evolution of precipitation. 278 

3.3 Dynamical evolution 279 

One of the benefits of cell tracking using VIL is that it can better capture the dynamical evolution of convective cells 280 

over their lifetimes (Fig. 2). Figure 6 represents the maximum updrafts in the CLN and POL individual tracked cells as a 281 

function of their lifetime for all of those deep convective cells in which their 20 dBZ echo top heights exceed the freezing 282 
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level. Many of the cells attain maximum updrafts > 10 m s-1 within the first third of their lifetimes in both the CLN and POL 283 

simulations. The peak occurrence for the POL simulation is found for updrafts that are approximately 5 m s-1 stronger than 284 

those of the CLN simulation, suggesting that stronger updrafts are more frequent in the POL than CLN convective cells in 285 

the earlier stages of the cells’ lifecycles. Since the earlier stages of convection are driven by warm-phase processes, this 286 

finding is consistent with Marinescu et al. (2021), who found stronger updrafts in the warm-phase region of deep convective 287 

updrafts, but not in the cold-phase region (i.e., above the freezing level) in the POL environment. The stronger updrafts 288 

support the development of larger hail produced in the POL simulation (not shown). This result suggests that it is important 289 

to estimate vertical velocity with a high level of accuracy if the impact of aerosols on convective dynamics is to be properly 290 

resolved in observations. We use the CLN simulation outputs as well as the individual CLN case deep convective cell shown 291 

in Figs. 4 and 5 to further investigate the uncertainties associated with the multi-Doppler radar vertical velocity retrievals 292 

in this section. Figure 7 shows the maximum updraft velocity in the cell column at each time as a function of the normalized 293 

lifetime for the nine deep convective cells from the CLN simulation selected in the previous section. They all have peak 294 

updrafts exceeding 20 m s-1, which mostly occur in the first half of the cells’ lifetimes. The black line represents the profile 295 

from the target cell analyzed for the OSSE in this section. It is clear from Figure 7 that the selected cell has a relatively 296 

typical dynamical evolution when compared with the other nine cells, although it does reach its maximum updraft velocity 297 

a little earlier in its lifecycle.  298 

Figure 8 shows the impacts of sets of radar scan strategies for multi-Doppler updraft retrievals for the selected convective 299 

cell using a 3DVAR technique (North et al., 2017; Oue et al., 2019). This cell is the same cell examined in the previous 300 

section (Figs. 4 and 5). We simulate different combinations of the scan strategies using 1-min RHI that scans around the 301 

center of the cell and 5-min VCP. Recall, Table 1 provides the details of the scan strategies, and Figure 1 shows the locations 302 

of the radars with these scan strategies and the targeted OSSE cell. The sets of radars for the multi-Doppler wind retrieval 303 

simulations are: 1) two radars, each using a 1-min RHI (red dot and cross in Fig. 1, called 2RHI); 2) two radars, each using 304 

a 5-min VCP (called 2VCP); 3) two radars, with one using a 1-min RHI (red dot in Fig. 1) and the other using a 5-min VCP 305 

(red cross in Fig. 1) (called RHIVCP); and 4) three radars, with two using 1-min RHIs (red and blue dots in Fig. 1) and one 306 

using a 5-min VCP (red cross in Fig. 1) (called 2RHIVCP). Table 2 represents the root mean square errors (RMSEs) of the 307 

retrieved vertical velocity at four different heights, as well as at all heights. The 2VCP simulation (Figure 8c; green in Figure 308 

8f) significantly underestimates the updraft, with the error exceeding 5 m s-1 above 5 km AGL, where the cell produces 309 

mean updrafts stronger than 12 m s-1. The 2VCP radar pair, whose volume scan takes 5 minutes, does not resolve the updraft 310 

evolution well. We note that other studies also found an underestimation of vertical velocity retrievals using two 5-min 311 

VCPs. For example, Marinescu et al. (2020) used two 5-min VCPs to estimate strong updrafts in supercells and found an 312 

underestimation in the region from 5-10 km AGL when compared with radiosonde estimates of vertical velocity. This pair 313 

of 5-min VCPs (2VCP) does, however, produce less error below 4 km AGL where the cell produces weaker updrafts (< 5 314 

m s-1) when compared with the other sets of radar combinations. This suggests that the conventional PPI scans, which have 315 
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dense scans at low elevation angles, well capture the low-level horizontal inflow, and the mass continuity assumption is 316 

well satisfied at the low levels. It is interesting that while 5-min VCP represents VIL well for the distance > 30 km as shown 317 

in Fig. 3, its limitations produce significant uncertainties in the convective dynamical retrieval of individual clouds above 318 

~5 km AGL even though the cell is observed at a distance > 30 km from the radar (Fig. 1). 319 

With an RHI scan every minute, even when adding only one RHI, cell tracking improves the retrievals above 5 km altitude 320 

(Figs. 8b,d,e; 2RHI, RHIVCP, and 2RHIVCP; red, magenta, and blue, respectively in Figure 8f). The improvements are 321 

particularly significant for regions in which the updraft velocities are stronger than 10 m s-1. The RHIVCP simulation shows 322 

the best estimate at the middle altitude (~6 km) among the four simulations, followed by 2RHIVCP, and thirdly 2RHI. The 323 

2RHI and 2RHIVCP simulations show RMSEs less than 6 m s-1 at all altitudes and better estimates than the other two 324 

simulations at the higher altitudes (8 and 10 km AGL). The RHI scan has better sampling in the higher elevations than 5-325 

min VCP, resulting in a better retrieval at these higher altitudes. 326 

As the profile and Table 2 show, 2RHI and 2RHIVCP have the lowest RMSEs when considering all altitudes (Table 2, 327 

bottom row). In addition, 2RHIVCP shows better results at altitudes < 10 km than 2RHI . This suggests that the conventional 328 

5-min VCP scan can be used for further improvement of the RHI-only tracking retrievals for the low and middle altitudes. 329 

Since the 5-min VCP has dense scans at lower elevations, this can help to provide enough data covering the horizontal 330 

domain of the cell, which may better represent the low-level horizontal wind convergence, thereby, better constraining the 331 

cost functions in the 3DVAR.  332 

We also investigate the impacts of the radar radial locations relative to the same cell as in Figs. 4, 5 and 8. Radars 333 

horizontally extending from 10 to 70 km (in 10 km increments) radially away from the cell are assessed. For this analysis, 334 

we use the scan strategy with the lowest errors from our prior analysis, i.e., two radars performing 2-min SECs and one 335 

radar performing 5-min VCP (e.g., Table 2, the tracking radars used 2-min SEC rather than 1-min RHI; we believe that 1-336 

min RHI can be feasible with electrical scan or mechanical rapid scan radars, but 2-min SEC can be sometime more 337 

reasonable when the cell is relatively close to the radars and need to be scanned until higher elevations, as discussed in Sect. 338 

2.4.2). Figure 9a shows the radar locations for the seven simulations and Figure 9b demonstrates the vertical profiles of 339 

errors of the retrieved updrafts averaged over a 20 km x 20 km box with reflectivity > 30 dBZ at 21:42 UTC. For each 340 

retrieval, the largest error is evident above an altitude of ~9 km AGL where the stronger updrafts are simulated by the model 341 

(Fig. 8a). The largest error among the retrievals is found in the retrieval with the radars closest to the cell (red profile in Fig. 342 

9b). This occurs since the PPI volume scan does not cover the upper part of the cell and/or the horizontal wind convergence 343 

at higher elevation angles may not be retrieved from the RHI measurements accurately. When each radar has a distance 344 

greater than or equal to 20 km from the cell, the retrievals are improved by 5-10 m s-1 between 5 to 11 km altitudes. The 345 

retrievals in which the radar distances from the cell fall between 20 and 50 km show errors less than 5 m s-1 below 11 km 346 

AGL. Such accuracies in the retrievals may allow for resolving the aerosol impacts on updraft velocities shown in Fig. 6. 347 

The errors are then found to increase again above 10 km AGL, especially for the radars located 60 and 70 km away from 348 
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the cell. This investigation suggests that the radars should target cells that are between 20-50 km from the radar for optimal 349 

multi-Doppler radar retrievals. This finding is consistent with previous field campaigns using multi-Doppler radar 350 

measurements (e.g., Wurman et al., 2012; Collis et al., 2013; Jensen et al., 2016) and OSSE studies (e.g., Potvin et al., 351 

2012a).  352 

In nature, convective cells often do not nicely evolve over pre-defined multi-Doppler regions and move outside the 353 

region of optimal analysis. Therefore, we also propose a single-RHI vertical velocity retrieval which can be used on a much 354 

larger sample of convective cells in the vertical in the vicinity of the radar compared to fixed, multi-Doppler platforms. The 355 

single-RHI vertical velocity retrieval extracts the vertical air motion component from the radial velocity (Doppler velocity) 356 

which is composed of the vertical air motion, horizontal air velocity, and hydrometeor fall velocity (Lamer et al., 2014). To 357 

apply this technique to real observations, horizontal velocity and hydrometeor fall velocity should be provided. Generally, 358 

the horizontal velocity profile can be provided from a velocity-azimuth display (VAD) technique using PPI measurements 359 

or sounding measurements, assuming that the horizontal wind is constant at each level. However, this assumption is a major 360 

source of the uncertainty in the single-RHI vertical velocity retrieval technique, particularly at lower elevation angles. At 361 

these lower elevation angles, the horizontal wind component dominates the radial velocity, but the coverage of these lower 362 

elevation angles often do not properly capture the variability in the horizontal wind, especially close to the radar. We 363 

therefore investigate the impact of the distance of the radar from the cell on the single-RHI retrieval. In the simulations, we 364 

use the reflectivity-weighted hydrometeor fall velocity simulated by CR-SIM, similar to the present multi-Doppler retrieval 365 

simulations, to exclude the uncertainty related to the fall velocity estimates. 366 

Figure 10 shows the simulated single RHI vertical velocity retrieval from the selected convective cell. Profiles in Figs. 367 

10c and 10d are retrieved vertical velocity at the convective core (distance = 0 km) and the errors from the truth, respectively. 368 

We investigate this technique for a profile at 21:42 UTC of the cell (same as Figs. 8f and 9b), where the strongest updraft 369 

is simulated. This single-RHI Doppler velocity technique works very well at the distance = 0 km (red), where the horizontal 370 

wind component can be ignored, as evidenced by the error profile being equal to 0 at all altitudes (red line). However, below 371 

6km AGL, the error significantly increases with the radar distance from the core. Interestingly, the characteristics of the 372 

error distribution are opposite to those of the multi-Doppler retrievals (Figs. 8f and 9b). We would, therefore, suggest the 373 

complementary use of the multi-Doppler wind retrieval and the single-RHI vertical velocity retrieval for better vertical 374 

velocity estimates of convective cells. For example, in a tracking strategy in which two radars track a targeted cell, the 375 

optimal scenario can be one in which the two radars track the cell with sector RHI/PPI scans at intervals of ~2 min when 376 

the distance of the cell from both radars is greater than 20 km. However, when the distance of the cell from one of the radars 377 

is less than 20 km, the radar’s scan is then switched to hemispheric RHI. 378 

This study highlights the importance of focusing on high-spatiotemporal observations of individual convective cells 379 

rather than utilizing conventional surveillance scans. Such high-spatiotemporal observations can be accomplished by 380 

tracking cells using fast scan RHI measurements facilitated by rapid-scan radars. However, it is not hard to anticipate that 381 

the number of individual cells tracked successfully during a short-term IOP period will also be limited. Therefore, we have 382 
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investigated the sample size of cells needed to represent the typical convective evolution of deep convective cells using the 383 

median maximum updraft metric shown in Fig. 6. This specific analysis accounts for the error regarding cell sampling, but 384 

it does not account for the wind retrieval uncertainty from the scan strategy. Figures 11a and 11c show boxplots of the 385 

maximum vertical velocity as a function of the normalized lifetime from all convective cells detected (910 tracked cells 386 

including deep and shallow cells) in the CLN case and from deep convective cells defined in Fig. 6a (453 tracked cells), 387 

respectively. These figures indicate high variability in the maximum updraft magnitude as a function of time, and that 388 

potentially, one randomly sampled convective cell may not represent the typical evolution of vertical velocity. Figure 11b 389 

depicts the relationship between the sample size and the errors associated with estimating the full population median 390 

evolution of the maximum updraft magnitude. We randomly sample convective cells from all of the tobac-detected cells in 391 

the CLN simulation (910 tracked cells) and estimate the median value of maximum updrafts at each time bin with different 392 

numbers of samples. The median values for the different sample sizes are then compared to the median values from the all 393 

deep convective cells detected and shown as a black line in Fig. 6a to estimate RMSEs. Figure 11b suggests that increasing 394 

the sample size generally decreases the RMSE to less than 4.5 m s-1 until a population of 10 cell samples is reached and 395 

converges to approximately 2.6 m s-1 for a sample size of 20 or more samples. When focusing the analysis on deep 396 

convective cells only (Fig. 11d), the RMSE decreases to approximately 3 m s-1 for 10 cell samples and converges to 397 

approximately 1 m s-1 for 40 or more samples.  398 

This study focuses on isolated deep convective cells, each of which has a single core. Although we provide a detailed 399 

investigation of one selected cell using OSSEs, the result should be robust for the other cells that have a similar vertical 400 

structure to that shown in Sect. 3.2. The error values presented in this study, however, may depend on cloud type. In 401 

particular, as the larger errors of the multi-Doppler radar wind retrievals were shown to exist in the higher altitudes in this 402 

study, the heights of convection could influence the observational uncertainties (i.e., height of maximum updraft). Moreover, 403 

in a strong wind shear environment where storms advect quickly, the impact of the use of quick updates of RHI scans would 404 

be more effective (e.g., Clark et al., 1980; Oue et al., 2019). Various convective cloud morphologies have been investigated 405 

in terms of uncertainties in observations, including mesoscale convective systems (e.g., Bousquet et al., 2008; Oue et al., 406 

2019), supercells (e.g., Potvin et al., 2012; Marinescu et al., 2020), and convection embedded in stratiform precipitation 407 

(e.g., Bousquet et al., 2008). However, the qualitative characteristics found in this study, such as the error profile trends, the 408 

dependency on the radar locations, and the dependency on scan strategy, are likely to be common to those deep convective 409 

cloud systems, as well.  410 

 411 

4 Summary 412 
 413 

Optimizing radar observation strategies has been one of the most important topics in pre-field-campaign periods, 414 

especially when the focus is on atmospheric phenomena that rapidly evolve on timescales that standard operational radar 415 

networks cannot resolve. This study uses the Cloud-resolving Radar Simulator (CR-SIM) and the tobac cloud object 416 

https://doi.org/10.5194/egusphere-2022-346
Preprint. Discussion started: 20 May 2022
c© Author(s) 2022. CC BY 4.0 License.



 14 

tracking algorithm to investigate observational uncertainties of isolated deep convective clouds associated with pre-existing 417 

and planned radar deployments and strategies. The focus of this manuscript is to optimize the radar observation strategies 418 

for the TRACER/ESCAPE field campaign, but the results are generally applicable to all field campaigns focused on radar 419 

observations of deep convection. 420 

The following results and associated recommendations are made:  421 

● The cell tracking algorithm works better with the use of VIL compared with the use of reflectivity thresholds at 422 

individual altitudes to detect and track more convective cells for longer time periods, including the early-developing 423 

and dissipating stages of isolated storms.  424 

● An analysis of low-CCN (CLN) and high-CCN (POL) simulations, used to quantify the impact of aerosols on the 425 

convective dynamical evolution, show a 5-7 m s-1 difference in maximum updraft at the early stages of convective 426 

development. This suggests the importance of accurate vertical velocity estimates using the radar observations if the 427 

impact of aerosols on convective updrafts is to be assessed. Fast scanning of the individual convective cells every 428 

minute captures the microphysics and dynamics better than the operational radar observations that update the volume 429 

scan every 5 min. The tracking of cells using RHI every minute better captures the evolution of KDP in the early stage 430 

and ZDR in the later stage, which are primarily associated with the rain number concentration and hydrometeor particle 431 

(hail and rain) size, respectively.  432 

● Tracking using RHI improves the multi-Doppler radar updraft retrievals above 5 km AGL, particularly for regions 433 

with updraft velocities greater than 10 m s-1. The conventional 5-min PPI volume scan can be used for further 434 

improvement of the RHI-tracking-only retrievals.  435 

● The multi-Doppler radar updraft retrievals, even when using RHI, are still challenging, especially for cells that are 436 

close to the radars (e.g., within 10 km of the radar). This approach can be complemented by a single RHI updraft 437 

retrieval technique.  438 

● Based on these results, the suggested best strategy to better capture microphysics and dynamics of deep convective 439 

cells is tracking by frequent RHI scans from more than one radar (blue and red scans in Fig. 12), in addition to the 440 

operational PPI volume scans generally performed by the NEXRAD radars (green scans in Fig. 12). We also suggest 441 

a hybrid radar scan strategy which switches between the RHI cell tracking and hemispheric RHI measurements 442 

depending on the distance between the radar and the targeted cell (red and orange scans in Fig. 12). Such RHI tracking 443 

measurements would be possible with conventional mobile radars, but the fast-scanning Doppler radars (Wurman, 444 

2001), and/or phased array radars (Kollias et al., 2022) would have more advantages in faster updating, better spatial 445 

resolution, and higher quality datasets.  446 

● Increasing the number of deep convective cells sampled by such observations better represents the population median 447 

maximum updraft evolution. When increasing the number of deep cells sampled to more than 10, the RMSE 448 

decreases to less than 3 m s-1, and when increasing the sample size to more than 40, the RMSE further decreases to 449 

less than 1 m s-1.   450 
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 451 

Finally, this study highlights the importance of using OSSEs in developing radar strategies during pre-field campaign 452 

periods. The use of a radar simulator in the OSSEs provides several advantages including 1) facilitating instrument 453 

deployments such as the radar locations and the number of radars required; 2) optimizing radar configurations such as the 454 

scan rate, elevation angles, update time of scans, and trade offs; and 3) quantifying errors of the observables and retrievals. 455 

Effective OSSEs can lead to successful, state-of-the-art field campaigns and provide high-quality, unique datasets that can 456 

allow for new insights of the atmospheric phenomena. 457 

 458 

 459 
Code availability. The source code and user manual for the Cloud Resolving Model Radar Simulator (CR-SIM) are available 460 

at https://www.bnl.gov/CMAS/cr-sim.php, last access: 21 April 2022, and those for Tracking and Object-Based Analysis 461 

of Clouds (tobac) are available at https://tobac.readthedocs.io/en/latest/.  462 

 463 

Data availability. The ACPC model intercomparison project deep convection simulation data used for the input of CR-SIM 464 

are stored and can be accessed on the U.K. CEDA JASMIN supercomputer. 465 

 466 

Author contributions. The radar simulator and cell tracking work and analysis were made by MO. Conceptualization of the 467 

method, interpretation, and writing were shared between MO, PK, SMS, PJM, and SCV. The radar simulator was developed 468 

by MO and PK’s group, and the cell tracking code was developed by SCV’s group. 469 

  470 

Competing interests. The authors declare that they have no conflict of interest.  471 

 472 

Acknowledgements. 473 

M. Oue, S. M. Saleeby, and S. C. van den Heever were supported by Atmospheric System Research (grant no. DE-474 

SC0021160). M. Oue and P Kollias were also supported by National Science Foundation Grant FAIN-2019932.  475 

 476 
 477 

  478 

https://doi.org/10.5194/egusphere-2022-346
Preprint. Discussion started: 20 May 2022
c© Author(s) 2022. CC BY 4.0 License.



 16 

References 479 

Barnes, S. L.: A Technique for maximizing details in numerical weather map analysis, J. Appl. Meteorol., 3, 396–409, 480 

1964. 481 

Bousquet, O., Tabary, P., and Parent du Ch telet, J.: Operational multiple-Doppler wind retrieval inferred from long-482 

range radial velocity measurements, J. Appl. Meteor. Climatol., 47, 2929–2945, 483 

https://doi.org/10.1175/2008JAMC1878.1, 2008. 484 

Bryan, G. H., and Fritsch, J. M.: A benchmark simulation for moist nonhydrostatic numerical models. Monthly Weather 485 

Review, 130, 2917–2928, 2002. 486 

Clark, T. L., Harris, F. I., and Mohr, C. G.: Errors in wind fields derived from multiple-Doppler radars: Random errors 487 

and temporal errors associated with advection and evolution, J. Appl. Meteorol., 19, 1273–1284, 1980. 488 

Collis, C., Protat, A., May, P. T., and Williams, C.: Statistics of storm updraft velocities from TWP-ICE including 489 

verification with profiling measurements, J. Appl. Meteor. Climatol., 52, 1909–1922, https://doi.org/10.1175/JAMC-490 

D-12-0230.1, 2013. 491 

Cotton, W. R., and Coauthors: RAMS 2001: Current status and future directions. Meteor. Atmos. Phys., 82, 5–29, 492 

https://doi.org/10.1007/s00703-001-0584-9, 2003. 493 

Kang, C., Giangrande, S.E., Serbin, S. P., Campbell, P., Hickmon, N., Ritsche, M. 2021: Science and Deployment Plan 494 

for the DOE 3rd Atmospheric Radiation Measurement Mobile Facility in the Southeastern United States, 2021 AGU 495 

Fall Meeting, New Orleans and Online, 13 – 17 December 2021, online available at 496 

https://www.arm.gov/uploads/2021_AGU_SE_US_TownHall_Slides.pdf 497 

Fridlind, A. M., van Lier-Walqui, M., Collis, S., Giangrande, S. E., Jackson, R. C., Li, X., Matsui, T., Orville, R., Picel, 498 

M. H., Rosenfeld, D., Ryzhkov, A., Weitz, R., and Zhang, P: Use of polarimetric radar measurements to constrain 499 

simulated convective cell evolution: a pilot study with Lagrangian tracking, Atmos. Meas. Tech., 12, 2979–3000, 500 

https://doi.org/10.5194/amt-12-2979-2019, 2019. 501 

Heikenfeld, M., Marinescu, P. J., Christensen, M., Watson-Parris, D., Senf, F., van den Heever, S. C., and Stier, P.: Tobac 502 

1.2: Towards a flexible framework for tracking and analysis of clouds in diverse datasets. Geosci. Model Dev., 12, 503 

4551–4570, https://doi.org/10.5194/gmd-12-4551-2019, 2019 504 

Hu, J., Rosenfeld, D., Zrnic, D., Williams, E., Zhang, P., Snyder, J. C., Ryzhkov, A., Hashimshoni, E., Zhang, R., Weitz, 505 

R.: Tracking and characterization of convective cells through their maturation into stratiform storm elements using 506 

polarimetric radar and lightning detection, Atmospheric Research, 226, 192-207, 2019, 507 

https://doi.org/10.1016/j.atmosres.2019.04.015. 508 

Jensen, M., Bruning, E., Collins, D., Fridlind, A., Kollias, P., Kuang, C., Rosenfeld, D., Ryzhkov, A., Varble, A., Brooks, 509 

S.D., Collis, S., Defer, E., Fan, J., Flynn, J., Giangrande, S., Griffin, R., Hu, J., Jackson, R., Kumjian, M., Logan, T., 510 

Matsui, T., McFarquhar, G., Nowotarski, C., Quaas, J., Oue, M., Sheesley, R., Snyder, J., Stier, P., Usenko, S., van den 511 

https://doi.org/10.5194/egusphere-2022-346
Preprint. Discussion started: 20 May 2022
c© Author(s) 2022. CC BY 4.0 License.



 17 

Heever, S., van Lier Walqui, M., Wang, Y., Xu, Y., and Zhang, G.: Tracking Aerosol Convection Interactions 512 

ExpeRiment (TRACER) Science Plan. Ed. by Robert Stafford, DOE/SC-ARM-19-017, 2019. 513 

Jensen, M. P., Petersen, W. A., Bansemer, A., Bharadwaj, N., Carey, L. D., Cecil, D. J., Collis, S. M., Del Genio, A. D., 514 

Dolan, B., Gerlach, J., Giangrande, S. E., Heymsfield, A., Heymsfield, G., Kollias, P., Lang, T. J., Nesbitt, S. W., 515 

Neumann, A., Poellot, M., Rutledge, S. A., Schwaller, M., Tokay, A., Williams, C. R., Wolff, D. B., Xie, S., & Zipser, 516 

E. J. (2016). The Midlatitude Continental Convective Clouds Experiment (MC3E), Bulletin of the American 517 

Meteorological Society, 97(9), 1667-1686. 518 

Jensen, M. P., Flynn, J. H., Judd, L. M., Kollias, P., Kuang, C., Mcfarquhar, G., Nadkarni, R., Powers, H., & Sullivan, J. 519 

(2022). A Succession of Cloud, Precipitation, Aerosol, and Air Quality Field Experiments in the Coastal Urban 520 

Environment, Bulletin of the American Meteorological Society, 103(2), 103-105. 521 

Khairoutdinov, M. F., and Randall, D.A.: Cloud-resolving modeling of the ARM summer 1997 IOP: Model formulation, 522 

results, uncertainties and sensitivities. J. Atmos. Sci., 60, 607-625, 2003. 523 

Kollias, P., Luke, E., Oue, M., and Lamer, K.: Agile adaptive radar sampling of fast-evolving atmospheric phenomena 524 

guided by satellite imagery and surface cameras. Geophysical Research Letters, 45, e2020GL088440. 525 

https://doi.org/10.1029/2020GL088440, 2020. 526 

Kollias, P., Luke, E., Tuftedal, K., Dubois, M. Knapp, E.J. : Agile Weather Observations using a Dual-Polarization X-527 

band Phased Array Radar. IEEE Radar Conference New York, NY.,2022. 528 

Kumjian, M. R., and Ryzhkov, A. V.: Polarimetric signatures in supercell thunderstorms. J. Appl. Meteor. Climatol., 47, 529 

1940–1961, doi:10.1175/2007JAMC1874.1, 2008 530 

Kumjian, M. R., Khain A. P. , Benmoshe N. , Ilotoviz E. , Ryzhkov A. V. , and Phillips V. T. J.: The anatomy and physics 531 

of ZDR columns: Investigating a polarimetric radar signature with a spectral bin microphysical model. J. Appl. Meteor. 532 

Climatol., 53, 1820–1843, doi:10.1175/JAMC-D-13-0354.1. 2014. 533 

Marinescu, P. J., Kennedy, P. C., Bell, M. M., Drager, A. J., Grant, L. D., Freeman, S. W.,, and van den Heever, S. C.: 534 

Updraft vertical velocity observations and uncertainties in High Plains supercells using radiosondes and radars. Mon. 535 

Wea. Rev., 148, 4435–4452, 2020, https://doi.org/10.1175/MWR-D-20-0071.1. 536 

Marinescu, P. J., van den Heever, S. C., Heikenfeld, M., Barrett, A. I., Barthlott, C., Hoose, C., Fan, J., Fridlind, A. M., 537 

Matsui, T., Miltenberger, A. K., Stier, P., Vie, B., White, B. A., and Zhang, Y. : Impacts of Varying Concentrations of 538 

Cloud Condensation Nuclei on Deep Convective Cloud Updrafts—A Multimodel Assessment, Journal of the 539 

Atmospheric Sciences, 78(4), 1147-1172, 2021. 540 

ModEx Approach - Environmental System Science Program, U.S. DOE Environmental System Science Program, 541 

https://ess.science.energy.gov (accessed [May 11, 2022]) 542 

North, K. W., Oue, M., Kollias, P., Giangrande, S. E., Collis, S. M., and Potvin, C. K.: Vertical air motion retrievals in 543 

deep convective clouds using the ARM scanning radar network in Oklahoma during MC3E, Atmos. Meas. Tech., 10, 544 

2785–2806, https://doi.org/10.5194/amt-10-2785-2017, 2017.  545 

https://doi.org/10.5194/egusphere-2022-346
Preprint. Discussion started: 20 May 2022
c© Author(s) 2022. CC BY 4.0 License.



 18 

Oue, M., Kollias, P., Shapiro, A., Tatarevic, A., and Matsui, T.: Investigation of observational error sources in multi-546 

Doppler-radar three-dimensional variational vertical air motion retrievals, Atmos. Meas. Tech., 12, 1999–2018, 547 

https://doi.org/10.5194/amt-12-1999-2019, 2019. 548 

Oue, M., Tatarevic, A., Kollias, P., Wang, D., Yu, K., and Vogelmann, A. M.: The Cloud-resolving model Radar 549 

SIMulator (CR-SIM) Version 3.3: description and applications of a virtual observatory, Geosci. Model Dev., 13, 1975–550 

1998, https://doi.org/10.5194/gmd-13-1975-2020, 2020. 551 

Potvin, C. K., Betten, D., Wicker, L. J., Elmore, K. L., and Biggerstaff, M. I.: 3DVAR versus traditional dual-Doppler 552 

wind retrievals of a simulated supercell thunderstorm, Mon. Weather Rev., 140, 3487–3494, 553 

https://doi.org/10.1175/MWRD-12-00063.1, 2012a. 554 

Potvin, C. K., Wicker, L. J., and Shapiro A.: Assessing errors in variational dual-Doppler wind syntheses of supercell 555 

thunderstorms observed by storm-scale mobile radars, J. Atmos. Ocean. Tech., 29, 1009–1025, 556 

https://doi.org/10.1175/JTECHD-11-00177.1, 2012b. 557 

Powers, J. G., Klemp, J. B., Skamarock, W. C., Davis, C. A., Dudhia, J., Gill, D. O., Coen, J. L., Gochis, D. J., Ahmadov, 558 

R., Peckham, S. E., Grell, G. A., Michalakes, J., Trahan, S., Benjamin, S. G., Alexander, C. R., Dimego, G. J., Wang, 559 

W., Schwartz, C. S., Romine, G. S., Liu, Z., Snyder, C., Chen, F., Barlage, M. J., Yu, W., and Duda, M. G. : The 560 

Weather Research and Forecasting Model: Overview, System Efforts, and Future Directions, Bulletin of the American 561 

Meteorological Society, 98(8), 1717-1737, 2017. 562 

Rasmussen, E. N., J. M. Straka, , R. P. Davies-Jones, , C. A. Doswell, , F. H. Carr, , M. D. Eilts and , and D. R. 563 

MacGorman,: Verification of the Origins of Rotation in Tornadoes Experiment: VORTEX. Bull. Amer. Meteor. Soc., 564 

75, 995–1006, 1994. 565 

Shusse, Y., and Tsuboki, K. : Dimension Characteristics and Precipitation Efficiency of Cumulonimbus Clouds in the 566 

Region Far South from the Mei-Yu Front over the Eastern Asian Continent, Monthly Weather Review, 134(7), 1942-567 

1953.,   568 

Stein, T. H. M., Hogan, R. J., Clark, P. A., Halliwell, C. E., Hanley, K. E., Lean, H. W., Nicol, J. C., and Plant, R. S.: The 569 

DYMECS Project: A Statistical Approach for the Evaluation of Convective Storms in High-Resolution NWP Models, 570 

Bulletin of the American Meteorological Society, 96(6), 939-951, 2015. 571 

Steiner, M., Houze, R. A., Jr., and Yuter, S. E. : Climatological Characterization of Three-Dimensional Storm Structure 572 

from Operational Radar and Rain Gauge Data, Journal of Applied Meteorology and Climatology, 34(9), 1978-2007, 573 

1995. 574 

Wurman, J., Dowell, D., Richardson, Y., Markowski, P., Rasmussen, E., Burgess, D., Wicker, L., & Bluestein, H. B. : 575 

The Second Verification of the Origins of Rotation in Tornadoes Experiment: VORTEX2, Bulletin of the American 576 

Meteorological Society, 93(8), 1147-1170, 2012. 577 

van den Heever, S. C., Grant, L. D., Freeman, S. W., Marinescu, P. J., Barnum, J., Bukowski, J., Casas, E., Drager, A. J., 578 

Fuchs, B., Herman, G. R., Hitchcock, S. M., Kennedy, P. C., Nielsen, E. R., Park, J. M., Rasmussen, K., Razin, M. N., 579 

https://doi.org/10.5194/egusphere-2022-346
Preprint. Discussion started: 20 May 2022
c© Author(s) 2022. CC BY 4.0 License.



 19 

Riesenberg, R., Dellaripa, E. R., Slocum, C. J., Toms, B. A., & van den Heever, A. : The Colorado State University 580 

Convective Cloud Outflows and UpDrafts Experiment (C3LOUD-Ex), Bulletin of the American Meteorological 581 

Society, 102(7), E1283-E1305. 582 

Wurman, J.: The DOW mobile multiple-Doppler network. Preprints, 30th Int. Conf. on Radar Meteorology, Munich, 583 

Germany, Am. Meteorol. Soc., 95–97, 2001. 584 

Wurman, J., D. Dowell, Y. Richardson, P. Markowski, E. Rasmussen, D. Burgess, L. Wicker, H.B. Bluestein: The Second 585 

Verification of the Origins of Rotation in Tornadoes Experiment: VORTEX2. Bull. Amer. Meteor. Soc., 93, 1147-586 

1170, doi: 10.1175/BAMS-D-11-00010.1, 2012. 587 

Zängl, G., Reinert, D., Rípodas, P. and Baldauf, M. : The ICON (ICOsahedral Non-hydrostatic) modelling framework of 588 

DWD and MPI-M: Description of the non-hydrostatic dynamical core. Q.J.R. Meteorol. Soc., 141: 563-579. 589 

https://doi.org/10.1002/qj.2378, 2015. 590 

 591 

 592 

 593 

Table 1. Radar scan strategies simulated in this study. 594 

Strategy Full elevation scan for an 

azimuth sector tracking cells (1-

min RHI, 2-min SEC) 

5-min volume coverage 

pattern (5-min VCP) 

Full 

elevation/azimuth 

scan (Full) 

Beam width 1.0° 0.9° 1.0° 

Elevation angles From 0.5° to 89.5° every 1° 0.48, 0.88, 1.32, 1.8, 2.42, 

3.12, 4.0, 5.1, 6.42, 8.0, 

10.02, 12.48, 15.6, and 

19.51° 

From 0° to 90° every 

1° 

Azimuth range 14.5° at 40 km radar range 

(Sector to cover a 10-km width 

centered around the individual 

cells with 1° spacing) 

From 0° to 360° with a 0.5° 

increment 

From 0° to 360° with 

a 1.0° increment 

Time for volume 

scan  

1 minute or 2 minutes* 5 minutes 1 minute 

*With the radar beam width of 1°, the total beam for the sector scan is 90 (over elevation) x 14 (over azimuth) = 1260 595 

beams. Assuming that each beam needs ~96 radar samples, the total number of pulses is 120960. This takes 1-2 min 596 

with typical pulse repetition ratios (1.5 - 2.5 kHz) for C- and X-band radars. See detailed discussion in Sect. 2.4.2  597 

 598 
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Table 2. The root-mean-square error (RMSE) of the retrieved updraft averaged over the regions with reflectivity ≥40 dBZ 599 

at four different altitudes as well as all heights for a variety of scan strategies for the entire lifetime. 600 

 1. Two 1-min RHIs 

(2RHIs) 

2. Two 5-min 

VCPs (2VCPs) 

3. One 1-min RHI + one 5-

min VCP (RHIVCP) 

4. Two 1-min RHIs + one 

5-min VCP (2RHIVCP) 

10 km 4.794 16.82 7.995 4.800 

8 km 5.371 7.396 5.609 5.112 

6 km 5.862 6.601 4.764 4.895 

4 km 4.232 3.178 3.625 3.511 

All heights 5.030 6.763 5.539 4.535 

 601 

 602 
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Fig. 1: (a) A snapshot of the RAMS-simulated total hydrometeor condensate field at 21:09 UTC at 5.5 km ASL; (b) CR-SIM 603 
simulated radar reflectivity field at the same height and same time as (a); (c) vertically integrated liquid (VIL) estimated from 604 
the CR-SIM C-band total reflectivity (from total liquid and ice hydrometeor condensate) at the same time as (a); and (d) tracks 605 
of precipitating convective cells detected between 20:00 and 23:59 UTC using tobac. On each panel, the red “X” marks the location 606 
of a radar performing 5-min VCP (i.e., NEXRAD KHGX), the red solid dot represents the location of a radar performing a 607 
different 5-min VCP or RHI, and the blue solid dot represents the location of another radar performing RHI. The red rectangle 608 
represents the tracked cell of interest used for multi-Doppler radar retrieval and polarimetric evolution analysis. 609 

 610 

Fig. 2: Frequency distributions of cell duration time from the tobac cell tracking using VIL (red), 10 dBZ threshold at 2 km 611 
height (blue), and 40 dBZ threshold at 2 km height (black) for (a) CLN and (b) POL cases. The legend displays the total 612 
number of detected cells (N) for each tracking parameter utilized. Panel (a) also includes the cell tracking using VIL for the 613 
POL case shown as the red dashed line. 614 

 615 
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 616 

Figure 3: (a) Contoured frequency by distance (from the radar) distribution of the VIL from the original, cartesian model grid 617 
from the 1-minute output over the 4-hour analysis time period; (b) difference between the VIL from the 5-min VCP scan strategy 618 
and (a); and (c) difference between the VIL from the Full scan strategy and (a). The VILs from the 5-min VCP and Full scan 619 
strategies are estimated from the gridded reflectivity fields with 250 m horizontal and vertical spacing and 1-minute output over 620 
the 4-hour time period. 621 
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 622 
Fig. 4: Height-versus-time cross sections of the (a) total hydrometeor condensate content, (b) updraft, (c-d) the mass-weighted 623 
mean diameter (Dm) for (c) rain and (d) hail, and the number density (N) for (e) rain and (f) hail, averaged for areas with 624 
reflectivity > 40 dBZ of the selected convective cell from the CLN case. 625 
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 626 
Fig. 5: Time-height cross sections of C-band radar reflectivity (top row), KDP (middle row), and ZDR (bottom row), averaged for 627 
areas with reflectivity > 40 dBZ for the selected convective cell for (a,d,g) the model simulation truth, (b,e,h) simulated RHI 628 
tracking strategy, and (c,f,i) simulated 5-min volume scan strategy. The cell in this figure is the same as that shown in the box in 629 
Fig. 4 and is from the CLN case. Note that the NEXRAD S-band frequency is assumed for the 5-min VCP simulation, while C-630 
band frequency is assumed for the model and RHI simulation. Therefore, the KDP values in this figure include the frequency 631 
dependency. 632 

 633 
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 634 

Fig. 6: Frequency of maximum updraft magnitudes in detected individual cells as a function of time normalized by the cell 635 
duration for the (a) CLN and (b) POL case simulations, and (c) the difference between the CLN and POL cases (POL – CLN). 636 
Here we present only those deep convective cells with 20 dBZ echo top heights that exceeded the freezing level during their 637 
lifetimes. Color shading in (a) and (b) represents normalized frequency by cell lifetime, and that in (c) represents the difference 638 
in the normalized frequency. The sample size at each time bin is presented on the top of (a) and (b). Black lines in (a) and (b) 639 
represent the median value in each time bin. 640 

 641 

Figure 7: Maximum updraft velocity in the cell column at each time represented as a function of the normalized lifetime for the 642 
nine deep convective cells from the CLN simulation. These cells were randomly selected, as described in Section 3.2, and were 643 
required to have the maximum radar reflectivity greater than 45 dBZ, the echo top height of 40 dBZ exceeding 5 km in altitude, 644 
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and the echo top height of 20 dBZ extending above 8 km altitude during the storm lifecycle.  The black line represents the target 645 
cell that was analyzed for the present OSSE. Note that because the plot displays the maximum updraft found in regions with 646 
reflectivity greater than 45 dBZ, some lines do not end at time=1.0 when the maximum reflectivity is below 45 dBZ. 647 

 648 

 649 
Fig. 8: Height-time cross sections of the updraft velocity averaged over the area with reflectivity > 40 dBZ from (a) the model 650 
(truth) and (b-e) the simulated retrievals, as well as the (f) errors of the simulated multi-Doppler vertical velocity retrievals 651 
(retrieval - truth) at 21:42 UTC, when the maximum updraft was produced by the cell.   652 

 653 
 654 

https://doi.org/10.5194/egusphere-2022-346
Preprint. Discussion started: 20 May 2022
c© Author(s) 2022. CC BY 4.0 License.



 27 

Fig. 9: (a) Horizontal distribution of VIL centered around one identified convective cell (gray box, the same cell shown in Figs. 655 
4, 5, and 8) at 21:42 UTC from the CLN simulation and (b) vertical profiles of errors of simulated retrievals (retrieval - model) 656 
averaged over a 20 km x 20 km box with reflectivity > 30 dBZ at 21:42 UTC for the identified convective cell.  The colored dots 657 
in (a) represent the radar locations for the multi-Doppler radar wind retrievals. The colors of the dots correspond to the colors 658 
of the set of the radars for the multi-Doppler radar wind retrievals shown in (b). The two radars to the north of the cell performed 659 
2-min RHIs, and the other performed 5-min VCP. The RMSE for each profile is displayed in (b). 660 

 661 

 662 
Fig. 10: Vertical cross section of (a) radar reflectivity and (b) Doppler velocity from the simulated RHI measurement for a 663 
convective cell and vertical profiles of (c) retrieved vertical air motion and (d) errors (retrieval – model), simulated with different 664 
distances between the radar and the center of the convective cell (distance = 0 km in b) at 21:42 UTC. The location of the radars 665 
from the center of the convective cell in (c-d) are indicated by their corresponding colored triangle in panel (b). A negative Doppler 666 
velocity in (b) represents motion toward the radar. 667 
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 668 
Figure 11: (a,c) Boxplots of maximum vertical velocity as a function of the normalized lifetime from all convective cells detected 669 
(910 cells including deep and shallow cells) from the CLN case and from the deep convective cells (453 cells) defined in Fig. 6a, 670 
respectively. For each boxplot, the central red mark indicates the median, and the bottom and top edges of the box indicate the 671 
25th and 75th percentiles, respectively. The whiskers extend to the most extreme data points excluding outliers.  Outliers are 672 
plotted individually using the cross symbol. Black solid lines in (a) and (c) represent the temporal evolution of the median values 673 
of maximum updrafts for deep cells as a function of time. (b,d) The RMSEs of median values of the maximum vertical velocity as 674 
a function of the number of cells randomly sampled from all convective cells detected in the CLN simulation (b) and from deep 675 
convective cells defined in Fig. 6a (d). The RMSEs are estimated from the median profiles as a function of the normalized lifetime 676 
from the random sampling and that from the all deep convective cells (black line in Fig. 6a).  677 
 678 

https://doi.org/10.5194/egusphere-2022-346
Preprint. Discussion started: 20 May 2022
c© Author(s) 2022. CC BY 4.0 License.



 29 

 679 
Figure 12: A schematic image of a suggested scan strategy optimized for observing convective cell evolution.  Optimal cell tracking 680 
is achieved by frequent RHI scans from more than one radar (blue and red scans) in addition to the operational PPI volume scans 681 
generally performed by the NEXRAD radars (green scans). The schematic also suggests an optimal hybrid radar scan strategy 682 
which switches between cell tracking by frequent RHI measurements and hemispheric RHI measurements depending on the 683 
distance between the radar and the target cell (red and orange scans).  684 

 685 
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